Title: INTEGRAL PEM FUEL CELL HEATING MODULE AND THE USE THEREOF, AND PEM FUEL CELL STACKS

Abstract:

The invention relates to an integral polymer electrolytic membrane (PEM) fuel cell heating module, comprising a PEM fuel cell stack, wherein each fuel cell in the stack has a polymer electrolytic membrane (3), an anode on one side of the membrane and a cathode (4) on the other side, a gas distribution layer (5) on the anode side, a gas distribution layer (7) on the cathode side, in addition to bipolar plates (6) bordering on the gas distribution layers (5, 7). The anode is configured as a three-layer anode with a CO and/or methanol vapor oxidation-selective catalyst layer (1) on the side facing away from the membrane, and an electrochemically active layer (2) on the side facing the membrane, in addition to a contact layer made of porous carbon paper between the layers (1) and (2). The gas distribution layer (7) has air ducts with open inlets and outlets. Said module also comprises a thermally insulating gas-tight, tubular, hollow jacket (M) surrounding the PEM fuel cell stack, a methanol reformer (R) which produces a hydrogen combustion gas containing CO and methanol vapor from water vapor and methanol. Water vapor production of and reformer heating are produced by a catalytic residual gas burner (B). The module also contains a circulation fan (L) arranged inside the hollow jacket (M) and circulating damp air through the air ducts (15) of the gas distribution layer (7). The inventive PEM fuel cell heating module is suitable for use in a fuel cell installation for supplying household energy.
Zusammenfassung

Integraler Polymerelektrolymmembran (PEM)-Brennstoffzellen-Heizungsmodul, umfassend einen PEM-Brennstoffzellenstapel, wobei jede Brennstoffzelle des Stapels eine Polymerelektrolymmembran (3), eine Anode auf der einen und eine Kathode (4) auf der anderen Seite der Membran, eine Gasverteilerschicht (5) auf der Anodenseite, eine Gasverteilerschicht (7) auf der Kathodenseite sowie Bipolarplatten (6), welche an die Gasverteilerschichten (5, 7) angrenzen, umfaßt, wobei die Anode als Dreischichtanode ausgebildet ist, die eine CO- und/oder Methanol-oxidationsselektive Katalysatorschicht (1) auf der der Memran abgewandten Seite und eine elektrochemisch aktive Schicht (2), auf der der Memran zugewandten Seite sowie eine Kontaktschicht aus porösem Kohlepapier zwischen den Schichten (1) und (2) umfaßt, wobei die Gasverteilerschicht (7) Luftkanäle (15) mit freien Eintritts- und Austrittsoffnungen aufweist; einen den PEM-Brennstoffzellenstapel umgebenden, thermisch isolierten, gasdichten, röhenformigen Hohlmantel (M); einen Methanolreformer (R), welcher aus Wasser- und Methanol ein CO und Methanol-oxidierendes Wasserstoff-Brenngas erzeugt, wobei Wasser dampfungserzeugung und Reformerheizung durch einen katalytischen Restgasbrenner (B) bewirkt werden; und einen innerhalb des Hohlmantels (M) angeordneten Umluftr (L), welcher feuchte Luft durch die Luftkanäle (15) der Gasverteilerschicht (7) zirkuliert. Dererfindungsgemäße PEM-Brennstoffzellen-Heizungsmodul eignet sich zur Verwendung in einer Brennstoffzellenanlage für die Hausenergieversorgung.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Schwajer
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Taschkent
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauritani	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	VU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d’Ivoire	KP	Demokratische Volksrepublik	PL	Polen	Portugal	
CM	Kamerun	KR	Republik Korea	RO	Rumänien		
CN	China	KZ	Kasachstan	RU	Russische Föderation	SD	Sudan
CU	Kuba	LC	St. Lucia	SE	Schweden		
CZ	Tschechische Republik	LE	Liechtenstein	SG	Singapur		
DE	Deutschland	LK	Sri Lanka				
Integraler PEM-Brennstoffzellen-Heizungsmodul und dessen Verwendung
sowie PEM-Brennstoffzellenstapel

Die vorliegende Erfindung betrifft einen integralen Polymer-Elektrolyt-Membran
(PEM)-Brennstoffzellen-Heizungsmodul und dessen Verwendung sowie einen PEM-
Brennstoffzellenstapel zur Verwendung in einem solchen Heizungsmodul. Der er-
findungsgemäße Heizungsmodul findet insbesondere Anwendung in einer Brenn-
stoffzellenanlage für die Hausenergieversorgung.

Stationäre PEM-Brennstoffzellen setzen reinen Wasserstoff in Strom und nutzbare
Wärme um. Sie erreichen dabei einen Gasnutzungsgrad von über 90% und einen
elektrischen Wirkungsgrad von 40% bei Vollast bis 65% bei Teillast. Das Tempera-
turniveau der zu Heizzwecken auskoppelbaren Wärme beträgt 50-75°C.

Es ist bekannt, daß die Polymerelektrolytmembran von PEM-Brennstoffzellen
durch die Reaktionsgase entweder mit externen Wassersättigern oder durch eine
Selbstbefeuchtungseinrichtung befeuchtet werden muß, um sie bei Betriebstempe-
raturen von 60 bis 80°C vor dem Austrocknen zu bewahren. Die externe Befeuch-
tung erfordert einen teuren und energetisch uneffektiven, zusätzlichen apparativen
Aufwand, der zudem bei schnellen Lastwechseln nicht beherrschbar ist und zu Lei-
stungs- oder Wirkungsgradeinbußen infolge Austrocknung oder zellinterner Kon-
densation führt. Eine Selbstbefeuchtung durch ein in die Polymerelektrolytmem-
bran eingebundenes Platinnetz, wie in J. Electrochem. Soc., Band 143, Nr. 12, De-
zember 1996, vorgeschlagen, steigert die Kosten der Brennstoffzellen durch zu ho-
en Edelmetallverbrauch.

Weiterhin ist es bekannt, PEM-Brennstoffzellen für die Hausenergieversorgung mit
Erdgas oder Methanol als Brennstoffe zu betreiben. Erdgas oder Methanol müssen
hierbei mit Wasserdampf zu Wasserstoff und CO₂ reformiert und das Reformergas
von Kohlenmonoxid gereinigt werden. Die hierfür erforderlichen Reinigungseinrich-
tungen sind im Falle der Erdgasreformierung mit einem Anteil von 12% Kohlenmo-
noxid im Reformergas nur bei Anlagen mit einer Leistung oberhalb 100 kW mit ver-
tretbarem energetischem und apparativem Aufwand betreibbar. Für die Hausener-
gieversorgung mit PEM-Brennstoffzellen bei Betriebsleistungen von 2-20 kW
kommt daher die Methanolreformierung in Frage. Obwohl die Reformierungszeit
hier nur 200°C gegenüber 700°C bei der Erdgasreformierung beträgt, enthält das
Methanol-Reformergas bis etwa 10.000 ppm Methanol dampf und 1.000-2.000 ppm
Kohlenmonoxid (CO), das mittels teuren Ag/Pd-Membranen abgetrennt werden
muß.
CO-Gehalte bis 100 ppm können durch Zudosieren von 500 ppm O₂ zum Reformergas an der PEM-Brennstoffzellenanode aus Kohle/Pt-Ru bei der Betriebstemperatur der PEM-Brennstoffzelle zu CO₂ oxidiert werden.

Der Erfindung liegt die Aufgabe zugrunde, einen PEM-Brennstoffzellen-Heizungsmodul vorzusehen, der ohne externe Befeuchtungseinrichtung bei schnell wechselnder Stromlast eine konstante optimale Befeuchtung sowohl der Kathodenseite als auch der Anodenseite der Polymerelektrolytmembran gewährleistet und für die Hausenergieversorgung im Größenbereich von 2-20 kW mit Methanol-Reformergas ohne zusätzliche CO-Reinigungseinrichtung eingesetzt werden kann.

Der Gegenstand der Erfindung ist somit ein integraler Polymer-Elektrolyt-Membran (PEM)-Brennstoffzellen-Heizungsmodul, umfassend einen PEM-Brennstoffzellenstapel, wobei jede Brennstoffzelle des Stapels eine Polymerelektrolytmembran, eine Anode auf der einen und eine Kathode auf der anderen Seite der Membran, eine Gasscheibensicht auf der Anodenseite, eine Gasscheibensicht auf der Kathodenseite sowie Bipolarplatten, welche an die Gasscheibensichten angrenzen, umfaßt, wobei die Anode als Dreischichtanode ausgebildet ist, die eine CO- und/oder Methanoldampf-oxidationsselektive Katalysatorschicht auf der der Membran abgewandten Seite und eine elektrochemisch aktive Schicht, auf der der Membran zugewand-
ten Seite sowie ein Kontakt-Luftkanäle mit freien Eintritts- und Austrittsöffnungen aufweist: einen den PEM-Brennstoffzellenstapel umgebenden, thermisch isolierten, gasdichten, röhrenförmigen Hohlmantel (M); einen Methanolreformer (R), welcher aus Wasser dampf und Methanol ein CO und Methanoldampf enthaltendes Wasserstoff-Brenngas erzeugt, wobei Wasser dampferzeugung und Reformerheizung durch einen katalytischen Restgasbrenner (B) bewirkt werden; und einen innerhalb des Hohlmantels (M) angeordneten Umlüfter (L), welcher feuchte Luft durch die Luftkanäle der Gasvertellerschicht zirkuliert.

Beim Betrieb des erfindungsgemäßen Heizzungsmoduls wird sowohl die Kathoden- als auch die Anodenseite der Polymerelektrolytmembran optimal befeuchtet. Daneben gelingt eine zellinterne CO- und CH₃OH-Feingasreinigung, bei der die im Methanol-Reformergas enthaltenen 1.000-2.000 ppm CO und 5.000-10.000 ppm CH₃OH zu CO₂ oxidiert werden.

Beim erfindungsgemäßen Heizzungsmodul ist der PEM-Brennstoffzellenstapel in einem gasdichten, thermisch isolierten, röhrenförmigen Hohlmantel integriert, wobei die kathodenseitige Befeuchtung der Polymerelektrolytmembran mit der Reaktionswasser enthaltenden Kathodenausgangsluft durch Rezirkulation zur Kathodenluft-Eingangsseite erfolgt. Diese Umluft-Zirkulation der feuchten Kathodenausgangsluft erfolgt mit vielfacher, vorzugsweise 2- bis 3-facher Strömungsgeschwindigkeit gegenüber der Trockenfrischluftzufuhr beziehungsweise Feuchtluftabfuhr, die beim Betrieb des Heizzungsmoduls mit der Strombelastung geregelt werden, so daß keine separate Luftbefeuchtung notwendig ist.

Die anodenseitige Memranbefeuchtung wird beim erfindungsgemäßen Heizzungsmodul durch die als Dreischichtanode ausgebildete Zellanode jeder Brennstoffzelle erreicht. Die CO- und Methanol dampf-oxidations selektive Katalysatorschicht dieser Dreischichtanode oxidiert neben dem CO des Methanol-Reformergases gleichzeitig so viel Wasserstoff zu Wasser beziehungsweise Wasser dampf, daß die anodenseitige Befeuchtung der Membran gewährleistet ist. Wenn das Methanol-Reformergas beispielsweise 2.000 ppm CO enthält, werden gleichzeitig circa 10.000 ppm (1%) Wasserstoff zu Wasserdampf oxidiert. Die dabei auftretende Wärmeentwicklung be trägt etwa 2% der gesamten Wärmeerzeugung und wird über die metallische, poröse Dreischicht-Anodenplatte zur metallischen Bipolarplatte abgeleitet, von der sie kathodenseitig durch die Umluft an einen an der Kathodenluft-Ausgangsseite instal-
lierten Wärmeübertrager abgegeben wird.

Als Umlüfter kann bei dem erfindungsgemäßen Heizungsmodul geeigneterweise ein Lüfter-Propeller eingesetzt werden.

Die oxidationsselktive Katalysatorschicht der erfindungsgemäß vorgesehenen Dreischichtanode besteht geeigneterweise aus einer elektrisch leitenden Matrix und einem oxidischen Trägermaterial, das mit metallischen, oxidationsselktiven Katalysatorpartikeln belegt ist. Als Material für die elektrisch leitende Matrix eignet sich beispielsweise ein Metallfilz, wie Nickelschwamm oder Graphit. Das oxidische Trägermaterial verstärkt die katalytische Wirkung und ist beispielsweise aus Zirkoniumoxid, Titandioxid, Kobaltoxid, Ceroxid, Praesodymiumoxid, Yttriumoxid, deren Mischungen oder Mischoxidien hiervon gebildet. Die spezifische Oberfläche dieser oxidischen Trägermaterialien beträgt geeigneterweise 1 bis 100 m²/g, vorzugsweise mehr als 10 m²/g. Die oxidationsselktiven Katalysatorpartikel sind geeigneterweise aus Edelmetall, wie etwa Gold, Ruthenium, Rhodium oder deren Legierungen gebildet.

Die elektrochemisch aktive Schicht der Dreischichtanode ist aus Materialien gebil-
det. wie sie üblicherweise für PEM-Anoden verwendet werden.

Gegenstand der Erfindung ist ebenso die Verwendung eines wie oben beschriebenen PEM-Brennstoffzellen-Heizungsmoduls in einer Brennstoffzellenanlage für die Hausenergieversorgung mit einer Betriebsleistung von typischerweise 2-20 kW.

Die Erfindung wird anhand der beiliegenden Zeichnungen, welche bevorzugte Ausführungsformen der Erfindung wiedergeben, näher erläutert. Hierbei zeigen:

Fig. 1 schematisch den Aufbau eines erfindungsgemäßen PEM-Brennstoffzellen-Heizungsmoduls;
Fig. 2 schematisch den Aufbau einer einzelnen PEM-Brennstoffzelle;
Fig. 3 schematisch den Aufbau eines PEM-Brennstoffzellenstapels;
Fig. 4 schematisch die Anordnung der Bipolarplattenelemente einschließlich Elektrodeneinheit; und
Fig. 5 schematisch die Anordnung der Kühlplattenelemente.

Der in Fig. 1 gezeigte, integrale PEM-Brennstoffzellen-Heizungsmodul besteht aus einem PEM-Brennstoffzellenstapel FC, einem Lüfter-Propeller L, Wärmeübertrager WT, Methanolreformer R, Anodenrestgasbrenner B, Reformergastank T und einem gasdichten, alles umschließenden Hohlmantel M.
Der PEM-Brennstoffzellenstapel besteht geeigneterweise aus 20 bis 100 elektrisch in Serie geschalteten und hintereinander gestapelten PEM-Brennstoffzellen. Der schematische Aufbau einer einzelnen Brennstoffzelle ist in Fig. 2 gezeigt. Sie umfasst eine Dreischichtanode aus einer oxidationsselektiven Katalysatorschicht in Form einer porösen Anodenplatte 1 und einer Pt-Ru/C-Anode 2 sowie einer Kontaktschicht (nicht gezeigt) am porösen Kohlepapier zwischen den Schichten 1 und 2, eine Polymerolektrolytmembran 3, eine Pt/C-Kathode 4, eine mettallische Gasverteilerschicht 5, eine metallische Gasverteilerschicht 7 mit Luftkanälen 15 sowie Bipolar-/Kühlplatten 6. Die Luftkanäle 15 sind zur angrenzenden Bipolar-/Kühlplatte 6 offen.

Die Fig. 3 zeigt schematisch die Anordnung des aufgebauten Brennstoffzellenstapels. Der Zellenstapel besteht aus zwei Endplatten 10, welche die Verschraubungen für die Gas- und Kühlmittelanschlüsse sowie Anschlüsse zur Stromabführung und Potentialmessung (nicht gezeigt) enthalten. Die zellseitige Ausführung der Endplatten ist identisch mit derjenigen des Bipolarplattenelements 6. An die Endplatte anschließend folgen vier Zelleinheiten, deren Aufbau elektroden-/katalytisorseitig in Fig. 2 und dichtungs-/gasführungseitig in Fig. 4 wiedergegeben ist.

Im Innenraum befindet sich die Gasverteilungseinheit 5, welche z.B. aus einem strukturierten Filz besteht. Die Bipolar-/Kühlplatte 6 besteht in den Randelementen 6a (Fig. 5) zum Beispiel aus Edelstahl in der Qualität 1.4404, die Dichtung 12 z.B. aus Silikon. Auf dieser befindet sich ein z.B. aus dem genannten Edelstahl ausgeführtes Stützelement 13, welches bis auf die zum Innenbereich führenden Kanäle der Dichtung 12 die gleichen Bohrungen enthält. Das Stützelement 13 ermöglicht eine Abdichtbarkeit der gegenüberliegenden Seite der Zelle, da mit Hilfe dieses Stützelements auch über den durch die Dichtung 12 gebildeten Gasdurchführungen eine Andruckkraft ausgeübt werden kann. Auf dem Stützelement 13 befindet sich ein Dichtungselement 14, welches die gleiche Form aufweist wie das Stützelement 13 und z.B. aus geblähtem Polytetrafluorethen besteht.

Der Aufbau der Bipolarplatte mit KühlEinheit 6 ist in Fig. 5 wiedergegeben. Diese Einheit besteht aus zwei wie oben beschriebenen Bipolarplatten 6a, zwischen denen
sich ein Dichtungselement 6b befindet. Dieses entspricht in seinem Aufbau der beschriebenen Dichtung 12, enthält jedoch von den Kanälen 11 zum Innenraum führende Kanäle an der Stelle der zum Kühlwassertransport verwendeten Kanäle. Im Innenraum der Bipolarplatte mit Kühleinheit 6 befindet sich ein Stützelement 6c, welches z.B. als Titannetz ausgeführt ist.

Bei wärmebedarfs-gedrosseltem Betrieb wird bis zum Erreichen der Soll-Vorlauftemperatur am Wärmübertragerr Strom auf Vollast (40% elektrischer Wirkungsgrad) gestellt, nachdem die Methanoldosierung und Frischluftzufuhr auf Vollast eingeregelt wurden. Bei Überschreiten der Soll-Vorlauftemperatur werden Strom- und Gaszufuhr beziehungsweise Methanolzufuhr solange auf Teillast gedrosselt, bis die Soll-Vorlauftemperatur eingestellt ist. Zum Einstellen einer konstanten
Vorlaufstemperatur bei unterschiedlichem Wärmebedarf wird eine PID-Regelung aktiviert, die auf der modulinternen Proportionalität zwischen Strom und Vorlaufstemperatur basiert. Elektrischer Überschußstrom wird in das Netz eingespeist.

1. Integraler Polymerelektrolytmembran (PEM)-Brennstoffzellen-Heizungsmodul, umfassend
 einen PEM-Brennstoffzellenstapel, wobei jede Brennstoffzelle des Stapels eine
 Polymerelektrolytmembran (3), eine Anode auf der einen und eine Kathode (4) auf
 der anderen Seite der Membran, eine Gasverteilerschicht (5) auf der Anodenseite, ei-
 ne Gasverteilerschicht (7) auf der Kathodenseite sowie Bipolarplatten (6), welche an
 die Gasverteilerschichten (5, 7) angrenzen, umfaßt, wobei die Anode als Drei-
 schichtanode ausgebildet ist, die eine CO- und/oder Methanoldampf-oxidationssel-
 lektive Katalysatorschicht (1) auf der der Membran abgewandten Seite und eine
 elektrochemisch aktive Schicht (2), auf der der Membran zugewandten Seite sowie
 eine Kontaktsschicht aus porösem Kohlepapier zwischen den Schichten (1) und (2)
 umfaßt, und wobei die Gasverteilerschicht (7) Luftkanäle (15) mit freien Eintritts-
 und Austrittssöffnungen aufweist:
 einen den PEM-Brennstoffzellenstapel umgebenden, thermisch isolierten,
 gasdichten, röhrenförmigen Hohlmantel (M);
 einen Methanolreformer (R), welcher aus Wasserdampf und Methanol ein CO
 und Methanoldampf enthaltendes Wasserstoff-Brenngas erzeugt, wobei Wasserdampf
 erzeugung und Reformerheizung durch einen katalytischen Restgasbrenner
 (B) bewirkt werden; und
 einen innerhalb des Hohlmantels (M) angeordneten Umlüfter (L), welcher
 feuchte Luft durch die Luftkanäle (15) der Gasverteilerschicht (7) zirkuliert.

2. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 1, wobei der
 Methanolreformer (R) mit Restgasbrenner (B) über dem PEM-Brennstoffzellenstapel
 und innerhalb des Hohlmantels (M) angeordnet ist.

3. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 2, wobei der
 Methanolreformer (R) mit katalytischem Restgasbrenner (B) so angeordnet ist, daß
 er von der zirkulierenden, warmen Umluft zusätzlich beheizt wird.

4. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 1, wobei der
 Methanolreformer (R) mit Restgasbrenner (B) zusammen mit einem Reformergas-
 Starttank und einem elektrochemischen H₂-Kompressor zu einer externen Einheit
 zusammengefaßt sind.

5. Integraler PEM-Brennstoffzellen-Heizungsmodul nach mindestens einem der
1. Ansprüche 1 bis 4, wobei am Ausgang der Luftkanäle (15) innerhalb des Hohlmantels ein Kühlwasser führender Wärmeübertrager angeordnet ist, der über sein Kühlwasser die Wärme des Umluftstromes aufnimmt und zu Heizzwecken so auskoppelt, daß die Temperaturdifferenz innerhalb des PEM-Brennstoffzellenstapels nicht mehr als etwa 10°C beträgt.

6. Integraler PEM-Brennstoffzellen-Heizungsmodul nach mindestens einem der Ansprüche 1 bis 5, wobei der Umlüfter (L) ein Lüfter-Propeller ist.

7. Integraler PEM-Brennstoffzellen-Heizungsmodul nach mindestens einem der Ansprüche 1 bis 6, wobei die oxidationsselektive Katalysatorschicht (1) der Dreischichtanode eine elektrisch leitende Matrix (8) und ein oxidisches Trägermaterial, das mit metallischen, oxidationsselektiven Katalysatorpartikeln (9) belegt ist, umfaßt.

8. Integraler PEM-Brennstoffzellen-Heizungsmodul nach mindestens einem der Ansprüche 1 bis 7, wobei die Bipolarplatte (6) eine aufeinanderfolgende Anordnung von Einzelelementen aufweist, welche insgesamt die Funktionen Gasraumtrennung und Gasverteilung erfüllen.

9. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 8, wobei die aufeinanderfolgenden Elemente zwischen zwei Membranen (3) bestehen aus: Dichtung (14), Stützelement (13), Dichtung (12), Gasverteilungseinheit (5), Bipolarplatte (6), Gasverteilungselement (7), gegebenenfalls mit integrierter Dichtung, Dichtung (12), Stützelement (13), Dichtung (14).

10. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 9, wobei auf die Bipolarplatte (6) als Außenelement die Dichtung (12) und das Stützelement (13) sowie als Innenelement die Gasverteilungseinheit (5) aufsitzt.

11. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 9 und/oder 10, wobei die auf der Bipolarplatte (6) aufsitzende Dichtung (12) einen größeren Ausschnitt als das darüberliegende Stützelement (13) aufweist, so daß der Rand des Gasverteilungselements (5) von dem Stützelement (13) abgedeckt wird.

12. Integraler PEM-Brennstoffzellen-Heizungsmodul nach mindestens einem der Ansprüche 1-11, wobei die Bipolarplatte (6) als Bipolar-/Kühlplatte ausgebildet ist und die Kühlplatte eine aufeinanderfolgende Anordnung von Einzelelementen um-
1. faßt, welche insgesamt die Funktionen Gasraumtrennung und Kühlung erfüllen.
13. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 12, wobei die aufeinanderfolgenden Elemente bestehen aus: Bipolarplatte (6a), Dichtung (6b), Kontaktierungselement (6c), Bipolarplatte (6a).

5

14. Integraler PEM-Brennstoffzellen-Heizungsmodul nach Anspruch 13, wobei auf die Bipolarplatte (6a) als Außenelement die Dichtung (6b) sowie als Innenelement das Kontaktierungselement (6c) aufsitzt.

10 15. PEM-Brennstoffzellenstapel zur Verwendung in einem PEM-Brennstoffzellenstapel-Heizmodul und nach mindestens einem der Ansprüche 1-14, wobei die Bipolarplatte (6) eine aufeinanderfolgende Anordnung von Einzelelementen aufweist, welche insgesamt die Funktionen Gasraumtrennung und Gasverteilung erfüllen.

15 16. PEM-Brennstoffzellenstapel nach Anspruch 15, wobei die aufeinanderfolgenden Elemente zwischen zwei Membranen (3) bestehen aus: Dichtung (14), Stützelement (13), Dichtung (12), Gasverteilungseinheit (5), Bipolarplatte (6), Gasverteilungselement (7), gegebenenfalls mit integrierter Dichtung, Dichtung (12), Stützelement (13), Dichtung (14).

20 17. PEM-Brennstoffzellenstapel nach Anspruch 16, wobei auf die Bipolarplatte (6) als Außenelement die Dichtung (12) und das Stützelement (13) sowie als Innenelement die Gasverteilungseinheit (5) aufsitzt.

25 18. PEM-Brennstoffzellenstapel nach Anspruch 16 und/oder 17, wobei die auf der Bipolarplatte (6) aufsitzende Dichtung (12) einen größeren Ausschnitt als das darüberliegende Stützelement (13) aufweist, so daß der Rand des Gasverteilungselement (5) von dem Stützelement (13) abgedeckt wird.

30 19. PEM-Brennstoffzellenstapel nach mindestens einem der Ansprüche 15 bis 18, wobei die Bipolarplatte (6) als Bipolar-/Kühlplatte ausgebildet ist und die Kühlplatte eine aufeinanderfolgende Anordnung von Einzelelementen umfaßt, welche insgesamt die Funktionen Gasraumtrennung und Kühlung erfüllen.

35 20. PEM-Brennstoffzellenstapel nach Anspruch 19, wobei die aufeinanderfolgenden Elemente bestehen aus: Bipolarplatte (6a), Dichtung (6b), Kontaktierungselement (6c), Bipolarplatte (6a).
21. PEM-Brennstoffzellenstapel nach Anspruch 20, wobei auf die Bipolarplatte (6a) als Außenelement die Dichtung (6b) sowie als Innenelement das Kontaktierungselement (6c) aufsitzt.

22. Verwendung eines PEM-Brennstoffzellen-Heizungsmoduls nach mindestens einem der Ansprüche 1 bis 14 in einer Brennstoffzellenanlage für die Hausenergieversorgung.
Fig. 1

\[\text{CH}_3\text{OH} + \text{H}_2\text{O} \]

\[10\text{H}_2 + \text{CO}_2 \]

Kühl-H\textsubscript{2}O

Luft + H\textsubscript{2}O + CO\textsubscript{2}, aus

Luft, ein
Fig. 2

H₂

9 8

15

H₂O

6 5 1 2 3 4 7 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 HO1M/24 HO1M/04 HO1M/06

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 6 HO1M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 360 679 A (BUSWELL RICHARD F ET AL) 1 November 1994 see figures 1,2 see column 2, line 25 - column 3, line 53 see column 10, line 3-37</td>
<td>1-22</td>
</tr>
<tr>
<td>A</td>
<td>US 5 543 238 A (STRASSER KARL) 6 August 1996 see figure 1 see column 3, line 66 - column 5, line 30</td>
<td>1-22</td>
</tr>
<tr>
<td>A</td>
<td>US 5 262 249 A (BREVAULT RICHARD D ET AL) 16 November 1993 see the whole document</td>
<td>1,15</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
3 September 1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eep nl, Fax: (+31-70) 340-3016

Date of mailing of the international search report
15/09/1998

Authorized officer
Engl, H
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| A | PATENT ABSTRACTS OF JAPAN
vol. 012, no. 080 (E-590), 12 March 1988
& JP 62 219471 A (TOKYO ELECTRIC POWER CO
INC: THE; OTHERS: 02), 26 September 1987,
see abstract | 1,15 |
| A | US 5 573 866 A (VAN DINE LESLIE L ET AL)
12 November 1996
see the whole document | 1,15 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 7631094 A</td>
<td>21-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2146326 A</td>
<td>02-03-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0671059 A</td>
<td>13-09-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8502855 T</td>
<td>26-03-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9506335 A</td>
<td>02-03-1995</td>
</tr>
<tr>
<td>US 5543238 A</td>
<td>06-08-1996</td>
<td>CA 2142090 A</td>
<td>17-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9403937 A</td>
<td>17-02-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59205882 D</td>
<td>02-05-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0654182 A</td>
<td>24-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8500931 T</td>
<td>30-01-1996</td>
</tr>
<tr>
<td>US 5262249 A</td>
<td>16-11-1993</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5573866 A</td>
<td>12-11-1996</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEIFZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 HO1M5/24 HO1M8/04 HO1M8/06

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprästart (Klassifikationsystem und Klassifikationssymbole)
IPK 6 HO1M

Recherchierte aber nicht zum Mindestprästart gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESAHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 262 249 A (BREADT RICHARD E ET AL) 16. November 1993 siehe das ganze Dokument</td>
<td>1,15</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Abschlusses der internationalen Recherche

Abschließdatum des internationalen Recherchenberichts
15/09/1998

Name und Postanschrift der internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Telefax: (31-70) 340-2040, Tx: 31 651 apo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter
Engl, H
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Recherchenbericht angeführtes Patentdokument</td>
<td>Datum der Veröffentlichung</td>
<td>Mitglied(er) der Patentfamilie</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7631094 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2146326 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0671059 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8502855 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9506335 A</td>
</tr>
<tr>
<td>US 5543238 A</td>
<td>06-08-1996</td>
<td>CA 2142090 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9403937 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 59205882 D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0654182 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8500931 T</td>
</tr>
</tbody>
</table>

| US 5262249 A | 16-11-1993 | KEINE |
| US 5573866 A | 12-11-1996 | KEINE |