PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ³ :		11) International Publication Number: WO 85/01737
C08L 61/28, 75/06	A1	43) International Publication Date: 25 April 1985 (25.04.85
(21) International Application Number: PCT/US (22) International Filing Date: 13 October 1983	•	General Counsel, Ford Motor Company, Suite 911
(71) Applicant (for AU only): FORD MOTOR CO OF CANADA, LIMITED [CA/CA]; The Road, P.O. Box 200, Oakville, Ontario L6J 51	Canadi	1 (81) Designated States: AU, JP, US.
(71) Applicant (for AU JP only): FORD MOTO PANY [US/US]; The American Road, Dear 48121 (US).	R CO born, l	Published With international search report.
(72) Inventors; and (75) Inventors/Applicants (for US only): KORDO Panagiotis, I. [GR/US]; 42758 Elizabeth Ci Clemens, MI 48044 (US). KURPLE, Kennetl US]; 9533 Springborn Road, Anchorville, I (US). ALEXANDER, Delores, J. [US/US] Lone Elm Lane, Southfield, MI 48076 (US).	ircle, N h, R. [U MI 480 S]; 290	/ 4

(54) Title: FLEXIBLE UNI-BASECOAT/TWO COMPONENT CLEARCOAT COATING COMPOSITIONS

(57) Abstract

Flexible basecoat/clearcoat coating systems which have excellent adherence to metal and plastic substrates and possess superior weathering properties. The clearcoat composition comprises hydroxy-containing urethane modified polyester, made by reacting a urethane modified diol with polyol and diacid component, and crosslinking agent. The crosslinking agent of the pigmented basecoat composition comprises amine-aldehyde crosslinking agent. The crosslinking agent of the clearcoat comprises polyisocyanate crosslinking agent. Optionally, either or both compositions may comprise a high molecular weight linear polyurethane.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A'	T Austria	GA	Gabon	MR	Mauritania
A)	U Australia	GB	United Kingdom	MW	Malawi
B	B Barbados	HU	Hungary	NL	Netherlands
B	E Belgium	П	Italy	NO	Norway
В	G Bulgaria	JP	Japan	RO	Romania
B	R Brazil	KP	Democratic People's Republic	SD	Sudan
C	F Central African Republic		of Korea	SE	Sweden
C	G Congo	KR	Republic of Korea	SN	Senegal
C	H Switzerland	LI	Liechtenstein	SU	Soviet Union
C	M Cameroon	LK	Sri Lanka	TD	Chad
D	E Germany, Federal Republic of	LU	Luxembourg	TG	Togo
D	K Denmark	MC	Monaco	US	United States of America
F	I Finland	MG	Madagascar		
F	R France	ML	Mali		

PCT/US83/01604

-1-

FLEXIBLE UNI-BASECOAT/TWO COMPONENT CLEARCOAT COATING COMPOSITIONS

WO 85/01737

5

10

15

This invention relates to flexible coating systems which have excellent adherence to metal and substrates and possess superior weathering properties. Basecoat/clearcoat systems comprise a finish of a clear topcoat layer in film adherence to a basecoat that is in adherence to a substrate. More particularly, the invention relates to a basecoat/clearcoat coating composition wherein the basecoat and the clearcoat composition each comprise hydroxy-containing urethane modified polyesters, made from urethane modified diols reacted with polyol and diacid component, crosslinking agent and, optionally, a high molecular weight linear polyurethane. The basecoat, which pigment, employs amine-aldehyde additionally contains employs clearcoat while the crosslinking agent polyisocyanate crosslinking agent.

Background Art

Recently, there has been interest in the use of rubbery resilient materials for areas which are subject to 20 mechanical shock such as automobile bumpers, moldings and front ends. The use of such materials aids in providing protection from permanent structural damage but, in order to attain the desired appearance, a protective coating must high degree unique properties, such as a 25 extensibility, impact resistance, resistance to cracking under severe environmental conditions, such as exposure to low temperature and low humidity. Conventional coatings, including those employed on rubber and similar extensible

10

15

20

25

30

objects heretofore, do not have the required combination of properties. Generally compositions that are flexible enough to be applied over both metal and plastic substrates have rather poor weatherability and overall durability.

U.S. Patent 3,882,189 and U.S. Patent 3,962,522 are exemplary of numerous patents which describe flexible wherein the resin comprises compositions polyesters formed reacting modified by polyurethane polyisocyanate with polyester polyols. These resins are cured with amine aldehyde crosslinkers. It is taught therein, that the presence of the urethane groups in the polymer significantly contributes to the flexibility as well as improved weathering properties, gloss, and abrasion resistance of the coating. However, while it is thus desirable to employ a substantial number of urethane groups in these resins, the amount which may be included in these types of resins is limited. When hydroxy polyester resin is reacted with polyisocyanate it has a tendency to form a gelled mass and thus the amount of polyisocyanate that may be employed must be restricted in order to avoid gelation. Still further, these urethane linkages are added in a latter modification of the polyester polyol product, rather than being incorporated into the backbone of the resin.

Disclosure of the Invention

invention This is directed to a flexible basecoat/clearcoat coating composition which is over various substrates, including materials resilient as well as metal. basecoat/clearcoat coating composition of this invention is characterized in that the basecoat composition and the clearcoat composition each independently comprises:

- (A) hydroxy-containing urethane modified polyester (i) having a number average molecular weight (Mn) of between about 1000 and about 10,000, (ii) having a hydroxyl number of between about 30 and about 200, and (iii) containing between about 1 and about 10 urethane groups per molecule, and being made from reactants comprising:
 - (1) urethane modified diol made by reacting:
 - (a) diol,
 - (b) diisocyanate,
- wherein the diol and diisocyanate are reacted in a molar ratio of from about 4:1 to about 4:3;
 - (2) polyol comprising at least about 5 weight percent triol; and
 - (3) acid component selected from dicarboxylic acids and anhydrides thereof;
 - (B) crosslinking agent; and
- (C) 0-60 weight percent, based on the total weight of (A) and (B) of the composition, of a linear polyurethane having a number average molecular weight of between about 15,000 and about 40,000, preferably of between about 20,000 and about 30,000. The basecoat composition additionally comprises pigment.

The crosslinking agent οf the composition of this invention is a polyisocyanate 25 crosslinking agent. The crosslinking agent of the basecoat composition of this invention is an amine-aldehyde crosslinking agent.

Advantageously, the flexible basecoat/clearcoat coating compositions of the invention of this application possess superior weathering properties as well as excellent adhesion to metal and plastic, thus making them well suited for use as coatings on various car components. In forming

10

15

20

25

30

- 4 -

the hydroxy-containing urethane modified polyester of the the urethane linkages are advantageously clearcoat, incorporated into the backbone of the modified polyester, initial formed in an they are diisocyanate with the diol, rather than being incorporated into the polyester in a later reaction step as is done when forming prior art urethane polyester resins. It has now been found that the initial incorporation of the urethane linkage into the backbone of the modified polyester allows the formation of more flexible coatings with improved weathering properties, particularly suitable to form automotive basecoat/clearcoat coatings.

Still further, the ability to use of the same coating compositions on metal and plastic components in car offers distinct commercial advantages, production efficiency. particularly in terms of Additionally, because this system can be employed on metal as well as plastic components, the problem of color matching, which must be resolved when using a different coating on the metal and plastic, is eliminated.

Best Mode for Carrying Out The Invention

This invention is directed to flexible wherein basecoat/clearcoat coating compositions, basecoat composition and the clearcoat composition comprise hydroxy-containing urethane modifying polyester crosslinking agent. The basecoat composition crosslinking agent is amine-aldehyde while the clearcoat composition is polyisocyanate. crosslinking agent The basecoat composition additionally comprises pigment. Optionally, the basecoat composition and/or the clearcoat composition may include a high molecular weight linear polyurethane. The novel hydroxy-containing urethane modified polyester is made from urethane modified diols reacted with polyol and

10

15

20

25

30

diacid component. The various components of the compositions of this invention will be discussed in detail.

The hydroxy-containing urethane modified polyester the basecoat/clearcoat coating composition of this invention has a number average molecular weight $(\overline{\mathbf{M}}_n)$ of between about 1000 and about 10,000, preferably between about 2000 and about 4000. This modified polyester has a hydroxyl number of between about 30 and about 200, preferably between about 50 and about 120. contains between about 1 and about 10 urethane groups per the reactants used to form molecule. One of polyester modified urethane hydroxy-containing urethane modified diol which is made by reacting diol and In forming this urethane modified diol, the diisocyanate. diol and the diisocyanate are reacted in a molar ratio of from about 4:1 to about 4:3, preferably in a molar ratio of from about 2:1.8 to about 2:1.2, most preferably in about a 2:1 molar ratio. The diols employed in making the urethane modified diol include, but are not limited to, alkylene butylene glycol, neopentyl glycol, such as glycols, 1,5,pentene glycol, 3-cyclohexene-1,1-dimethynol, and other glycols such as hydrogenated bisphenol A, caprolactone diol (i.e., the reaction product of caprolactone and ethylene glycol), hydroxy alkylated bisphenols, polyether glycols, glycol, polyester diols, e.g., poly(oxytetramethylene) e.g., 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate, and the like. Preferred diols are neopentyl glycol and 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3hydroxypropionate, the latter material being commercially available as Esterdiol 204 (a trademark of and available While a number of from Union Carbide, New York, N.Y.). types of diols have been mentioned above as suitable for use as the diol component in making the urethane modified diol of this invention, their disclosure is not meant to be

limiting. A great many diols are known in the art. Selection of other diols which would be suitable for use in forming the urethane modified diol would be well within the skill of those in the art. Mixtures of diols may also be employed to make the urethane modified diol.

The diisocyante employed in making the urethane modified diol may be essentially any diisocyanate. such organic diisocyanate are known in the art. diisocyanates include hydrocarbon diisocyanate 10 substituted hydrocarbon diisocyanate, such as 1,6-hexamethylene diisocyanate, isophorone diisocyanate, p-phenylene diisocyanate, biphenyl diisocyanate, toluene diisocyanate, and 3,3-dimethyl-4,4-biphenylene diisocyanate. While the diisocyanate may be any of a 15 number of aliphatic, cycloaliphatic, anđ aromatic diisocyanates, it is preferred that the diisocyanate be an aliphatic diisocyanate, such as 4,4-dicyclohexylmethanediisocyanate. As would be apparent to those skilled in the art, mixtures of various diisocyanates may also be employed 20 at the diisocyanate component used in forming the urethane-modifying diol.

The polyol component used in forming the hydroxy-containing urethane modified polyester basecoat/clearcoat compositions comprise at least about 5 25 weight percent triol (based on the weight of the polyol component). Preferred triols are conventional low molecular triols such as 1, 2, 6-hexene triol, 1,1,1-trimethylol propane, pentaerythritol, 3-(2-hydroxypropoxy)-1,2-propanediol and polycaprolactone triols, which 30 are commercially available as, for example PCP-301 (trademark, Union Carbide Corp., New York, N.Y.). polyol component may also comprise, in addition to the triols other polyol materials such as diols or tetrols. Preferably, however, these other polyols, when employed,

consist of diols. Examples of suitable diols which may be included in the polyol component are those which have been disclosed above as a component for forming the urethane modified diol. While the polyol component may comprise 5 materials such as a diol in addition to the triol, polyol component may consist essentially of triols. employing diols in the polyol component in addition to the triols the flexibility of the coating composition the polyol selection of generally increased. Thus 10 component to be used in forming the hydroxy-containing urethane modified polyester of the clearcoat will the particular desired properties and dependent on When diols are application of the coating composition. employed in the polyol component, the polyol preferably 15 comprises from about 10 to about 80 weight percent triols and from about 90 to about 20 weight percent diols.

The acid component which is used to form the modified polyester of the compositions of this invention comprises aliphatic, aromatic, cycloaliphalic dicarboxylic acid or anhydrides. Preferred dicarboxylic acids are the C₆ - C₁₂ acids, which include adipic, azelaic, sebasic, or dodecane dicarboxylic acid, or cyclohexanedicarboxylic acid. More preferably, the dicarboxylic acids employed are aliphatic dicarboxylic acids, most preferably, additionally being linear. Mixtures of suitable acids and/or their anhydrides may also be used as the acid component in this invention.

In forming the coating compositions of this invention, the diol (a) and the diisocyanate (b) described above are combined and reacted, generally at an elevated temperature so as to form the urethane modified diol. The ratio of the diol to diisocyanate (i.e., a molar excess of diol) has been chosen so that at the completion of this reaction no free isocyanates are present, having been

15

20.

25

30

incorporated into a hydroxy functional material. urethane modified diol is then combined and reacted with the polyol and acid components, generally in the presence of a catalyst and at elevated temperatures, so as to effect of a hydroxy-containing urethane formation polyester. Suitable catalysts for the carboxy/hydroxy catalysts condensation include such reaction tetraisopropyl titanate, strong acids such as p-toluene phosphonic acid, phosporic acid sulfuric acid and materials such as zinc oxide, antimony oxide (Sb₂O₃) and sodium acetate. Other catalysts will be apparent to those skilled in the art.

The reactions, whereby the hydroxy-containing urethane modified polyesters of the basecoat or clearcoat are formed, are generally carried out in the presence of solvents commonly employed for coating formulations such as toluene, xylene, methyl amyl ketone, etc.

The hydroxy-containing urethane modified polyester of the basecoat coating composition and the clearcoat coating composition employed in the basecoat/clearcoat system may be similar or different embodiments of this polyester. Selection of the particular modified polyester to be employed in the coatings would be dependent on the particular properties and application of the coatings desired. Such selection will be well within the skill of one in the art.

The crosslinking agent of the clearcoat coating composition of the invention is a polyisocyanate crosslinking agent, i.e., a compound having 2 or more, preferably 3 or more, reactive isocyanate groups per molecule. These polyisocyanate materials function as a crosslinking agent in the composition of the invention by reaction with the hydroxyl functionality of the hydroxyl containing urethane modified polyester (A) and by reaction

with the hydroxyl functionality on the linear polyurethane if such linear polyurethane is included in the composition. is polyisocyanate crosslinking agent generally included in the clearcoat coating composition of invention in an amount of between about 5 and about 60, more preferably between about 20 and about 40 weight percent based on the weight of the hydroxy-containing urethane modified polyester of the clearcoat composition. polyisocyanate amount of of the optimal Selection the employed in be to crosslinking agent composition is dependent on the desired properties (e.g., flexibility) as well as its intended use and selection of such amount would be within the skill of one in the art.

Polyisocyanates are well known in the art and numerous suitable organic isocyanates having 2 or more 15 reactive isocyanate groups per molecule will be apparent to Among the many suitable skilled in the art. polyisocyanates are aliphatic, cycloaliphatic and aromatic Representative of the numerous isocyanate compounds. isocyanates which may be employed are (1) aliphatic 20 diisocyanate, trimethylene diisocyanates such as pentamethylene diisocyanate, tetramethylene diisocyante, hexamethylene diisocyanate, 1,2 propylene diisocyanate, 1,2 butylene diisocyanate, 2,3 butylene diisocyanate, 1,3 butylene diisocyanate, diisocyanate, butylene 25 ethylidene diisocyanate, butylidene diisocyanate, 4,4'bismethane, bis(2-isocyanate-ethyl) (isocyanate hexyl) fumarate, 2,6-diisocyanate methyl caproate, 2,2,4(2,4,4)and dimer acid trimethylhexamethylene diisocyanate, diisocyanates; (2) cycloaliphatic diisocyanates such as 30 diisocyanate, 1,4 cyclopentane cyclopentane diisocyanate, 1,2 cyclopentane diisocyanate, and methylcyclohexylene diisocyanate; (3) aromatic diisocyanates such

as m-phenylene diisocyanate, p-phenylenediisocyanate, 4,4'diphenyl diisocyanate, 1,5 methylene diisocyanate, 1,4 aliphatic/aromatic diisocyanate; (4)naphthalene 4,4'diphenylene such methane diisocyanates as 2,4 or 2,6 tolulene diisocyanate, 5 diisocyanates, 4,4'toluidene diisocyanate, 1,4 xylylene diisocyanate; (5) nuclear substituted aromatic compounds such as dianisidine diisocyanate, 4,4'diphenylether diisocyanate, chlorodiphenylene diisocyanate; (6) triisocyanates as triphenylmethane 4,4', 4,4" triisocyanate, 1,3, 5 tri-10 isocyanate benzene, 2,4, 6 triisocyanate toluene; (7)tetraisocyanates such as 4,4' diphenyl dimethylmethane -2,2',5,5' tetraisocyanate; (8) polymerized isocyanates such as tolylene diisocyanate dimers and trimers and the like; and (9) polyisocyanates such as prepolymers derived from a 15 polyol, including polyether polyols or polyester polyols (including polyethers which are reacted with polyisocyanates to form isocyanate terminated prepolymers), simple polyols such as glycols (e.g., ethylene glycol, propylene glycol), other polyols such as glycerol, 20 trimethylol propane, hexane triol, pentaerythritol and the like, as well as monoethers, e.g., diethylene glycol, tripropylene glycol and the like and polyethers, i.e., alkylene oxide condensates of the above. polyisocyanate may be any organic polyisocyanate, such 25 crosslinking agents for coating composition to be employed topcoats are preferably aliphatic or cycloaliphatic polyisocyantes due to their superior weathering properties.

Especially preferred for use in the clearcoat compositions of the invention are trimerized products of aliphatic diisocyanates such as 1,6 hexamethylene diisocyanate. Still another particularly preferred type of a polyisocyanate crosslinking agent for the clearcoat is a

10

15

20

25

30

polyisocyanate having a biuret structure. This type of polyisocyanate is well known as are methods for making the same. One such polyisocyanate crosslinking agent is a high molecular weight biuret of 1,6 hexamethylene diisocyanate sold by Mobay Chemical Company under the tradename Desmodur N. Exemplary of other biuret type polyisocyanates are those prepared in accordance with U.S. Patent 3,976,622 to Wagner et al.

The crosslinking agent of the basecoat coating amine-aldehyde this invention is an composition of Amine-aldehyde crosslinking crosslinking agent. for crosslinking hydroxy functional bearing suitable Typically, these materials are well known in the art. product of reactions crosslinking materials are melamine, or urea with formaldehyde and various alcohols containing up to and including 4 carbon atoms. Preferably, amine-aldehyde crosslinking agents useful invention are amine-aldehyde resins such as condensation melamine, with formaldehyde products of benzoguanamine substituted or melamine, urea, Preferred members of this class are benzoguanamine. such melamine-formaldehyde resins methylated preferred particular hexamethoxymethylmelamine. The crosslinkers are the high solids melamine resins which has substantially 100 percent nonvolatile content as measured by the foil method at 45 °C for 45 minutes. purposes of the preferred composition of this invention it should be recognized that it is important not to introduce extraneous diluents that lower the final solids content of the coating. Other suitable amine-aldehyde crosslinking agents will be apparent to one skilled in the art. amine-aldehyde materials function as a crosslinking agent in the basecoat compositions of the invention by reacting with the hydroxy functionality of the hydroxy-containing

20

25

30

urethane modified polyester (A) of the basecoat composition and by reaction with the hydroxy functionality on the linear polyurethane (C), if such materials are included in the basecoat compositions. The amine aldehyde crosslinking agent is generally included in the basecoat composition in an amount of between about 5 and about 60, more preferably, between about 20 and about 40 weight percent based on the weight of the hydroxy-containing urethane modified Selection particular amount of the polyester. amine-aldehyde crosslinking agent to be employed in the basecoat composition is dependent on the desired properties of the coating compositions as well as its intended use as would be apparent to one skilled in the art.

Particular preferred crosslinking agents are the amino crosslinking agents sold by American Cyanamid under 15 the trademark "Cymel". In particular, Cymel 301, 303,325, 1130, 1156, which are alkalated melamine aldehyde resins are useful in the compositions of this invention. crosslinking reactions are catalytically accelerated by acids. One such catalyst for example which may be so employed is p-toluene sulfonic acid which, when employed, generally added to the composition in about .5% by weight based on the total weight of the amine-aldehyde crosslinker and hydroxy-containing modified polyester of the basecoat composition.

The amounts of crosslinking agent to be employed in the basecoat composition and in the clearcoat composition are selected individually, i.e., the weight percent amounts of crosslinker employed in the basecoat composition and in the clearcoat composition particular basecoat/clearcoat system may be different or be similar.

The basecoat coating composition of the invention also include pigments, as noted above. A wide variety of

10

15

20

25

30

pigments are available and known for use in coating compositions by those skilled in the art. Selection of the optimal amount of pigment to be included in the basecoat composition would be dependent on, e.g., desired color, hiding requirements of the coating, etc., and would be within the skill of those in the art.

Optional Materials

Additional materials which may be employed in the coating compositions of this invention include a high molecular weight linear polyurethane which has a number average molecular weight of between about 15,000 and about 40,000, preferably between about 20,000 and about 30,000. It may be made by reacting one of the above mentioned such as oligoester and diols, diisocyanates polycaprolactone diol, polyoxypropylene diol, polyether Suitable high molecular weight diols, etc. polyurethane materials are commercially available, example, as Spenlite L06-30S, (available from and a trademark of Spencer-Kellogg, Buffalo, N.Y.). The high molecular weight polyurethane may be employed composition in amounts up to about 60 weight percent based on the total weight of the hydroxy-containing urethane modified polyester and crosslinking agent. When employed, it is preferred that they be included in the composition in amounts of between about 10%-60%, more preferably 30%-50% weight as described. It has been found that by polyurethane in the basecoat this incorporating basecoat/clearcoat systems, the depth of color and metallic glamour of the basecoat/clearcoat system is While this linear polyurethane, when employed, is generally preferably only included in the basecoat composition, it

10

15

may be employed in either or both coats and the amounts are independently selected.

In addition to the above discussed components, other materials may be included in the coating compositions include materials such of this invention. These catalysts, antioxidants, U.V. absorbers, solvents, surface Solvents used in modifiers and whitening agents. coating composition of this invention are those which are commonly used, e.g., to facilitate spray application and solids content and include toluene, xylene, high methylethyl ketone, acetone, 2-ethoxy-1-ethanol, diacetone alcohol, tetrahydrofuran, ethyl acetate, dimethylsuccinate, dimethylglutarate, dimethyladipate or mixtures thereof. solvent in which the hydroxy-containing urethane modified polyester is prepared may be employed as a solvent for the composition thus eliminating the need for drying the resin after preparation, if such is desired.

Typical of the ultraviolet stabilizers that are useful in this invention are benzophenones such as dodecyl 20 oxibenzophenone, 2,4-dihydroxybenzophenone,hydroxysulfonic containing groups, benzophenones 2-4-dihydroxy-3'5'-ditertiary butyl benzophenone, 2,2',4',trihydroxy benzophenone esters of dicarboxylic 2-hydroxy-4-acryloxyethoxybenzophenone, aliphatic mono esters of 2,2',4-trihydroxy-4' alkoxybenzophenone; 25 2-hydroxy-4-methoxy-2-carboxybenzophenone; triazoles such 2-phenyl-4-(2'4'-dihydroxybenzoyl) substituted benzotriazoles such as hydroxy-phenyltriazoles 2-(2'hydroxy-5'-methylphenyl) benzotriazole, 2-(2'-hydroxy-phenyl) benzotriazole, 2-(2'hydroxy-5'-30 octylphenyl) naphthiotriazole. Another type of ultralight stabilizer and one that is particularly preferred for use in the coatings of this invention comprise those taught in

10

15

20

25

30

concurrently filed U.S. application Serial No. entitled " Polymeric Light Stabilizers" to Kordomenos et These stabilizers contain the sterically hindered primary polyalkylpiperidine radical and at least two reacting with the groups available for hydroxyl amine-aldehyde or e.g., agent, crosslinking polyisocyanate, of the coating composition.

Typical of the antioxidants which may be employed the coating composition include tetrakis alkylene in (di-alkyl hydroxy aryl) alkyl ester alkanes 3(3',5'-dibutyl-4'hydroxyphenyl) methylene tetrakis of methane, reaction product proprionate diphenylamine and glycidyl methacrylate, reaction product glycidyl and n-hexyl-N'-phenylamine diamine (thioglycolate), methacrylate, pentaerythritol tetrakis trimethylol propane tris (thioglycolate), trimethylol ethane tris(thioglycoate), N-(4-anilino phenyl) acrylamide, N-(4-anilinophenyl) maleamic acid N-(4-anilinophenyl) bonded through maleimide, alkylhydroxyphenyl groups carboalkoxy linkages to nitrogen atom of a heterocyclic an imidodicarbonyl group containing nucleus buty1-4-hydroxy 3,3 di tert, inidodithiocarbonyl group, cinnamonitrile, ethyl 3,5-di tert, hexyl-4-hydroxysubstituted benzyl esters of B-substituted cinnamate, (hydroxyphenyl propionic acids, bis hydroxy phenyl) alkylene) alkyl isocyanurate compounds, tetrakis hydroxy benzyl phosphonium halides alone or in combination with a dialkylthiodialkanoate, thioeimethylidyne tetrakisphenols alone or in combination with a dialkyl thiodialkanoate or phosphite or phosphonate, dihydrocarbyl-hydroxy phenyl aryl or alkyl phosphonites or phosphonates or phosphates phosphionites phosphinates or phosphites or phosphinothionates, diphenyl or phisphorothionates

bis(3,5-dietert-butyl-4-hydroxy) silane, hydrocarbyl-hydroxyphenyl-dihydrocarbyldithio-carbamates such as 3,5 di-tert-butyl-4-hydroxy phenyl dimethyldithio carbamate and amino benzyl thioether.

· In one preferred embodiment of basecoat/clearcoat 5 compositions, the basecoat would preferably contain a benzotriazole U.V. stabilizer such as Tinuvin 328 (a trademark of and commercially available from Ciba-Geigy, and the clearcoat would contain a Ardsley, N.Y.), 10 benzotriazole U.V. stabilizer, e.g., Tinuvin 328, the amine light stabilizer hindered aforementioned concurrently filed application to Kordomenos et al, and an antioxidant, e.g., Irganox-1010. (available from and a trademark of Ciba-Geigy). While preferred 15 combinations of stabilizer and antioxidant have described, these teachings are not meant to be limiting. Selection of the optimal type of stabilizer and antioxidant which may be employed would be within the skill of one in the art.

Surface modifiers or wetting agents are common additives for liquid paint compositions. Exact mode of operation of these surface modifiers is not known but it is thought that their presence contributes to better adhesion of coating compositions to the surface being coated and helps formation of thin coatings, particularly on metal surfaces. The choice of surface modifiers or wetting agents is dependent upon the type of surface to be coated. Selection of appropriate surface modifiers will be well within the skill of the artesian. Typical of these surface modifiers are polybutyl acrylate and a wide variety of silicon wetting agents which are commercially available.

For many applications of the coating compositions of the invention, particularly high solids compositions, it

PCT/US83/01604

10

15

20

25

30

may be desirable to employ flow control additives to provide sag free coatings. Among numerous such materials are NAD's such as described by Porter (S. Porter, Jr., and B.N. McBane, U.S. Patent 4,025,474, May 24, 1977). These particle dispersions may be included generally in amount up to 15% by weight of the total composition. Other types of NAD's such as described by D.L. Maker and S.C. Peng (U.S. Patent 3,814,721, June 4, 1974) or by S.K. Horvath (U.S. application Serial No. 292,853, filed August 14, 1981) also may be included in the coating compositions.

The coating composition can be applied by conventional methods known to those in the art. These methods include roll coating, spray coating, dipping or brushing and of course the particular application technique chosen with the particular substrate to be coating and the environment in which coating operation takes place.

Particular preferred techniques for applying these coating compositions, particularly when applying the same to automobiles, is spray coating through the nozzle of the spray gun. The basecoat can be applied as a single component by means of a single component spray gun. On the other hand, in spray applying the clearcoat composition, the hydroxyl-containing urethane modified polyester and the optional linear polyurethane along with other additives such as pigments, U.V. absorbers, antioxidants and other nonreactive materials are admixed with a solvent. These materials are fed as one component of a two component system into a spray gun which combines the materials as they are sprayed onto the automotive substrate. The other material is the polyisocyanate crosslinking agent, which may or may not be cut with a suitable nonreactive solvent.

10

15

20

25

- 18 -

Industrial Applicability

It will be apparent from the foregoing that this invention has industrial applicability to automotive application and provides a flexible durable coating for metal and plastic substrates.

The invention will be further understood by referring to the following detailed examples. It should be under stood that the specific examples are presented by way of illustration and not by way of limitation. Unless otherwise specified, all references to "parts" is intended to mean parts by weight.

Example I

In a suitable reactor 562 gms of Esterdiol-204 (trademark of Union Carbide), 360 gms of xylene were charged. The mixture was brought to reflux (149°C) and any water present was stripped out. The temperature was lowered to 93°C and 360 qms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an At this point, 240 gms of PCP-0301 infrared spectrum. (polycaprolactone triol, trademark of Union Carbide, New York, N.Y.) 263 gms of adipic acid, 3 gms of dibutyl tin oxide, and 215 gms of xylene were added. The mixture was heated up to 204°C and water was distilled off until the acid number dropped below 10. The batch was then thinned with 480 parts of methyl amyl ketone. The final product had Z3 viscosity at 70.8% NV and acid number 1.2.

10

15

20

25

30

Example II

In a suitable reactor 562 gms of Esterdiol-204 (trademark of Union Carbide) and 360 gms of xylene were charged. The mixture was brought to reflux (149°C) and any water present was stripped out. The temperature was lowered to 93°C and 360 gms of isophorone diisocyanate was added dropwise in a period of one hour. After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an IR spectrum. At this point, 240 gms of PCP-0301 (polycaprolactone triol, trademark of Union Carbide, New York, N.Y.) 263 gms of adipic acid, 3 gms of dibutyl tin oxide, and 215 gms of xylene were added. The mixture was heated up to 204°C and water was distilled off until the acid number dropped below 10. The batch was then thinned with 480 parts of methyl amyl ketone. final product had Y viscosity at 72% NV and acid number 7.9.

Example III

In a suitable reactor 286 gms of neopentyl glycol and 360 gms of xylene were charged. The temperature was roused to 93°C and 360 gms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an this point, 240 gms of Αt (polycaprolactone triol, trademark, of Union Carbide) 263 gms of adipic acid, 3 gms of dibutyl tin oxide, and 215 gms of xylene were added. The mixture was heated up to 204°C and water and xylene was distilled off until the acid number dropped below 10. The batch was then thinned with 480 parts of methyl amyl ketone. The final product had Z4 viscosity at 71.7% NV and acid number 0.8. number.

- 20 -

Example IV

In a suitable reactor 281 gms of Esterdiol-204, 728 gms of PCP-0200, (polycaprolactone diol, trademark, Union Carbide) and 360 gms of xylene were charged. mixture was brought to reflux (149°C) and any water present 5 was stripped out. The temperature was lowered at 93°C and 360 gms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one hour. After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an IR spectrum. At this 10 point, 108 gms of trimethylol propane, 263 gms of adipic acid, 3 gms of dibutyl tin oxide, and 200 gms of xylene The mixture was heated up to 204°C and water were added. and xylene was distilled off until the acid number dropped 15 The batch was then thinned with 400 parts of below 10. methyl amyl ketone. The final product had Z1 viscosity at 72.7% NV and acid number 2.0.

Example V

In a suitable reactor 562 qms of Esterdiol-204 20 (trademark of Union Carbide) and 360 gms of xylene were charged. The mixture was brought to reflux (149°C) and any The temperature was water present was stripped out. lowered to 93°C and 360 gms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one After the end of the addition, the mixture was 25 postreacted at 93°C until no NCO group was observed in an spectrum. At this point, 108 qms of trimethylol propionic and 108 gms of dimer acid (Empol 1016, Emery, Ind.) 3 gms of dibutyl tin oxide, and 200 gms of xylene The mixture was heated up to 204°C and water were added. 30

PCT/US83/01604

and xylene was distilled off until the acid number dropped below 10. The batch was then thinned with 400 parts of methyl amyl ketone. The final product had X+ viscosity at 69.2% NV and acid number 2.9.

5

10

15

20

25

30

Example VI

In a suitable reactor 753 gms of Esterdiol-204 (trademark of Union Carbide) and 360 gms of xylene were charged. The mixture was brought to reflux (149°C) and any The temperature was water present were stripped out. lowered to 93°C and 360 gms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an of PCP-0301 this point, 474 At qms spectrum. (polycaprolactone triol, trademark of Union Carbide) gms of adipic acid, 402 gms of dodecanoic acid, 4 gms of dibutyl tin oxide, and 200 gms of xylene were added. mixture was heated up to 204°C and water and xylene was distilled off until the acid number dropped below 10. batch was thinned with 480 parts of methyl amyl ketone. The final product of z_1+ viscosity at 70.0% NV amd acid number 5.2.

Example VII

In a suitable reactor 136 gms of propylene glycol, 172 gms of adipic acid and 66.4 gms of toluene were added. The mixture was heated up to reflux and 42.6 gms of water were stripped. At this point, 321 gms of oligoester (made according to Example I of U.S. Patent 4,322,508 to Peng et al), 250 gms of toluene, 10 gms of dibutyl tin dilaurate were added. In a period of 3 hours, 396 parts of Desmondur W (trademark, Mobay Chemical Co.) were added. During the

addition, the temperature was let to rise from 116°C to 143°C. The mixture was kept at this temperature until no NCO pick was observed in an IR spectrum. The batch was thinned with 860 gms of toluene and 1,260 gms isopropanol. The final product had a weight viscosity at 33.1% NV.

Example VIII

In a suitable reactor 562 gms of Esterdiol-204 (trademark of Union Carbide) and 360 gms of xylene were charged. The mixture was brought to reflux (149°C) and any water present was stripped out. 10 The temperature was lowered to 93°C and 360 gms of Desmondur W (trademark of Mobay Chemical Co.) was added dropwise in a period of one After the end of the addition, the mixture was postreacted at 93°C until no NCO group was observed in an IR spectrum. 15 Αt this point, 240 qms of (polycaprolactone triol, trademark of Union Carbide, New York, N.Y.) 131 gms of adipic acid and 133 gms of phthalic anhydride, 3 gms of dibutyl tin oxide, and 215 gms of xylene were added. The mixture was heated up to $204\,^{\circ}\text{C}$ and 20 water was distilled off until the acid number dropped below 10. The batch was then thinned with 480 parts of methyl amyl ketone. The final product had z_5 viscosity at 70.1% NV and acid number 3.

- 23 -

Examples IX - XII

Flexible basecoat compositions were formulated according to the following table:

	Compositions/Example	IX	Х	XI	XII
	_				
5	Resin of Example I	50			
	Resin of Example II		93		
	Resin of Example III			50	
	Resin of Example VII			100	
	Resin of Example IV				57
10	Spenlite L06-30S1	100			50
	Cymel 1130 ²	46	46	46	46
	Tinuvin-328 ³	3.6	3.6	3.6	3.6
	PTSA (40%)	1.5	1.5	1.5	1.5
	5000-AR ⁴	50	50	50	49
15	Xylene	75	75	75	
	Isopropyl alcohol	75	75	75	75
	Surfynol-104 ⁵	6	6	6	21
	Methyl amyl ketone				100

The above basecoats were produced to 20 sec. at #4 Ford Cup with methyl amyl ketone before spraying.

¹Trademark, Spencer-Kellogg, Buffalo, N.Y.

²Trademark, American Cyanamid Co., Wayne, N.J.

³Trademark, Ciba-Geigy

⁴Aluminum Paste, purchased Silberling, Lansford, Pa.

⁵Trademark, Air Products and Chemicals, Inc., Allentown, Pa. (Surfactant: 2,4,7,9-tetramethyl-5-decyn-4,7-diol)

Clearcoat Compositions

	Examples	XIII	XIV	XV	XVI	XVII	XVIII	XIX
	Composition							
	Resin of Example I	414						
5	Resin of Example II		401					
	Resin of Example III			403				
	Resin of Example IV				397			
	Resin of Example V					417		
	Resin of Example VI						414	
10	Resin of Example VIII							414
	Desmondur L-2291A ¹	123		123	123	123	123	123
	Desmondur Z-4370 ²	175	175					175
	Tinuvin-328 ³	6.2	6.2	6.2	6.2	6.2	6.2	6.2
15	Polymeric light stabilizer	8.8	8.8	8.8	8.8	8.8	8.8	8.8
	Irganox 1010 ⁵	8.0	0.8	.0.8	0.8	0.8	0.8	0.8
	Methyl amyl ketone	100	100	100	100	100	100	100
	The above composition	s were	reduce	ed to	30 sec	c. visc	cosity	at
	#4 Ford Cup with meth							
20	1,2Trademark, Mobay C	hemical	l Co.,	Pitts	burgh	, Pa.		
	³ Trademark, Ciba-Geig	Y					-	
	4Hindered amine stab	ilizer	made	accord	ding to	o Examp	ole I o	f
	U.S. Application S.N	i	 	to Ko	ordome	nos et	al.	

5Trademark, Ciba-Geigy (Antioxidant)

ά.

Example XX - XXIX

The following basecoat/clearcoat coating composition were sprayed over metal and plastic substrates and cured for 30 minutes at $121^{\circ}C$.

	- 2	5 -	-			
QUV (1000 hrs.)	MEK resistance (100 rubs)	% Elongation	Clearcoat of Example	Basecoat of Example	Coating Composition	Example
Excell	Excell	150	IIIX	X		× :
Excel1	Excell	155	AIA	×		ž
Excell Excell Excell Excell	Excell	120	XIII	χı		IDXX
Excell	Excell Excell Excell	140	IIIX	112		111000
Exce !!	Exce ! !	200	AIX	I X		ATEX
l Excell	•	160	7	ГX		AXX
C000d	Good	140	Ž	XI		XXVI
Excell	<u>•</u> 11	1 30	ITVX	Хĭ		IIVXX
Excell	-	135	XVIII	XI		IIIVXX
Excell	1 Excell	50	XTX	×		XXXX

PCT/US83/01604

5

10

30

- 1. A flexible basecoat/clearcoat coating composition, useful as automotive finish coats on metal and plastic substrates, which is characterized in that the basecoat composition and the clearcoat composition each independently comprises:
- (A) hydroxy-containing urethane modified polyester (i) having a number average molecular weight $(\overline{M_n})$ of between about 1000 and about 10,000, (ii) having a hydroxyl number of between about 30 and about 200, and (iii) containing between about 1 and about 10 urethane groups per molecule, and being made from reactants comprising:
 - (1) urethane modified diol made by reacting:
 - (a) diol, and
 - (b) diisocyanate,
- wherein said diol and said diisocyanate are reacted in a molar ratio of from about 4:1 to about 4:3;
 - (2) polyol comprising at least about 5 weight percent triol; and
- (3) acid component selected from dicarboxylic acids and anhydrides thereof; and
 - (B) crosslinking agent; and
- (C) 0-60 weight percent, based on the total weight of (A) and (B) of the composition, of a linear polyurethane having a number average molecular weight of between about 15,000 and about 40,000, and

wherein said crosslinking agent of said clearcoat composition is a polyisocyanate crosslinking agent and said crosslinking agent of said basecoat composition is an amine-aldehyde crosslinking agent, and wherein said basecoat composition additionally comprises pigment.

5

- 2. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said hydroxy-containing urethane modified polyester of said clearcoat composition has a number average molecular weight of between about 2000 and about 4000.
- 3. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said hydroxy-containing urethane modified polyester of said clearcoat composition has a hydroxyl number of between about 50 and about 120.
- 4. A flexible basecoat/clearcoat coating composition according to claim 1, wherein in forming said urethane modified diol of said clearcoat composition said diol and said diisocyanate are reacted in a molar ratio of from about 2:0.8 to about 2:1.2.
- 5. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said polyol of said clearcoat composition further comprises diol.
- 6. A coating composition according to claim 5, wherein said polyol of said clearcoat comprises about 10-80 weight percent triol and about 80-20 weight percent diol.
- 7. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said dicarboxylic acids of said clearcoat composition comprise C_6 C_{12} aliphatic dicarboxylic acid.

- 8. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said polyisocyanate crosslinking agent is included in said clearcoat composition in an amount of between about 5 and 5 about 60 weight percent based on the weight of the hydroxy-containing urethane modified polyesters of the clearcoat composition.
 - 9. A coating composition according to claim 1, wherein said polyisocyanate crosslinking agent of said clearcoat composition is a diisocyanate.
 - 10. A coating composition according to claim 1, wherein said polyisocyanate crosslinking agent of said clearcoat composition has 3 or more reactive isocyanates per molecule.
 - 11. A coating composition according to claim 10, wherein said polyisocyanate crosslinking agent is a trimerized product of an aliphatic disocyanate.
 - 12. A coating composition according to claim 11, wherein said polyisocyanate crosslinking agent is a trimerized reaction product of 1,6 hexamethylene disocyanate.
 - 13. A coating composition according to claim 10, wherein said polyisocyanate crosslinking agent is a polyisocyanate having a biuret structure.

- 14. A flexible basecoat/clearcoat composition according to claim 1, wherein said hydroxy-containing urethane modified polyester of said basecoat composition has a number average molecular weight (\overline{M}_{n}) of between about 2000 and about 4000.
- 15. A flexible basecoat/clearcoat coating composition according to claim 1, wherein in forming said urethane modified diol of said basecoat composition said diol and said diisocyanate are reacted in a molar ratio of from about 2:0.8 to about 2:1.2.
 - 16. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said polyol of said basecoat composition further comprises diol.
 - 17. A flexible basecoat/clearcoat coating composition according to claim 16, wherein said polyol of said basecoat composition comprises about 10-80 weight percent triol and about 80-20 weight percent diol.
 - 18. A flexible basecoat/clearcoat coating composition according to claim 1, wherein said dicarboxylic acids of said basecoat composition comprise C_6 C_{12} aliphatic dicarboxylic acids.
 - basecoat/clearcoat coating flexible 19. Α said wherein claim 1, to according composition basecoat of said amine-aldehyde crosslinking agent composition is employed in an amount of from about 5 to 5 about 60 weight percent based on the weight of said hydroxy-containing modified polyester present in said basecoat composition.

20. A flexible basecoat/clearcoat composition according to claim 1, wherein said hydroxy-containing urethane modified polyester of said basecoat composition has a number average molecular weight (\overline{M}_{n}) of between about 2000 and about 4000.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US83/01604

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) 3							
According to International Patent Classification (IPC) or to both National Classification and IPC							
INT.	CL.0 : C	08L 61/28 ; C08L 75/0	JO = 0 = 1440 4 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 =	n 05			
U.S. 427/409, 412.5; 428/423.3; 525/440,456; 528/60,85							
II. FIELDS	S SEARCHED	Minimum Documenta	ation Searched 4				
	C.	The second secon	lassification Symbols				
Classification	on System	C					
U.:	427/409, 412.5; 428/423.3; 525/440, 456; U.S. 528/60, 85.						
	<u> </u>	Documentation Searched other the to the Extent that such Documents a	an Minimum Documentation are Included in the Fields Searched ⁶				
		-					
III. DOCL	JMENTS CON	ISIDERED TO BE RELEVANT 14		Polovent to Claim No. 19			
Category *	Citation	of Document, 16 with indication, where appro	opriate, of the relevant passages 17	Relevant to Claim No. 18			
				j			
A	US, A,	3,962,522 PUBLISHED COLUMN 3, LINE 5-COLEX 1, CHANG ET AL.	8 JUNE 1976 LUMN 5, LINE 11,	1-20			
A	US, A,	4,021,505 PUBLISHED 3 MAY 1977 COLUMN 3, LINE 5-COLUMN 4, LINE 62, EX. 1, WANG					
A	US, A,	3,882,189 PUBLISHED 6 MAY 1975 1-20 HUDAK					
* Special categories of cited documents: 15 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such as a section of the considered to invol							
Date of t	Date of the Actual Completion of the International Search ² Date of Mailing of this International Search Report ³						
30	NOVEMBE	ER 1983	12 DEC 1983	-			
Internation	onal Searching	Authority 1	Signature of Authorized Officer Plr	tilla			
ISA	A/US		THEODORE PERTILLA	1			