一种天然格瓦斯香精底料及其发酵生产方法

摘要
本发明涉及一种天然格瓦斯香精底料的发酵生产方法，还涉及根据所述方法制备得到的天然格瓦斯香精底料，以及所述格瓦斯香精底料在格瓦斯香精调配中的用途。本发明利用微生物发酵法制生产的天然格瓦斯香精底料，经适当修饰后调配而成的格瓦斯香精，可应用于工业化生产各种格瓦斯饮料。与传统发酵生产的格瓦斯方法相比，本发明所述的发酵法制备的格瓦斯香精底料（发酵液）香韵独特，具有浓郁的天然发酵香气，兼有面包香及果香，香气和谐自然，口感舒适，同时用其调配成格瓦斯香精开发的格瓦斯饮料能够显著提高产品的香气和口感特征。
1. 一种天然格瓦斯香精底料的发酵生产方法，其特征在于该方法的步骤如下：

（1）原料处理
将面包粉碎得到面包粉，加入水调成面浆，随后向面浆中加入中温淀粉酶，加了淀粉酶的面浆在温度60～62℃下酶解2小时，过滤得到面浆酶解液；
将麦芽粉碎得到麦芽粉，加水调浆并混合均匀，得到的混合物在45～50℃下浸渍1小时，后升温到60～65℃，在该温度范围内保持40～60分钟水解后即可得到麦汁；

（2）调节pH
将步骤（1）得到的面浆酶解液和麦汁混合，用柠檬酸或乳酸-磷酸二氢钠调节混合体系的pH，使其pH值达到4～5，呈酸性；

（3）格瓦斯发酵培养基的制备
向步骤（2）得到的混合料中加入糖化酶和β-葡聚糖酶进行糖化处理1小时，糖化结束后将所得的糖化酶进行过滤，再升温到70～74℃，保温至少10分钟，之后再升温到76～80℃，然后加入以混合液中酸量计0.3%的啤酒花煮沸40～60分钟，过滤、离心、巴氏高温灭菌60～80℃处理得到格瓦斯发酵培养基；

（4）发酵处理
步骤（3）得到的格瓦斯发酵培养基冷却至40℃后，先加入乳酸菌发酵处理24小时，灭菌并冷却至35℃，再加入酵母菌发酵处理24小时，然后再次经过离心、过滤和巴氏灭菌处理，同时进行初步的固液分离，取上清液体，使用高速离心机以8000转/分钟的速度离心10分钟精制处理，最后过滤得到澄清的黄褐色发酵液体，即为制得天然格瓦斯香精底料；

2. 根据权利要求1所述的制备方法，其特征在于步骤（1）中，以重量份计，面包粉与加入其中的水之比是1：1～1：4，麦芽粉与加入其中的水之比是1：1～1：4。

3. 根据权利要求1所述的制备方法，其特征在于步骤（2）中，以重量份计，面包酶解液与麦汁为2：1～1：2。

4. 根据权利要求1所述的制备方法，其特征在于步骤（1）中，以重量份计，面包浆与淀粉酶的比为125：2。

5. 根据权利要求1所述的制备方法，其特征在于步骤（3）中，向步骤（2）得到的酸性料中加入糖化酶和β-葡聚糖酶进行糖化处理1h，糖化酶和β-葡聚糖酶的加入量以混合液中酸量计0.21%，糖化处理温度为60～65℃。

6. 根据权利要求1所述的制备方法，其特征在于步骤（4）中，乳酸菌的加入量为以格瓦斯发酵培养基重量计1%，其发酵处理温度范围为40～42℃。

7. 根据权利要求1所述的制备方法，其特征在于步骤（4）中，酵母菌的加入量以格瓦斯发酵培养基重量计1%，其发酵处理温度范围为35～38℃。

8. 根据权利要求1～7之任一权利要求所述的制备方法得到的本发明的天然格瓦斯香精底料，其特征在于为澄清的黄褐色液体，其中含有醇类、酸类、酯类、内酯类等丰富的格瓦斯香气成分。

9. 根据权利要求8所述的天然格瓦斯香精底料的用途，其特征在于该香精底料可以格瓦斯香精重量10～15%的量加入到格瓦斯香精中，用于格瓦斯香精的调配，以增加格瓦斯香精的天然香 Cette
一种天然格瓦斯香精底料及其发酵生产方法

【技术领域】
[0001] 本发明属于食物添加剂领域。具体地，本发明涉及一种天然格瓦斯香精底料的发酵生产方法，还涉及根据所述方法制备得到的天然格瓦斯香精底料，以及所述格瓦斯香精底料在格瓦斯香精调配中的用途。

【背景技术】
[0002] 格瓦斯，又叫克瓦斯、卡瓦斯，产自俄罗斯，翻译为中文是“用面包发酵的饮料”，是一种谷物发酵饮料，盛行于俄罗斯、乌克兰和其他东欧国家。由于其酒精含量低，酒精度在1.2%以下，儿童也可饮用，并且清凉可口、多气多沫，介于啤酒与汽水之间，成为很受大众欢迎的饮料，在中国哈尔滨、吉林、新疆的伊犁、塔城、乌鲁木齐比较流行。另外，科学研究表明，格瓦斯中含有B族维生素和维生素C、D能提神助兴，消除疲劳。同时，格瓦斯是一种由酵母菌和乳酸菌双菌发酵的传统谷物麦芽发酵饮料。原料中本身具有丰富的碳水化合物、蛋白质和维生素等营养成分，再通过发酵的微生物有益菌群以及该菌群在格瓦斯发酵过程中产生的复杂生化代谢产物，可以改善人体肠胃消化吸收功能。格瓦斯中还含有微量乙醇和一定量的二氧化碳以及丰富的有机酸物质，酸甜可口，既有酒的醇感，又有饮料的清爽的特点。

[0003] 传统典型格瓦斯产品是采用面包干原料经自然发酵酿制而成，其颜色近似啤酒而略显红色，酸甜适度，口感清香，并且面包香气突出。但这种传统工艺制备的格瓦斯，其原料面包制作成本高、发酵转化率低，发酵生产过程难以控制，产品品质稳定性差，工业化生产能力及规模受到限制。近年来，我国已具有一定规模工业化生产的格瓦斯的能力，大多数企业一般采用麦芽为原料进行糖化制成麦汁，再人工接种进行发酵，但不同企业该产品无论理化指标还是口味风格都有一定差别，尤其是与传统典型欧式风格格瓦斯差别较大。

[0004] CN 102414775A 公开了多种菌种混合发酵制备格瓦斯饮料的方法，它包括，以大麦芽、大米、酒花为原料，先将大麦芽和大米分别粉碎，然后将二者按7：3的比例混合，加入4倍的水调浆，然后按每克混合原料加入10-12个单位的α-淀粉酶，90-100℃条件下液化30-40分钟，之后降温到60℃，按每克混合原料加入100-120个单位的糖化酶，糖化4-5小时，然后经过滤、稀释后制成浓度为5BE的糖化液，与10%的蔗糖溶液按体积比1：1混合后煮沸15分钟，煮沸时加入0.1%的酒花，冷却至45℃加入0.01%的混合乳酸菌固态干粉，在42-45℃条件下前发酵8-10小时，冷却至16℃，加入0.1%的啤酒活性干酵母，在10-16℃条件下后发酵18-24小时，经过滤、灭菌、低温保压灌装制成品。

[0005] CN 103421650A 公开了一种发酵型格瓦斯饮料的制作方法，将大麦芽粉和面包屑，加水调浆，制得糖化液，先加入保加利亚乳杆菌发酵4-5小时，然后加水稀释，灭菌并冷却后再加面包酵母发酵8-10小时，最后经过滤、灭菌、调配，充二氧化碳低温保压灌装制成品。

[0006] 除此之外，市场上还有一种格瓦斯饮料，以麦芽汁、面包浸汁或果汁为原料，再配以各种食品添加剂（防腐剂、甜味剂、香料、色素等）并冲加碳酸水而生产，有的经发酵，有
的不经发酵。为适应格瓦斯大生产的需要，采用新型的软饮料配制工艺手段取代传统的发酵工艺制备格瓦斯饮料具有很大的市场，进而有必要开发出一种具有天然面包发酵香味的格瓦斯香精。随着软饮料加香技术的不断提高，人们把微生物发酵技术和酶解法与传统的调香技术有机结合在一起，开发出高品质的天然食用香精。利用微生物发酵和酶解法制备的格瓦斯香精底料，不仅香气自然柔和、逼真；且香味丰富，既包含格瓦斯原有的香气成分，又增添了具有面包气息和发酵感的香味物质。天然格瓦斯香精底料经过调香修饰后，赋香效果理想，既提供了浓郁持久的香气和细腻润滑的口感，又弥补了传统发酵格瓦斯刺激性大和不柔和的缺陷，同时便于扩大格瓦斯饮料的工业化生产。目前调配格瓦斯香精未见报道。本发明人经过多次试验，研制出利用发酵生产格瓦斯香精底料的方法，并开发了其在格瓦斯香精调配中的用途。

【发明内容】

【要解决的技术问题】

本发明的目的是提供一种天然格瓦斯香精底料的发酵生产方法。

【技术方案】

本发明是通过下述技术方案实现的：

本发明涉及一种天然格瓦斯香精底料的发酵生产方法，主要包括利用酶解及微生物发酵技术处理面包混合物，将优质的乳酸菌和酵母菌的复合菌种经培养后加入发酵罐中进行共生段式发酵处理，离心进行初步的固液分离，上清液经精制过滤后获得澄清的黄褐色液体即为天然格瓦斯香精底料。

该方法的步骤如下：

（1）原料处理

将面包粉碎得到面包粉，加入水调成面包浆，以重量份计，面包粉与加入其中的水之比是1:1-1:4。随后向面包浆中加入中温淀粉酶，面包浆与中温淀粉酶的比为125:2。加了淀粉酶的面包浆在温度60-62℃下酶解2小时，过滤得到面包酶解液。

将麦芽粉碎得到麦芽粉，加水调浆并混合均匀，麦芽粉与加入其中的水之比是1:1-1:4。得到的混合物在45-50℃下浸渍1小时，后升温到60-65℃，在该温度范围保持40-60分钟水解后即可得到麦汁。

面包是格瓦斯传统发酵工艺中所用的主要原料，面包发酵的格瓦斯饮品其口感好，面包的典型香气突出。但随着格瓦斯发酵原料研究进展，人们找到了更多可用于工业化发酵格瓦斯的原料，面包已有逐渐被替代的趋势。

大麦中含有大量的淀粉和丰富的蛋白质，糖化过程可以使淀粉及蛋白质转化为可供酵母菌发酵的多种可发酵性糖，同时提供酵母菌生长所必须的氨基酸。大麦经制麦转变为麦芽后，麦芽自身形成丰富的酶系组成，如糖化酶、蛋白酶、多糖酶，这些酶为麦芽糖化奠定了基础。在这些酶的作用下，麦芽经过糖化后形成以糖为主，包含氨基酸、多酚等物质，这种组份丰富的糖化液也为发酵出口味丰富的饮料奠定基础。

中温淀粉酶能够将淀粉水解成长短不一的糊精及少量的低分子糖类、葡萄糖和麦
芽糖，从而使淀粉糖的粘度迅速下降。其最适作用温度在60~75℃之间，随着温度的升高，其反应速度加快，但失活也快。

（2）调节pH

将步骤（1）得到的面酶解液和麦汁混合，以重量份计，面酶解液与麦汁为2:1~1:2。再用磷酸氢二钠调节混合体系的pH值，使其pH值达到4~5，呈酸性。

在本发明方法中，面酶解液与麦汁混合体系的pH值在4~5范围内，是非常重要的。这是因为在此pH范围内，酶解达到最佳效果，过高或过低将影响酶的活性。

（3）格瓦斯发酵培养基的制备

向步骤（2）得到的酸性混合料液中加入糖化酶和β-葡聚糖酶，在60~65℃温度条件下糖化处理1小时。糖化结束后将所得的糖化酵进行过滤，再升温到70~74℃，保温至少10分钟，之后再升温到76~80℃，然后加入以混合液重量计0.3%的啤酒花煮沸40~60分钟，过滤、离心、巴氏高温灭菌60~80℃处理得到格瓦斯发酵培养基。

其中，向步骤（2）得到的酸性料液中加入糖化酶和β-葡聚糖酶，其加入量是以混合液重量计0.21%。

糖化酶的主要作用机制是从淀粉、糊精、糖原等碳链上的非还原性末端依次水解α-1,4糖苷键，切下一个个葡萄糖单元，生成葡萄糖。在本发明方法中应用糖化酶，由于糖化酶的糖化力高、发酵快，可以使生产周期缩短并使出酒率大为提高。从而既节约原料，又降低成本，提高了经济效益。在本发明方法中使用的糖化酶，可以是例如由江苏锐阳生物科技有限公司生产的高温α-淀粉酶（酶活力为4000U/g）。

在糖化开始时加入β-葡聚糖酶，可以降低麦汁粘度，改善过滤性能，提高麦芽溶出率，防止酒液浑浊，稳定酒液质量。在本发明方法中使用的β-葡聚糖酶，可以是例如由江苏锐阳生物科技有限公司生产的β-葡萄糖酶。

（4）发酵处理

步骤（3）得到的格瓦斯发酵培养基冷却至40℃后，先加入乳酸菌发酵处理24小时，灭菌后冷却至35℃，再加入酵母菌发酵处理24小时，然后再次经过离心、过滤和巴氏灭菌处理，同时进行初步的固液分离，取上清液体，使用高速离心机以8000转/分钟的速率离心10分钟精制处理，最后过滤得到澄清的黄褐色发酵液体，即为本发明的天然格瓦斯香精料，经过进一步调香修饰即可得到天然格瓦斯香精。

乳酸菌的加入量为以格瓦斯发酵培养基重量计1%，其发酵处理温度范围为40~42℃。酵母菌的加入量以格瓦斯发酵培养基重量计1%，其发酵处理温度范围为35~38℃。

格瓦斯是由酵母菌和乳酸菌共生发酵的低醇饮品，但是在这两种发酵菌中，酵母菌对格瓦斯风味的影响起到更大的作用。酵母菌在格瓦斯发酵过程中代谢产生各种醇类、酯类等复杂呈香物质，形成典型型面包香、酯香及醇香，从而赋予格瓦斯饮料独特的风味特征。

在本发明方法中，使用的乳酸菌可以是发酵乳杆菌，保加利亚乳杆菌或德式乳酸杆菌，优选地采用保加利亚乳杆菌。例如，可以使用由北京川秀科技有限公司公司生产销售的川秀Ⅱ型乳酸菌。

在本发明方法中，使用的酵母菌可以是啤酒干酵母或面包活性干酵母，优选地采
用啤酒酵母菌。例如，可以使用由湖北安琪酵母股份有限公司生产销售的啤酒用高活性干酵母。

[0035] 本发明还涉及根据上述制备方法得到的本发明的天然格瓦斯香精底料，所述底料为澄清的黄褐色液体，其中含有醇类、酸类、酯类、内酯类等多种重要的格瓦斯香气成分。

[0036] 本发明还涉及所述的天然格瓦斯香精底料的用途，该香精底料可以格瓦斯香精重量10-15%的加入量加入到格瓦斯香精中，用于格瓦斯香精的调配，以增加格瓦斯香精的天然逼真气息，从而促进格瓦斯产品中面包香气风味的形成。

[0037] 由于感官检验可快速判断香精的质量，尤其对香精的口感、气味等风味品质的判定具有不可替代的作用，本发明方法采用了感官评价方法，主要从香气、香味、口感、澄清度等几方面对格瓦斯香精进行评判。通过对市售格瓦斯香精A、B和以本发明天然格瓦斯香精底料调配的格瓦斯香精进行感官评价对比，可以看出，以本发明天然格瓦斯香精底料调配的格瓦斯香精在外观和香气等方面均优于市售格瓦斯香精。几种格瓦斯香精的感官评价结果汇总在下表1中。

[0038] 表1 几种格瓦斯香精的感官评价结果

<table>
<thead>
<tr>
<th>格瓦斯香精品牌</th>
<th>香气</th>
<th>口感</th>
<th>澄清度</th>
</tr>
</thead>
<tbody>
<tr>
<td>市售A</td>
<td>刺激性大，香味较重</td>
<td>口感粗糙，发酵感弱</td>
<td>稍显浑浊</td>
</tr>
<tr>
<td>市售B</td>
<td>面包香气突出，但不持久</td>
<td>口感清爽</td>
<td>澄清</td>
</tr>
<tr>
<td>以本发明格瓦斯香精底料调配的格瓦斯香精</td>
<td>面包香气浓郁，持久，香气质自然</td>
<td>细致润滑，发酵感强，口感舒适</td>
<td>澄清</td>
</tr>
</tbody>
</table>

[0041] 传统的格瓦斯发酵方法不仅生产周期长，生产成本也较高，不适用于工业化的生产。本项目研究的目的在于开发出一项新型的格瓦斯发酵液制备技术，使其在尽量保持传统风味的基础上又适用于工业化生产，为天然面包发酵香味的格瓦斯香精的开发打下坚实的基础。

[0042] [有益效果]

[0043] 本发明的天然格瓦斯香精底料的发酵生产工艺适用于工业化生产，制备的发酵液无浑浊、沉淀、异味，可直接用于格瓦斯香精的开发。与传统发酵生产的格瓦斯方法相比，本发明所阐述的发酵法制备的格瓦斯香精底料（发酵液）香韵独特，具有浓郁的天然发酵香气，兼有面包香及烤香，香气和谐自然，口感舒适，同时用其调配成格瓦斯香精开发的格瓦斯饮料能够显著提高产品的香气和口感特征。
【附图说明】
[0044] 图 1 表示本发明的天然格瓦斯香精底料的发酵生产流程。

【具体实施方式】
[0045] 以下实施例用于非限制性地解释本发明的技术方案。在本发明中，如无特殊说明，“份”均为重量份，“比”均为重量比，“%”均为重量百分比。

[0046] 实施例 1 : 本发明的天然格瓦斯香精底料
[0047] 该实施例的实施步骤如下：
[0048] 将面团和酵母粉、称取 8 克大麦芽和 2 克焦香麦芽，加入 40 克水调浆混匀，于 45°C 条件下浸渍 1 小时，升温至 63°C～65°C，保温 40 分钟。同时另外称取 10 克面包粉和 0.8 克中温淀粉酶，加入 10 克水，直至 60°C 条件下保温 2 小时进行酶解。混合后上述两种液体后，先后加入 0.12 克柠檬酸调节 pH 至酸性，随后加入 0.16 克糖化酶和 0.05 0.16 克 β - 葡聚糖酶后恒温 60°C，糖化 1 小时，升温至 72°C，保温至少 10 分钟，之后再升温至 78°C，然后加入 0.3%的啤酒花煮沸 40 分钟，过滤离心巴氏高温灭菌得到格瓦斯发酵培养基，冷却至 40°C 后，加入 1%乳酸菌发酵处理 24 小时，灭菌并冷却至 35°C，随后加入 1%酵母菌发酵处理 24 小时，然后再次经过离心，过滤和巴氏灭菌处理，取上清液使用高离心机以 8000 转 / 分钟的速度离心 10 分钟精制处理，过滤得到澄清的黄褐色发酵液体，即为天然格瓦斯香精底料。

[0049] 实施例 2 : 本发明的天然格瓦斯香精底料
[0050] 该实施例的实施步骤如下：
[0051] 将面团和酵母粉、称取 8 克大麦芽和 2 克焦香麦芽，加入 10 克水调浆混匀，于 50°C 条件下浸渍 1 小时，升温至 60°C～63°C，保温 60 分钟。同时另外称取 10 克面包粉和 0.8 克中温淀粉酶，加入 10 克水，直至 62°C 条件下保温 2 小时进行酶解。混合后上述两种液体后，先后加入乳酸酸调 pH 值至 5，随后加入 0.063 克糖化酶和 0.021 克 β - 葡聚糖酶后恒温 65°C，糖化 1 小时，升温至 74°C，保温至少 10 分钟，之后再升温至 80°C，然后加入 0.3%的啤酒花煮沸 60 分钟，过滤离心巴氏高温灭菌得到格瓦斯发酵培养基，冷却至 40°C 后，加入 1%乳酸菌发酵处理 24 小时，灭菌并冷却至 35°C，随后加入 1%酵母菌发酵处理 24 小时，然后再次经过离心，过滤和巴氏灭菌处理，取上清液使用高离心机以 8000 转 / 分钟的速度离心 10 分钟精制处理，过滤得到澄清的黄褐色发酵液体，即为天然格瓦斯香精底料。

[0052] 实施例 3 : 本发明的天然格瓦斯香精底料
[0053] 该实施例的实施步骤如下：
[0054] 将面团和酵母粉、称取 8 克大麦芽和 2 克焦香麦芽，加入 25 克水调浆混匀，在 48°C 条件下浸渍 1 小时，升温至 63°C，保温 50 分钟。同时另外称取 10 克面包粉和 0.8 克中温淀粉酶，加入 25 克水，直至 62°C 条件下保温 2 小时进行酶解。混合后上述两种液体后，随后加入乳酸酸调 pH 值至 5，随后加入 0.11 克糖化酶和 0.037 克 β - 葡聚糖酶后恒温 63°C，糖化 1 小时，升温至 70°C，保温至少 10 分钟，之后再升温至 76°C，然后加入 0.3%的啤酒花煮沸 50 分钟，过滤离心巴氏高温灭菌得到格瓦斯发酵培养基，冷却至 40°C 后，加入 1%乳酸菌发酵处理 24 小时，灭菌并冷却至 35°C，随后加入 1%酵母菌发酵处理 24 小时，然后
再次经过离心、过滤和巴氏灭菌处理，取上清液使用高速离心机以 8000 转 / 分钟的速度离心 10 分钟精制处理，最后过滤得到澄清的黄褐色发酵液体，即为天然格瓦斯香精底料。
面包、水 $\xrightarrow{60-62^\circ C酶解2h}$ 淀粉酶

60~65℃水解40~60min

麦芽粉、水

面包酶解液

蔗糖酶、β-葡聚糖酶

70℃糖化10min

啤酒花

煮沸40~60min处理

过滤、离心、巴氏高温灭菌

格瓦斯发酵培养基

乳酸菌发酵处理24h

灭菌并冷却至35℃

酵母菌发酵处理24h

离心、过滤和巴氏灭菌处理

固液分离、精制过滤

天然格瓦斯香精底料

格瓦斯香精

图 1