

(12) STANDARD PATENT

(11) Application No. AU 2002249444 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title
Amplification process

(51) International Patent Classification(s)
C12N 15/09 (2006.01) **C12Q 1/68** (2006.01)
C12N 9/16 (2006.01) **C12R 1/01** (2006.01)
C12N 15/54 (2006.01)

(21) Application No: **2002249444** (22) Date of Filing: **2002.04.22**

(87) WIPO No: **WO02/088387**

(30) Priority Data

(31) Number **0110501.4** (32) Date **2001.04.30** (33) Country **GB**

(43) Publication Date: **2002.11.11**
(43) Publication Journal Date: **2003.04.17**
(44) Accepted Journal Date: **2007.07.12**

(71) Applicant(s)
The Secretary of State for Defence

(72) Inventor(s)
Clark, Duncan Roy;Vincent, Suzanne Patricia

(74) Agent / Attorney
Davies Collison Cave, GPO Box 4387, Melbourne, VIC, 3001

(56) Related Art
KR 20055626

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 November 2002 (07.11.2002)

PCT

(10) International Publication Number
WO 02/088387 A2

(51) International Patent Classification⁷: **C12Q 1/68**

(21) International Application Number: PCT/GB02/01861

(22) International Filing Date: 22 April 2002 (22.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0110501.4 30 April 2001 (30.04.2001) GB

(71) Applicant (for all designated States except US): THE SECRETARY OF STATE FOR DEFENCE [GB/GB]; DSTL, Porton Down, Salisbury, Wiltshire SP4 0JQ (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CLARK, Duncan, Roy [GB/GB]; GeneSys Limited, Suite 5, St. Albans House, 40 Lynchford Road, Farnborough, Hants GU14 6EF (GB). VINCENT, Suzanne, Patricia [GB/GB]; GeneSys Limited, Suite 5, St Albans House, 40 Lynchford Road, Farnborough, Hants GU14 6EF (GB).

(74) Agent: GREAVES, Carol, Pauline; Greaves Brewster, 24A Woodborough Road, Winscombe, North Somerset BS25 1AD (GB).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/088387 A2

(54) Title: AMPLIFICATION PROCESS

(57) Abstract: A method for conducting a nucleic acid amplification reaction, said method comprising forming an amplification reaction mixture in the presence of sufficient of a pyrophosphate salt to prevent primer extension taking place, digesting said pyrophosphate salt with a pyrophosphatase enzyme (PPase), and subjecting said reaction mixture to conditions such that an amplification reaction may proceed. This can be used as a "hot start" amplification. Particular novel pyrophosphatase enzymes for use in the method are also described and claimed.

Amplification Process

The present invention relates to processes for carrying out reactions in which nucleic acids are amplified, to means of 5 controlling these reactions and kits and reagents, in particular enzymes, used for conducting them.

Amplification reactions such as the polymerase chain reaction (PCR) are very well known and widely used in the fields of 10 biotechnological research, as well as in diagnostics and detection.

PCR is a procedure for generating large quantities of a particular nucleic acid sequence, in particular a DNA sequence, 15 and is based upon DNA's characteristics of base pairing and precise copying of complementary DNA strands. Typical PCR involves a cycling process of three basic steps.

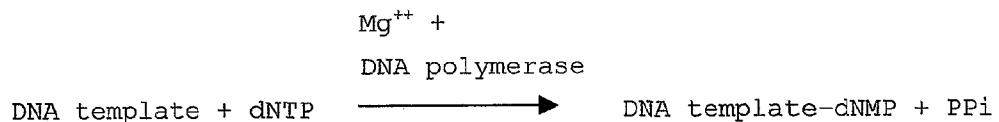
Denaturation : A mixture containing the PCR reagents (including the nucleic acid to be copied, which may be DNA or RNA (the 20 template), the individual nucleotide bases (A, T, G, C), suitable primers and polymerase enzyme) are heated to a predetermined temperature to separate the two strands of the target DNA.

Annealing : The mixture is then cooled to another predetermined temperature and the primers locate their complementary 25 sequences on the DNA strands and bind to them.

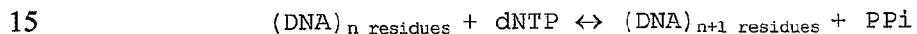
Extension : The mixture is heated again to a further predetermined temperature. The polymerase enzyme (acting as a catalyst) joins the individual nucleotide bases to the end of the primer to form a new strand of DNA which is complementary 30 to the sequence of the target DNA, the two strands being bound together.

Such reactions rely on the sequence of steps occurring in a very precise order and at the precise temperature required for the operation of that step. A problem arises when reagents are 35 mixed together, even for short periods of time, at different

temperatures, for example prior to the start of the reaction. Primers may interact with nucleic acid template, resulting in primer extension of the template. This can lead to a reduction in the overall yield of the desired product as well as the 5 production of non-specific products.


Various means of overcoming this problem have been proposed previously. For example, initial attempts to overcome the problem used a wax barrier to separate the various PCR reagents 10 from each other in a test tube (see for example USP 5,565,339). The wax melted as the reaction mixture was heated to the initial denaturation temperature, allowing the reagents to mix together at the last possible moment, so that the possibility of side-reactions was minimised. Such reactions are known as 15 "Hot Start" reactions.

Other chemical methods for achieving the suppression of side-reactions have been attempted. For example, US Patent No. 5,677,152 describes a method in which the DNA polymerase is 20 chemically modified to ensure that it only becomes active at elevated temperatures. In order to carry out this method however, it is necessary to incubate the reaction mixture at high temperatures for some time in order to generate active enzyme. Such delays, whilst not significant in some instances, 25 can be detrimental where the results of PCR are required rapidly. For many applications of the PCR technique it is desirable to complete the sequence of cycles in the minimum possible time. In particular for example where respiratory air or fluids or foods for human and animal stock consumption are 30 suspected of contamination rapid diagnostic methods may save considerable money if not health, even lives.


In other methods, a monoclonal antibody to *Thermus aquaticus* (*Taq*) DNA polymerase such as the anti-*Taq* DNA polymerase antibody available from Sigma, is introduced into the reaction 35 mixture. The antibody binds to the enzyme, so as to inactivate it, at ambient temperature. However, the antibody denatures and dissociates from the enzyme at elevated temperatures used

during the amplification cycles and so the enzyme becomes active. The method however does not appear to eliminate non-specific side-products in some cases.

5 Primer extension of a template during a PCR reaction can be represented as:

10 where dNTP is a deoxyribonucleic acid triphosphates, dNMP is the corresponding deoxyribonucleic acid monophosphate and PPi is an inorganic pyrophosphate. This reaction may also be represented as

The presence of increased levels of PPi, for example in a DNA sequencing reaction is known to force the reaction shown above in reverse. This is known as pyrophosphorolysis and it is a 20 recognised problem in DNA sequencing at 70°C using thermostable DNA polymerases. It has been overcome through the addition of a thermostable PPase to the DNA polymerase formulation used in DNA sequencing.

25 The applicants have found that this reaction can form the basis of an advantageous amplification reaction in which the production of non-specific products may be minimised.

According to the present invention there is provided a method 30 for conducting a nucleic acid amplification reaction, said method comprising forming an amplification reaction mixture in the presence of sufficient of a pyrophosphate salt to prevent primer extension taking place, enzymatically digesting said pyrophosphate, and subjecting said reaction mixture to 35 conditions such that an amplification reaction may proceed.

Using the method of the invention, accurate amplification reactions, which may be carried out rapidly and with good specificity, can be carried out. It therefore represents a good alternative to existing "Hot Start" amplification
5 technologies.

The initial amplification reaction mixture used in the method of the invention is broadly speaking, a conventional mixture, such as that used in the PCR reaction, to which pyrophosphate
10 salt is added. Thus it will generally comprise: i) a sample which contains or is suspected of containing a target nucleic acid sequence, (ii) at least one primer which hybridises to an end region of said target sequence, iii) a source of magnesium ions, (iv) nucleotide or nucleoside bases which constitute the
15 target sequence (i.e. A, T, C, G and/or U in the case of DNA amplification or A, U, C and G in the case of RNA amplification), and (v) a DNA polymerase which is thermostable at the temperatures at which the amplification reaction is effected. It will also comprise a buffer, as necessary in order to effect
20 the reaction, as is known in the art.

In particular (iv) will comprise nucleotides A, T, G and C in respect of DNA amplification and nucleosides A, U, C and G in respect of RNA amplification.

25 Other combinations may be used however, where other primer based amplifications reactions such as reverse transcriptase PCR (RT-PCR) are being conducted.

30 In addition, the reagents may include labelled probes or primers, and/or other labelling means such as intercalating dyes such as Sybr Green, Sybr Gold, ethidium bromide etc. or combinations of these, which might allow the application to be monitored, without the need to examine the product on a gel
35 subsequently. The nature of these depends upon the type of assay being undertaken. Generic intercalator methods use intercalating dyes to monitor the increase in double stranded

DNA which occurs during an amplification process. These are only quasi-strand-specific and therefore other labels are required where strand specific detection is required.

5 Strand specific methods utilise additional nucleic acid reaction components to monitor the progress of amplification reactions. These methods often use fluorescence energy transfer (FET) as the basis of detection. One or more nucleic acid probes are labelled with fluorescent molecules, one of
10 which is able to act as an energy donor and the other of which is an energy acceptor molecule. These are sometimes known as a reporter molecule and a quencher molecule respectively. The donor molecule is excited with a specific wavelength of light which falls within its excitation spectrum and subsequently it
15 will emit light within its fluorescence emission wavelength. The acceptor molecule is also excited at this wavelength by accepting energy from the donor molecule by a variety of distance-dependent energy transfer mechanisms. A specific example of fluorescence energy transfer which can occur is
20 Fluorescence Resonance Energy Transfer or "FRET". Generally, the acceptor molecule accepts the emission energy of the donor molecule when they are in close proximity (e.g. on the same, or a neighbouring molecule). The basis of fluorescence energy transfer detection is to monitor the changes at donor and
25 acceptor emission wavelengths.

There are two commonly used types of FET or FRET probes, those using hydrolysis of nucleic acid probes to separate donor from acceptor, and those using hybridisation to alter the spatial
30 relationship of donor and acceptor molecules.

Hydrolysis probes are commercially available as TaqMan™ probes. These consist of DNA oligonucleotides that are labelled with donor and acceptor molecules. The probes are
35 designed to bind to a specific region on one strand of a PCR product.

Following annealing of the PCR primer to this strand, *Taq* enzyme extends the DNA with 5' to 3' polymerase activity. *Taq* enzyme also exhibits 5' to 3' exonuclease activity. *TaqMan*™ probes are protected at the 3' end by phosphorylation to prevent them from priming *Taq* extension. If the *TaqMan*™ probe is hybridised to the product strand, an extending *Taq* molecule may also hydrolyse the probe, liberating the donor from acceptor as the basis of detection. The signal in this instance is cumulative, the concentration of free donor and acceptor molecules increasing with each cycle of the amplification reaction.

US Patent No. 5,491,063 describes a method for in-solution quenching of fluorescently labelled probes which relies on modification of the signal from a labelled single stranded oligonucleotide by a DNA binding agent. The difference in this signal which occurs as a result of a reduced chain length of the probe following probe cleavage (hydrolysis) during a polymerase chain reaction is suggested for providing a means for detecting the presence of a target nucleic acid.

Hybridisation probes are available in a number of forms. Molecular beacons are oligonucleotides that have complementary 5' and 3' sequences such that they form hairpin loops. Terminal fluorescent labels are in close proximity for FRET to occur when the hairpin structure is formed. Following hybridisation of molecular beacons to a complementary sequence the fluorescent labels are separated, so FRET does not occur, and this forms the basis of detection.

Pairs of labelled oligonucleotides may also be used. These hybridise in close proximity on a PCR product strand bringing donor and acceptor molecules together so that FRET can occur. Enhanced FRET is the basis of detection. Variants of this type include using a labelled amplification primer with a single adjacent probe.

US Patent No. 4,868,103 describes in general terms, a FRET system for detecting the presence of an analyte, which utilises an intercalating dye as the donor molecule. The process does not involve an amplification stage.

5

Other examples of assays which utilise FET or FRET detection are described in WO 99/28500, which utilises a combination of an intercalating dye and a single labelled probe as a signalling system, WO 99/28501 which utilises a combination of 10 a labelled primer and an enzyme to generate a detectable fluorescent signal, and WO 99/42611 which uses a combination of an intercalating dye and a fluorescently labelled nucleotide as the basis of the signal. Yet further assays which utilise complex primers including labels and chemical blocking agents 15 and which are complementary are described for example in WO 99/66071.

Reaction mixtures used in the method of the invention may include any of the labelling reagents necessary to conduct 20 assays as described above. In particular, such reaction mixtures may advantageously be used in genotyping and, more especially, in SNP evaluation. In these instances, the method of the present invention is used in combination with dual Taqman™ probes, one specific for the basic sequence and one 25 specific for the mutant. Each probe preferably contains a different fluorophore and therefore different signals are generated depending on the amount of the various forms of the gene present. A single signal is generated from a homozygote and a mixed signal is generated from a heterozygote.

30

Examples of suitable DNA polymerases which may be used in the context of the invention are thermostable polymerases such as *Thermus aquaticus* polymerase (*Tag*), *Thermus thermophilus* polymerase (*Tth*), *Thermus species NH* polymerase (*TspNH*), 35 *Thermus brockianus* polymerase (*Tbr*) (all obtainable for example from GeneSys Limited, Farnborough, U.K.), *Pyrococcus furiosus* polymerase (*Pfu*) (obtainable from Stratagene), 9°N7 exo-DNA

polymerase, and *Thermococcus litoralis* DNA polymerase (obtainable from New England Biolabs as VENT™ DNA polymerase).

The pyrophosphate used in the method of the invention may be 5 any soluble pyrophosphate including soluble metal and non-metal (e.g. ammonium salts). Such compounds are often generically known as "inorganic pyrophosphate" or PPi and this nomenclature is used in the present application. In particular, the pyrophosphate will be an alkali metal pyrophosphate, such as 10 sodium or potassium pyrophosphates including disodium pyrophosphate ($Na_2H_2P_2O_7$), anhydrous tetrasodium pyrophosphate ($Na_4P_2O_7$), tetrasodium pyrophosphate decahydrate ($Na_4P_2O_7 \cdot 10H_2O$) and tetrapotassium pyrophosphate (anhydrous). Other soluble pyrophosphates which may be used include iron pyrophosphates 15 such as ferric pyrophosphate ($Fe_4(P_2O_7)_3$), and soluble ammonium salts such as anhydrous tributylammonium pyrophosphate. Other soluble pyrophosphates are available from commercial sources.

A preferred inorganic pyrophosphate is tetrasodium 20 pyrophosphate of formula $Na_4P_2O_7$.

The concentration of pyrophosphate used in the reaction mixture should be sufficient to prevent primer extension taking place. This will depend to a large extent upon the particular nature 25 and concentration of the sequences being amplified, the primers and the polymerase enzymes being used, as well as their concentrations, and may be determined in any particular case by routine methods.

30 The reaction mixture formed initially suitably contains pyrophosphate at a concentration of at least 0.5mM, suitably at a concentration of least 1mM, for example from 1-10mM and preferably from 1-5mM.

35 Enzymatic digestion of the inorganic pyrophosphate is suitably effected immediately prior to or during first phase of the amplification reaction. This may be achieved by addition of an

pyrophosphatase enzyme (PPase) (which may be known as an inorganic pyrophosphatase enzyme - PPiase) immediately prior to the start of the amplification reaction.

5 Preferably, however, the enzymatic digestion is effected using a thermostable PPase, which is active at elevated temperatures, for example at temperatures in excess of 50°C. Preferably the enzyme is only significantly active at these elevated temperatures. This means that the PPase may be included in the
10 reaction mixture on formation, but it will not or not significantly digest the inhibitory pyrophosphate at ambient temperature. It will only become properly active when the reaction mixture is heated as will be necessary for example during the initial denaturation phase of a PCR reaction.
15 However, a short preliminary incubation at elevated temperature, for example at from 50 to 100°C, and, preferably, at from 80 to 95°C, may be carried out.

Examples of thermostable PPase include *Sulfolbus acidocaldarius* pyrophosphatase, (Sac PPase - Meyer et al. Archives of Biochem. and Biophys. (1995) 319, 1, 149-156) obtainable from GeneSys Limited, Farnborough UK., or *Thermococcus litoralis* pyrophosphatase, available from New England Biolabs (Catalogue nos #M0296S and #M0296L). Preferably the thermostable PPase is
25 *Aeropyrum pernix* inorganic pyrophosphatase obtainable from Genesys Limited, Farnborough UK.

Aeropyrum pernix K1, the first strictly aerobic hyperthermophilic archaeon, was isolated in 1993 from a coastal
30 solfataric thermal vent at Kodaka ra-Jima Island, Japan, (Sako et al, Int. J. Syst. Bacteriol. 46 (1996): 1070-1077. It is deposited in the Japan Collection of Microorganisms, JCM 9820.

The applicants have for the first time isolated a thermostable
35 PPase from *Aeropyrum pernix* and this forms a further aspect of the present invention. The genomic sequence comprising this pyrophosphatase is shown in SEQ ID NO. 1 and the corresponding

amino acid sequence is shown in SEQ ID NO. 2 (Figure 11 hereinafter). In particular the enzyme of the invention has the amino acid sequence as shown as SEQ ID NO 25, which is encoded by the region of SEQ ID NO 1, shown in bold type in 5 Figure 11, and represented also as SEQ ID NO 26.

The present invention, therefore, includes a polynucleotide comprising SEQ ID NO 26 and variants or fragments thereof. For example, the invention provides a polynucleotide of SEQ ID NO 10 1.

The present invention further includes an amino acid sequence comprising SEQ ID NO 25 and variants or fragments thereof. For example, the amino acid sequence may comprise SEQ ID NO 2. 15
The term "fragment thereof" as used herein in relation to a polynucleotide sequence refers to any portion of the given polynucleotide sequence which has the same activity as the complete polynucleotide sequence. Fragments will suitably comprise at least 300 and preferably at least 450 consecutive bases from the basic sequence. 20

The term "variant thereof" in relation to a polynucleotide sequences means any substitution of, variation of, modification of, replacement of deletion of, or the addition of one or more nucleic acid(s) from or to a polynucleotide sequence providing the resultant protein sequence encoded by the polynucleotide exhibits the same properties as the protein encoded by the basic sequence. The term therefore includes allelic variants 25
and also includes a polynucleotide which substantially hybridises to the polynucleotide sequence of the present invention. Preferably, such hybridisation occurs at, or between low and high stringency conditions. In general terms, low stringency conditions can be defined as 3 x SSC at about 30
35 ambient temperature to about 55°C and high stringency condition as 0.1 x SSC at about 65°C. SSC is the name of the buffer of 0.15M NaCl. 0.015M tri-sodium citrate. 3 x SSC is three times

as strong as SSC and so on.

Typically, variants have 62% or more of the nucleotides in common with the polynucleotide sequence of the present 5 invention, more typically 65%, preferably 70%, even more preferably 80% or 85% and, especially preferred are 90%, 95%, 98% or 99% or more identity.

When comparing nucleic acid sequences for the purposes of 10 determining the degree of identity, programs such as BESTFIT and GAP (both from Wisconsin Genetics Computer Group (GCG) software package). BESTFIT, for example, compares two sequences and produces an optimal alignment of the most similar segments. GAP enables sequences to be aligned along their 15 whole length and finds the optimal alignment by inserting spaces in either sequence as appropriate. Suitably, in the context of the present invention when discussing identity of nucleic acid sequences, the comparison is made by alignment of the sequences along their whole length.

20 The term "fragment thereof" as used herein in relation to an amino acid sequence refers to any portion of the given amino acid sequence which has the same activity as the complete amino acid sequence. Fragments will suitably comprise at least 100 25 and preferably at least 150 consecutive amino acids from the basic sequence.

The term "variant thereof" as used herein in relation to an 30 amino acid sequence means sequences of amino acids which differ from the base sequence from which they are derived in that one or more amino acids within the sequence are substituted for other amino acids. Amino acid substitutions may be regarded as "conservative" where an amino acid is replaced with a different amino acid with broadly similar properties. Non-conservative 35 substitutions are where amino acids are replaced with amino acids of a different type. Broadly speaking, fewer non-conservative substitutions will be possible without altering

the biological activity of the polypeptide. Suitably variants will be at least 60% identical, preferably at least 75% identical, and more preferably at least 90% identical to the base sequence.

5

Homology in this instance can be judged for example using the algorithm of Lipman-Pearson, with Ktuple:2, gap penalty:4, Gap Length Penalty:12, standard PAM scoring matrix (Lipman, D.J. and Pearson, W.R., *Rapid and Sensitive Protein Similarity*

10 *Searches, Science, 1985, vol. 227, 1435-1441*).

Preferably, the polynucleotide of the present invention comprises SEQ ID NO 26 and sequences having greater than 62% identity thereto.

15

These enzymes may be obtained from the natural source, or may be expressed in recombinant host cells, such as *E. coli* cells, using conventional methods.

20

Removal of pyrophosphate for example, at >50°C by the action of a thermostable pyrophosphatase enzyme (PPase) then allows primer extension (and therefore amplification) to proceed as normal. During this process, 1mole of pyrophosphate is converted to 2moles of inorganic phosphate (Pi), which does not 25 interfere with the amplification reaction.

30

The amount of pyrophosphatase included should be sufficient to digest excess pyrophosphate salt present in the reaction mixture. Generally speaking, this will be greater than the amounts of these enzymes used conventionally in an equivalent cycle reaction to prevent pyrophosphorolysis, for example some 5 fold more. The precise amounts will depend upon various factors including the particular enzyme being used, the concentration of the pyrophosphate etc. Typically, PPase and 35 particularly thermostable PPase enzymes will be included in the amplification reaction mixture at concentrations of at least 0.04 units per 50µL PCR reaction mixture, preferably at least

0.08 units per 50 μ L PCR reaction mixture and more preferably from about 0.2-10 units per 50 μ L PCR reaction mixture. In this case, one unit is defined as the amount of enzyme catalysing the conversion of 1 μ mol pyrophosphate into 2 μ mol orthophosphate 5 in one minute at 75°C under the following reaction conditions: 1mM K₄P₂O₇, 2mM MgCl₂, 50mM Tris-HCl, pH 9.0 (25°C).

Enzymes used in the method of the invention can result in rapid removal of inorganic pyrophosphate, depending upon the 10 temperature being used. Generally complete removal can be achieved in less than 5 minutes, more often, in less than 2 minutes and as little as 15 seconds if required.

Once the inorganic pyrophosphate has been enzymatically removed 15 from the reaction mixture, the amplification reaction can proceed, for example using a conventional thermal cycling procedure.

The mechanism by which the method of the invention achieves the 20 desired result is not clear. It is probable that the presence of excess pyrophosphate inhibits the primer extension reaction. There appears, however, to be no noticeable decrease in PCR sensitivity or product yield.

25 The method of the invention can be conducted in any conventional apparatus for conducting application reactions. These include conventional block heating devices as described for example in EP-A-0810030 and supplied by The Perkin-Elmer Corporation, or rapid hot air thermal cyclers such as the 30 RapidCycler™ and LightCycler™ from Idaho Technologies Inc. or other types of thermal cycler such as those described in WO98/24548.

According to a further aspect, the invention provides a kit for 35 conducting an amplification reaction; said kit comprising an inorganic pyrophosphate, an inorganic pyrophosphatase enzyme,

and optionally one or more reagents required for use in an amplification reaction. The inorganic pyrophosphate is suitably present in a sufficient amount to inhibit an amplification reaction, as described above. Preferably the 5 amount of inorganic pyrophosphatase enzyme present in the kit is sufficient to digest all of the said inorganic pyrophosphate.

The one or more reagents include any one of reagents (ii) to 10 (v) listed above, and may also include buffers. Particular examples of inorganic pyrophosphatase enzymes are thermostable inorganic pyrophosphatase enzymes as described above.

In particular, the kits may suitably comprise as an optional 15 additional reagent, one or more primers required to conduct amplification of a particular target DNA sequence, for example, a sequence, which is diagnostic of a particular disease condition or the presence of a particular pathogen in a sample. The methods may also be used in the detection of polymorphisms 20 or allelic variations in genetic analysis.

Furthermore, the kits may comprise one or more labelled 25 reagents such as intercalating dyes, or fluorescently labelled probes, primers or nucleotides, which may be useful in detecting or monitoring the amplification reaction *in situ*.

In a further aspect, the invention provides the use of an inorganic pyrophosphate as described above, in a method for carrying out amplification reactions as described above. 30 Preferably, the inorganic pyrophosphatase enzyme is from *Aeropyrum pernix*.

Finally, in yet a further aspect, the invention provides the 35 use of an inorganic pyrophosphatase enzyme as described above, in a method for carrying out amplification reactions as described above.

The invention will now be particularly described by way of example with reference to the accompanying diagrammatic drawings in which

5 Figure 1 shows the results of conducting a PCR in the presence of various amounts of PPi where PPi is tetrasodium pyrophosphate;

10 Figure 2 shows the effect of increasing MgCl₂ in the absence and presence of 3mM PPi;

Figure 3 shows the results obtained using the method of the invention and conventional PCR reaction;

15 Figure 4 shows the results obtained using the method of the invention in an assay compared to a conventional PCR assay;

20 Figure 5 shows the results of an experiment to test the storage stability of PCR reaction mixtures used in the method of the invention, as compared to conventional mixtures;

Figure 6 shows the results of the use of a different PPase in the method of the invention;

25 Figure 7a and 7b and Figures 8a and 8b show the results of PCR experiments using the method of the invention and a variety of different DNA polymerases;

30 Figure 9 shows the results of an experiment comparing a conventional "Hot Start" PCR with the method of the invention;

Figure 10 shows the results obtained by carrying out a similar assay but using an alternative conventional PCR;

35 Figure 11 shows the genomic sequence of *Aeropyrum pernix* shown as SEQ ID NO. 1 (Referenced as NC 000854 in GenBank BA000002),

the corresponding amino acid sequence SEQ ID NO.2 and the sequence of the enzyme (SEQ ID NO 25);

Figure 12 shows an alignment of different PPase sequences (SEQ ID NOS 2 to 9), including the protein sequence of *Aeropyrum pernix* shown as SEQ ID NO. 2;

Figure 13 shows the 686 base pair PCR product (SEQ ID NO 10) produced during isolation of the pyrophosphatase enzyme from 10 *Aeropyrum pernix*;

Figure 14 shows the polylinker sequence (SEQ ID NO 11) used in the isolation of the pyrophosphatase from *Aeropyrum pernix*;

15 Figure 15 shows the sequence of the pTTQ18NHK vector (SEQ ID NO 12) used in the isolation of the pyrophosphatase from *Aeropyrum pernix*;

20 Figure 16 shows the sequence (Z = stop) of the pTTQ18NHK vector including the PPase sequence used in the isolation of the pyrophosphatase from *Aeropyrum pernix* (SEQ ID NO 13); and

25 Figure 17 shows the results of the method of the invention using the inorganic pyrophosphatase from *Aeropyrum pernix*.

Example 1

Effect of PPi on PCR

Using *Taq* DNA polymerase, a standard 500bp lambda template PCR using the following reagents, was conducted in the presence of 30 differing quantities of the inorganic pyrophosphate, tetrasodium pyrophosphate decahydrate (PPi).

Reagent	Volume	Final concn.
10 x Reaction Buffer	5 μ l	1x
25mM MgCl ₂	3 μ l	1.5mM
5mM dNTPs	2 μ l	200 μ M

5' primer (10pm/μl)	5μl	1μM
3' primer (10pm/μl)	5μl	1μM
Template	1ng	Lambda DNA
DNA polymerase (5u/μl)	0.25	1.25u
Water to Total volume	50.0μl	

Lambda 500bp Primer sequences

5' Primer GAT GAG TTC GTG TCC GTA CAA CTG G (SEQ ID NO 14)
 5 3' Primer GGT TAT CGA AAT CAG CCA CAG CGC C (SEQ ID NO 15)

1 x Reaction Buffer: 10mM Tris. pH 8.0, 50mM KCl.

PCR conditions for the assay were as follows:

15 The PPi was added such that the final concentration in the reaction mixture was 0, 1, 2, 3, 4 and 5mM. The results are shown in Figure 1. In this Figure, the lanes correspond to the following concentrations of PPi

20

James

1 + 2	0	PPi
3 + 4	1mM	PPi
5 + 6	2mM	PPi
7 + 8	3mM	PPi
9 +10	4mM	PPi
11	5mM	PPi

At all levels of PPi tested, no PCR product was produced.

Example 2Effect of increasing magnesium ion concentration

Mg binds to PPi and therefore it is possible that the observations of Example 1 are due to chelation of Mg by excess 5 PPi. This would lead to insufficient Mg being present to allow primer extension to proceed. In order to eliminate this possibility, the procedure of Example 1 with 3mM PPi was repeated in the presence of various concentrations of magnesium ions.

10

The results are shown in Figure 2. In that Figure the lanes represent the following reactions:

Lanes

1 + 2	1.5mM MgCl ₂
3 + 4	5mM MgCl ₂
5 + 6	7.5mM MgCl ₂
7 + 8	10mM MgCl ₂
9 + 10	1.5mM MgCl ₂ + 3mM PPi
11 + 12	5mM MgCl ₂ + 3mM PPi
13 + 14	7.5mM MgCl ₂ + 3mM PPi
15	10mM MgCl ₂ + 3mM PPi

15 The results show that the addition of Mg⁺⁺ up to 10mM final concentration (1.5mM is standard in a PCR) does not allow PCR to occur, suggesting that it is the PPi which is blocking primer extension.

Example 3PCR reactions in the presence of Ppi and PPase

20 The 500bp lambda PCR of Example 1 was repeated, but this time, 0.2u of *Sulfolobus acidocaldarius* PPase (Sac PPase) was included in reactions containing pyrophosphate (PPi). Incubating the reaction at 95°C for 5 mins in the presence of 25 0.2u of Sac PPase was sufficient to destroy the pyrophosphate so that the PCR reaction could proceed.

The results are shown in Figure 3 where the lanes represent the following reactions:

Lanes**Top Row**

1 + 2	1mM PPi + 0.2u PPase
3 + 4	2mM PPi + 0.2u PPase
5 + 6	3mM PPi + 0.2u PPase
7 + 8	4mM PPi + 0.2u PPase
9 + 10	5mM PPi + 0.2u PPase

Bottom Row

1 + 2	1mM PPi
3 + 4	2mM PPi
5 + 6	3mM PPi
7 + 8	4mM PPi
9 + 10	5mM PPi
11 + 12	0mM PPi

5

A comparable level of PCR product was generated when compared to the reaction without both PPi and PPase.

The example was repeated using concentrations of PPi of less than 1mM. Results (not shown) indicated that 0.4mM PPi did not completely suppress the PCR, but no PCR occurred at concentrations of 0.6mM

Example 4**PCR Assay**

The method of the invention was then applied to an assay system that requires a "HotStart" reaction in order to generate a PCR product of the correct size.

20 The assay is based around the amplification of a 321bp fragment of the human angiotensin gene. It has been recognised that the assay will only generate the correct amplification product in

20

the presence of betaine (EP-A-0962526 - see in particular Example 8).

Without betaine a HotStart DNA polymerase generates few non-specific amplification products or no products at all whereas a non-HotStart DNA polymerase PCR generates a large number of non-specific amplification products.

The PCR conditions used in the Angiotensin assay can be
10 summarised as follows.

Reagent	Volume	Final concn.
10x Reaction Buffer	5µl	1x
25mM MgCl ₂	3µl	1.5mM
5mM dNTPs	2µl	200µM
5' primer (100µm)	0.25	0.5/µM
3' primer (100µm)	0.25	0.5/µM
Template 100ng/µl	50ng	Human xsomal DNA
5M Betaine	10.0	1M
DNA polymerase (5u/µl)	0.25	1.25u
Water to Total volume	50.0µl	

Angiotensin primer sequences

15 5' Primer GCA ACG CCC CTC ACT ATA AA (SEQ ID NO 16)
3' Primer GCA CCC CGC CCT TGA AGT CC (SEQ ID NO 17)

1 x Reaction Buffer: 10mM Tris. pH 8.0, 50mM KCl.

PCR conditions for the assay were as follows:

20 i) 95°C 2.00 min or less

ii) 35 cycles of 95°C for 15 secs

50°C for 30 secs

72°C for 30 secs

iii) 72°C for 7 mins

25 iv) 25°C hold

The reaction was conducted using a PE9700 Instrument in the presence of 3mM PPi and 0.2u PPase as described in Example 3.

The results are shown in Figure 4 in which the Lanes shown
5 represent the following reactions.

Lanes

- 1 Standard *Taq* polymerase PCR - without betaine - lots of false priming
- 2 Standard *Taq* polymerase PCR - with betaine - bright band is correct product - with some false priming
- 3 Standard *Taq* polymerase PCR - without betaine but plus 3mM PPi and 0.2u Sac PPase - No false priming at all - 5mins denaturation at 95°C
- 4 Standard *Taq* polymerase PCR - with betaine but plus 3mM PPi and 0.2u Sac PPase - only correct product - 5mins denaturation at 95°C
- 5 + 6 As per 3 but only 2 mins denaturation at 95°C
- 7 + 8 As per 4 but only 2 mins denaturation at 95°C

It is clear that using the method of the invention, an effective "HotStart" reaction is achieved. A clear single
10 product band was obtained using PPi and Sac PPase in the presence of betaine. In addition, no false priming was seen, even in the absence of betaine.

Example 5**15 Effects of Storage at Ambient Temperature**

The effect of leaving a PCR mixture containing 0.2u Sac PPase and 3mM PPi at room temperature 20°C for various lengths of time prior to conducting the Angiotensin assay, was investigated. Although Sac PPase is a thermostable enzyme, it
20 was possible that there would be a small level of enzyme activity at ambient temperatures. This might lead to insufficient PPi in the reaction to inhibit/stop the DNA polymerase leading to primer extension and lack of "HotStart" functionality.

The method of Example 4 was repeated but the reaction mixtures were stored at ambient temperature for various lengths of time up to 2 hours prior to conducting the assay.

5 The results are shown in Figure 5 in which:

The Top Row - shows the results of a conventional *Taq* polymerase PCR of angiotensin (with and without betaine present) following incubation of reagents at room temperature
10 for the time shown; and

The Bottom Row shows the results of a similar set of assays in accordance with the method of the invention where, in all cases, the assay mix contained 3mM PPi and 0.2u PPase per 50µl
15 PCR.

Lanes	Presence of betaine	Time at 22°C (Room Temp)
1 + 2	-	0
3 + 4	+	0
5 + 6	-	30 mins
7 + 8	+	30 mins
9 + 10	-	60 mins
11 + 12	+	60 mins
13 + 14	-	120 mins
15 + 16	+	120 mins

Even after two hours, assay conducted in accordance with the present invention functioned as expected, suggesting there is
20 insufficient ambient temperature digestion of the PPi by the Sac PPase.

The result shown in Figure 5 showed that a 2 hour incubation of the PCR mix at room temperature, prior to PCR, had no effect on
25 the specificity providing PPi and Sac PPase was used.

Example 6Use of other thermostable PPase enzymes in the method of the invention

5 The assay described in Example 4 was repeated alongside a similar reaction using a different commercially available thermostable PPase (with different unit definition of activity) in place of Sac PPase. The results are shown in Figure 6 in which the lanes represent the following reactions:

Lanes

1 + 2	Standard <i>Taq</i> polymerase PCR - without betaine
3 + 4	Standard <i>Taq</i> polymerase PCR - with betaine
5 + 6	Standard <i>Taq</i> polymerase PCR - without betaine but plus 3mM PPi and 0.2u Sac PPase
7 + 8	Standard <i>Taq</i> polymerase PCR - with betaine plus 3mM PPi and 0.2u Sac PPase
9 + 10	Standard <i>Taq</i> polymerase PCR - without betaine but plus 3mM PPi and 10u* <i>Thermococcus litoralis</i> PPase
11 + 12	Standard <i>Taq</i> polymerase PCR - with betaine plus 3mM PPi and 10u* <i>Thermococcus litoralis</i> PPase

10

* Units used in this case were as supplied by the manufacturer and are defined as the amount of enzyme that will generate 40nmoles of phosphate per minute under standard reaction conditions (10 minute reaction at 75°C in 50mM Tricine [pH 8.5], 1mM MgCl₂, 0.32mM PPi, reaction volume of 0.5ml).

20

Example 7Use of different thermostable DNA polymerases in the method of the invention

25 A variety of thermostable DNA polymerases were employed in the method of the invention and some comparative assays. These included several non-proofreading *Thermus* sp. DNA polymerases,

proof-reading hyperthermophilic archaeal DNA polymerases and mixes of non-proofreading and proofreading DNA polymerases.

They were all tested using the 500bp lambda PCR as described in 5 Example 1 (Figure 7a and 7b), and several using the Angiotensin assay as described in Example 4 (Figure 8a and 8b).

Details of the assay conditions are summarised as follows:

10 Figure 7a - *Thermus* DNA polymerases

Lanes

Top Row

1 + 2	<i>Taq</i> polymerase 0mM PPi and no PPase
3 + 4	<i>Taq</i> polymerase 3mM PPi and no PPase
5 + 6	<i>Taq</i> polymerase 3mM PPi and 0.2u Sac PPase
7 + 8	<i>Tbr</i> polymerase 0mM PPi and no PPase
9 + 10	<i>Tbr</i> polymerase 3mM PPi and no PPase
11 + 12	<i>Tbr</i> polymerase 3mM PPi and 0.2u Sac PPase

Bottom Row

1 + 2	<i>Tth</i> polymerase 0mM PPi and no PPase
3 + 4	<i>Tth</i> polymerase 3mM PPi and no PPase
5 + 6	<i>Tth</i> polymerase 3mM PPi and 0.2u Sac PPase
7 + 8	<i>TspNH</i> polymerase 0mM PPi and no PPase
9 + 10	<i>TspNH</i> polymerase 3mM PPi and no PPase
11 + 12	<i>TspNH</i> polymerase 3mM PPi and 0.2u Sac PPase

Figure 7b - Archaeal Proof-reading DNA polymerases

Lanes**Top Row**

1 + 2	<i>Pfu</i> polymerase 0mM PPi and no PPase
3 + 4	<i>Pfu</i> polymerase 3mM PPi and no PPase
5 + 6	<i>Pfu</i> polymerase 3mM PPi and 0.2u Sac PPase
7 + 8	9°N exo- polymerase 0mM PPi and no PPase
9 + 10	9°N exo- polymerase 3mM PPi and no PPase
11 + 12	9°N exo- polymerase 3mM PPi and 0.2u Sac PPase

Bottom Row

1 + 2	VENT polymerase 0mM PPi and no PPase
3 + 4	VENT polymerase 3mM PPi and no PPase
5 + 6	VENT polymerase 3mM PPi and 0.2u Sac PPase

Fig 8a Angiotensin assay without PPi and without Sac PPase
(with and without Betaine)**Lanes**

1 + 2	<i>Taq</i> polymerase without betaine
3 + 4	<i>Taq</i> polymerase with betaine
5 + 6	Accurase polymerase without betaine
7 + 8	Accurase polymerase with betaine
9 + 10	<i>Tbr</i> polymerase without betaine
11+ 12	<i>Tbr</i> polymerase with betaine
13 + 14	<i>Tth</i> polymerase without betaine
15 + 16	<i>Tth</i> polymerase with betaine

Fig 8b Angiotensin assay with PPi and Sac PPase (with and
5 without Betaine)

Control Lanes 1-4 (Top Row) and 12-16 (Bottom Row)

Lanes

Top Row

1 + 2 *Taq* polymerase without betaine but plus 3mM PPi -
No Sac PPase
3 + 4 *Taq* polymerase with betaine but plus 3mM PPi - -
No Sac PPase

All below with 3mM PPi and 0.2u Sac PPase

5 + 6 *Taq* polymerase without betaine
7 + 8 *Taq* polymerase with betaine
9 + 10 *Accurase* polymerase without betaine
11 + 12 *Accurase* polymerase with betaine
13 + 14 *Tbr* polymerase without betaine
15 + 16 *Tbr* polymerase with betaine

Bottom Row

All below with 3mM PPi and 0.2u Sac PPase

1 + 2 *Tth* polymerase without betaine
3 + 4 *Tth* polymerase with betaine
5 + 6 *TspNH* polymerase without betaine
7 + 8 *TspNH* polymerase with betaine
9 + 10 *Pfu* polymerase without betaine
11 + 12 *Pfu* polymerase with betaine
13 + 14 *Taq* polymerase control without betaine and no PPi or PPase
15 + 16 *Taq* polymerase control with betaine and no PPi or PPase

All DNA polymerases tested were inhibited by PPi and that inhibition could be overcome with Sac PPase.

Comparative Example 8Comparison of method of invention with conventional "Hotstart" methodologies

5 We have some initial results (Figure 9 and 10) that show that a chemically modified *Taq* polymerase (modified as described in US Patent No 5,677,152) does generate some false PCR products in the absence of betaine but gives the correct product in the presence of betaine.

10 Figure 9 Angiotensin assay

Lanes

1 + 2	<i>Taq</i> polymerase without betaine
3 + 4	<i>Taq</i> polymerase with betaine
5 + 6	Chemically modified <i>Taq</i> without betaine
7 + 8	Chemically modified <i>Taq</i> with betaine
9 + 10	Method of the invention (3mM PPI and 2u Sac PPase) without betaine
11 + 12	Method of the invention (3mM PPI and 2u Sac PPase) with betaine

15 It appears that under these circumstances, the chemically modified enzyme is inactive until it has a 10 min activation at 95°C. Without this preliminary incubation, negligible PCR product was generated. The apparent false priming and generation of wrong PCR products in the absence of betaine is difficult to explain however, since the chemically modified *Taq* is inactive at room temperature.

20

Figure 10 Angiotensin assay with *Taq* and anti-*Taq* antibody

Lanes

1 + 2	Anti- <i>Taq</i> antibody plus <i>Taq</i> polymerase without betaine
3 + 4	Anti- <i>Taq</i> antibody plus <i>Taq</i> polymerase with betaine

25 In an anti-*Taq* DNA polymerase antibody mediated HotStart, a substantial number of false products are generated in the

absence of betaine (similar to a standard *Taq* polymerase PCR without betaine) and a minor false product is also generated along with the correct product in the presence of betaine.

5 The method of the invention appears to give a rapid PCR reaction which is more specific than both of these commercial HotStart methodologies.

Example 9

10 Isolation of inorganic pyrophosphatase from *Aeropyrum pernix*
Aeropyrum pernix was obtained from the J.C.M. culture collection. The inorganic pyrophosphatase enzyme was cloned, expressed and purified.

15 Cloning and expression of inorganic pyrophosphatase from *A.pernix*

The genome sequence comprising the pyrophosphatase gene of *Aeropyrum pernix* is shown in Figure 11. The primers used were designed from the genome sequence of *Aeropyrum pernix*. These 20 are shown below as 5' to 3' with the restriction sites shown in bold.

Upper primer, introducing the *Nde* I site: (SEQ ID NO 18)

TGCATG**CATATG**ACAGGCTGTCTGAAAATTG

Lower primer, introducing the *Hind* III site: (SEQ ID NO 19)

TAAGTGT**AAAGCTT**GACTGTGGGGCGGTGAAAG

Aligning the putative sequence from the genome with other 25 pyrophosphates genes suggested that a later ATG should be the start methionine and not the one shown in the databank (shown in italics in SEQ ID NO.1 in Figure 11) and that the amino acid sequence of the enzyme is, in fact, as shown in SEQ ID NO 25. Primers were therefore designed corresponding to the later 30 methionine (shown in bold in SEQ ID NO.1 in Figure 11).

A PCR was run using 100ng of the *Aeropyrum pernix* DNA in a 100µl volume with 50pM of the above primers. 20 cycles were run with 55°C annealing and a 45 second extension time.

5

Initial hold of 3mins at 94°C

20 Cycles of 94°C, 10 secs, 55°C, 10 secs, 68°C, 45 secs.

10 Final hold of 72°C 7 minutes

PCR conditions.

50pM Upper Primer (5'..TGCATGC**CATAT**GACAGGCTGTCTGAAAATTG..3' -SEQ ID NO:18)

15 50pM Lower Primer (5'..TAAGTGT**AAGCTT**GACTGTGGGGCGGTGAAAG..3' -SEQ ID NO 19)

1.5mM MgCl₂

1.25u Accurase DNA polymerase (Cat. No. AC001, GeneSys Ltd.)

75mM Tris, pH 8.8

20 20mM Ammonium sulphate

0.1% (w/v) Tween20

100ng *Aeropyrum pernix* genomic DNA

The PCR product was 686 base pairs long as shown in Figure 13.

25 The PCR product was Prepanol™ (Cat. No. P001, GeneSys Ltd.) precipitated following the manufacturers recommended conditions and finally re-suspended in 10mM Tris, 0.1mM EDTA.

30 The PCR product was digested with restriction enzymes Nde I and Hind III, phenol extracted, precipitated with ethanol and re-suspended in 10mM Tris, 0.1mM EDTA.

35 pTTQ18NHK vector (shown in Figure 15) had also been digested with Nde I and Hind III, phenol extracted, ethanol precipitated and re-suspended in 10mM Tris, 0.1mM EDTA.

100ng cut PCR sequence was ligated with 1µg of cut pTTQ18NHK

vector (see Figure 16) in a total volume of 10 μ l, overnight at 16°C in 1x NEB ligation buffer using 200u of New England Biolabs T4 DNA ligase. The plasmid vector was pTTQ18NHK, a modified form of vector pTTQ18 (Stark MJ, Gene, 1987; 51(2-3):255-67) containing a kanamycin antibiotic gene inserted at the unique Eco0109 I restriction enzyme site and a replacement polylinker (see Figure 14) inserted between the EcoR I site and Hind III site of the original vector.

10 20 μ l of water was added and the reaction heated to 70°C for 20mins. 1/10 volume of 3M sodium acetate, pH 5.2 and 2 volumes of ethanol added. It was mixed and stored at -20°C for 1 hour. After microfuging at 10,000g for 10mins, the supernatant was removed from the pelleted DNA and the DNA re-suspended in 5 μ l
15 water.

0.5 μ l was electroporated into *E.coli* TOP10F' cells and following 1 hour recovery at 37°C, aliquots of the cells were plated on Kanamycin Luria Broth agar plates. The plates were
20 incubated at 37°C overnight.

Colonies were gridded in duplicate on both a fresh Kanamycin Luria Broth agar plate and a Kanamycin Luria Broth agar plate prepared by addition of 1 μ l of 20mg/ml XGAL and 1 μ l of 0.5M
25 IPTG per ml of agar gel (KIX plate).

Following overnight incubation at 37°C, white colonies on the KIX plate were screened by PCR with M13 forward and reverse primers for the presence of an insert corresponding to the
30 *Aeropyrum pernix* PCR product.

9 colonies containing a 701bp product were grown up in 20ml LB plus 100 μ g/ml Kanamycin to an OD600 of 1.0 then expression was induced by addition of IPTG to 0.5mM final. Cells were grown
35 for a further 4hours and then the cells harvested and stored frozen at -20°C.

Cells were lysed by addition of 0.5ml 50mM Tris-HCl, pH 7.9, 50mM dextrose, 1mM EDTA and 0.5ml 10mM Tris-HCl, pH7.9, 50mM KCl, 1mM EDTA, 0.5% (v/v) Tween 20, 0.5% (v/v) Nonidet-P40 and incubation at 80°C for 15 minutes.

5

Following centrifugation at 10,000g for 10 minutes at room temperature, an aliquot from each lysed cells were analysed by SDS polyacrylamide gel electrophoresis using a 12% gel. The gel was run then stained with Coomassie blue R250. All samples 10 showed a band of approx 23kDa, which corresponds to the size of the putative PPase.

The same samples were then assayed for PPase activity at 75°C using the colorimetric assay of Jukka K. Heinonen, Reijo J. 15 Lahti. (1981) Analytical Biochemistry, Vol.113, pp313-317.

All samples showed as positive, confirming that the expressed protein possessed thermophilic inorganic pyrophosphatase activity.

20

The first clone was subsequently used for larger scale production of the protein.

Purification of the Pyrophosphatase

25 This clone was in 24 litres of LB. Once the OD₆₀₀ reached approximately 1.5, the culture was induced with 0.5mM IPTG and left to grow for a further 4 hours. The cells were then harvested and the cell pellet lysed. The expressed enzyme was purified by standard column chromatography on phenyl-sepharose 30 CL4B (Amersham Pharmacia Biotech), hydroxylapatite (Bio-rad Laboratories) and Hi-Performance Q Sepharose (Amersham Pharmacia Biotech), finally being stored at -20°C in 20mM Tris-HCl, pH 8.0, 100mM NaCl, 0.5% (v/v) Tween 20, 0.5% (v/v) Nonidet P40, 0.1mM EDTA, 1mM dithiothreitol and 50% glycerol.

35

Example 10PCR Assay using the *A. pernix* inorganic pyrophosphatase enzyme

The method of the present invention was carried out using the *A. pernix* inorganic pyrophosphatase enzyme. The assay is based
5 around the amplification of the human B-actin gene.

In this assay, a kit was used which was obtained from from Eurogentec S.A., Parc Scientifique du Sart-Tilman, rue Bois Saint-Jean 14, 4102 SERAING, Belgium (Cat. No. RT-QP73-05).

10 The standard Taq polymerase was substituted for the HotStart Taq polymerase provided with the kit.

PCR reaction mixture

1x Reaction Buffer

15 200 μ M, dATP, dCTP, dGTP and 400 μ M dUTP
0.025u/ μ l unmodified Taq polymerase
0.002u/ μ l *Aeropyrum pernix* inorganic pyrophosphatase
0.3 μ M 5' Primer (5' GAC TCG TCA TAC TCC TGC TTG CT 3' - SEQ ID NO 22)

20 0.3 μ M 3' Primer (5' CAT TGC CGA CAG GAT GCA GAA 3' - SEQ ID NO 23)

0.15 μ M Taqman probe (FAM-ATCCACATCTGCTGGAAGGTGGACAGT-TAMRA - SEQ ID NO 24)

5mM MgCl₂

25 2mM NaPPi

Passive Reference

1 in 4 dilutions of Human genomic DNA starting with 7.5ng (2500 copies)

30 Cycling conditions

Initial denaturation of 94°C 3 minutes

40 cycles of 94°C, 15 seconds and 60°C, 60 seconds

35

The results are shown in Figure 19.

In conclusion we believe that using the method of the invention, by using pyrophosphate to inhibit a PCR and then removing that inhibition, for example at 80°C-95°C through the use of a thermostable PPase, behaves in the same manner as

5 HotStart PCR but at a rapid rate with the additional benefit of increased specificity.

All references mentioned in the above specification are herein incorporated by reference. Other modifications of the present

10 invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with the specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such 15 specific embodiments. Indeed, various modifications of the described modes for carrying out the invention, which are obvious to those skilled in the art, are intended to be within the scope of the following claims.

20 Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other 25 integer or step or group of integers or steps.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or 30 admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for conducting a nucleic acid amplification reaction, said method comprising forming a PCR reaction mixture by mixing together reagents necessary for carrying out an amplification reaction by the polymerase chain reaction, and a sufficient amount of a pyrophosphate salt to prevent primer extension, adding to said mixture at least 0.04 units per 50 μ L PCR reaction mixture of a thermostable pyrophosphatase enzyme (PPase), and subjecting said reaction mixture to conditions such that the said pyrophosphate salt is digested with a pyrophosphatase enzyme (PPase) whereupon an amplification reaction is carried out.
- 15 2. A method for conducting a nucleic acid amplification reaction, said method comprising forming a PCR reaction mixture by mixing together reagents necessary for carrying out a PCR amplification reaction, and a sufficient amount of a pyrophosphate salt to prevent primer extension,
- 20 adding to said mixture a thermostable pyrophosphatase enzyme (PPase) which is obtainable from a hyperthermophilic archaeon, and subjecting said reaction mixture to conditions such that
- 25 the said pyrophosphate salt is digested with pyrophosphatase enzyme (PPase) whereupon an amplification reaction is carried out.
- 30 3. A method according to claim 1 or claim 2 wherein the reaction mixture contains a DNA polymerase which is selected from *Thermus aquaticus* polymerase (*Taq*), *Thermus thermophilus* polymerase (*Tth*), *Thermus species NH* polymerase (*TspNH*), *Thermus brockianus* polymerase (*Tbr*), *Pyrococcus furiosus*

polymerase (Pfu), 9°N7 exo-DNA polymerase, and *Thermococcus litoralis* DNA polymerase.

4. A method according to any one of claims 1 to 3 wherein the
5 inorganic pyrophosphate is an alkali metal pyrophosphate.

5. A method according to claim 4 wherein the inorganic pyrophosphate is tetrasodium pyrophosphate of formula $\text{Na}_4\text{P}_2\text{O}_7$.

10 6. A method according to any one of claims 1 to 5 wherein the pyrophosphate is present in the reaction mixture at a concentration of at least 0.5mM.

15 7. A method according to claim 6 wherein the pyrophosphate is present at a concentration of from 1-10mM.

8. A method according to any one of claims 1 to 7 wherein the thermostable PPase is *Sulfolbus acidicaldarius* inorganic pyrophosphatase, (*Sac* PPase), *thermococcus litoralis* inorganic 20 pyrophosphatase or *Aeropyrum pernix* inorganic pyrophosphatase.

9. A method according to any one of claims 1 to 8 wherein the thermostable PPase comprises the amino acid sequence shown in SEQ ID NO. 25 or a variant or fragment thereof.

25 10. A method according to claim 8 or claim 9 wherein the thermostable PPase is added to the reaction mixture on formation thereof.

30 11. A method according to claim 10 which includes an incubation step prior to the amplification reaction at a temperature of 50°C or more, in order to allow the PPase to digest inorganic pyrophosphate present.

12. A method according to claim 2 wherein the PPase is added to the reaction mixture at a concentration of at least 0.04u per 50 μ L PCR reaction mixture.

5

13. A method according to any one of claims 1 to 12 wherein the PPase is added to the reaction mixture at a concentration of 0.08u per 50 μ L PCR reaction mixture.

10 14. A method according to claim 12 wherein the PPase is added to the reaction mixture at a concentration of from 0.2-10u per 50 μ L PCR reaction mixture.

15 15. A kit when used for conducting an amplification reaction according to any one of claims 1 to 14, said kit comprising a pyrophosphate salt, a thermostable pyrophosphatase enzyme, and optionally one or more reagents required for use in an amplification reaction.

20 16. A kit according to claim 15 which further comprises one or more primers necessary to carry out amplification of a particular target nucleic acid.

25 17. A kit according to claim 15 or claim 16 which further includes one or more fluorescently labelled reagents.

30 18. A kit according to claim 17 wherein the fluorescently labelled reagents are selected from one or more of an intercalating dye, a fluorescently labelled probe, a fluorescently labelled primer or a fluorescently labeled nucleotide.

19. A pyrophosphatase enzyme encoded by the polynucleotide

sequence as shown in SEQ ID NO. 26 or a variant or fragment thereof.

20. A pyrophosphatase enzyme comprising the amino acid
5 sequence as shown in SEQ ID NO. 25 or a variant or fragment thereof.

21. An isolated polynucleotide which encodes a pyrophosphatase enzyme according to claim 18 or claim 19.

10

22. A method for conducting an amplification reaction according to any one of claims 1 to 14, or a kit when used for conducting an amplification reaction according to any one of claims 15 to 18, or a pyrophosphatase enzyme according to any 15 one of claims 19 to 20, or an isolated polynucleotide according to claim 21, substantially as herein before described with reference to the Figures and/or Examples.

FIGURE 1

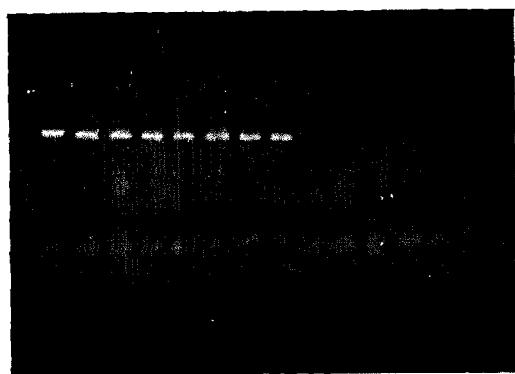


FIGURE 2

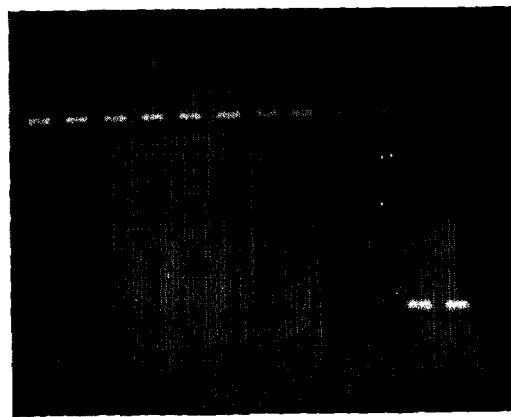


FIGURE 3

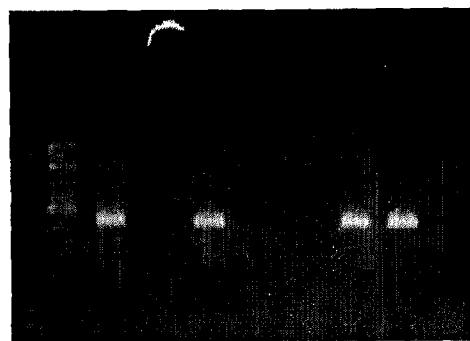


FIGURE 4

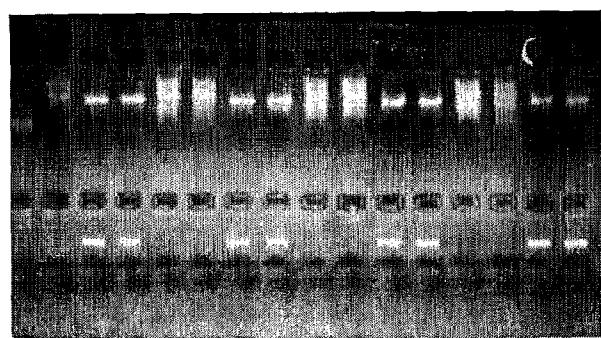


FIGURE 5

FIGURE 6

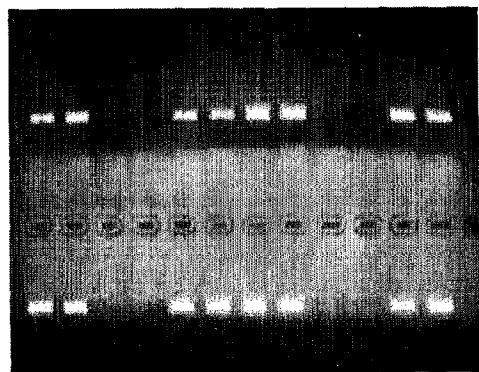


FIGURE 7a

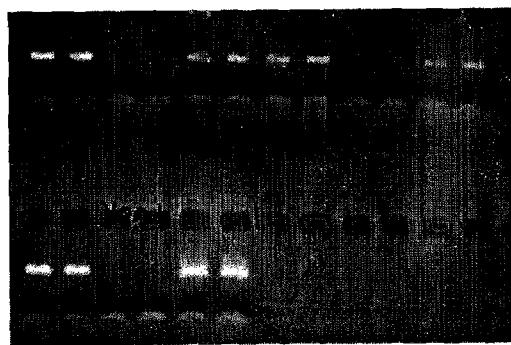


FIGURE 7b

FIGURE 8a

FIGURE 8b

FIGURE 9

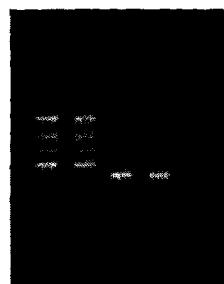


FIGURE 10

Figure 11

Aeropyrum pernix sequence

MWTLPSKTGFVNSLSFITRLAKLSVRRVHAMGCLKIGPGDEAPDVNVVIEIPMN
 SSVKYEFDKEACIVKVDRLFLYTSMVYPFNYFIPGTLEEDGDPDVVLVISREPVAPG
 SLIEAVPVAVALDMEDEEGPDSKVVAVPKAKLDPLFASYKDVDGDI PDALKSKIKHFE
 HYKELEPGKWRVTRGWRPAADAKEIIIRRAIERYKGA
 (SEQ ID NO 2)

SEQ ID NO 1

1066801 taatccta at tcgtttatg tggacgatcc ttcccagcaa aaccgggttt gttAACAGCC
 1066861 tttagctttat aactcgacta gccaaactat cggtagatcgg ggtgcgtca atgacagggt
 1066921 gtctgaaaat tggctctggat gatggggctc cagatgttgtt gaatgtcgat atagagatac
 1066981 otatgaaacag ttctgttaag taacgttgcg acaaggaggc gtgtatgtt aaggttgata
 1067041 ggttccctta caccagcatg gtctaccctt tcaactacgg gttcataccca ggcactctag
 1067101 aggagggacgg agatootgtt gacgttctag ttattagccg ggagcccggtt gtcoccggt
 1067161 cgcttataga ggctgtgccc gtggccgtgt tagacatggaa ggacgaggag ggtooggada
 1067221 gcaagggttgc ttggcgatcc accgtatccca agggccaaaggc tggaccggcc tataaggacg
 1067281 ttggccgatcat accgtatccca ctgaaatccca agataaaagca cttcttcggg cactataagg
 1067341 agctggagcc ttgaaagtgg gtttagatgtt ctggatggag gctgtgtcc gatgcgaagg
 1067401 agattataag gagggtata gagaggtata agggggccgtt atgagggtt aacggctcac
 1067461 gtttctggg agatgtgtcc accctttgggg ggcgttccccc tggccaggtt gctgtgtt
 1067521 ttgtctatga ttatggctac agttttctca gccgctttca cggccccccac agtcaataca
 1067581 cttacaccta gaggttctgc gctgtatgtt gtggatgttag ttgtatgtaa cggccagacaca
 1067641 ggatctgccc ttgggttctc cgggttgcgtt gtatccgcctt acagaggggg ggtcggggat
 1067701 gtgggttta tctactcttc ggggtctca gtatcagggtt ctatgttggaa aaggctgtt

MTGCLKIGPGDEAPDVNVVIEIPMNSSVKYEFDKEACIVKVDRLFLYTSMVYPFNYG
 FIPGTLEEDGDPDVVLVISREPVAPGSLIEAVPVAVALDMEDEEGPDSKVVAVPKAKL
 DPLFASYKDVDGDI PDALKSKIKHFEHYKELEPGKWRVTRGWRPAADAKEIIIRRAIE
 RYKGA (SEQ ID NO 25)

SEQ ID NO 26

atgacaggct gtctgaaaat tggctctggat gatggggctc cagatgttgtt
 gaatgtcgat atagagatac ctatgaacag ttctgttaag tacgagttcg
 acaaggaggc gtgtattgtt aaggttgata ggttccctta caccagcatg
 gtctaccctt tcaactacgg gttcataccca ggcactctag aggaggacgg
 agatcctgtt gacgttctag ttattagccg ggagcccggtt gctcccggt
 cgcttataga ggctgtgccc gtggccgtgt tagacatggaa ggacgaggag
 ggtccggaca gcaagggttgc ttggcgatcc accgtatccca aaggccaaacg tggaccggcc
 attcgccagc tataaggacg ttggcgatcc accgtatccca ctggaaatccca
 agataaaagca cttcttcggg cactataagg agctggagcc ttggaaagtgg
 gtttagatgtt ctggatggag gctgtgtcc gatgcgaagg agattataag
 gagggctata gagaggtata agggggccgtt a

Figure 12

Alignment of PPase sequences with ClustalW

Aeropyrum = <i>Aeropyrum pernix</i>	SEQ ID NO 2
Sulfolobus = <i>Sulfolobus solfataricus</i>	SEQ ID NO 3
E.coli = <i>Escherichia coli</i>	SEQ ID NO 4
Aquifex = <i>Aquifex aeolicus</i>	SEQ ID NO 5
Pho = <i>Pyrococcus horikoshii</i>	SEQ ID NO 6
Pab = <i>Pyrococcus abyssi</i>	SEQ ID NO 7
Tli = <i>Thermococcus litoralis</i>	SEQ ID NO 8
Themoplasma = <i>Themoplasma acidophilum</i>	SEQ ID NO 9

CLUSTAL W (1.8) multiple sequence alignment

aeropyrum	MWTILPSKTFVNSLSFITRLAKLSVRRVAMTGLKIGP-GDEAPDVNVVIEIPM-NS
sulfolobus	-----MKLSP-GKNAPDVNVLVEIPO-GS
E.coli	-----MSLLNGPA-GKDLPEDIVVIEIIPANAD
aquifex	-----MGYDQLPP-GKNPDPEDIVVIEIPO-GS
Pho	-----MNPFHDLPEP-GPNPVEVYVYALIEIPK-GS
Pab	-----MNPFHDLPEP-GPNPVEVYVYALIEIPK-GS
Tli	-----MNPFHDLPEP-GPEVPEVYVYALIEIPK-GS
thermoplasma	-----MESFYHSPVGPKPPEEVVIVEIPIR-GS
* * : : . : ***	
aeropyrum	SVKYEFDKEACIVKVDRFLYTSMVYPFNYGFI PGTL EEDGDPDVLSVIRSPVAPGSLL
sulfolobus	NIKYEYDDEEGVIVKDRVLYTSMNPYFNYGFI PGTL EEDGDPDVLSVIRSPVAPGSLL
E.coli	PIKYEIDKEGSAFVDFRMSTAMFPCNYGYINHILSILDGPDVLDVPTPYPLQPGSVIR
aquifex	AVKYEIDKDTGVIVFDFRLTAMYYPFNYGFPQTLLADGDPDVLSVIRSPVAPGSVIR
Pho	RNKYELDKTGLLKLDRVLYTPFHYPVDYGIIPRTWYEDGDPFDIMVIMREPTYPLTIE
Pab	RNKYELDKTGLLKLDRVLYSPFHVYDGYGIIPRTWYDDDPFDIMVIMREPTYPLTIE
Tli	RNKYELDKTGLLKLDRVLYSPFHYPVDYGIIPQTWYDDDPFDIMVIMREPTYPGVIE
thermoplasma	RVKYEIAKDFPGMIVDVRVLYSSVYVFDYGLIPRTLYYDGDPMVVLISQPTFPGAIMK
*** .. : : **. : . ** : ** : * . **.* : * * : : * : ***	
aeropyrum	AVPVAVLDMEDDEEGPDSKVAVPKAKLDPFLASYKDVGDI PDAKSKIKHFFEHYKELEP
sulfolobus	VRPIGILYMKDDEEGEDAKIVAVPKDKTDPFSNIKIDINDLPQATKNKIVHFFEHYKELEP
E.coli	CRPVGVLRKMTDEAGDAKLVAVPHSKLSKEYDHIKDVNDLPEIILKAQIAHFFEHYKDLIEK
aquifex	CRPIGLEMREAGIDTKVIAVPHKEKLDPSYSNIKTVDNLP EIVREKIHFFEHYKELEP
Pho	ARPIGLFKMIDSGDKDYKVLAVPVE--DPYFKDWKDIDDPVKAFLDEIAHFFKRYKELEP
Pab	ARPIGLFKMIDSGDKDYKVLAVPVE--DPYFKDWKDIDDPVKAFLDEIAHFFKRYKELO-
Tli	ARPIGLFKMIDSGDKDYKVLAVPVE--DPYFNDWKDIDSPVKAFLDEIAHFFQRYKELO-
thermoplasma	ARPIGMMKMVMDQGETDNKILAVFDK--DPNVSYIKDLKDVNAHLLDEIANFFSTYKILE-
* : : * . * * : ** . * : : * : : * : ***. ** : *	
aeropyrum	GKWRVVTGWRPAADAKEIIRRRAIERYKGA-----
sulfolobus	GKVKVKSIGWGSAFEAKNRICLAIKRVSGGQZ-----
E.coli	GKWWVKVEGWENAEAAKAEIVASFER-AKNAKZ-----
aquifex	GKWWVKVENVWKLQDAIEEIKKGKGENYKKNKG-----
Pho	GKEIIVEGWEGGAEAAKREILRAIELYKEKFGKKEZ
Pab	GKEIIVEGWEGGAEAAKREILRAIELYKEKFGSKEZ
Tli	GKEIIVEGWENAEAKAQEIIRRRAIELYKEKFKKZ-----
thermoplasma	KKETKVLGWLGEWKEAALKEIEVSIKMYYEKYGGKNZ
* : * * * : :	

Figure 13

686bp PCR product. (SEQ ID NO 10)

RE sites in bold, PPase gene in italics, primer sites underlined

TGCATGCATATGACAGGGCTGTCTGAAAATTGGCTCTGGAGATGAGGCTCCAGATGTTGTGAATGTCGTT
ATAGAGATACCTATGAACAGTTCTGTTAAGTACGAGTTGACAAGGAGGCGTGTATTGTTAAGGTTGAT
AGGTTCTTACACCAGCATGGTCTACCCCTTCAACTACGGGTTCATACCAGGCACCTAGAGGAGGAC
GGAGATCCTGTTGACGTTCTAGTTATTAGCCGGAGGCCGTTGCTCCGGCTCGCTTATAGAGGCTGTG
CCCGTGGCCGTGTTAGACATGGAGGACAGCAGGAGGTCCGGACAGCAAGGTTGTTGCCGTACCCAAGGCC
AAGCTGGACCCCTATTGCCAGCTATAAGGACGTTGGCGACATACTGATGCCCTGAAATCCAAGATA
AAGCACTTCTCGAGCACTATAAGGAGCTGGAGCCTGAAAGTGGGTTAGAGTGACTGGATGGAGGCCT
GCTGCCGATGCGAAGGGAGATTATAAGGAGGGCTATAGAGAGGTATAAGGGGGCGTGTGAGGGCTAAC
GGCTCACGTTTCTCGGAGACTGTCGACCTTGACGGCGATCACCCCTGCCAGCGTGTGCTTT
GTCTATGATTATGGCTACAGTTCTAGCCGTTACCGCCCCACAGTCAAGCTTACACTTA

Figure 14

Modified polylinker sequence of pTTQ18NHK from initial ATG to the *Nde* I site and then the *Hind* III site (SEQ ID NO 11)

Met ***Nde* I**
ATGCACCACCACCACC*Nde* I
ACCTGCAGGCATG*Hind* III
CAAGCTT

Figure 15

pTTQ18NHK sequence (SEQ ID NO 12)

```

>pTTQ18NHK Sequence
GAACCTGGATCTCAACACGGGTAAGATCCTTGAGAGTTTCCGCCCGAAGAACGTTTCCA 60
ATGATGAGCACTTTAAAGTCTGCTATGGCGCGTATTATCCGTATTGACGCCGG 120
CAAGAGCAACTCGGTGCCGCATAACTATTCAGAATGACTGGTGAGTACTCACCA 180
GTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATA 240
ACCATGAGTATAACACTGCGGCCAAGTACTCTGACAAACGATCGGAGGACCGAAGGAG 300
CTAACCGCTTTTGCAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGAACCCG 360
GAGCTGAATGAAGCCATAACCAACAGCGTGAACACGAGCTGACAGATGCCCTGAGCAATGGCA 420
ACAACGTTGCCCAAACATTTAACCTGGCGAAGTACTACTCTAGCTTCCGGCAACAATT 480
ATAGACTGGATGGGGATAAAGTTGCAGGACCACITCTGCGCTCGGCCCTCCGGCT 540
GGCTGGTTTATGCTGATAATCTGGGCGGTGACCGTGCGGCTCTCGCGTATCTATTGCA 600
GCACTGGGGCAGATGCTGAACTCCCGTATCGTAGTTATCAGACGAGGGAGTCAG 660
GCAACTATGGATGAAGAAATAGACAGATCGCTGAGATAGTGCGCTCACTGATAAAGCAT 720
TGGTAACTGTAGACCAAGTTACTCATATATACTTTAGATTAAAACCTCATT 780
TAATTTAAAAGGATCTAGTGAAAGATCCTTTTGATAATCTCATGACCAAAATCCCTAA 840
CGTGTGTTTCTGCTTCACTGAGCTCAGACCCGCTAGAAAAGATCAAAGGATCTCTTG 900
GATCCTTTTCTGCGCTAATCTGCTGCTTGCAAAACAAAAAAACCCGCTACCAGCG 960
GTGTTTGTGCGGATCAAGAGCTACCAACTCTTCCGAGGTAACTGGCTTCAGC 1020
AGAGCGCAGATAACAAACTGCTCTTAGTGAGCCGTAGTTAGGCCACCACTCAAG 1080
AACTCTGTAGCACCCTACATACCTCGCTCTGCTAACTCTGCTTACCAAGTGGCTGCTGCC 1140
AGTGGCGATAACTGCTGTTACCGGGTGGACTCAAGACGATAGTTACCGGATAAGGCG 1200
CAGCGCGTGGCTGAACGGGGGGTGTGACACAGCCAGCTGGAGCAGACCTAC 1260
ACCGAAGTGAAGATAACCTACAGCGTGAAGCATTGAGAAAGCGCCACGCCCTCCGAAACGGAGA 1320
AAGGCGGACAGGTATCCGGTAAGCGCAGGGCTGGAACAGGAGAGCGCAGAGGGAGCTT 1380
CCAGGGGAAACGCCCTGGTATCTTATAGTCTGCGGTTTCCGCACCTCTGACTTGAG 1440
CGTCGATTTTGTGATGCTGCTGCAAGGGGGGAGCCATGGAAAACCGCAGCAACCGCG 1500
GCCCTTTACGCTTCTGCTGCTTCTGCGCTTCTGCGTACATGTTCTTCTGCGTTA 1560
TCCCTGATTCTGGATAACCGTATTACCCCTTGTGAGCTGAGCTGATAACCGCTGCCCGC 1620
AGCCGAACGACCGAGCGCAGCGAGCTAGTGAGCAGGAAGCGGAAAGAGGCCCAATACGC 1680
AAACCCCTCTCCCGCCTGGCGATTATACTGAGATAATTCAGGTTCTGCAAATTTCTGAA 1740
CAGCTTATCAGCTGCTGCAAGCTGCTGAACTGCTTGGCGTCAAGGCGATCGGAAGC 1800
TCTGCTTATCCTGCTGAGCTGCTGAACTGCTGCTGAGCTGAGCTGAGCCACTC 1860
CCGTTCTGGATAATGTTTTCGCGGACATCATACAGGTTCTGCGAAATTTCTGAAAT 1920
GAGCTGTTGACAATTAATCATGCGCTGATAATGCTGGAATGTCAGGGATAACAAT 1980
TTCACACAGGAACACATATATGCGCTGATAATGGCGATGCTGAAATTGCGA 2040
GCTCGGTACCGGGGATCTCTAGACTGACCTGCAAGGCACTGCAAGCTGGCACTGGCG 2100
TCGTTTACAACGCTGTAAGTGGAAAACCCCTGGGTTACCAACTTAATGCCCTTGCA 2160
CACATCCCCCTTCGCCAGCTGGCTAATAGCGAAGAGGCCCAACCGATGCCCTTCCC 2220
AACAGTTGCGCACTGCTGATGGCAATGGGCTGATGGCTGTTTCTCCTACCGCATC 2280
TGTGGGTATTTCACACCGATAATTCCTGTTGGCGGATGAGAGAAGATTTCAGC 2340
CTGATAACAGATTAACTCAGAACGCGAGAGCGGCTGCTGATAAAACAGAATTGCGCTGCCGG 2400
ACTACGCGGGTGGTCCCACCTGACCCATGCCGAACCTGAGAAGTGAACGCCGTAGCGCC 2460
GATGGTAGTGTGGGTCTCCCATGCCAGAGTAGGGAACTGCGCAGGCACTAAATAAACG 2520
AAAGGCTCAGTCAGGAAAGACTGGGCTTCTGTTTATCTGTTGCGTGAACCGCTCT 2580
CCTGAGTAGGAAACATGGGGGAGTTGAACCTTGGCAAGGCAACGCCCGGAGG 2640
GTGGCGGGCAGGACGCCCGATAAAACTGCCAGGCACTAAATTAGCAGAACGCCATCCT 2700
GACGGATGGCCTTTTGCCTTACAAACTCTCCCTGCTGCTCATATCTACAGCCATCC 2760
CCCCACAGATACTGCTTTCGCTCATAGGAAACGAGGAAATTATGCGT 2820
CACTCTCAGTACAACTGCTCTGATGCCGATAGTTAAGGCCAGCCGACACCGCCAAC 2880
ACCCGCTACGCCCTGCTGCTGCCATCCCTACAGACAAGCTGT 2940
GACCGCTCCGGAGCTGCATGTCAGAGGTTTCACTGCTCATCACCAGAACGCCGAG 3000
ACGAAAGGGCCTGATTAGAAAAACTCATGAGCATCAAATGAAACTGCAATTATTCTATA 3060
TCAGGATTATCAATACCATATTTCGAAACCGGTTCTGTAATGAGAGGAAACCTCA 3120
CCGAGGGAGTCCATAGGATGCCAGGAAAGCTCTGGTATCGGTCTGCGATTCCGACTCGTCA 3180
ACATCAATACAACCTTAAATTCCCTGCTGAAATAAGGTTATCAACTGAGAAATCA 3240
CCATGAGTGAACGACTGAATCCGGTGAGAATGCCAAAGNTTATGCAATTCTTCCAGACT 3300
TGTCAACAGGCCAGCCTTACGCTGCTCATCAAATCAACTGCACTGCAACCCGTTA 3360
TTCATCTGCTGATGGCGCTGAGCGAGACGAAATACGCGATCGCTGTTAAAGGAGCAATT 3420
CAAACAGGAATGCAACCGGGCAGGGAAACACTGCCAGGCCATCAACAAATTTCTA 3480
CCTGAATCAGGATATTCTCTAATACCTGGAATGCTGTTCCNGGGATCGCAGTGGT 3540
AGTAACCATGCACTCATCAGGAGTACGGATAAAAGCTTGTGAGGAGGCATAAAT 3600
TCCGTCAGGCCAGTTAGCTGACCATCTCATCTGTAACATCATGGCAACCCCTACCTTG 3660
CCATGTTTCAGAAACACTCTGGCGCATCGGGCTCCCATACAATCGATAGATTGTCGCA 3720
CCTGAGTGTGGCGACATTATCCGAGCCATTATACCCATATAATCAGCATCCATCTG 3780
GAATTTAATCGCGGCTCGAGCAAGCGTTCCCGTGAATATGGCTCATACACCCCTT 3840
GTATTACTGTTATGTAAGCAGACAGTTTATTGTCATGATGATATAATTTTATCTGT 3900
GCAATGTAACATCAGGGCCTCGTGAACGCCATTATGAGTTAATGTCATGATAATA 3960

```

Figure 15 cont'd...

ATGGTTTCTTAGACGTGAGGTTCTGTACCCGACACCATCGAATGGTCAAAACCTTCGC	4020
GGTATGGCATGATAGCCCCCGGAAGAGAGACTCAATTCAAGGTGGTGAATGTAAACCAAGTA	4080
ACCTTATACCGATGTCGCAGAGATGCCCCGTGCTCTTATCAGACCCGTTTCCCGCGTGGTG	4140
AACCAGGCCAGCCACGTTCCTCGGAAACCGGGAAAAAGTGGAAACGGCGATGGCGGAG	4200
CTGAATTACATTCACACCGCGTGGCACAAACAACAGTGGCGGGAAACAGTCGTTGCTGATT	4260
GGCGTGGCCACCTCCAGTCTGGCCCTGCACCGCGCGTCGCAAAATTGTCGCGGGCATTAAA	4320
TCTCGCGCCATCACTGGGTGGTGGCAGCGTGGTGTGATGGTACAACGAGACGGCGTC	4380
GAAGCCTGTAAGCGCCGGTGCACAATCTTCTCGCGCAACCGCTCAGTGGGCTGATCATT	4440
AACTATCCGCTGGATGACCAGGGTGGCATGGTGGAAACGTGGCTGCACTAATGTTCCG	4500
GGCTTATTCTTGTATGTCGACAGACACCCATCAACAGTATTATTTCTCCCATGAA	4560
GACGGTACCGCAGCTGGCGTGGGACATCTGGTCGATTGGGTCAACAGCAAATCGCGCTG	4620
TTAGCGGGCATTAACTTCTGTCGTCGGCGCTGGCTGGCTGGCATAAATAT	4680
CTCACCGCAATCAAATCGCCAGCGGATAGCGGAACGGGAAGGCAGCTGGAGTGCCATGTCC	4740
GGTTTCAACAAACCATGCAAATCTGAATGAGGGCATCGTTCCCACTCGCATGCTGGTT	4800
GCCAAACGATCAGATGGCGCTGGCGCAATCGCGCCATTACCGAGTCCGGGCTGCGCGTT	4860
GGTGGGATATCTCGGTAGTGGGAATACGACGATAACCGAAGACAGCTATGTTATATCCCG	4920
CCCTTAACACCATCAAACAGGATTTCGCCCTGCTGGGGCAAAACCGCTGGACCGCTTG	4980
CTGCAACTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTGCCCGTCACTGGTG	5040
AAAAGAAAACACCACCTGGCGCCAATACGCAAACCGCCCTCCCGCGCTGGCGAT	5100
TCATTAATGCAGCTGGCACAGGTTCCGACTGGAAAGCGGGCAGTGAGCSCAACGC	5160
AATTAAATGTAAGTTAGCTCACTATTAGGACACCCAGGCTTACACTTATGCTTCCGAC	5220
CTGCAAGAACCTCACGTCAAGGTGGCAATTTCGGGAAATGTGCGGGAACCCCTATTG	5280
TTTATTTCTAAATACATTCAAAATATGATCCGCTCATGAGACAATAACCCATGATAAT	5340
GCTTCATAATATTGAAAAAGGAAGATATGAGTATTCAACATTCCGTGTCGCCCTAT	5400
TCCCTTTTGC GGCAITTTGCCCTCTGTTTGTCTCACCCAGAAACCGCTGGTAAAGT	5460
AAAAGATGCTGAAGATCAGTTGGTGCACGAGTGGGTTACATC	5503

Figure 16

pTTQ18NHK sequence containing PPase (bold) and remainder of PCR product cloned (italics) (SEQ ID NO 13)

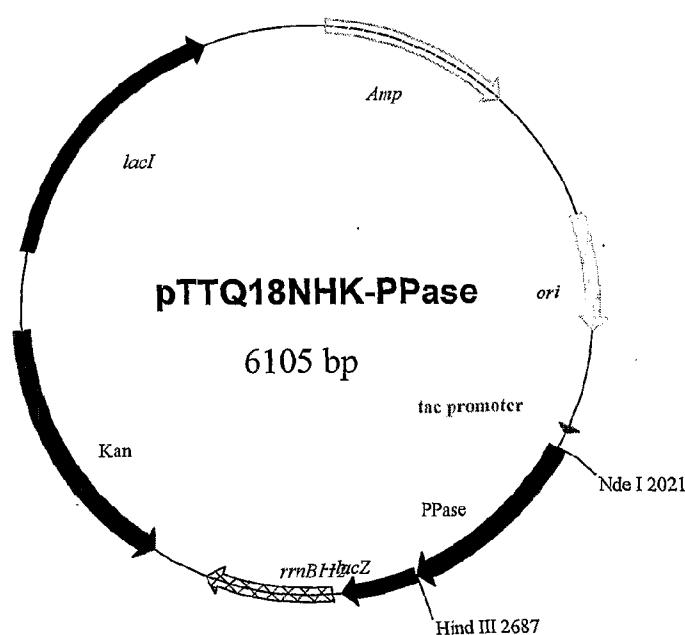


Figure 16 cont'd...

>PTTQ18NHK-PPASE SEQUENCE

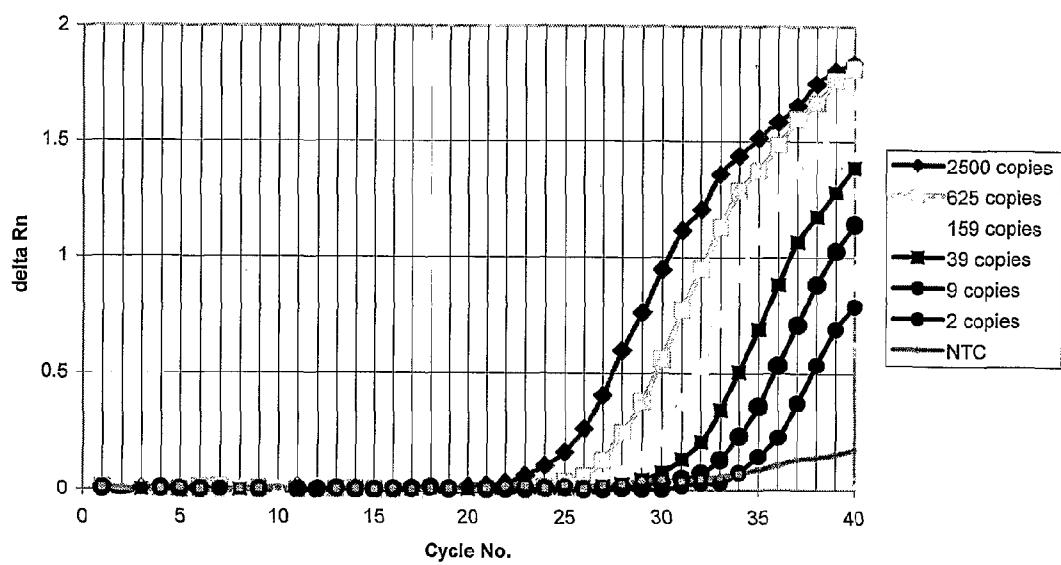

GAAC TGG ATCT CAAC ACG CGT AAG ATC CT TGAG AGTT TCG CCCC GAAG AAC GT TTCCA	60
ATG ATGAG CACT TTAA AGTT CTG CT ATG TGG CG CGT ATT ATCC CGT ATT GAC GCG GGG	120
CAAG AGC AACT CGGT CGCC GATA CACT ATT CT CAGA ATG ACT TGG TT GAG TACT CACCA	180
GTC CAG AAA AGC ATCT TAC GG ATGG C ATG AC AGTA AGAG AATT ATG CAG T GCT GCC ATA	240
ACC ATG ACT GATA AAC ACT CGCC CA ACT TACT CTG ACAC CG ATG GAGG ACCG AAGG AG	300
CTAAC CGC TTTT TTG CACA ACAT GGGG GAT CAT GT AACT CGC CT TG AT CGT TGG GAA CG	360
GAG CT GAAT GAG CCA ACT AAC GAC GAG CGT AC ACC AGC ATG C CT GTAG CAAT GGCA	420
ACA AC GTT GCG CAA ACT ATT AACT TGG C AACT ACT TACT CTAG CTT CC GG CAA CA ATT A	480
ATAG ACT GG ATGG AGG CGG ATAA AGTT G CAG GAC ACT TCT GCG CT CGG CCTT CGG CT	540
GG CT GG TT ATT GCT GATA AA TCT GG AGC CG GT GAG CGT GGG CT CG CG GT AT CATT GCA	600
GC ACT GGGG CC CAG AT GG TAAG CC CT CC CG TAT CG TAG TT AT CTAC AC GAC GGG GAG T CAG	660
GCA ACT AT GG ATG AAG CAA ATAG ACAG AT CG CT GAG ATAG GT GC CT ACT GAT TAAG C AT	720
TGG T AACT GT CAG AC CA AGT T TACT C AT A T A C T T A G AT T A A A C T T C A T T T	780
TAAT TT AAA AGG AT CT AG CT GAG AT C T T T GATA AT CT C AT GAC CAA AAT CC TT AA	840
CGT GAG TTT CG TT CC ACT GAG CG T CAG ACC CG C T GAG AAA AG AT CAA AGG AT CT T CT GA	900
GAT CCT TTTT TT CT GCG CT GA AT CT GCT GCT T G CAA A CAAA A A CAC CG C T ACC AG CG	960
GT GGT T GTT GCG GAT CAA GAG CT ACC AACT CTT T CCG AAG GT A CT GG C TT CAG C	1020
AGAG CG CAG AT ACCA AAT ACT GT CTT CTAG TGT AGC CGT AGT TAG G C ACC ACT TCA AG	1080
AACT CTG TAG CAC CGC CT ACAT ACCT CG CT GCT AAT CCT GTT ACC AGT GG CT GCT G C C	1140
AGT GGC GATA AGT CGT GT CT TAC CGG GT TGG ACT CAAG AC GAT AG T TAC CG GATA AGG CG	1200
CAG CGG T C GGG CT GA AC AGG GGT TCG T GAC AC AGC CC AG CT TGG AG CG A AC GAC T AC	1260
ACCG AACT GAG ATAC CT ACAG CGT GAG C ATT GAG AA AGC CG C AC G CT TCC G AAG G GAG A	1320
AAG CGG CAG GT AT CG CT GAG CGG CAG GT GAG CG A AC AGG AG C G C AC G AG GAG C TT	1380
CCAG GGG GAA AC CG CT GG T AT CT T AT AG C CT GT CG G GT T CG C C AC CT CT GACT T GAG	1440
CGT CG AT TTT GTG AT GCT CG CT CAG GGG GGG CG GAG CT AT GG AAA A AC G C C AG C G	1500
GC CTT T TAC CG GT C CT GGC CTT T GCT GGC TT T GCT CAC AT GT T CTT C T GCG TTA	1560
TCC C T GAT T CT GT GG AT AAC CG T ATT ACC CG C TT T GAG T GAG CT GAT ACC G CT CG CC G	1620
AGCG A AC GACC GAG CG CAG CG AGT CAG T GAG CG GAG GA AG CG G AAG AG CG C C C A A T C G C	1680
AAAC CGC CT CT C CCG CG C G C GT TGG CG AT T C ATTA AT G CAG A AT TA ATT CT C AT GT T G A	1740
CAG CT T AT C AT CG ACT G CAG CGT G CAC CA AT G C T T CT GCG T CAG G CAG CC AT CG A AG C	1800
TGT GGT AT GG CT GT G CAG GT CT G TAA AT C AT G C AT A AT T CT G T C G C T C A AG G C C A C T C	1860
CCG T CT CG GATA AT GT T T T GCG C C G A C T C A T A C C G T T CT G G C A A T T C T G G A A AT	1920
GAG CT GT GAC A AT TA AT C AT CG G T C G T A AT GT G T G G A A T T C T G G C G A T A A C A AT	1980
TTC AC AC AGG A A AC A C A T A T G C ACC ACC ACC A C C A T AT G C A G G C T G T C T G A A A A	2040
TTGG T C C T G G A G AT GAG G C T C C A G AT GT T G T G A A T G T C T T A T A G A G A T A C C T A T G A A C A	2100
GTT CT GT T AAG TAC GAG GTT CG C A A C G G A G G C G T G T A T T G T T A A G G T T G A T A G G T T C C T T T	2160
AC ACC AG C AT GT G CT ACC C C T C A A C T A C C G G T T C A T A C C A G G C A C T C T A G A G G A G G A C G	2220
GAG AT C C T G T G A C G T T C T A G T T A T T A G C C G G A G C C C T T G C T C C C G G C T G C T T A T A G	2280
AGG CT GT G C C C G T G G C C G T G T A G A C A T G C A G G A C C G A G G G A G G G T C C C G G A C A G C A A G T T G	2340
TT GCG T GAC C C A A G G C C A A G G C C A G G C C C C T T A T C G C C A G C T A T A A G G C G T T G G C G A C A	2400
TAC CT GAT G C C C T G A A A T C C A A G C A T T C C T C G A C C T A T A A G G A C T C T G G A G G C	2460
CTGG AAA A C T G G G T T A G A G T G A C T G G A T G G G C C T G C C G A T G C G A A G G A G A T T A T A A	2520
GGAG G G C T A T A G A G A G G T A T A A G G G G G C T G A T G A G G C T T A A C G G C T C A C G T T T C T G G	2580
GAG AG T G T C G C A C C T T T GAG G G C G A T C A C C C T C G C C A C C G T G C G T G T G C T T T G C T A T G	2640
ATT AT G G C T A C A G T T C T T C A G C C G T T T C A C C G C C C C A C A G T C A A G C T T G G C A T G G C	2700
CGT CG T T I T A C A C G T C G T G A C T G G G A A A C C C T G G C T T A C C C A C T T A A T C G C C T T G C	2760
AGC AC AT C C C C C T T C G C C A G C T G G C G T A A T A G C G A A G A G G C C C G C A C C G A T C G C C C T T C	2820
CCAA C A G T T G C G C A G C C T G A T G G C G A T T G G C C T G A T G C G G T A T T T C T C C T A C G C A	2880
TCT GT CG GT T A T T C C A C A C C C A T A A T C C C T G T T T G G C G G A T G A G A G A G A T T T C A	2940
CC C T G C A T A C A G A T T A A T C A G A A C C C G G T C G T A A A A A C A G A A T T T G C C T G G C	3000
GCA G T A G C G C G G T G G T C C C A C C T G A C C C C A T G C C G A A C T C A G A A G T G A A A C G C C G T A G C G	3060
CCG AT G G T A G T G T G G G G T C T C C C C A T G C G A G A G T A G G G A A C T G C C A G G C A T C A A A A A A	3120
CGA A A G G C T C A G T C G A A A G A C T G G G C C T T C G T T T T A T C T G T G T T G C G G T G A A C G C T	3180
C T C C T G A G T A G G A C A A A T C C C C G G G G A G C G G A T T T G A C G T T G C G A A G C A A C G C C C G G A	3240
G G G T G G C G G G C A G G A C G C C C C C A T A A A C T G C C A G G C A T C A A T T A A G C A G A A G G C C A T C	3300
C T G A C G G A T G G C T T T T G C G T T T C T A C A A A C T C T T C T G C G T C A T A T C T A C A A G C C A T	3360
C C C C C C A C A G A T A C G G T A A A C T A G G C T C G T C T T T G C A T C A G G A A A G C A G G G A A T T T A T G G	3420
T G C A C T C T C A G T A C A A T C T G C T C T G A T G C C G C A T A G T T A A G C C A G G C C C G A C A C C C G C C A	3480
A C A C C C G T C A C G C G C C C T G A C G G G C T T G C T C C C C G A T C C C G C T T A C A G A C A G C T	3540
G T G A C C G T C T C C G G G A G C T G C A T G T G T C A G A G G T T T C A C C G T C A T C A C C G A A A C G C G G	3600
A G A C G A A A G G G C T G A T T A G A A A A C T C A T C G A G C A T C A A A T G A A A C T G C A A T T A T T C A	3660

Figure 16 cont'd...

TATCAGGATTACAATACCATATTTGAAAAGCCGTTCTGTAATGAAGGAGAAA	3720
ACCGAGGCAGTCCATAGGATGGCAAGATCTGGTATCGGTCTCGGACTCGTC	3780
CAACATCAATAACACCTATTAAATTCCCTCGTCAAAAATAAGGTTATCAAGTGAGAA	3840
CAACATGAGTGAACACTGAATCCGGTGAGAATGGAAAAGNTATGCATTCCTTCAGA	3900
CTTGGTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAACCGT	3960
TATTCATTCTGTGATTGCCCTGAGCGAGACGAAATACCGATCGCTTAAAGGACAAT	4020
TACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATCAACAAATT	4080
CACCTGAATCAGGATATTCTCTAAATACCTGGATGCTGTTCCCGGGATCGCAGTGG	4140
TGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTGGAAAGGGCATAA	4200
ATTCCGTAGGCCAGTTAGTCGACCATCTCATCTGTAACATCATTGCAACCTACCTT	4260
TGCCATGTTTCAAGAAACACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCG	4320
CACCTGATTGCCGACATTATCGCGAGCCATTTATACCCATATAAATCAGCATCCATGT	4380
TGGAATTAAATCGCGGCTCGAGCAAGACGTTCCGTTGAATATGGCTCATAACACCCC	4440
TTGTATTACTGTTTATGTAAGCAGACAGTTTATTGTCATGATGATAATTATCTT	4500
GTGCAATGTAACATCAGGGCCTCGTGTACGCCATTTTATAGGTTAATGTCATGATAA	4560
TAATGGTTCTTAGACGTGAGGTTCTGTACCCGACACATCGAATGGTGC	4620
GGCGTATGGCATGATAGCGCCCGGAAGAGAGTCATTAGGGTGGTGAATGTGAAACAG	4680
TAACGTTATACGATGTCGAGTATGCCGTTCTCTATCAGACCGTTCCCGGTGG	4740
TGAACAGGCCAGCCACGTTTGGCAAAACGCGGAAAAGTGGAGCGGCCATGCCG	4800
AGCTGAATTACATTCCCAACCGCGTCGACAACAACACTGGCGGCCAACAGTCGTTGCTGA	4860
TTGGCGTTGCCACCTCCAGTCGCGCTGACGCCGCGTCGCAAATTGTCGCGGCCGATTA	4920
AATCTCGCGCCGATCAACTGGTCCAGCGTGGTGTGTCATGGTAGAACGAAGCGCG	4980
TCGAAGCCTGTAAGCGGCCGTCACAATTCTCTCGCGCAACGCGTCACTGGGCTGATCA	5040
TTAACTATCCGCTGGATGACCAAGGATGCCATTGCTGTTGAAAGCTGCCGCACTAATGTC	5100
CGGCCTTATTCCTGATGTCGACGACACCCATCAACAGTATTATTCCTCCATG	5160
AAGACGGTACCGCACTGGGCGTGGGCACTCTGGTCGCAATTGGGTCACAGCAAATCGCGC	5220
TGTTAGCGGGGCAATTAAAGTCTGTCGCGCGTCTGCCTCTGGCTGGCTGGCATAAAT	5280
ATCTCACTCCGCAATTAACTCAGCGATAGCGGAACGGAAAGGCGACTGGAGTGGCCATGT	5340
CCGGTTTCAACAAACCATGCAAATGCTGATGAGGGCATGTTCCCACTGCGATGCTGG	5400
TTCCCAACGATCAGATGGCGCTGGGCCAATGCGCGCATTACCGAGTCCGGCTGCGC	5460
TTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGTCATGTTATATCC	5520
CGCCGTTAACACCACATCAAACAGGATTTCGCGCTGCTGGGAAACCGCGTGGACCGCT	5580
TGCTGCAACTCTCTAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCGTCACTGG	5640
TGAAAAGAAAAACCAACCCCTGGCGCCAATACGCAAACCGCCTCTCCCGCGCGTGGCCG	5700
ATTCAATTAGCAAGCTGGCACAGGTTCCCGACTGGAAAGCGGGCAGTGAGCGCAAC	5760
GCAATTAAATGTAAGTTAGCTCACTCATTAGGCACCCCAGGCTTACACTTTATGCTTCG	5820
ACCTGCAAGAACCTACGTCAAGTGGCACTTTGGGAAATGTCGCGGAAACCCCTATT	5880
TGTTTAAATTCTAAATACATTCAAATATGATCCGCTCATGAGACAATAACCTGATAA	5940
ATGCTTCAATAATAITGAAAAGGAAGAGTATGAGTATTCAACATTCCGTTGCTACCCAGA	6000
ATTCCCTTTTGGCAGTTGCCTTCTGTTTGCTACCGCTGGTACATC	6060
GTAAAAGATGCTGAAGATCAGTTGGGTGCAAGAGTGGGTTACATC	6105

Figure 17

Pyrostart B-Actin Taqman on human genomic

SEQUENCE LISTING

<110> The Secretary of State for Defence in Her Britannic Majesty's
Government of the United Kingdom of Great Britain and
Northern Ireland
Clark, Duncan Roy
Vincent, Suzanne P

<120> Amplification process

<130> CG/P/133/WOD

<140>

<141>

<150> GB 0110501.4

<151> 2001-04-30

<160> 26

<170> PatentIn Ver. 2.1

<210> 1

<211> 960

<212> DNA

<213> Aeropyrum pernix

<400> 1

taatccataat tcgcattatg tggacgatcc ttcccaagcaa aaccgggttt gttAACAGCC 60
ttagctttat aactcgacta gccaaactat cggtagacg ggtgcattgca atgacaggct 120
gtctgaaaat tggccttggaa gatgaggctc cagatgttgtt gaatgtcggtt atagagatac 180
ctatgaacag ttctgttaag tacgagttcg acaaggaggc gtgtattgtt aagggttgata 240
ggttccctta caccagcatg gtctaccctt tcaactacgg gttcataccca ggcactctag 300
aggaggacgg agatcctgtt gacgttctag ttattagccg ggagccccgtt gctccggct 360
cgcttataga ggctgtgccc gtggccgtgt tagacatgga ggacgaggag ggtccggaca 420
gcaagggtgt tgccgtaccc aaggccaaagc tggacccctt attcgcccagc tataaggacg 480
ttggcgacat acctgatgcc ctgaaatcca agataaagca ctttctcgag cactataagg 540

agctggagcc tggaaaagtgg gtttagagtga ctggatggag gcctgctgcc gatgcgaagg 600
agattataag gagggctata gagaggtata agggggcgtg atgagggcgtt aacggctcac 660
gttttctggg agagtgtcgc acctttgagg gcgcaccc tcgcccgcgt gcgtgtgcctt 720
ttgtctatga ttatggctac agttcttcta gccccttca cccccccac agtcaataaca 780
cttacaccta gaggttctgc gctgtatgt gtggatgttag ttgttagtaga cggcagcaca 840
ggatctgccc tggggttctc cgggtttgtc gtatccgcct acagaggggg ggtcggggat 900
gtgggtgtta tctactcttc ggggtctca gtatcagggt ctgtctgga aaggctgctg 960

<210> 2

<211> 207

<212> PRT

<213> Aeropyrum pernix

<400> 2

Met Trp Thr Ile Leu Pro Ser Lys Thr Gly Phe Val Asn Ser Leu Ser

1

5

10

15

Phe Ile Thr Arg Leu Ala Lys Leu Ser Val Arg Arg Val His Ala Met

20

25

30

Thr Gly Cys Leu Lys Ile Gly Pro Gly Asp Glu Ala Pro Asp Val Val

35

40

45

Asn Val Val Ile Glu Ile Pro Met Asn Ser Ser Val Lys Tyr Glu Phe

50

55

60

Asp Lys Glu Ala Cys Ile Val Lys Val Asp Arg Phe Leu Tyr Thr Ser

65

70

75

80

Met Val Tyr Pro Phe Asn Tyr Gly Phe Ile Pro Gly Thr Leu Glu Glu

85

90

95

Asp Gly Asp Pro Val Asp Val Leu Val Ile Ser Arg Glu Pro Val Ala

100

105

110

Pro Gly Ser Leu Ile Glu Ala Val Pro Val Ala Val Leu Asp Met Glu

115

120

125

Asp Glu Glu Gly Pro Asp Ser Lys Val Val Ala Val Pro Lys Ala Lys
130 135 140

Leu Asp Pro Leu Phe Ala Ser Tyr Lys Asp Val Gly Asp Ile Pro Asp
145 150 155 160

Ala Leu Lys Ser Lys Ile Lys His Phe Phe Glu His Tyr Lys Glu Leu
165 170 175

Glu Pro Gly Lys Trp Val Arg Val Thr Gly Trp Arg Pro Ala Ala Asp
180 185 190

Ala Lys Glu Ile Ile Arg Arg Ala Ile Glu Arg Tyr Lys Gly Ala
195 200 205

<210> 3

<211> 173

<212> PRT

<213> *Sulfolobus solfataricus*

<400> 3

Met Lys Leu Ser Pro Gly Lys Asn Ala Pro Asp Val Val Asn Val Leu
1 5 10 15

Val Glu Ile Pro Gln Gly Ser Asn Ile Lys Tyr Glu Tyr Asp Asp Glu
20 25 30

Glu Gly Val Ile Lys Val Asp Arg Val Leu Tyr Thr Ser Met Asn Tyr
35 40 45

Pro Phe Asn Tyr Gly Phe Ile Pro Gly Thr Leu Glu Glu Asp Gly Asp
50 55 60

Pro Leu Asp Val Leu Val Ile Thr Asn Tyr Gln Leu Tyr Pro Gly Ser
65 70 75 80

Val Ile Glu Val Arg Pro Ile Gly Ile Leu Tyr Met Lys Asp Glu Glu
85 90 95

Gly Glu Asp Ala Lys Ile Val Ala Val Pro Lys Asp Lys Thr Asp Pro
100 105 110

Ser Phe Ser Asn Ile Lys Asp Ile Asn Asp Leu Pro Gln Ala Thr Lys
115 120 125

Asn Lys Ile Val His Phe Phe Glu His Tyr Lys Glu Leu Glu Pro Gly
130 135 140

Lys Tyr Val Lys Ile Ser Gly Trp Gly Ser Ala Thr Glu Ala Lys Asn
145 150 155 160

Arg Ile Gln Leu Ala Ile Lys Arg Val Ser Gly Gly Gln
165 170

<210> 4

<211> 176

<212> PRT

<213> Escherichia coli

<400> 4

Met Ser Leu Leu Asn Gly Pro Ala Gly Lys Asp Leu Pro Glu Asp Ile
1 5 10 15

Tyr Val Val Ile Glu Ile Pro Ala Asn Ala Asp Pro Ile Lys Tyr Glu
20 25 30

Ile Asp Lys Glu Ser Gly Ala Leu Phe Val Asp Arg Phe Met Ser Thr
35 40 45

Ala Met Phe Tyr Pro Cys Asn Tyr Gly Tyr Ile Asn His Ile Leu Ser
50 55 60

Leu Asp Gly Asp Pro Val Asp Val Leu Val Pro Thr Pro Tyr Pro Leu
65 70 75 80

Gln Pro Gly Ser Val Ile Arg Cys Arg Pro Val Gly Val Leu Lys Met
85 90 95

Thr Asp Glu Ala Gly Glu Asp Ala Lys Leu Val Ala Val Pro His Ser
100 105 110

Lys Leu Ser Lys Glu Tyr Asp His Ile Lys Asp Val Asn Asp Leu Pro
115 120 125

Glu Leu Leu Lys Ala Gln Ile Ala His Phe Phe Glu His Tyr Lys Asp
130 135 140

Leu Glu Lys Gly Lys Trp Val Lys Val Glu Gly Trp Glu Asn Ala Glu
145 150 155 160

Ala Ala Lys Ala Glu Ile Val Ala Ser Phe Glu Arg Ala Lys Asn Lys
165 170 175

<210> 5

<211> 178

<212> PRT

<213> *Aquifex aeolicus*

<400> 5

Met Gly Tyr Asp Gln Leu Pro Pro Gly Lys Asn Pro Pro Glu Asp Ile
1 5 10 15

Tyr Val Val Ile Glu Ile Pro Gln Gly Ser Ala Val Lys Tyr Glu Leu
20 25 30

Asp Lys Asp Thr Gly Val Ile Phe Val Asp Arg Phe Leu Phe Thr Ala
35 40 45

Met Tyr Tyr Pro Phe Asn Tyr Gly Phe Val Pro Gln Thr Leu Ala Asp
50 55 60

Asp Gly Asp Pro Val Asp Val Leu Val Ile Ser Arg Glu Pro Val Val
65 70 75 80

Pro Gly Ala Val Met Arg Cys Arg Pro Ile Gly Met Leu Glu Met Arg
85 90 95

Asp Glu Ala Gly Ile Asp Thr Lys Val Ile Ala Val Pro His Glu Lys
100 105 110

Leu Asp Pro Ser Tyr Ser Asn Ile Lys Thr Val Asp Asn Leu Pro Glu
115 120 125

Ile Val Arg Glu Lys Ile Lys His Phe Phe Glu His Tyr Lys Glu Leu
130 135 140

Glu Pro Gly Lys Trp Val Lys Val Glu Asn Trp Lys Gly Leu Gln Asp
145 150 155 160

Ala Ile Glu Glu Ile Lys Lys Gly Ile Glu Asn Tyr Lys Lys Asn Lys
165 170 175

Glu Gly

<210> 6

<211> 178

<212> PRT

<213> Pyrococcus horikoshii

<400> 6

Met Asn Pro Phe His Asp Leu Glu Pro Gly Pro Asn Val Pro Glu Val
1 5 10 15

Val Tyr Ala Leu Ile Glu Ile Pro Lys Gly Ser Arg Asn Lys Tyr Glu
20 25 30

Leu Asp Lys Glu Thr Gly Leu Leu Lys Leu Asp Arg Val Leu Tyr Thr
35 40 45

Pro Phe His Tyr Pro Val Asp Tyr Gly Ile Ile Pro Arg Thr Trp Tyr
50 55 60

Glu Asp Gly Asp Pro Phe Asp Ile Met Val Ile Met Arg Glu Pro Thr
65 70 75 80

Tyr Pro Leu Thr Ile Ile Glu Ala Arg Pro Ile Gly Leu Phe Lys Met
85 90 95

Ile Asp Ser Gly Asp Lys Asp Tyr Lys Val Leu Ala Val Pro Val Glu
100 105 110

Asp Pro Tyr Phe Lys Asp Trp Lys Asp Ile Ser Asp Val Pro Lys Ala
115 120 125

Phe Leu Asp Glu Ile Ala His Phe Phe Lys Arg Tyr Lys Glu Leu Glu
130 135 140

Gly Lys Glu Ile Ile Val Glu Gly Trp Glu Gly Ala Glu Ala Ala Lys
145 150 155 160

Arg Glu Ile Leu Arg Ala Ile Glu Met Tyr Lys Glu Lys Phe Gly Lys
165 170 175

Lys Glu

<210> 7

<211> 178

<212> PRT

<213> Pyrococcus abyssi

<400> 7

Met Asn Pro Phe His Asp Leu Glu Pro Gly Pro Asn Val Pro Glu Val
1 5 10 15

Val Tyr Ala Leu Ile Glu Ile Pro Lys Gly Ser Arg Asn Lys Tyr Glu
20 25 30

Leu Asp Lys Lys Thr Gly Leu Leu Lys Leu Asp Arg Val Leu Tyr Ser
35 40 45

Pro Phe Phe Tyr Pro Val Asp Tyr Gly Ile Ile Pro Arg Thr Trp Tyr
50 55 60

Asp Asp Asp Asp Pro Phe Asp Ile Met Val Ile Met Arg Glu Pro Thr
65 70 75 80

Tyr Pro Leu Thr Ile Ile Glu Ala Arg Pro Ile Gly Leu Phe Lys Met
85 90 95

Ile Asp Ser Gly Asp Lys Asp Tyr Lys Val Leu Ala Val Pro Val Glu
100 105 110

Asp Pro Tyr Phe Lys Asp Trp Lys Asp Ile Asp Asp Val Pro Lys Ala
115 120 125

Phe Leu Asp Glu Ile Ala His Phe Phe Lys Arg Tyr Lys Glu Leu Gln
130 135 140

Gly Lys Glu Ile Ile Val Glu Gly Trp Glu Gly Ala Glu Ala Ala Lys
145 150 155 160

Arg Glu Ile Leu Arg Ala Ile Glu Leu Tyr Lys Glu Lys Phe Gly Ser
165 170 175

Lys Glu

<210> 8

<211> 176

<212> PRT

<213> Thermococcus litoralis

<400> 8

Met Asn Pro Phe His Asp Leu Glu Pro Gly Pro Glu Val Pro Glu Val

1

5

10

15

Val Tyr Ala Leu Ile Glu Ile Pro Lys Gly Ser Arg Asn Lys Tyr Glu

20

25

30

Leu Asp Lys Lys Thr Gly Leu Ile Lys Leu Asp Arg Val Leu Tyr Ser

35

40

45

Pro Phe His Tyr Pro Val Asp Tyr Gly Ile Ile Pro Gln Thr Trp Tyr

50

55

60

Asp Asp Asp Asp Pro Phe Asp Ile Met Val Ile Met Arg Glu Pro Thr

65

70

75

80

Tyr Pro Gly Val Leu Ile Glu Ala Arg Pro Ile Gly Leu Phe Lys Met

85

90

95

Ile Asp Ser Gly Asp Lys Asp Tyr Lys Val Leu Ala Val Pro Val Glu

100

105

110

Asp Pro Tyr Phe Asn Asp Trp Lys Asp Ile Ser Asp Val Pro Lys Ala

115

120

125

Phe Leu Asp Glu Ile Ala His Phe Phe Gln Arg Tyr Lys Glu Leu Gln

130

135

140

Gly Lys Glu Ile Ile Val Glu Gly Trp Glu Asn Ala Glu Lys Ala Lys

145

150

155

160

Gln Glu Ile Leu Arg Ala Ile Glu Leu Tyr Lys Glu Lys Phe Lys Lys

165

170

175

10

<210> 9

<211> 179

<212> PRT

<213> Thermoplasma acidophilum

<400> 9

Met Glu Ser Phe Tyr His Ser Val Pro Val Gly Pro Lys Pro Pro Glu

1

5

10

15

Glu Val Tyr Val Ile Val Glu Ile Pro Arg Gly Ser Arg Val Lys Tyr

20

25

30

Glu Ile Ala Lys Asp Phe Pro Gly Met Leu Val Asp Arg Val Leu Tyr

35

40

45

Ser Ser Val Val Tyr Pro Val Asp Tyr Gly Leu Ile Pro Arg Thr Leu

50

55

60

Tyr Tyr Asp Gly Asp Pro Met Asp Val Met Val Leu Ile Ser Gln Pro

65

70

75

80

Thr Phe Pro Gly Ala Ile Met Lys Val Arg Pro Ile Gly Met Met Lys

85

90

95

Met Val Asp Gln Gly Glu Thr Asp Asn Lys Ile Leu Ala Val Phe Asp

100

105

110

Lys Asp Pro Asn Val Ser Tyr Ile Lys Asp Leu Lys Asp Val Asn Ala

115

120

125

His Leu Leu Asp Glu Ile Ala Asn Phe Phe Ser Thr Tyr Lys Ile Leu

130

135

140

Glu Lys Lys Glu Thr Lys Val Leu Gly Trp Glu Gly Lys Glu Ala Ala

145

150

155

160

Leu Lys Glu Ile Glu Val Ser Ile Lys Met Tyr Glu Glu Lys Tyr Gly

165

170

175

Lys Lys Asn

<210> 10
<211> 686
<212> DNA
<213> *Aeropyrum pernix*

<400> 10
tgcatgcata tgacaggctg tctgaaaatt ggtcctggag atgaggctcc agatgttgtg 60
aatgtcgta tagagatacc tatgaacagt tctgttaagt acgagttcga caaggaggcg 120
tgtattgtta aggtttagat gttcctttac accagcatgg tctacccctt caactacggg 180
ttcataccag gcactctaga ggaggacgga gatcctgttg acgttctagt tattagccgg 240
gagcccgttgc tcccccggctc gcttatagag gctgtgcggc tggccgtgtt agacatggag 300
gacgaggagg gtccggacag caaggttgc ttccgttccca aggccaagct ggacccctta 360
ttcgccagct ataaggacgt tggcgacata cctgatgccc taaaatccaa gataaagcac 420
ttcttcgagc actataagga gctggaggct ggaatgtggg ttagagtgac tggatggagg 480
cctgctgcggc atgcgaagga gattataagg agggctatag agaggtataa gggggcgtga 540
tgagggctta acggctcactg ttttctggga gagtgtcgca cctttgaggg cgatcaccct 600
cgccagcgtg cgtgtgcattt tgtctatgat tatggctaca gttcttctag ccgccttcac 660
cgccccacaca gtcaagctta cactta 686

<210> 11
<211> 89
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Modified
polylinker sequence of pTTQ18NHK

<400> 11
atgcaccacc accaccacca tatgggcattt ctgaattcga gctcggtacc cggggatcct 60
ctagagtcga cctgcaggca tgcaagctt 89

<210> 12
<211> 5503
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: pTTQ18NHK
vector

<220>
<221> misc_feature
<222> (3279, 3525)
<223> n is a or g or c or t

<400> 12
gaactggatc tcaacagcgg taagatcctt gagagtttc gccccgaaga acgtttcca 60
atgatgagca cttttaaagt tctgttatgt ggccgcgtat tatccgtat tgacgccgg 120
caagagcaac tcggtcgcgg catacactat tctcagaatg acttggttga gtactcacca 180
gtcacagaaa agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata 240
accatgagtg ataacactgc ggccaactta cttctgacaa cgatcgagg accgaaggag 300
ctaacccgtt ttttgcacaa catggggat catgtaactc gccttgatcg ttggaaaccg 360
gagctgaatg aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca 420
acaacgttgc gcaaaactatt aactggcgaa ctacttactc tagctcccg gcaacaatta 480
atagactgga tggaggcgga taaagttgca ggaccacttc tgcgctcgcc cttccggct 540
ggctgggtta ttgctgataa atctggagcc ggtgagcgtg ggtctcgccg tattcattgca 600
gcactggggc cagatggtaa gcccctccgt atcgttagtta tctacacgac ggggagtcag 660
gcaactatgg atgaacgaaa tagacagatc gctgagatag gtgcctcaact gattaagcat 720
tggtaactgt cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt 780
taattttaaaa ggtatctaggtaa gaaatcctt tttgataatc tcatgaccaa aatcccttaa 840
cgtgatgtt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttgc 900
gatccctttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 960
gtggtttgtt tgccggatca agagctacca actcttttc cgaaggtaac tggcttcagc 1020
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1080
aactctgttag caccgcctac atacctcgct ctgctaatcc tggatttaccgt ggctgctgcc 1140
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1200
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1260
accgaactga gatacctaca gcgtgagcat tgagaaagcg ccacgcttcc cgaagggaga 1320
aaggcggaca ggtatccqgt aagcgccagg gtcggaaacag gagagcgac gaggagctt 1380

cgaggggaa acgcctggta tctttatagt cctgtcgggt ttcgcacccct ctgacttgag 1440
cgtcgatttt tgtatgctc gtcagggggg cggagccat gaaaaaaacgc cagcaacgcg 1500
gccttttac ggttctggc ctttgcgg cctttgcctc acatgttctt tccgtcgta 1560
tccctgatt ctgtggataa ccgtattacc gccttgagt gagctgatac cgctcgccgc 1620
agccgaacga ccgagcgcag cgagtcagt agcgaggaag cggaaagagcg cccaataacgc 1680
aaaccgcctc tccccgcggttggccgatt cattaatgcga gaattaattc tcatgtttga 1740
cagcttatca tcgactgcac ggtgcaccaa tgctctggc gtcaggcgc catcgaaagc 1800
tgtggatgg ctgtgcaggt cgtaaatcac tgcataattc gtgtcgctca aggccgactc 1860
ccgttctgga taatgtttt tgcgcccaca tcataacggt tctggcaaat attctgaaat 1920
gagctgttga caattaatca tcggctcgta taatgtgtgg aattgtgagc ggataacaat 1980
ttcacacagg aaacacatataatgcaccacc accaccacca tatgggcatttgcgaatttgcga 2040
gctcggtacc cggggatcct ctagagtcga cctgcaggca tgcaagcttgcacttgcgc 2100
tcgtttaca acgtcgtgac tggaaaacc ctggcggttac ccaacttaat cgccttgcag 2160
cacatcccc tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgccttccc 2220
aacagttgcg cagcctgaat ggcgaatgac gcctgatgac gtatttctc cttacgcac 2280
tgtgcggat ttcacaccgc ataaattccc tgtttggcg gatgagagaa gattttcagc 2340
ctgatacaga ttaaattcaga acgcagaagc ggtctgatata aacagaattt gcctggccgc 2400
agtagcgcgg tggtcccacc tgacccatg ccgaactcag aagtgaaacgc ccgtagcgcc 2460
gatggtagtg tgggtctcc ccatgcgaga gtagggact gcccaggcata aaataaaacgc 2520
aaaggctcag tcgaaagact gggccttcg ttttatctgt tgtttgcgg tgaacgctct 2580
cctgagtagg acaaattccgc cgggagcggta tttgaacggtt gcaagcaac ggcccgagg 2640
gtggcggcga ggacgcccgc cataaaactgc caggcatcaa attaagcaga aggccatct 2700
gacggatggc cttttgcgt ttctacaaac tcttcgtcgtc gtcataatcta caagccatcc 2760
ccccacagat acggtaaact agcctcggtt ttgcattcagg aaagcaggga atttatggtg 2820
caactctcagt acaatctgcgt ctgatgcgc atagttaaac cagccccgac acccgccaaac 2880
accggctgac ggcgcctgac gggctgtct gtcctccggca tccgcttaca gacaagctgt 2940
gaccgtctcc gggagctgca tgtgtcagag gttttcaccgc tcatcaccga aacgcgcgag 3000
acgaaaggcctgattagaa aaactcatgc agcatcaaataa gaaactgcaaa tttattcata 3060
tcaggattat caataccata tttttgaaaa agccgtttct gtaatgaagg agaaaaactca 3120
ccgaggcagt tccataggat ggcaagatcc tggtatcggt ctgcgattcc gactcgtcca 3180
acatcaatac aacattattaa tttccctcg tcaaaaataa ggttatcaag tgagaaatca 3240
ccatgagtga cgactgaatc cggtgagaat ggcaaaagnt tatgcatttc tttccagact 3300
tgttcaacag gccagccatt acgctcgta tcaaaaatcac tcgcataac caaaccgtta 3360
ttcattcgat attgcgcctg agcgagacga aatacgcgtat cgtgtttaaa aggacaattt 3420
caaacagggaa tcgaatgcaaa ccggcgcagg aacaactgcaaa ggcgcataac aatattttca 3480
cctgaatcag gatattcttc taatacctgg aatgtgttt tcccnngggat cgcagtggtg 3540
agtaaccatg catcatcagg agtacggata aatgttgcga tggtcggaaag aggccataaat 3600
tccgtcaagcc agtttagtct qaccatctca tctgttaacat cattggcaac gtcaccccttgc 3660

ccatgtttca gaaaacaactc tggcgcatcg ggctcccat acaatcgata gattgtcgca 3720
cctgattgcc cgacattatc gcgagccat ttataccat ataaatcagc atccatgttgc 3780
gaatttaatc gcggcctcga gcaagacgtt tcccggttcaa tatggctcat aacacccctt 3840
gtattactgt ttatgttaagc agacagttt attgttcatg atgatataattt tttatcttgc 3900
gcaatgtaac atcaggccct cgtgatacgc ctatTTTat aggtaatgt catgataata 3960
atggtttctt agacgtgagg ttctgtaccc gacaccatcg aatggtgcaa aacctttcgc 4020
ggtaggcgt gatagcgccc ggaagagagt caattcaggg tggtaatgt gaaaccagta 4080
acgttatacg atgtcgacgat gtagccgtt gtcttcttac agaccgttcc cccgcgtgggt 4140
aaccaggcca gccacgttcc tgcaaaaacg cgggaaaaag tggaaagcggc gatggcggag 4200
ctgaattaca ttcccaacccg cgtggcacaa caactggcgg gcaaacagtc gttgtgtt 4260
ggcggttgcac cctccagttt ggcctgcac gcccgcgtcgc aaattgtcgc ggccgattaaa 4320
tctcgcccg atcaactggg tgccagcgtg gtgggtgtcga tggtagaaacg aagcggcgatc 4380
gaagcctgtt aagcggcggt gcacaatctt ctcgcgcac gctgtcgtgg gctgtatcatt 4440
aactatccgc tggatgacca ggatgccatt gctgtggaag ctgcctgcac taatgttcc 4500
gcgttatttc ttgtatgtctc tgaccagaca cccatcaaca gtattatTTT ctcccatgaa 4560
gacggtaacg gactggcggt ggagcatctg gtcgttgg gtcaccagca aatcgcgctg 4620
tttagcggcc cattaagttt tgcgtcgccg cgttgcgtc tggctggctg gcataaaat 4680
ctcactcgca atcaaattca gcccatacg gaaacggaaag gctgtggag tgccatgtcc 4740
ggttttcaac aaaccatgca aatgtcaat gaggcatcg ttccactgc gatgtgggtt 4800
gccaacgatc agatggcgct gggcgcaatg cgcgcattt ccgagtcgg gctgcgcgtt 4860
ggtgccgata tctcggtatg gggatacgc gataccgaag acagctcatg ttatatccc 4920
ccgttaacca ccatcaaaca ggatTTTcgc ctgcgtgggc aaaccagcg ggtggcgctt 4980
ctgcaactct ctcaggccca ggccgtgaag ggcaatcgc tggccgtt ctcactgggt 5040
aaaagaaaaa ccacccctggc gcccatacg caaaccgcct ctccccgcgc gttggccgt 5100
tcattaaatgc agctggcactg acaggttcc cgactggaaa gcccggcactg agcgcaacgc 5160
aattaaatgtt aatgttgcactt ctcattagcc accccaggct ttacacttta tgcttccgac 5220
ctgcaagaac ctcacgtcag gtggcaactt tggggaaat gtgcgcggaa cccctatTTT 5280
tttatttttc taaatacatt caaatatgtt tccgcgtatg agacaataac cctgataaaat 5340
gcttcaataa tattgaaaaa ggaagagat gaggattcaa catttccgtg tggccctt 5400
tccctttttt gccgcatttt gccttcgtt ttttgcgtac ccagaaacgc tggtaaaagt 5460
aaaagatgtt gaaatgtt ggggtgcacg agtgggttac atc 5503

15

<210> 13
<211> 6105
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: pTTQ18NHK
vector including the PPase sequence

<220>
<221> misc_feature
<222> (3881, 4127)
<223> n is a or g or c or t

<400> 13
gaactggatc tcaacagcgg taagatcatt gagagtttc gccccgaaga acgtttcca 60
atgatgagca cttttaagt tctgtatgt ggccgcgtat tatcccgat tgacgcggg 120
caagagcaac tcggtcgccc catacactat tctcagaatg acttgggtga gtactcacca 180
gtcacagaaa agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata 240
accatgagtg ataacactgc ggccaactta cttctgacaa cgatcgagg accgaaggag 300
ctaaccgctt ttttgcacaa catggggat catgtactc gccttgcgtg ttggaaaccg 360
gagctgaatg aagccatacc aaacgacgag cgtgacacca cgatgcgt agcaatggca 420
acaacgttgc gcaaactatt aactggcgaa ctacttactc tagttcccg gcaacaatta 480
atagactgga tggaggcgga taaagttgca ggaccacttc tgcgctcgcc cttccggct 540
ggctggttta ttgctgatata atctggagcc ggtgagcgtg ggtctcgccg tatcattgca 600
gcactggggc cagatggtaa gcccctccgt atcgtagtta totacacgac ggggagtcag 660
gcaactatgg atgaacgaaa tagacagatc gctgagatag gtgcgtcact gattaagcat 720
tggtaactgt cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt 780
taatttaaaa ggatcttaggt gaagatcatt tttgataatc tcatgaccaa aatcccttaa 840
cgtgagttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttgc 900
gatccctttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 960
gtggtttggc tgccggatca agagctacca actcttttc cgaaggtaac tggcttcgc 1020
agagcgcaga taccaaatac tgcttctata gtgtagccgt agttaggcca ccacttcaag 1080
aactctgttag caccgcctac atacctcgat ctgctaattcc tggatccagt ggctgtgc 1140
agtggcgata agtcgtgtct taccgggtt gactcaagac gatagttacc ggataaggcg 1200
cagcggcgtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1260
accgaactga gataacctaca gctgtgagcat tgagaaagcg ccacgcttcc cgaagggaga 1320
aaggcggaca ggtatccgggt aagcggcagg gtcggaaacag gagagcgcac gagggagctt 1380

ccagggggaa acgcctggta tctttatagt cctgtcggtt ttcgccacct ctgacttgag 1440
cgtcgatttt tgtgatgctc gtcagggggg cggagccat gaaaaaacgc cagcaacgcg 1500
gccttttac ggttcctggc cttttgcgtt cctttgcgtc acatgttctt tcctgcgtta 1560
tccccctgatt ctgtggataa ccgttattacc gcctttgagt gagctgatac cgctcgccgc 1620
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaaagagcg cccaaatacgc 1680
aaaccgcctc tccccgcgcg ttggccgatt cattaaatgca gaattaattc tcatgtttga 1740
cagcttatca tcgactgcac ggtgcaccaa tgcttcggc gtcagggcgc catcggaaagc 1800
tgtggatgg ctgtgcaggt cgtaaattcac tgcataattc gtgtcgctca aggccactc 1860
ccgttctgga taatgttttt tgccgcgaca tcataacggt tctggcaaat attctgaaat 1920
gagctgttga caattaaatca tcggctcgta taatgtgtgg aattgtgagc ggataacaat 1980
ttcacacagg aaacacatata atgcaccacc accaccacca tatgacaggc tgtctgaaaa 2040
ttggtcctgg agatgaggct ccagatgtt gtaatgtcg tataagagata cctatgaaca 2100
gttctgttaa gtacgagttc gacaaggagg cgtgtattgt taaggttgc aggttccctt 2160
acaccagcat ggtctacccc ttcaactacg ggttcataacc aggcaactcta gaggaggacg 2220
gagatcctgt tgacgttcta gttattagcc gggagccgt tgctcccgcc tcgtttatag 2280
aggctgtgcc cgtggccgtg ttagacatgg aggacgagga gggtccggac agcaaggttg 2340
ttgccgtacc caaggccaaag ctggacccccc tattcgccag ctataaggac gttggcgaca 2400
tacctgatgc cctgaaatcc aagataaaagc acttcttcga gcactataag gagctggagc 2460
ctggaaagtg ggttagagtg actggatgga ggcctgtgc cgatgcgaag gagattataa 2520
ggaggcgtat agagaggtat aaggggccgt gatgagggtc taacggctca cgttttctgg 2580
gagagtgctg caccttgcg ggcgatcacc ctcgcccagcg tgctgtgtc tttgtctatg 2640
attatggcta cagttcttct agccgcttcc accgccccca cagtcaagct tggcaactggc 2700
cgtcgttta caacgtcggt actggaaaaa ccctggcggtt acccaactta atcgccttgc 2760
agcacatccc ctttcgcca gctggcgtaa tagcgaagag gcccgcacccg atcgccttcc 2820
ccaacagttt cgcagcctga atggcgaatg ggcctgtatc cggtattttc tccttacgca 2880
tctgtcggtt atttcacacc gcataaaattc cctgttttgg cggatgagag aagattttca 2940
gcctgataca gatcaaatacga aacgcagaa ggcgtctgtt aaaaacagaat ttgcctggcg 3000
gcagtagcgc ggtggcccca cctgacccca tgccgaactc agaagtgaaa cgcgcgtcg 3060
ccgatggtag tgggggtct ccccatgcga gagtagggaa ctgcccaggca tcaaataaaaa 3120
cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct 3180
ctcctgagta ggacaaatcc gcccggagcg gatttgaacg ttgcgaagca acggcccgga 3240
gggtggccgg caggacgccc gccataaaact gccaggcatc aaattaagca gaaggccatc 3300
ctgacggatg gccttttgc gtttctacaa actcttcctg tcgtcatatc tacaagccat 3360
ccccccacag atacggtaaa ctgcctcgat tttgtatca ggaaagcagg gaattttatgg 3420
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gcccggcccg acacccgcca 3480
acacccgctg acgcgcctg acgggctgt ctgtcccgcatccgtt cagacaagct 3540
gtgaccgtct cggggagctg catgtgtcag aggttttcac cgatccacc gaaacgcgcg 3600
agacgaaagg gcctgatttag aaaaactcat cgagcatcaa atgaaactgc aatttattca 3660

tatcaggatt atcaataccca tatttttgc aaagccgtt ctgtaatgaa ggagaaaaact 3720
caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt ccgactcgtc 3780
caacatcaat acaacctatt aatttccctt cgtaaaaat aaggttatca agtgagaaaat 3840
caccatgagt gacgactgaa tccggtgaga atggcaaaag nttatgcatt tctttccaga 3900
cttggtaac agggcagcca ttacgctcgt catcaaaatc actcgcatca accaaaaccgt 3960
tattcatcg tgattgcgc tgagcgagac gaaatacgcg atcgctgtt aaaggacaat 4020
tacaaacagg aatcgaaatgc aaccggcgca ggaacactgc cagcgcatca acaatatttt 4080
cacctgaatc aggatattct tctaataccct ggaatgtgt tttccnnggg atcgcagtgg 4140
ttagtaacca tgcacatca ggagttacgga taaaatgctt gatggtcgga agaggcataa 4200
attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca acgctaccctt 4260
tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga tagattgtcg 4320
cacctgattt cccgacatta tcgcgagccc atttataccct atataaaatca gcatccatgt 4380
tggaaatttaa tcgcggcctc gagcaagacg tttcccggtt aatatggctc ataacaccccc 4440
ttgttattact gtttatgtaa gcagacagtt ttatgttca tgatgatata tttttatott 4500
gtgcaatgtt acatcagggc ctcgtgatac gcctattttt ataggtaat gtcatgataa 4560
taatggtttc ttagacgtga ggttctgtac ccgacaccat cgaatggtgc aaaacccctt 4620
gcggtatggc atgatagcgc ccggaaagaga gtcaattcag ggtggtgaat gtgaaaccag 4680
taacgttata cgatgtcgca gagtatgccc gtgtcttta tcagaccgtt tcccgctgg 4740
tgaaccaggc cagccacgtt tctgcgaaaaa cgcggggaaaaa agtggaaagcg gcgatggcgg 4800
agctgaatta cattcccaac cgcgtggcac aacaactggc gggcaaacag tcgttgtga 4860
ttggcggttgc cacctccagt ctggccctgc acggcccgtc gcaaattgtc gcggcgattt 4920
aatctcgcgc cgatcaactg ggtgccagcg tgggtgttc gatggtagaa cgaagcyygc 4980
tcgaaggctg taaagcggcg gtgcacaatc ttctcgcgca acgcgtcaatg gggctgatca 5040
ttaactatcc gctggatgac caggatgcca ttgtgttggaa agctgcctgc actaatgttc 5100
ccgcgttatt tcttgatgtc tctgaccaga caccatcaa cagtattatt ttctcccatg 5160
aagacggtac gcgactgggc gtggagcatc tggtcgcatt gggtcaccag caaatcgcgc 5220
tggtagccggg cccattaagt tctgtctcg cgcgtctgca tctggctggc tggcataaat 5280
atctcactcg caatcaaatt cagccgatag cggAACGGGA aggccactgg agtgcctatgt 5340
ccggttttca acaaaccatg caaatgctga atgagggcat cgttccact gcgatgctgg 5400
ttggccaaacga tcagatggcg ctggcgccaa tgcgcgcccatt taccgagttcc gggctgcgcg 5460
ttggtgccgaa tatctcggtt gtgggatacg acgataccga agacagctca tggatataatcc 5520
ccgcgtttaac caccatcaa caggatttc gcctgtggg gcaaaccagc gtggaccgct 5580
tgctgcaact ctctcagggc caggccgtga agggcaatca gctgttgcctt gtctcactgg 5640
tggaaaagaaaa aaccaccctg gcgcccaata cgcaaaccgc ctctcccccgc gcgttggccg 5700
atccattaaat gcagctggca cgacagggtt cccgactggaa aagcgggcag tgagcgcaac 5760
gcaattaaatg taagtttagt cactcattag gcaccccccagg ctttacactt tatgttcccg 5820
acctgcaaga acctcacgtc aggtggcaact tttcggggaa atgtgcgcgg aacccttattt 5880
tggatatttt tctaaataca ttcaaataatgc tatccgttca tgagacaata accctgataa 5940

18

atgcttcaat aatattgaaa aaggaagagt atgagtttcc aacatttccg tgcgcctt 6000
attccctttt ttgcggcatt ttgccttctt gtttttgctc acccagaaac gctggtgaaa 6060
gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatc 6105

<210> 14
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 14
gatgagttcg tgcgttaca actgg 25

<210> 15
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 15
ggttatcgaa atcagccaca ggcgg 25

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

19

<400> 16
gcaacgcccc tcactataaaa

20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 17
gcaccccgcc cttgaagtcc

20

<210> 18
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 18
tgcatgcata tgacaggctg tctgaaaatt g

31

<210> 19
<211> 33
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 19
taagtgttaag cttgactgtg gggggcggtga aag

33

20

<210> 20

<400> 20

000

<210> 21

<400> 21

000

<210> 22

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 22

gactcgatcat actccctgctt gct

23

<210> 23

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Primer

<400> 23

cattgcggac aggatgcaga a

21

21

<210> 24
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Probe

<400> 24
atccacatct gctggaaggt ggacagt

27

<210> 25
<211> 176
<212> PRT
<213> Aeropyrum pernix

<400> 25
Met Thr Gly Cys Leu Lys Ile Gly Pro Gly Asp Glu Ala Pro Asp Val
1 5 10 15

Val Asn Val Val Ile Glu Ile Pro Met Asn Ser Ser Val Lys Tyr Glu
20 25 30

Phe Asp Lys Glu Ala Cys Ile Val Lys Val Asp Arg Phe Leu Tyr Thr
35 40 45

Ser Met Val Tyr Pro Phe Asn Tyr Gly Phe Ile Pro Gly Thr Leu Glu
50 55 60

Glu Asp Gly Asp Pro Val Asp Val Leu Val Ile Ser Arg Glu Pro Val
65 70 75 80

Ala Pro Gly Ser Leu Ile Glu Ala Val Pro Val Ala Val Leu Asp Met
85 90 95

Glu Asp Glu Glu Gly Pro Asp Ser Lys Val Val Ala Val Pro Lys Ala
100 105 110

22

Lys Leu Asp Pro Leu Phe Ala Ser Tyr Lys Asp Val Gly Asp Ile Pro
115 120 125

Asp Ala Leu Lys Ser Lys Ile Lys His Phe Phe Glu His Tyr Lys Glu
130 135 140

Leu Glu Pro Gly Lys Trp Val Arg Val Thr Gly Trp Arg Pro Ala Ala
145 150 155 160

Asp Ala Lys Glu Ile Ile Arg Arg Ala Ile Glu Arg Tyr Lys Gly Ala
165 170 175

<210> 26

<211> 531

<212> DNA

<213> Aeropyrum pernix

<400> 26

atgacaggct gtctgaaaat tggtcctgga gatgaggctc cagatgttgtt gaatgtcg 60
atagagatac ctatgaacag ttctgttaag tacgagttcg acaaggaggc gtgtattgtt 120
aagggttata ggttccttta caccagcatg gtctaccctc tcaactacgg gttcatacca 180
ggcactctag aggaggacgg agatcctgtt gacgttctag ttatttagccg ggagcccg 240
gtccccggct cgcttataga ggctgtgccc gtggccgtgt tagacatgga ggacgaggag 300
ggtccggaca gcaagggttgt tgccgtaccc aaggccaagc tggacccctt attcgccagc 360
tataaggacg ttggcgacat acctgatgcc ctgaaatcca agataaagca cttttcgag 420
caactataagg agctggagcc tggaaagtgg gtttagagtga ctggatggag gcctgctgcc 480
gatgcgaagg agattataag gagggtata gagaggtata agggggcg 531