(21) 申请号 20140492129.9
(22) 申请日 2014.09.23
(71) 申请人 京东方科技集团股份有限公司
 地址 100015 北京市朝阳区酒仙桥路 10 号
 申请人 成都京东方光电科技有限公司
(72) 发明人 杨发禄 张俊瑞
(74) 专利代理机构 北京天昊联合知识产权代理有限公司
 代理人 彭瑞欣 陈源
(51) Int. Cl.
 HO1L 27/32 (2006.01)

(54) 发明名称
 发光二极管显示面板
(57) 摘要
 本发明公开了一种发光二极管显示面板，涉及显示技术领域。所述发光二极管显示面板包括用于显示的第一基板，用于封装所述第一基板的第二基板、偏光层和 λ/4 相位延迟膜，所述偏光层和所述 λ/4 相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述 λ/4 相位延迟膜后到达所述第一基板。本发明通过在发光二极管显示面板中同时设置偏光层和 λ/4 相位延迟膜，有效防止了环境光反射对显示画面的影响，提升了显示画质。
1. 一种发光二极管显示面板，包括用于显示的第一基板、用于封装所述第一基板的第二基板和偏光层，其特征在于，所述发光二极管显示面板还包括 λ/4 相位延迟膜，所述偏光层和所述 λ/4 相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述 λ/4 相位延迟膜后到达所述第一基板。

2. 根据权利要求 1 所述的发光二极管显示面板，其特征在于，所述偏光层的透过轴与所述 λ/4 相位延迟膜的透过轴之间的夹角为 45°。

3. 根据权利要求 1 或 2 所述的发光二极管显示面板，其特征在于，所述偏光层设置在所述第二基板的外侧，所述 λ/4 相位延迟膜设置在所述第二基板的内侧。

4. 根据权利要求 3 所述的发光二极管显示面板，其特征在于，所述偏光层为偏光片。

5. 根据权利要求 1 或 2 所述的发光二极管显示面板，其特征在于，所述偏光层和所述 λ/4 相位延迟膜依次设置在所述第二基板的内侧。

6. 根据权利要求 5 所述的发光二极管显示面板，其特征在于，所述偏光层为用于将环境光转换为线偏振光的金属光栅层。

7. 根据权利要求 5 所述的发光二极管显示面板，其特征在于，所述偏光层为用于将环境光转换为线偏振光的二色性染料分子层。

8. 根据权利要求 7 所述的发光二极管显示面板，其特征在于，形成所述二色性染料分子层的二色性染料分子为偶氮基二色性染料分子和蒽醌基二色性染料分子中的任意一种或任意几种的混合。

9. 根据权利要求 1 至 2、4、6 至 8 中任意一项所述的发光二极管显示面板，其特征在于，所述 λ/4 相位延迟膜包括取向层和设置在所述取向层上的液晶聚合物层，所述取向层的取向方向与所述偏光层的透过轴之间的夹角为 45°。

10. 根据权利要求 1 至 2、4、6 至 8 中任意一项所述的发光二极管显示面板，其特征在于，所述偏光层具有图案，所述偏光层的图案与所述第一基板中的金属区域的图案相对应。
发光二极管显示面板

技术领域
[0001] 本发明涉及显示技术领域，尤其涉及一种发光二极管显示面板。

背景技术
[0002] 发光二极管显示面板是未来显示产品的发展趋势，尤其是有机发光二极管显示面板，具有视角宽、响应速度快、亮度高、对比度高、色彩鲜艳、重量轻、厚度薄、功耗低等一系列优点。
[0003] 图1是现有发光二极管显示面板的结构示意图，所述发光二极管显示面板包括第一基板1和第二基板2。第一基板1上包含阳极、阴极、发光层、彩色滤光层、空穴注入层、空穴传输层、电子传输层、保护膜等发光二极管显示面板固有的结构。图1所示的发光二极管显示面板容易受环境光的影响，第一基板1中包含金属的区域将环境入射光100%反射出去，如图1中箭头所示，这对发光二极管显示面板的光路和色彩方面会产生很大的影响，从而影响显示画质。
[0004] 目前常用的改善方法是在第二基板2的外侧设置偏光片3，如图2所示。环境光经过偏振片3后，转换成线偏振光，经金属区域反射后，还是以线偏振出射，反射率为50%。虽然设置偏光片3后所述发光二极管显示面板对环境光的反射率有所降低，但是反射出的50%的环境光还是会对外显画质产生影响。

发明内容
[0005] 本发明的目的在于提供一种发光二极管显示面板，以改善环境光对显示画质的影响。
[0006] 为解决上述技术问题，本发明提供一种发光二极管显示面板，包括用于显示的第一基板、用于封装所述第一基板的第二基板和偏光片，所述发光二极管显示面板还包括λ/4相位延迟膜，所述偏光片和所述λ/4相位延迟膜的设置使得入射环境光依次通过所述偏光片和所述λ/4相位延迟膜后到达所述第一基板。
[0007] 优选地，所述偏光片的透过轴与所述λ/4相位延迟膜的透过轴之间的夹角为45°。
[0008] 优选地，所述偏光片设置在所述第二基板的外侧，所述λ/4相位延迟膜设置在所述第二基板的内侧。
[0009] 优选地，所述偏光片为偏光片。
[0010] 优选地，所述偏光片和所述λ/4相位延迟膜依次设置在所述第二基板的内侧。
[0011] 优选地，所述偏光片为用于将环境光转换为线偏振光的金属光栅层。
[0012] 优选地，所述偏光片为用于将环境光转换为线偏振光的二色性染料分子层。
[0013] 优选地，形成所述二色性染料分子层的二色性染料分子为偶氮基二色性染料分子和蒽醌基二色性染料分子中的任意一种或任意几种的混合。
[0014] 优选地，所述λ/4相位延迟膜包括取向层和设置在所述取向层上的液晶聚合物
层，所述取向层的取向方向与所述偏光层的轴之间的夹角为 45°。
[0015]优选地，所述偏光层具有图案，所述偏光层的图案与所述第一基板中的金属区域
的图案相对应。
[0016]本发明通过在发光二极管显示面板中同时设置偏光层和 λ/4 相位延迟膜，有效
防止了环境光折射对显示画面的影响，提升了显示画质。

附图说明
[0017]附图是用来提供对本发明的进一步理解，并且构成说明书的一部分，与下面的具
体实施方式一起用于解释本发明，但并不构成对本发明的限制。
[0018]图 1 是现有发光二极管显示面板的结构示意图之一；
[0019]图 2 是现有发光二极管显示面板的结构示意图之二；
[0020]图 3 是本发明实施例中提供的发光二极管显示面板的结构示意图之一；
[0021]图 4 是图 3 所示结构的光路示意图；
[0022]图 5 是图 4 中偏光层的平面示意图；
[0023]图 6 是图 4 中液晶聚合物层的平面示意图；
[0024]图 7 是本发明实施例中提供的发光二极管显示面板的结构示意图之二；
[0025]图 8 是图 7 所示结构的光路示意图；
[0026]图 9 是具有图案的偏光层的平面示意图。
[0027]在附图中，1：第一基板；2：第二基板；3：偏光片；4：取向层；5：液晶聚合物层；6：
偏光层；7：λ/4 相位延迟膜。

具体实施方式
[0028]以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是，此处所描
述的具体实施方式仅用于说明和解释本发明，并不用于限制本发明。
[0029]本发明提供了一种发光二极管显示面板，包括用于显示的第一基板、用于封装所
述第一基板的第二基板和偏光层，所述发光二极管显示面板还包含 λ/4 相位延迟膜，所述
偏光层和所述 λ/4 相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述 λ/4 相
位延迟膜后到达所述第一基板。
[0030]这里的发光二极管显示面板可以是有机发光二极管 (OLED, Organic Light
 Emitting Diode) 显示面板，或者有源矩阵有机发光二极管 (AMOLED, Active Matrix
 Organic Light Emitting Diode)。第一基板可以是显示基板，包含阳极、阴极、发光层、彩
色滤光层、空穴注入层、空穴传输层、电子传输层、薄膜晶体管阵列、保护膜等结构。第二基
板可以是只具封装作用的盖板。
[0031]其中，第一基板中的多个结构包含有金属材料，例如阳极、阴极、薄膜晶体管阵列
等结构中都包含金属材料，这里将金属材料所在的区域称为金属区域。第一基板中的金属
区域能够反射入射到第一基板上的环境光，对显示效果造成影响。
[0032]在本发明中，入射的环境光经过所述偏光层后形成线偏振光，再经过所述 λ/4 相
位延迟膜后形成圆偏振光或者椭圆偏振光。当所述偏光层的透过轴与所述 λ/4 相位延迟
膜的透过轴之间的夹角为 45° 时，形成圆偏振光，否则形成椭圆偏振光。所述圆偏振光或者
椭圆偏振光到达第一基板并经过上述金属区域的反射后，会改变旋转方向，例如左旋圆偏振光会变成右旋圆偏振光。再次经过所述 \(\lambda / 4 \) 相位延迟膜后会形成与之前偏振方向相垂直的线偏振光，从而无法透出偏振层，大大降低了环境光反射对显示画面的影响，提升了显示画质。

优选地，所述偏光层的透过轴与所述 \(\lambda / 4 \) 相位延迟膜的透过轴之间的夹角为 45°。这种情况下，出射的环境光只包括偏振方向与所述偏光层的透过轴垂直的线偏振光，使得没有环境光能够透出所述偏光层，即入射环境光的反射率为 0%，完全防止了环境光对显示画质的影响。

图 3 是本发明提供的发光二极管显示面板的一种实施例的示意图。在图 3 中，偏光层 6 设置在第二基板 2 的外侧，\(\lambda / 4 \) 相位延迟膜 7 设置在第二基板 2 的内侧。环境光从偏光层 6 的上方入射，依次经过偏光层 6、第二基板 2 和 \(\lambda / 4 \) 相位延迟膜 7 后照射到第一基板 1 上。

本实施例中对偏光层 6 的具体形式没有限制，只要能够将环境光转化为线偏振光即可。图 3 中偏光层 6 设置在第二基板 2 的外侧，偏光层 6 优选为常规的偏光片，以简化生产流程，节约成本。

\(\lambda / 4 \) 相位延迟膜 7 可以通过在第二基板 2 内侧依次形成取向层 4 和液晶聚合物层 5 来实现。由于偏光层 6 的透过轴与 \(\lambda / 4 \) 相位延迟膜 7 的透过轴之间的夹角优选为 45°，那么可以设置取向层 4 的取向方向与偏光层 6 的透过轴之间的夹角为 45°。

取向层 4 可以通过摩擦方式设置，也可以通过光取向方式设置。液晶聚合物层 5 由液晶反应单体通过紫外光固化形成。

图 4 是图 3 所示结构的光路示意图。假设偏光层 6 的透过轴为 0°，如图 5 所示，入射环境光经过偏光 6 后形成 0°的线偏振光。为了与偏光层 6 的透过轴的方向相对应，\(\lambda / 4 \) 相位延迟膜 7 的透过轴的方向优选为 45°。这里可以将取向层 4 的取向方向设置为 45°，之后在取向层 4 上设置液晶聚合物层 5，设置完成的液晶聚合物层 5 的平面示意图如图 6 所示。

0°的线偏振光经过由取向层 4 和液晶聚合物层 5 组成的 \(\lambda / 4 \) 相位延迟膜 7 后，形成左旋圆偏振光。所述左旋圆偏振光经过第一基板 1 中的金属区域反射后，形成右旋圆偏振光。所述右旋圆偏振光再次经过 \(\lambda / 4 \) 相位延迟膜 7 后形成 90°线偏振光，从而无法通过透过轴为 0°的偏光层 6，使入射环境光的反射率为 0%，消除了环境光反射对显示面板的显示效果的影响，提升了显示画质。

图 7 是本发明提供的发光二极管显示面板的另一种实施例的示意图。在图 7 中，偏光层 6 和 \(\lambda / 4 \) 相位延迟膜 7 依次设置在第二基板 2 的内侧。环境光从第二基板 2 上方入射，依次经过第二基板 2、偏光层 6 和 \(\lambda / 4 \) 相位延迟膜 7 后照射到第一基板 1 上。

本实施例中对偏光层 6 的具体形式没有限制，只要能够将环境光转化为线偏振光即可。图 7 中偏光层 6 设置在第二基板 2 的内侧，偏光层 6 优选为能够将环境光转换为线偏振光的金属光栅层或者二色性染料分子层。由于金属光栅层和二色性染料分子层的厚度较薄，有利于控制显示面板的整体厚度，使其满足轻薄化的发展趋势。

对于入射环境光中的两个正交的线偏振光分量，二色性染料分子能够吸收其中一个线偏振光分量，而让另一个线偏振光分量通过。因此，二色性染料分子层可代替偏振片实
现光线转换的功能。本发明中，形成所述二色性染料分子层的二色性染料分子可以是偶氮基二色性染料分子和蒽醌基二色性染料分子中的任意一种或任意几种的混合。

其中，偶氮基二色性染料分子的分子式如下：

![分子式图](image)

其中，二色性染料分子的分子式如下：

![分子式图](image)

在图7所示的实施例中，λ/4相位延迟膜7可以通过在偏光层6上依次形成取向层4和液晶聚合物层5来实现。由于偏光层6的透射轴与λ/4相位延迟膜7的透射轴之间的夹角优选为45°，那么可以设置取向层4的取向方向与偏光层6的透射轴之间的夹角为45°。

同样，取向层4可以通过摩擦方式设置，也可以通过光取向方式设置。液晶聚合物层5由液晶反应单体通过紫外光固化形成。

图8是图7所示结构的光路示意图。假设偏光层6的透射轴为0°，那么入射环境光经过偏光层6后形成0°的线偏振光。为了与偏光层6的透射轴的方向相对应，λ/4相位延迟膜7的透射轴的方向优选为45°。这样可以将取向层4的取向轴设置为45°，之后在取向层4上设置液晶聚合物层5，以获得透射轴方向为45°的λ/4相位延迟膜7。

0°的线偏振光经过由取向层4和液晶聚合物层5组成的λ/4相位延迟膜7后，形成左旋圆偏振光。所述右旋圆偏振光经过第一基板1中的金属区域反射后，形成右旋圆偏振光。所述右旋圆偏振光再次经过λ/4相位延迟膜7后形成90°线偏振光，从而无法通过透射轴为0°的偏光层6，使入射环境光的反射率为0%，消除了环境光反射对显示面板的显示效果的影响，提升了显示画质。

在本发明中，所述λ/4相位延迟膜和所述偏光层还可以依次设置在所述第二基板的外侧，即在所述第二基板的外侧先设置λ/4相位延迟膜，再在所述λ/4相位延迟膜的外侧设置偏光层。其光路原理与上述两种实施例相同，不再赘述。此外，由于所述偏光层设置在所述第二基板的外侧，因此优选偏光片作为偏光层。

进一步地，本发明中的偏光层可以具有一定图案的偏光层，并且所述偏光层的图案与第一基板中的金属区域的图案相对应。如上所述，第一基板中的多个结构包含有金属材料，例如阳极、阳极、薄膜晶体管阵列等结构中都包含金属材料，金属材料所在的区域称为金属区域。所述金属区域通常具有预定的图案，如果使偏光层的图案与第一基板中的金属区域的图案相对应，能够提高显示面板的亮度，同时节省制作偏光层的原材料。
[0053] 本发明中，偏光层的图案可以对应于某一层结构中金属材料所形成的金属区域的图案，也可以对应于第一基板中所有金属材料所形成的金属区域的图案的总和。例如，图 9 是一种具有图案的偏光层的平面示意图，图中偏光层的图案对应于显示区域的外围，即对应于薄膜晶体管阵列中金属电极所在的金属区域。
[0054] 本发明提供的发光二极管显示面板的制作方法如下（所述发光二极管显示面板包括用于显示的第一基板和用于封装所述第一基板的第二基板）：
[0055] S1. 在所述第二基板的外侧设置偏光层，并在所述第二基板的内侧设置 \(\lambda/4 \) 相位延迟膜；
[0056] 或者，在所述第二基板的内侧依次设置偏光层和 \(\lambda/4 \) 相位延迟膜；
[0057] 或者，在所述第二基板的外侧依次设置 \(\lambda/4 \) 相位延迟膜和偏光层；
[0058] S2. 将所述第二基板与所述第一基板进行对盒切割。
[0059] 其中，所述偏光层和所述 \(\lambda/4 \) 相位延迟膜的设置使得入射环境光依次通过所述偏光层和所述 \(\lambda/4 \) 相位延迟膜后到达所述第一基板。
[0060] 优选地，所述偏光层的透过轴与所述 \(\lambda/4 \) 相位延迟膜的透过轴之间的夹角为 45°。
[0061] 入射环境光经过所述偏光层后形成线偏振光，再经过所述 \(\lambda/4 \) 相位延迟膜后形成圆偏振光，所述圆偏振光到达所述第一基板并经过所述第一基板中的金属区域反射后，会改变旋转方向，例如左旋圆偏振光会变成右旋圆偏振光，所述右旋圆偏振光再次经过所述 \(\lambda/4 \) 相位延迟膜后会形成与之前偏振方向相垂直的线偏振光，从而无法透过偏光层。本发明有效防止了环境光反射对显示画面的影响，提升了显示画质。
[0062] 所述偏光层可以是偏光片、金属光栅层、二色性染料分子层，或者其它任何能够将环境光转换为线偏振光的层结构。当所述偏光层设置在所述第二基板的外侧时，优选为偏光片，以降低工艺难度，节约成本。当所述偏光层设置在所述第二基板的内侧时，优选为金属光栅层或二色性染料分子层，以控制显示面板的厚度在较薄的范围内。
[0063] 所述 \(\lambda/4 \) 相位延迟膜可以是取向层和设置在所述取向层上的液晶聚合物层，所述液晶聚合物层由液晶反应单体通过紫外光固化形成。优选地，所述取向层的取向方向与所述偏光层的透过轴之间的夹角为 45°。
[0064] 本发明通过在发光二极管显示面板中同时设置偏光层和 \(\lambda/4 \) 相位延迟膜，有效防止了环境光反射对显示画面的影响，提升了显示画质。
[0065] 可以理解的是，以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式，然而本发明并不局限于此。对于本领域内的普通技术人员而言，在不脱离本发明的精神和实质的情况下，可以做出各种变型和改进，这些变型和改进也视为本发明的保护范围。
图 9