a2 United States Patent

Coker et al.

US008578122B2

(10) Patent No.:

(45) Date of Patent:

US 8,578,122 B2
Nov. 5, 2013

(54) INDIRECTION MEMORY ARCHITECTURE
WITH REDUCED MEMORY
REQUIREMENTS FOR SHINGLED
MAGNETIC RECORDING DEVICES
(75) Inventors: Jonathan Darrel Coker, Rochester, MN
(US); David Robison Hall, Rochester,
MN (US)

(73) Assignee: HGST Netherlands B.V., Amsterdam
(NL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 182 days.

(21) Appl. No.: 13/200,418

(22) Filed: Sep. 22, 2011

(65) Prior Publication Data
US 2012/0303930 A1 Nov. 29, 2012

Related U.S. Application Data

(60) Provisional application No. 61/489,174, filed on May
23,2011.

(51) Imt.ClL
GO6F 12/00 (2006.01)

(52) US.CL
USPC 711/170,711/100; 711/118; 711/156;

711/173;711/221

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,185,063 Bl 2/2001 Cameron
6,378,037 Bl 4/2002 Hall
6,967,810 B2* 11/2005 Kasirajetal. 360/78.04

7,603,530 Bl 10/2009 Liikanen et al.
2005/0071537 Al 3/2005 New et al.
2007/0183071 Al 82007 Uemura et al.
2010/0205623 Al 8/2010 Molaro et al.
2010/0232057 Al 9/2010 Sanvido et al.

OTHER PUBLICATIONS

Yuval Cassuto, et al.; Indirection Systems for Shingled-Recording
Disk Drives; 26th IEEE (MSST 2010) Symposium on Massive Stor-
age Systems and Technologies; Published May 7, 2010. http://
storageconference.org/2010/Presentations/Research/15.Cassuto.
pdf.

Ahmed Amer, et al.; Design Issues for a Shingled Write Disk System;
26th IEEE (MSST 2010) Symposium on Massive Storage Systems
and Technologies: Research Track; Published May 7, 2010. http://
storageconference.org/2010/Papers/MSST/Amer.pdf.

Tkuya Tagawa, et al.; Minimization of erase-band in shingled PMR
with asymmetric writer; Journal of Magnetism and Magnetic Mate-
rials; No vol. or page given; online Dec. 2, 2010 in ScienceDirect.

* cited by examiner

Primary Examiner — Shawn X Gu
(74) Attorney, Agent, or Firm — G. Marlin Knight

(57) ABSTRACT

An indirection system in a shingled storage device is
described that uses an algorithm to map LBAs to DBAs based
on a predetermined rule or assumption and then handles as
exceptions LBAs that are not mapped according to the rule.
The assumed rule is that a fixed-length set of sequential host
LBAs are located at the start of an I-track. Embodiments of
the invention use two tables to provide the mapping of LBAs
to DBAs. The mapping assumed by the rule is embodied in
the LBA Block Address Table (LBAT) which gives the cor-
responding I-track address for each LBA Block. The LBA
exceptions are recorded using an Exception Pointer Table
(EPT), which gives the pointer to the corresponding variable
length Exception List for each LBA Block. The indexing into
the LBAT and the EPT is derived from the LBA by a simple
arithmetic operation.

18 Claims, 5 Drawing Sheets

1

Host/User

Storage Device
10

16

LBA

NS

indirection System

LBA Block Address
Table (LBAT)

Exception Pointer
Tabie (EPT)

7
17

18

|

Device Address
(Maps to Physical Location)

f
15 15

15 1 15

g HRegion E EI Region E

]

- Reglon E

1
15 14 Cache 1
Guard Region

i
4 | 1

16
E-Region

14 N
12
Thin Films

on Disk

U.S. Patent Nov. 5, 2013 Sheet 1 of 5 US 8,578,122 B2

1
Host/User
Storage Device
10
/
16 LBA
\ N2
Indirection System
LBA Block Address Exception Pointer
Table (LBAT) Table (EPT)
/ /
17 18
Device Address
(Maps to Physical Location)
| |
15 15 15 15 R
3 |-Region § NI-Region § N N I-Region 3 R I-Region N
8 1355 BREE 88 13 3 8 13§
| | \ | 7 -
15 14 Cache 14 / 14 14 AN
Guard Region 16 12
E-Region Thin Films
on Disk

Fig. 1

U.S. Patent Nov. 5, 2013 Sheet 2 of 5 US 8,578,122 B2

1/7 LBA Block Address Table (LBAT)

LBA Block(0) — Physical I-Track Address

LBA Block(1) — Physical |-Track Address

LBA Block(N)— Physical |-Track Address
Fig. 2

}8 Exception Pointer Table (EPT)

LBA Block(0) —t Exception List Pointer or Null Pointer
LBA Block(1) — Exception List Pointer or Null Pointer

LBA Block(N) — Exception List Pointer or Null Pointer

Fig. 3

U.S. Patent Nov. 5, 2013 Sheet 3 of 5 US 8,578,122 B2

21\ Exception Pool

E-Region
16 16 16b 16
SRR

N

Exception List
for LBA Block())

19
T N N
Exception List Pointer \J RN
I

for LBA Block(j) , \ s
7 N B |
18j / / \
22a 22b 22¢ 22
I-Track(j)

Fig. 4

U.S. Patent Nov. 5, 2013 Sheet 4 of 5 US 8,578,122 B2

51
Perform arithmetic operation on the LBA to obtain
the LBA Block index.
52
Retrieve the Exception List pointer from the '

Exception Pointer Table (EPT) using the LBA Block index.

53
"~ If the pointer is the null pointer value,

then create a new Exception List,
otherwise retrieve Exception List.

Write data for the LBA in the E-region.

95~ Record offset, length & location for
the LBA in Entry in the Exception List.
Remove any existing reference to this
LBA in another Entry in Exception List.

N
' Sort Exception List Entries by offset.

56 —

57
Write Exception List to Exception Pool.

o8 Save pointer to Exception List in

Exception Pointer Table at
LBA Block Index

Fig. 5

U.S. Patent Nov. 5, 2013 Sheet 5 of 5 US 8,578,122 B2

61
L
Perform arithmetic operation on the LBA to obtain
the LBA Block index.
— 62
Retrieve the Exception List pointer from the 4

Exception Pointer Table (EPT) using the LBA Block index.

63 Yes
7 Is the pointer the null pointer value?

No

" Does the Exception List include an
entry giving a location for the LBA?

64 No

Yes

Read data for the LBA from the
location given in the entry.

65—

66 Read data for the LBA at an offset

from an |-track starting address
specified in the LBA Address Table
at the LBA Block index.

Fig. 6

US 8,578,122 B2

1
INDIRECTION MEMORY ARCHITECTURE
WITH REDUCED MEMORY
REQUIREMENTS FOR SHINGLED
MAGNETIC RECORDING DEVICES

RELATED APPLICATIONS

This application is related to commonly assigned provision
patent application filed on May 23, 2011 bearing Ser. No.
61/489,174, and the benefits of this provisional application
are claimed under 35 U.S.C. 119(e). A commonly assigned
patent application filed on Jul. 18, 2011 bearing Ser. No.
13/135,953, which is hereby incorporated by reference,
describes SMR drive embodiments with write-twice cache
regions that are mentioned in the present application.

FIELD OF THE INVENTION

The invention relates to the field of data storage device
architecture using indirection for mapping physical storage
locations to logical addresses and more particularly to such
indirection mapping used in shingle-written magnetic record-
ing (SMR) devices.

BACKGROUND

Conventional disk drives with magnetic media organize
data in concentric tracks that are spaced apart. The concept of
shingled writing is a form of perpendicular magnetic record-
ing and has been proposed as a way of increasing the areal
density of magnetic recording. In shingle-written magnetic
recording (SMR) media a region (band) of adjacent tracks are
written so as to overlap one or more previously written tracks.
The shingled tracks must be written in sequence unlike con-
ventionally separated tracks, which can be written in any
order. The tracks on a disk surface are organized into a plu-
rality of shingled regions (also called I-region) which can be
written sequentially from an inner diameter (ID) to an outer
diameter (OD) or from OD to ID. The number of tracks
shingled together in a region is a key performance parameter
of shingled-writing. Once written in shingled structure, an
individual track cannot be updated in place, because that
would overwrite and destroy the data in the overlapping
tracks. Shingle-written data tracks, therefore, from the user’s
viewpoint are sometimes thought of like append-only logs. To
improve the performance of SMR drives, a portion of the
media is allocated to a so-called “exception region” (E-re-
gion) which is used as staging area for data which will ulti-
mately be written to an I-region. The E-region is sometimes
referred to as an E-cache.

Address indirection in the shingle-written storage device’s
internal architecture is useful to emulate existing host inter-
faces at least to some extent and shield the host from the
complexities associated with SMR. Conventionally host file
systems use logical block addresses (LBAs) in commands to
read and write blocks of data without regard for actual loca-
tions (physical block address (PBA)) used internally by the
storage device. Hard disk drives have had some level of LBA-
PBA indirection for decades that, among other things, allows
bad sectors on the disk to be remapped to good sectors that
have been reserved for this purpose. Address indirection is
typically implemented in the controller portion of the drive’s
architecture. The controller translates the LBAs in host com-
mands to an internal physical address, or something from
which a physical address can ultimately be derived.

The conventional LBA-PBA mapping for defects does not
need to be changed often. In contrast, in an SMR device the

—

0

20

25

30

35

40

45

50

55

60

65

2

physical block address (PBA) of a logical block address
(LBA) can change frequently depending on write-history. For
example, background processes such as defragmentation
move data sectors from one PBA to another but the LBA stays
the same. The indirection system for SMR is a natively
dynamic system which translates host address requests to
physical locations. In an SMR system, the LBA-PBA map-
ping can change with every write operation because the sys-
tem dynamically determines the physical location on the
media where the host data for an LBA will be written. The
data for the same LBA will be written to a different location
the next time the host LBA is updated. The indirection system
provides a dynamic translation layer between host LBAs and
the current physical locations on the media.

SUMMARY OF THE INVENTION

An indirection system in a storage device according to the
invention uses an efficient algorithm to map LBAs to device
block addresses (DBAs) based on a predetermined rule or
assumption and then handles as exceptions LBAs that are not
mapped according to the basic rule. The predetermined rule
or assumption is that a fixed-length set of sequential host
LBAs are located at the start of an I-track. The assumption
will be correct for a sufficiently high percentage of LBAs (e.g.
data suggests 95%+ of the drive’s LBAs) so that significant
reduction in the size of the storage/memory needed for the
indirection address tables is possible. Embodiments of the
invention use two tables serve to provide the mapping of
LBAs to DBAs, but the entries can be equivalently organized
into a single table. The mapping assumed by the rule is
embodied in the LBA Block Address Table (LBAT) which
gives the corresponding I-track address for each LBA Block.
The LBA exceptions are recorded in an Exception Pointer
Table (EPT), which gives the pointer to the corresponding
variable length Exception List for each LBA Block. The
current DBA corresponding to an LBA is found by using the
Exception Pointer Table (EPT) or the LBA Block Address
Table (LBAT). The indexing into the LBAT and the EPT is
made efficient by deriving the index from the LBA by a
simple operation such as dividing by a power of 2.

The total storage/memory needed to store the two address
tables is lower than in the prior art because the LBAT, which
references most of the LBAs, only includes a single I-track
address for each block of LBAs. An LBA Block in an embodi-
ment can have a relatively large number of LBAs, e.g. 64K.
The Physical I-track Address is relatively small, e.g. 32 bits,
and records only the starting address for the block of LBAs. A
predetermined fixed-length set of sequential host LBAs are
assumed to start at that address.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is an illustration of a data storage device with an
Indirection System according to an embodiment of the inven-
tion.

FIG. 2 is an illustration of an LBA Block Address Table
(LBAT) used in an Indirection System according to an
embodiment of the invention.

FIG. 3 is an illustration of an Exception Pointer Table
(EPT) used in an Indirection System according to an embodi-
ment of the invention.

FIG. 4 is an illustration of an example of an Exception List
pointed to by an entry in an Exception Pointer Table (EPT)
used in an Indirection System according to an embodiment of
the invention.

US 8,578,122 B2

3

FIG. 5 is an illustration of an example of the execution of a
write command by data storage device according to an
embodiment of the invention.

FIG. 6 is an illustration of an example of the execution of a
read command by a data storage device according to an
embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is an illustration of a data storage device (DSD) 10
using SMR with an Indirection System 16 according to an
embodiment of the invention. The host 11 can be any type of
computer and can communicate with the device by any means
including through a network. The term “user” will be used
interchangeably with “host.” Multiple hosts can also commu-
nicate with the device using prior art techniques.

The host 11 sends read and write commands that reference
standard logical block addresses (LBAs). In an SMR drive
according to an embodiment of the invention an LBA can be
assigned to an E-region, an I-region, or Write-twice Cache
region which complicates the task of indirection mapping.
These regions can be mapped into a single physical address
space that is not physically contiguous. This can take the form
of a simple translation using the start of each region and its
length.

Thin films 12 are magnetic thin film coatings, which typi-
cally are deposited on both upper and lower surfaces of a hard
disk (not shown) and a device can also have multiple disks.
The films 12 are shown in FIG. 1 in cross section view. In a
plan view, the regions are a plurality of concentric circular
bands. The magnetic thin films are formatted for use in an
SMR architecture and in this embodiment include E-region
16, I-regions 13, write cache regions 14 (also called write-
twice cache regions), and guard regions or bands 15. A device
can have multiple E-regions on a single disk surface.

The Indirection System 16 translates the LBAs from the
host commands into device block addresses (DBAs) or
equivalently Device LBAs for internal use by the device. A
DBA as used herein is not necessarily a physical address, but
instead an intermediate representation used by the device. For
example, a DBA can be logically adjusted to account for
defects. The term device block address (DBA) is an internal
address that the device uses in a particular context to identify
a physical storage location on the media regardless of what
type of region itis in. When used without a qualifier herein the
term LBA refers to the host LBA.

The Indirection System 16 can, for example, be imple-
mented as a functional component in the controller portion
(not shown) of the DSD 10. The Indirection System 16 func-
tions according to the prior art except as described herein, and
aspects of the Indirection System that perform prior art func-
tions are not shown. The current DBA corresponding to an
LBA is found by using the LBA Block Address Table (LBAT)
17 or the Exception Pointer Table (EPT) 18. Collectively
these two tables serve to provide the mapping of LBAs to
DBAs as will be described more fully below.

The indirection system (controller) 16 keeps track of where
data for each host LBA is currently stored in the device’s
various regions using the LBAT 17 and EPT 18. The total
memory needed to store the two address tables is kept low
because the LBAT, which references most of the LBAs, only
includes a single I-track address for each block of LBAs.

FIG. 2 is an illustration of an LBA Block Address Table
(LBAT) 17 used in an Indirection System according to an
embodiment of the invention. As shown in FIG. 2, the LBAT
only contains a single Physical I-track Address for each LBA
Block. An LBA Block in an embodiment can have a relatively

20

25

30

35

40

45

50

55

60

65

4

large number of LBAs, e.g. 64K. The Physical I-track
Address is relatively small, e.g. 32 bits, and records only the
starting address for the block of LBAs. A predetermined
fixed-length set of sequential host LBAs are assumed to start
at that address. The starting address for the block of LBAs is
preferably constrained to be start of an I-track. The set of
LBAs are sequential as viewed by the host and device.

The Indirection System algorithm of the invention is based
ona rule and exceptions. The basic rule (assumption) is that a
fixed-length set of host LBAs that are sequential as viewed by
the host and device are located at the start of an I-track. The
basic assumption will be accurate for a sufficiently high per-
centage of LBAs (e.g. data suggests 95%+ of the drive’s
LBAs) so that significant reduction in the size of the memory
needed for address tables is possible.

As shown in the embodiment in FIG. 2, each consecutive
block of LBAs is mapped to a starting address for an I-track.
The consecutive ordering of the blocks of LBAs and the block
size are assumed in the creation of the LBAT. So the size of the
blocks of LBAs is predetermined (e.g., 64K LBAs) and the
first entry in the LBAT is the starting address for an I-track for
the first block of LBAs (LBA Block(0)). The organization of
the LBAT is preferably part of the design of the device and
once determined should not change. However, the entries in
the LBAT specifying the I-track can be changed if needed as
the device operates. It follows that I-track addresses for adja-
cent LBA Blocks do not need to refer to adjacent I-tracks.

Specific LBAs within each block of LBAs can be refer-
enced by an offset from start of the block, which is the start of
an I-track. Note that I-tracks can physically wrap at the end of
an I-region. These [-tracks still have one a single LBAT entry.
A check is made to see if an [-track would extend past the end
of'the current I-region and a wrap condition is used in calcu-
lating the DBA for any request. Therefore, specific LBAs
within each I-track can be identified by the I-track number,
and its offset from the starting LBA of that specific I-track.
The abbreviated LBA addressing results in reduced memory
requirements for the address tables. The indirection algorithm
is most efficient when sequential LBAs of an I-track corre-
spond to sequential DBAs on the disk surface.

The device handles [.LBAs that are not written in sequence
as part of an entire block of LBAs as exceptions to the default
rule or assumption. FIG. 3 is an illustration of an Exception
Pointer Table (EPT) 18 used in an embodiment of the inven-
tion. For each block of LBAs, the device maintains a variable
length Exception List, which can be empty. For fast lookup a
fixed size table of pointers is maintained with pointers to the
non-empty Exception Lists. A null pointer is used for empty
Exception Lists, i.e. those I-tracks which are completely
intact with sequential LBAs. The Exception Pointer Table
(EPT) 18 has the same number of entries as the LBA Block
Address Table (LBAT) 17 and can be indexed the same way,
as will be discussed further below. Although the LBAT 17 and
EPT 18 are shown as two separate tables each with a single
column, as equivalent arrangement could have one table with
two columns.

FIG. 4 is an illustration of an example of an Exception List
for LBA Block(j) 19 pointed to by an Exception List Pointer
for LBA Block(j) 18/ which is an sample entry in an Excep-
tion Pointer Table (EPT) 18 used in an embodiment of the
invention. The set of Exception Lists are preferably stored in
a dynamically managed storage area called the Exception
Pool 21 in an embodiment of the invention. The Exception
List for LBA Block(j) 19 has three entries, which point to data
blocks 16a-c that are currently stored in an E-region 16. The
entries in the Exception List 19 cover data blocks 22a-c,
which were previously mapped to LBAs in I-track(j) 22 but

US 8,578,122 B2

5

which have been replaced by 3 non-sequential write com-
mands received from the host for these LBAs. To further
illustrate this example, assume that the first host command
causing an exception for I-track(j) was received to write 8
consecutive LBAs that were previously written in area 22a,
which is at offset 0x0100 from the start of the track. Due to the
shingled arrangement of I-tracks, none of the sectors in
I-track(j) can be updated in-place. Therefore, the device takes
the following actions (not necessarily in this order):

write the new data for 8 consecutive LBAs in the E-region

16 starting at an available DBA or Drive-LBA (, e.g.
0x18F01240).

create an Exception List with 1 entry with offset, length and

DBA fields in the Exception Pool 21, for example:

Offset: 0x0100

Length: 0x0008

DBA: 0x18F01240.

set pointer in EPT for the LBA Block(j), which corre-

sponds to I-track(j), to the address of the new Exception

List.
When additional commands change the data in the LBAs that
originally correspond to areas 225, 22¢, then the system adds
the second and third exceptions for these updates to the pre-
viously created Exception List 19. When each new entry is
added, the Exception List is preferably sorted by offset from
the start of the I-track to provide for efficient searching of the
list. The old data for the L. BAs that have rewritten by the host
is left on the I-track, but is not used. The principles of opera-
tion are the same for write commands that reference LBAs
that are already contained in an Exception List. The device
has to update the Exception List to record the new LBAs,
which can involve invalidating one of more existing indirec-
tion entries.

As LLBAs are written by the host, the Exception Lists will
tend to grow, but the exceptions in the lists can be merged
back into a newly written I-track as part of a defragmentation
process. Some or all of the exceptions for the tracks in an
I-track region can be reset by the defragmentation process
which rewrites the entire I-track region sequentially including
the updated L.BAs that were initially recorded as exceptions.
Additionally, to reduce the space needed for the Exception
Lists, highly fragmented I-tracks can be recombined with
their exceptions and rewritten into either the I-region or E-re-
gion. This “logical” defragmentation process is accom-
plished by gathering randomly written data and rewriting it
sequentially. Thus, an entire I-track could be written in the
E-region and the corresponding Exception List would be
short, with perhaps a single entry if the length field was large
enough to cover it.

The data for exception LBAs, which have been written
non-sequentially, can be located in an E-region as in the
example above, but it can also be located in a cache region on
the disk. In alternative embodiments the cache region on the
disk can be a Write-Twice Cache (WTC) region or a Hot
Cacheregion. In alternative embodiments some of the regions
that could otherwise be WTCs are used as Hot Cache regions.
In embodiments using Hot Cache regions, the defragmenta-
tion process might be designed to not merge the exceptions in
the Hot Cache back into the sequential I-track because that
would eliminate the benefit of the cache at least temporarily.

For the E-region(s), the indirection system can use either
abbreviated LBAs according to the invention or standard
format: LBA:DBA mapping.

On each host read command, which can be for a block of
LBAs, the Indirection System uses the EPT and the LBAT to
determine where each of the LBAs is located, and if any part
of the request is contained in one or more exceptions. The

20

25

30

35

40

45

50

55

60

65

6

LBAs for the read request are retrieved from the potentially
various regions and sent to the host as a block.

Indexing the LBAT and EPT:

The LBAT and EPT are preferably structured so that the
LBA Block index, which is used to retrieve a Physical I-track
Address and the Exception List Pointer, is derived by per-
forming a simple, fast calculation or operation using the LBA
from the host command. Preferably the LBA is divided by a
power of 2 to derive the index. For example, if each LBA
Block has 64K (i.e. 2'%) LBAs, then dividing by 64K (or
equivalently a 16-bit logical shift to the right) gives the I-track
entry number in the LBAT in which that LBA is mapped
based on the basic rule. (Note: To get to the byte address in the
LBAT, the entry number in the LBAT is multiplied by the
number of bytes per entry, e.g. 4 bytes.) The LBA Block(0)
entry as shown in FIG. 2 would correspond to LBAs O through
64K ~-1. In this example, the lower 16 bits of the LBA are the
offset within the block.

The size of each Physical I-track Address (PIA) entry in the
LBAT can be less than or equal to 32 bits regardless of the
number ofthe device’s capacity. The Physical I-track Address
is the starting point of an I-track and can be restricted to a
multiple of native blocks to ensure that only 32 bits are
necessary. For example, in a 16 TB drive, with 512 byte
sectors, 32-bit address can only resolve 2 TB, but by restrict-
ing the Physical I-track Address to start on 4K boundaries the
full 16 TB can be addressed. But smaller offsets can be used
if I-tracks have a linear mapping to I-regions. I-track granu-
larity determines the I-track Address Table size, but also
affects indirection lookup overhead and the EPT entry size.
An exemplary embodiment with 64K LBAs per I-track could
have an LBA Block Address Table (LBAT) size requirement
0ot 256 KB per 1 TB of storage capacity. The 256 KB would
increase to 288 KB with 8:1 ECC protection. The storage
requirements for the EPT can be the same as for the LBAT.

The Exception List for an I-track is a variable length data
structure. The set of Exception Lists can generally be man-
aged using standard data processing techniques. An exem-
plary embodiment uses a dynamic Exception Pool 21. When
an update to an Exception List is required (because of a host
write command) the existing Exception List, if one exists, is
merged with the new entry or entries into an SRAM Buffer
and the entries are sorted into the required order before being
written back to free space in the Exception Pool. The SRAM
is used as work area since final number of exceptions
unknown before hand. The Exception List Pointer for the
LBA Block/I-track is updated to point to new Exception Pool
location. The space for the previous (old) Exception List in
the Exception Pool is freed for other use. An Exception List
can be updated in-place when only the DBA is updated, for
example, when destaging from Write-Twice cache to an E-re-
gion) or length is increased during a sequential write.

An Exception List for an I-track on which an LBA Block is
stored is preferably sorted by the offset from the start of the
I-track. This structure allows for fast lookup of O(log,N),
where N is the number of entries in the list. The Entries do not
overlap and can be split or deleted by insertions into the list.
Long writes (e.g. >256 blocks) can be split into multiple
Entries, because the size of each Exception List can grow as
needed.

An exemplary Exception List Entry is 8 bytes long includ-
ing 16 bits for an offset field, 16 bits for a length field, and a
32-bit Exception DBA (EDBA). The 16-bit offset field pro-
vides full addressability of 64 k LBAs in an I-track. The 32-bit
EDBA is sufficient by constraining exception start granular-

ity.

US 8,578,122 B2

7

In alternative embodiments the EDBA can be further con-
strained by excluding the need to address I-tracks. In this
embodiment the EDBA is constrained to only apply to
regions where the exception LBAs are stored, e.g. E-region,
Write-Twice Cache and Hot Cache. In this case it is possible
that 6 or 7 byte Deltas could be used with a 8-bit length field
and/or 24-bit EDBA.

FIG. 5 is an illustration of an example of the execution of a
write command by data storage device according to an
embodiment of the invention. A write command received
from a host specifies at least one LBA and in this example it
is assumed that a single LBA is specified. An arithmetic
operation is performed on the LBA to obtain an LBA block
index for the LBA 51. The pointer for the corresponding
Exception List is retrieved from the Exception Pointer Table
using the LBA block index 52. If the pointer is the null pointer
value, then a new Exception List is created, otherwise the
existing Exception List is retrieved 53. The data for the LBA
is written at a selected location, e.g. in the E-region 54. An
entry is added to the Exception List identifying the LBA by
the offset within the LBA Block, a length, which is 1 in this
case, and giving the selected storage location 55. Note that if
there is a pre-existing entry in the Exception List that includes
the LBA, then this reference to the LBA must be removed,
which may require several actions such as splitting the pre-
existing entry into two new entries. If it is a single entry that
references only the one LBA, then the entry can simply be
deleted. If the reference to the LBA is part of block of LBAs,
then the entry might be edited or divided as necessary to
remove the reference to the LBA and maintain the exception
entries for the other LBAs.

The entries in the Exception List are sorted by the offset 56
to allow rapid searching. The Exception List is written to
storage 57, e.g. in space dynamically allocated in the Excep-
tion Pool. A pointer to Exception List’s storage location is
recorded in the Exception Pointer Table using the LBA block
index 58. The order in which some of these actions are taken
can vary in different embodiments.

FIG. 6 is an illustration of an example of the execution of a
read command by a data storage device according to an
embodiment of the invention. A read command received from
a host specifies at least one LBA and this example assumes
that a single LBA is given. An arithmetic operation is per-
formed onthe LBA to obtain an LBA block index correspond-
ing to the LBA 61. The pointer for an Exception List is
retrieved from the Exception Pointer Table using the LBA
block index 62. If the pointer is the null pointer value 63, then
the data for the LBA is read from an I-track specified in an
LBA Address Table at the LBA block index 66. The data
sector for the LBA will be offset from the start of the I-track
as indicated by the LBA. In this case the data for the LBA
follows the assumed basic rule. Once the data is read, it is sent
to the host in the standard way.

If the pointer is not the null pointer value, then the Excep-
tion List is searched for entries giving a location of the LBA
64, and if an entry giving the location of the first LBA is not
found, then the data is read from the I-track 66 as described
above. If an entry giving the location of the first LBA is found
in the Exception List, then the data for the L BA is read from
the specified location 65, which can be in an E-region or cache
region in this embodiment. Once the data is read, it is sent to
the host in the standard way.

If the read command specifies a set of LBAs, the reading
process is essentially the same for each LBA, but some steps
do not need to be repeated for a series of LBAs that are all in
the same LBA Block and, therefore, are covered by the same
Exception List pointer. For example, if the pointer is null, then

20

25

30

35

40

45

50

55

60

65

8

all of the LBAs in that LBA block are found on the I-track, and
it is not necessary repeatedly check the pointer.

As used herein, a region is a set of contiguous concentric
tracks in thin film magnetic media on a disk surface. I-regions
are shingled user-data areas. An E-region is an exception
region that includes data that is an exception to the general
rule. The E-regions include updated LBAs that were previ-
ously written in sequential shingled I-regions and could not
be overwritten in place. The old sectors in I-region become
holes that are eventually recovered by the defragmentation
process. E-regions can be shingled or non-shingled and there
can be one or more per disk-media surface.

WTC-regions (write-twice cache regions) are relatively
small bands of tracks generally between I-regions that are
used for write caching or other opportunistic data storage. In
devices with WTC-regions user-data can be written to WTC-
regions first, then to either E-region or I-track region. Writing
within each WTC-region can be shingled or unshingled.
WTC-regions and I-tracks are set up in an alternating series
interrupted occasionally by E-regions (e.g., there can be
roughly equal numbers of WTC-regions and I-regions with
fewer E-regions). When write-caching user-data to a WTC-
region, the nearest WTC-region is preferably used, regardless
of where the data will be eventually written. The nearest
WTC-region is defined as the one with shortest seek time,
which can be on different disk-media surface.

The invention claimed is:

1. A shingled data storage device having an Indirection
System comprising:

a first set of table entries recorded in a memory in the
Indirection System forming a Logical Block Address
Table (LBAT) in which each entry maps a block of
consecutive Logical Block Addresses (LBAs) to an
I-track address; and

a set of Exception Lists recorded in the memory in the
Indirection System specifying storage locations for
LBAs that are not located on an I-track specified in the
Logical Block Address Table for a corresponding block
of consecutive LBAs.

2. The device of claim 1 wherein the set of Exception Lists
are referenced through a second set of table entries forming an
Exception Pointer Table in which each entry is a null pointer
or a pointer to an Exception List for a corresponding block of
consecutive LBAs.

3. The device of claim 1 wherein the entries forming the
Logical Block Address Table (LBAT) are arranged so that an
index for an entry in the LBAT corresponding to a particular
LBA is derived by performing an arithmetic operation on the
particular LBA.

4. The device of claim 3 wherein the arithmetic operation
includes dividing by a power of 2.

5. The device of claim 2 wherein an index for a selected
entry in the LBAT is equal to an index for a corresponding
entry in the Exception Pointer Table.

6. The device of claim 1 wherein I-track addresses in the
LBAT are restricted to predetermined boundaries that are a
power of 2.

7. The device of claim 1 wherein the Exception Lists are
stored in a dynamically managed Exception Pool storage
area.

8. The device of claim 1 wherein a size of a block of
consecutive LBAs for each entry in the LBAT is a power of 2.

9. The device of claim 1 wherein each Exception List
includes one or more entries comprising an offset value speci-
fying a first LBA’s location within a block of LBAs, a length
and a storage location where the first LBA is stored.

US 8,578,122 B2

9

10. A method of operating shingled data storage device
comprising:
receiving a read command from a host specifying at least a
first Logical Block Address (LBA), the first LBA being
within a first LBA Block which is one of a plurality of
equal sized LBA Blocks of sequential LBAs; and

searching an Exception List for the first LBA Block for an
entry giving a storage location of the first LBA, and if an
entry giving the storage location of the first LBA is found
in the Exception List, then reading data for the first LBA
from the storage location, and if an entry giving the
storage location of the first LBA is not found, then read-
ing data for the first LBA from an I-track mapped to the
first LBA Block.

11. The method of claim 10 wherein an I-track address for
each LBA Block is specified in an entry in LBA Address Table
and reading data for the first LBA from the I-track mapped to
the first LBA Block further comprises finding the I-track in
LBA Address Table using an LBA block index corresponding
to the first LBA derived by performing an arithmetic opera-
tion on the first LBA to obtain an LBA block index corre-
sponding to the first LBA.

12. The method of claim 10 further comprising retrieving,
before the step of searching, a pointer for the Exception List
from an Exception Pointer Table using an LBA block index
corresponding to the first LBA, the Exception Pointer Table
having an entry for each of the equal sized blocks of sequen-
tial LBAs, the LBA block index corresponding to the first
LBA being derived by performing an arithmetic operation on
the first LBA to obtain the LBA block index corresponding to
the first LBA.

13. A method of operating shingled data storage device
comprising:

20

25

30

10

receiving a command to write data at a specified LBA, the
specified LBA being within one of a plurality of prede-
termined equal sized blocks of sequential LBAs;

performing an arithmetic operation on the specified LBA to
obtain an LBA block index corresponding to the speci-
fied LBA;

retrieving a first pointer to an Exception List from an

Exception Pointer Table using the LBA block index, the
Exception Pointer Table having an entry for each of the
predetermined equal sized blocks of sequential LBAs;
retrieving the Exception List using the first pointer;
writing the data at a first selected storage location;
adding an entry to the Exception List identifying the speci-
fied LBA and the first selected storage location;
writing the Exception List to a second storage location; and
recording a second pointer to the second storage location in
the Exception Pointer Table at the LBA block index.

14. The method of claim 13 further comprising creating a
new Exception List when the first pointer is a null value.

15. The method of claim 13 further comprising sorting the
Exception List in order of an offset value for an LBA which
specifies an offset of an LBA within the blocks of sequential
LBAs.

16. The method of claim 13 wherein performing an arith-
metic operation further comprises dividing by a power of 2.

17. The method of claim 13 further comprising merging all
LBAs in a selected Exception List into a block of sequential
LBAs during a rewriting process and setting an entry in the
Exception Pointer Table to a null pointer value.

18. The method of claim 17 wherein the blocks of sequen-
tial LBAs are written to an E-region.

#* #* #* #* #*

