[54] BALL PUTTING CUP AND METHOD OF EJECTING BALL FROM SAME

[75] Inventors: Robert P. McCulloch, Los Angeles; Stephen H. Smith, San Pedro, both of Calif.

[73] Assignee: McCulloch Corporation, Los Angeles, Calif.

[22] Filed: Sept. 8, 1972

[21] Appl. No.: 287,433

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 186,289, Oct. 5, 1971, abandoned.

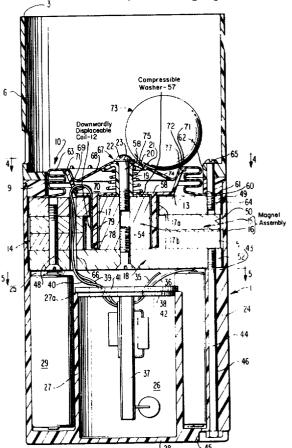
[52]	U.S. Cl	273/34 A, 273/179 A
[51]	Int. Cl	A63b 57/00
1581	Field of Search	273/179, 34, 127 A, 46;
		335/231

[56]	References Cited		
	UNITED	STATES PATENTS	
1,689,476	10/1928	Brumder	273/179 A
1,826,641	10/1931	Waddell	273/34 A
1,918,994	7/1933	Stutz	273/34 A
2,501,032	3/1950	Harbaugh	335/231 X
3,365,199	1/1968	Scholien et al	273/179 A
3.467.389	9/1969	Scholin et al	273/179 A
3,564,756	2/1971	Gunpei Yokoi	46/146
3.623.732	11/1971	Peeples	273/179 A
3,679,844	7/1972	Derkacz	335/231

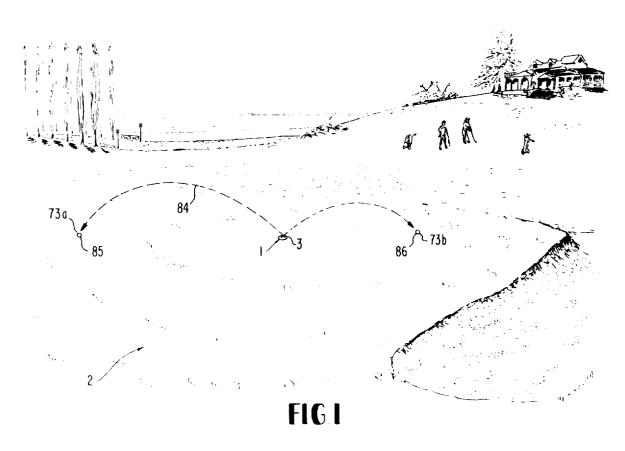
Primary Examiner—George J. Marlo Attorney, Agent, or Firm—Burns, Doane, Swecker & Mathis

[57] ABSTRACT

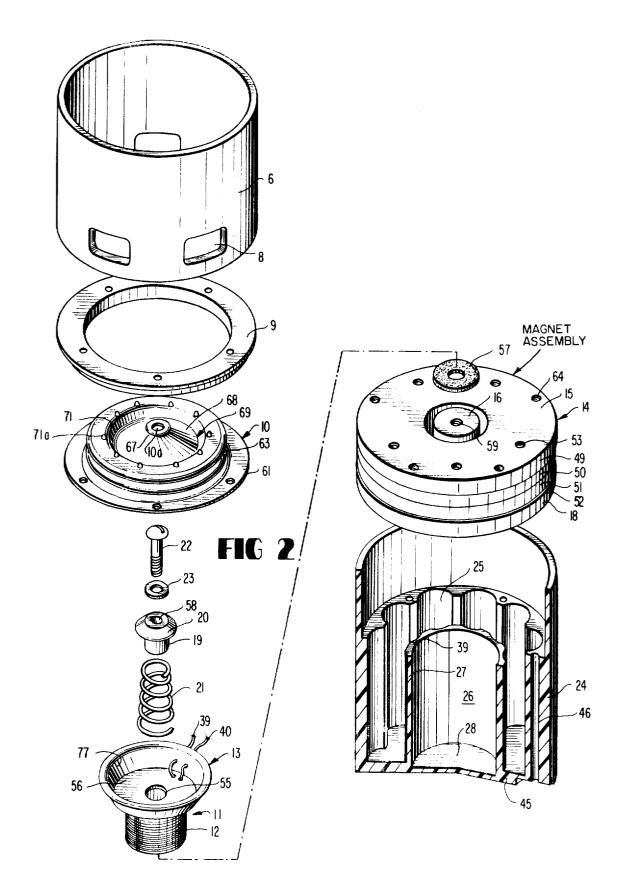
Method and apparatus for automating the ejector operation of a golf cup and featuring the use of flexing diaphragm and/or impacting cup to impart ball impacting force to a gold ball.

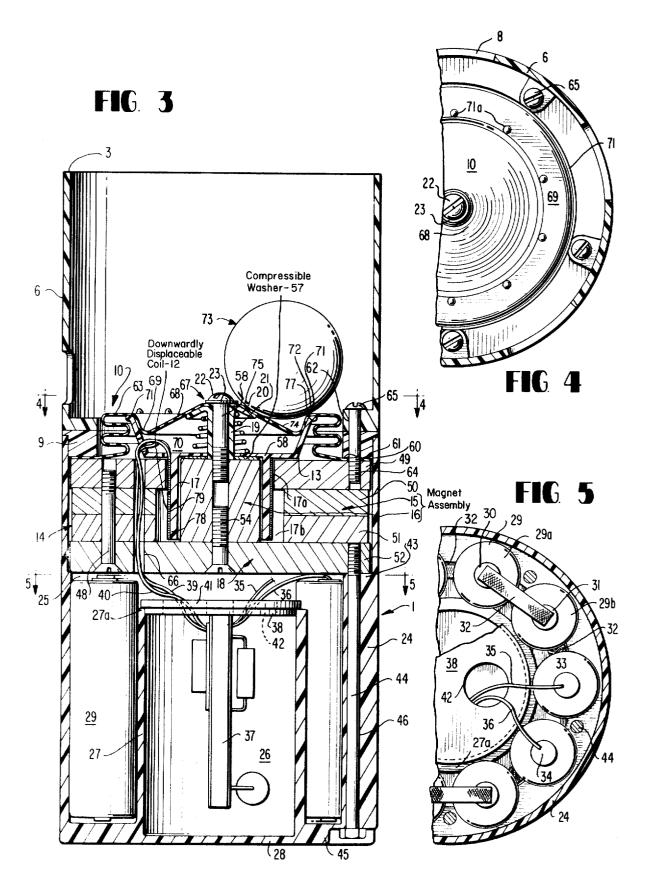

A telescoping coil and magnet system operate to trigger a control circuit, in response to the presence of a golf ball, and this control circuit in turn causes the coil and magnet means to interact and impart ball impacting force to the ball.

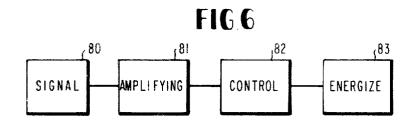
A pivoting impacting cup provides a multidirectional, pivotal movement, operable to permit impacting energy to be effectively developed and applied on impacting means.

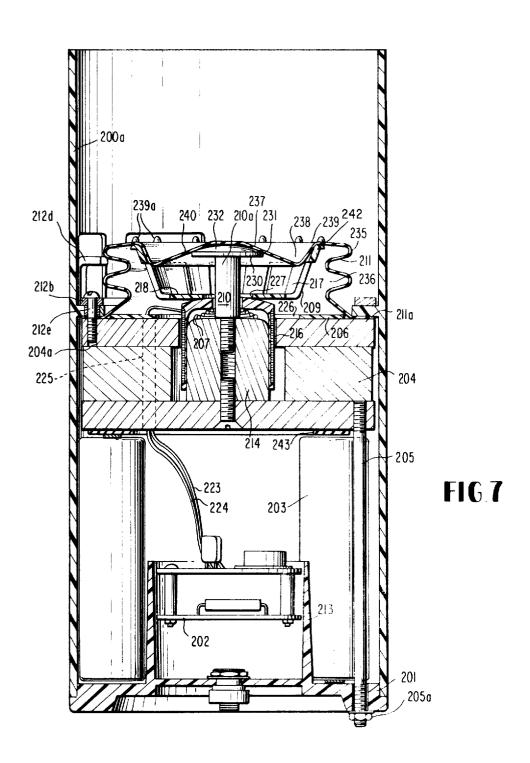

Non-radial ball ejection is effected such that a random ejection pattern results.

The control circuit includes means to amplify a signal generated by relative movement between the coil and magnet means. This relative movement is induced by the golf ball engaging the diaphragm and moving the diaphragm and coil downwardly. The amplified signal serves to energize the coil by including the transmission of electrical energy back to the coil. The thus energized coil interacts with the magnet means, elevates, and this elevation causes abrupt elevation in turn of the diaphragm. This diaphragm movement imparts ball impacting force to the golf cup, effecting its randomly directed removal from the cup.


7 Claims, 11 Drawing Figures


SHEET 1 OF 6


SHEET 2 OF 6



SHEET 3 OF 6

SHEET 4 OF 6

SHEET 5 OF 6

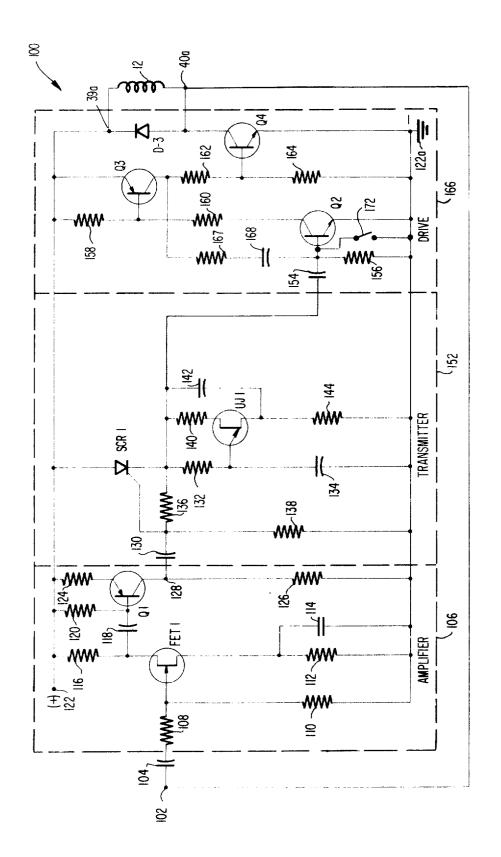
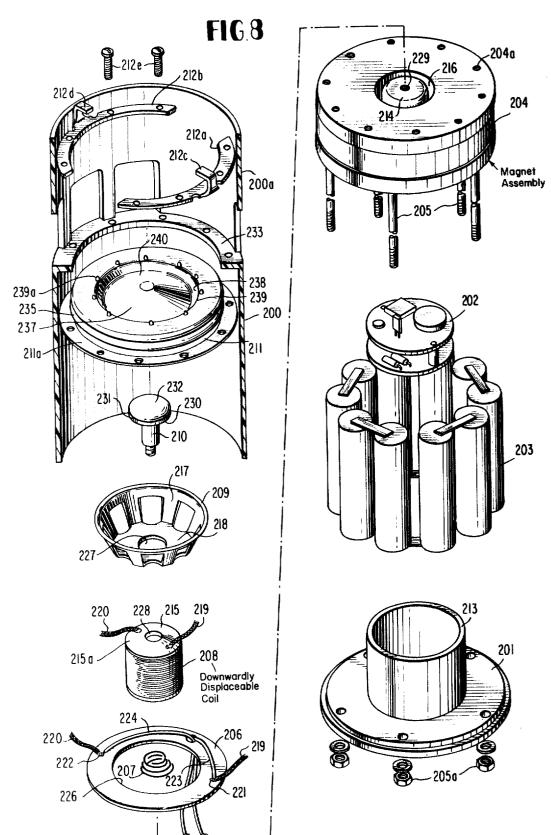



FIG. 6a

SHEET 6 OF 6

BALL PUTTING CUP AND METHOD OF EJECTING **BALL FROM SAME**

RELATED APPLICATION

This application is a continuation-in-part of our U.S. 5 Pat. application Ser. No. 186,289 filed Oct. 5, 1971 and entitled "Automated Golf Cup Concept, now abandoned.'

GENERAL BACKGROUND, OBJECTS AND SUMMARY OF INVENTION

As golfing has increased in popularity, the sophistication entailed in maintaining golf courses has significantly increased.

With a view to minimizing the exertion required by 15 players in retrieving golf balls from golf cups, and with a view to minimizing damage to turf on putting greens around golf cups, automated golf ball ejectors have been conceived.

Two such automated golf cup concepts are disclosed, 20 one in a U.S. English et al Pat. No. 3,467,378, and another in U.S. Peeples Pat. Nos. 3,310,311 and

for rotating a ball ejecting means so as to provide a random ejection pattern.

In the art there has persisted a need for an automated golf cup usable on a practice "green" or regular course, which would effect automated ejection of a golf ball 30 while requiring minimum maintenance and while being characterized by a high degree of resistance to adverse environmental conditions and prolonged operating life.

A further need has persisted in the art for a golf ball ejecting mechanism or automated golf cup which is of 35 a practicable and serviceable nature and effectively avoids reliance upon complex "throwing" mechanisms or precisely oriented radial ejection mechanisms, since such mechanisms as heretofore developed have been of only limited utility.

In particular, a need has persisted for the development of an automated golf cup which would effect the ejection of golf balls in a random pattern or manner, while avoiding the complexities of motor and rotation systems and reduce the number of moving parts to an 45 absolute minimum.

Accordingly, it is a principal object of the invention to advance the automated golf cup art by providing an ejection mechanism which is operable to impact golf balls out of a golf cup in a random manner without requiring the use of complex motor means and/or mechanisms for rotating an ejection mechanism.

A further object of the invention is to provide an automated golf cup concept including an impacting mechanism which is effectively operable in conjunction with a diaphragm means yet which is operable in and of itself to provide effective golf ball ejecting action.

A further object of the invention is to provide a unique, articulated golf ball ejecting mechanism wherein an impacting member first undergoes a movement in one direction while impacting energy is being developed and then undergoes a golf ball impacting movement in another direction after sufficient energy has been stored in the mechanism for effective impacting operation.

A still further object of the invention is to provide an automated golf cup concept wherein reliance upon radially directed and/or throwing type ejection action is effectively avoided.

It is a further object of the invention to provide a flexible diaphragm means which functions as the base of the golf cup, as well as a golf ball impacting force transmitting means.

A related object of the invention is to provide such a diaphragm means which protects or shields control components of the golf cup located beneath the dia-10 phragm means.

Another object of the invention is to provide a golf ball ejecting arrangement wherein simple interaction between a lightweight magnetic coil and a magnet system serves to both provide an indication of the presence of a golf ball in a golf cup and impart an impacting force to means such as the diaphragm means heretofore noted.

A further object of the invention is to provide a uniquely interrelated arrangement of batteries and control circuits and magnet means in an automated golf cup, such that the battery means and magnet effectively house the control circuit.

In accomplishing at least certain of the objectives quire the utilization of motor means and a mechanism 25 heretofore noted, a method of ejecting a golf ball from a golf cup is presented where a diaphragm means is positioned so as to be operable to impact a golf ball out of a golf cup and function as the base of the golf cup rather than constitute an ejector which projects through the cup base into its interior. An energizing means is provided to effect this golf ball impacting movement of the diaphragm means. The energizing means is actuated in response to downward flexing movement of the diaphragm means.

> Another independent method aspect of the invention operable to accomplish certain of the foregoing objectives entails a golf ball ejecting method where an electrical signal is generated in response to movement of the aforesaid diaphragm means caused by the presence of a golf ball in a golf cup.

> In response to this generation of electrical signal, the diaphragm means is caused to flex upwardly and impact a golf ball generally non-radially out of a golf cup in a generally random manner.

Another method aspect of the invention pertains to a mode of operation which it is believed may be ascribed to the diaphragm means. In this aspect of the invention, the diaphragm means is operable to support a golf ball in a golf cup, with the diaphragm means being disposed in a generally retracted condition. As the golf ball impacting force is directed upwardly against the diaphragm means, the diaphragm means is extended upwardly. The imparting of this impacting force, concurrent with this extending action of the diaphragm means, is believed to be operable to impact a golf ball generally nonradially, in a random manner, out of a golf cup.

A further method aspect of the invention pertains to another aspect of a mode of operation which may be ascribed to a resilient diaphragm means. As an impacting force is applied to the underside of such a resilient diaphragm means, the diaphragm means is extended upwardly and flexes at least to some degree.

A further independently significant aspect of the invention pertains to the use of a lightweight coil means which is telescopingly received by a magnet means and which is operable to impart impacting force to the

4

aforesaid diaphragm means or other golf ball impacting means.

Downward movement of the diaphragm means or impacting means is operable to induce relative movement between the coil means and the magnet means so as to generate a signal indicative of the presence of the golf ball in a golf cup. In response to this signal, and interaction between the coil means and magnet means, an impact force is developed which is directed upwardly against the diaphragm means or impacting means.

A further method aspect of the invention involves the articulation of an impacting means so as to permit movement in one direction while energy is being stored, and movement in another direction for impacting purposes.

Various combinations of apparatus means are presented through this invention which interact to effect the individual and overall method aspects of the invention heretofore noted. At least in certain instances this interaction is believed to be synergistic in nature. Such various apparatus combinations constitute individually significant facets of the invention.

Another independently significant apparatus facet of the invention relates to the manner in which a battery pack and magnet function to provide housing for a control circuit.

Another independently significant apparatus aspect of the invention relates to the use of a control circuit which is operable to amplify a ball presence detecting 30 signal and direct an energizing flow of electricity to a coil means for the purpose of generating a ball impacting force.

By way of clarification of the invention, but without limitation as to its scope, the summarized aspects of the 35 invention will be reviewed in relation to certain presently preferred embodiments.

DRAWINGS

In describing the invention, reference will be made to 40 presently preferred embodiments shown in the appended drawings.

In the Drawings:

FIG. 1 provides a perspective view of a practice putting green, illustrating the manner in which the golf cup 45 ejecting mechanism of the present invention is operable to effect a generally random golf ball ejecting pattern;

FIG. 2 provides an "exploded" perspective view of components of one preferred embodiment of a golf cup 50 which may be employed in the FIG. 1 installation;

FIG. 3 provides a further enlarged, transversely sectioned, elevational view of the first preferred embodiment, showing the components of FIG. 2 in their assembled relationship;

FIG. 4 provides a transverse sectional view of the FIG. 3 assembly, as viewed along section line 4—4 of FIG. 3, looking downwardly on a ball impacting diaphragm means;

FIG. 5 provides a transverse sectional view of the FIG. 3 assembly, as viewed along section line 5—5 of FIG. 3, looking downwardly on an annular battery pack arrangement;

FIG. 6 provides a schematic illustration of a control circuit which may be employed to effect actuation of an automated golf cup fabricated in accordance with the present invention;

FIG. 6a provides an illustration of a circuit which may be employed to implement the functions of the circuit schematically depicted in FIG. 6;

FIG. 7 provides a transversely sectioned, elevational view of a second preferred embodiment of the invention;

FIG. 8 illustrates components of the FIG. 7 assembly in a perspective and longitudinally "exploded" format; and

10 FIGS. 9a and 9b provide a schematic, sequential illustration of the manner in which a coil and generally frustroconical impacting cup are disposed in a separable or relatively movable relation as a ball is impacted by a diaphragm means in response to electrical energization of the coil means.

DETAILED DESCRIPTION OF PRESENTLY PREFERRED EMBODIMENTS

The context in which the present invention is prac-20 ticed is generally illustrated in FIG. 1.

As there shown, a golf cup 1 is positioned on a practice putting green 2. The upper rim 3 of the golf cup 1 is generally recessed about threequarters to one inch below ground level of the green 2.

Cup 1 includes a cylindrical, ball receiving, upper portion 6, as shown in FIG. 2.

With the generaal context of the invention having been described, attention will now be devoted to a first preferred embodiment of the golf ball ejecting mechanism itself.

FIRST PREFERRED EMBODIMENT

Structural details of a first presently preferred embodiment of the invention are illustrated in FIGS. 2-4.

As shown in FIG. 2, the principal components of the first embodiment of the golf cup, include first means comprising a generally cylindrical body defining the golf ball receiving cup means or housing 6.

Cup means 6 may be provided with a plurality of circumferentially spaced, radially outwardly directed drainage holes 8 adjacent its lower edge.

The first embodiment also includes second means comprising a generally annular, diaphragm retaining rim 9 and a diaphragm 10.

Diaphragm 10 may be fabricated of elastomeric material so as to be somewhat resilient. However, it is contemplated that the diaphragm 10 will preferably comprise resilient material such as rubber, neoprene, or other elastomeric means within which reinforcing fabric is embedded so as to provide a structure of improved strength. Such reinforcing, when used, may be confined to a portion of the diaphragm, such as its top, transverse wall means.

The first embodiment additionally includes third means comprising a coil assembly 11 comprising a generally cylindrical coil 12 disposed beneath an upwardly diverging, frustoconical impacting cup or member 13. The coil 12 may be fixedly connected with the cup 13 or may comprise a separate component disposed beneath the cup 13 and movable relative thereto.

The components shown in FIG. 2 additionally include a magnet assembly 14 comprising an annular outer pole 15 and an axial pole 16. Poles 16 and 15 are separated on the upper side of the magnet assembly by an annular cavity 17. Cavity 17 is operable to telescopingly receive coil 12. The lower portion of the magnet assembly includes a base means 18 which serves to in-

terconnect the central pole means 16 and annular pole means 15 in a magnetically permeable manner.

As shown in FIG. 3, cavity 17 may have an upper narrow zone 17a and a lower, wider gap zone 17b. This arrangement serves to intensify the magnetic lines of flux 5 intersecting the turns of coil 12 and extending between center pole 16 and outer, annular pole 15, by tending to intensify the density of flux lines in and extending across upper gap portion 17a.

pacting cup 13 with the magnetic pole 16 comprise a generally cylindrical, spring retainer 19 including a frustoconical, downwardly diverging spring retaining lip 20. A downwardly diverging, generally frustoconically configured coil spring 21 is also provided, along 15 with a mounting screw 22 and mounting washer 23.

A battery pack receiving base 24 is included in the FIG. 2 assemblage. Base 24 may be provided with a series of circumferentially spaced, battery receiving retral cavity 26. Cavity 26 is encircled by an imperforate, generally cylindrical wall 27 and includes a closed imperforate base 28.

The manner in which the aforesaid components are assembled is generally depicted in FIG. 3.

As there shown, each of the cavities 25 is occupied by a battery 29 which may comprise an alkaline, rechargeable battery of the nickle cadmium type. The batteries may be arranged in the circumferential pattern generally shown in FIG. 5, with adjacent batteries 30 being disposed in relatively inverted relationship. In other words, the battery 29a shown in FIG. 5 may be disposed with its positive pole 30 facing upwardly while the adjacent battery 29h may be disposed with its negative pole 31 facing upwardly. The poles 30 and 31 of 35 adjacent batteries may be interconnected by a metallic bridege strip 32.

A series of bridge strips are employed, as shown in FIG. 5, so as to provide electrically conductive interconnection between positive and negative poles of all 40 but two adjacent batteries so that the batteries 29 encircling cavity 26 are connected in series relationship and thus define an annular battery pack.

As is also shown in FIG. 5, one of the two unconnected batteries is provided with a positive connecting terminal 33 and the other of these batteries is provided with a negative terminal 34. Flexible electrical connections or leads 35 and 36 extend from these positive and negative poles or terminals 33 and 34, respectively, to a fourth or control means, i.e., a solid state control circuit panel 37.

Solid state control panel 37 may be supported in cavity 26 by a generally circular mounting plate 38 which rests upon upper rim 27a of wall 27 as generally shown $_{55}$

With the circuit panel 37 disposed as shown in FIG. 3 within the cavity 26, conventional, electrically, nonconductive, fluid plastic "potting" material may be injected into the cavity and allowed to solidify in the cavity so as to provide a totally waterproof and environment-proof circuit installation. Various resins, including epoxy resins, may be employed for this purpose.

In this connection it will be understood that another pair of leads or flexible electrical connections 39 and 40 would extend from the control panel 37 upwardly through the mounting plate 38 to the leads extending from the coil 12.

Thus, as shown in FIG. 3, leads 39 and 40 may pass from circuit panel 37 upwardly through a mounting plate opening 41, while the leads 35 and 36 may pass through an opening 42 in the mounting plate 38.

Magnet assembly 14 is telescopingly received within an upper portion of housing 24 and rests upon a housing ledge 43.

The magnet assembly 14 may be secured to the ledge 43 by a series of threaded fasteners 44 which pass up-Components for interconnecting the coil 12 and im- 10 wardly from the base 45 of housing 24 through threaded fastener receiving openings 46.

As illustrated in FIG. 3, the threaded upper ends of fasteners 44 are threadably received within threaded sockets 47 formed in the underplate 18 of the magnet assembly.

FIG. 3 also illustrates the manner in which other threaded fasteners 48 may serve to interconnect superposed plate members 49, 50, 51 and 52 of the magnet assembly. Fastening means 48 may comprise a series of cesses 25. Recesses 25 are disposed outwardly of a cen- 20 circumferentially spaced fasteners extending through apertures in the plates to engage threaded sockets 53 in upper plate 49, as generally shown in FIG. 2.

Central pole 16 may be secured to base plate 52 (which provides magnetically permeable connection 25 18) by another, centrally located threaded fastener 54.

Before or after the magnet assembly 14 is installed, as heretofore described, the coil 12 may be telescopingly inserted into the recess 17 as shown in FIG. 3. The mounting collar 19 may then be positioned on top of pole 16 so as to extend through a central aperture 55 in the base of impacting cup 13. The mounting collar 19 may be thus positioned with the coil spring 21 disposed beneath and retained by the collar 20.

In this manner, the lower, larger diametered portion of the spring 21 will engage the base 56 of the impacting member 13 so as to resiliently and yieldably urge the impacting member downwardly to its rest position shown in FIG. 3.

In this rest position, a longitudinally and compressible washer or collar 57 formed of resilient plastic or elastomeric foam material (or other spring means) may be interposed axially between wall 56 and the upper end of the magnet 16. This resilient support, or other spring means, will serve to support coil 12 in a somewhat elevated position in recess 17 and permit resiliently yieldable downward movement of the cup 13 and coil 12 from the rest position shown in FIG. 3 in response to the weight of a golf ball dropping in cup 6 onto the diaphragm 10 and cup 13.

The retainer member 19 and spring 21 may be secured in the position shown in FIG. 3 by installing the threaded fastener 22 so that it extends downwardly through a central aperture 10a of diaphragm 10 and a central aperture 58 of the member 19 and is threadably received within a threaded central passage 59 of the magnetic pole 16. The washer 23 may be interposed between the head of the fastener 22 and the top of diaphragm 10 as shown in FIG. 3.

In completing the assembly of the golf cup components, as aforesaid, the diaphragm 10 will be positioned on top of the magnet 14 and on top of the components 22, 20, 21 and 13. With these components located in housing 24 as shown in FIG. 3, the mounting rim 9, having a generally L-shaped cross-section, may be telescopingly inserted into the upper end of housing 24 so as to cause a lower annular rim 60 to abuttingly engage the rim or outer radial lip 61 of the diaphragm 10 and

urge this lip, in sandwiched relation against the upper magnet plate 49.

The ball receiving cup 6 may then be positioned above the rim 9 such that a series of circumferentially spaced and longitudinally extending threaded fastener 5 receiving openings 62 of this cup are aligned with threaded fastener receiving openings 63 in rim 9 and with threaded openings 64 in magnet plate 49. The insertion of threaded fasteners 65 through these openings will serve to interconnect the components 6, 9 and 49 10 and thereby effectively secure the diaphragm means 10 in position as the base of the cup 6 and structually integrate the overall assembly.

With the assembly thus integrated, the leads 39 and 40 may extend from the turns of the coil 12, through 15 the base and side wall of cup 13, and downwardly through an aperture means 66 extending longitudinally through magnet assembly 4. These leads 39 and 40 will extend from beneath magnet means 14 through base plate aperture 41 to appropriate electrical connections 20 ment of the batteries 29 provides, in essence, a battery with the control panel 37. The leads 39 and 40 will be sufficiently flexible and slack above magnet 14 as to permit generally free vertical up and down movement of coil 12 relative to magnet 14.

At this juncture it is appropriate to consider certain 25 structural details of the flexible diaphragm 10, bearing in mind that the diaphragm 10 functions as a sealed flexible base for the golf ball receiving cup 6 as well as an upwardly flexing, golf ball impacting member.

Diaphragm 10 includes the aforesaid rim or radial lip 30 61. A bellows portion 67 of the diaphragm 10 extends upwardly from the rim 61. A generally convex or generally conical wall portion 68 extends across the top of bellows portion 67.

67, due to its lateral flexibility, will function to relieve any vacuum which might tend to form in the cavity 70 beneath the diaphragm.

A generally annular, ball receiving recess 69 is defined by top transverse wall means 68 and encircles the 40cavity 70 which is encircled and thus defined in part by the bellows means 67. The recess 69 has a generally concave, upwardly opening, cross section.

An outer rim 71 of recess 69 is operable to engage a first under portion 72 of a golf ball 73 as generally shown in FIG. 3. The upwardly converging wall portion 74 of wall means 68 is operable to engage a second under portion 75 of the golf ball.

A series of upwardly projecting, circumferentially spaced protuberances may be carried by rim 71, generally as illustrated in FIG. 3. These "bumps" perform a ball arresting function, i.e., arrest rolling movement of the ball around recess 69.

As shown in FIG. 3, under portions 72 and 75 are generally spaced. Diaphragm portion 76 underlying the golf ball and extending between these contact points is in a generally slack, i.e., retracted, condition. However, it will here be recognized that such a retracted condition could result with the diaphragm generally cradling or conformingly engaging the under side of the golf ball 73.

In this connection, it will be understood that a golf ball 73 entering the cup portion 6 will tend to locate itself in a random manner at some circumferential location on the recess 69, for the reason that the recess provides the only stable golf ball supporting structure within the interior of the golf cup. This results, of

course, from the fact that the recess provides at least two stabilizing support means 71 and 74 while the remaining structure within the cup fails to provide such a stable, multiple support arrangement.

All this notwithstanding, the invention contemplates ball impacting operation even when the ball 73 does not locate itself in this manner.

As is shown in FIG. 3, frustoconical rim 77 of cup means, or impacting means 13 engages diaphragm 10 generally immediately beneath and contiguous with the rim 71 of the recess means 69 so as to be able to impart force directly upwardly against an off-center, outer side of golf ball 73. In this connection, it will be understood that while cup 13 is lightweight in nature, it is fabricated so as to be generally rigid, so as to be operable to effectively transmit impacting force from coil 12 to diaphragm 10.

As will here be noted, the circumferential arrangedefined barrier or wall encircling the cavity 26 within which the control panel 37 is received. The top of this cavity, in essence, is closed by the magnet means 14. Thus, the magnet means and the battery pack cooperate to substantially house and protect the control means 37.

At this juncture it is also significant to note certain variations which may be effected in relation to the coil 12 and impacting member 13.

Coil 12 and impacting cup 13 are lightweight components, preferably weighing not in excess of a few ounces.

Cup 13 may be bonded, connected with, or inte-During upward movement of cup 13, the bellows wall 35 grated with a core (possibly plastic) 78 of coil 12. This core 78, which may be cylindrical in nature supports on its outer periphery a coil winding 79.

> As shown in FIG. 3, the winding of the coil 79 may have a generally rectangular cross-section, elongated generally radially of the cup axis. This arrangement is desirable in that it would provide a relatively great area of wire intersecting the magnetic field of magnet means

> By fabricating the coil of anodized aluminum wire, the need for insulation may be avoided.

While such an edge wound coil arrangement is desirable, the invention may also be effectively practiced with a coil akin to a conventional speaker coil, where the winding comprises insulated copper wire having a conventional circular cross-section.

While the invention may be practiced with the integrated coil core 78 and cup 13 as shown in FIG. 3, it is believed that improvements in ball impacting per-55 formance, resulting in golf balls being thrown a further distance from the cup 1, may result by fabricating the coil 12 as a component structurally separate from the cup 13. In this arrangement, the cup 13 would merely rest upon or be supported above the upper edge of the coil 12, generally in the manner subsequently described in connection with the second embodiment of the in-

With the principal components of the golf cup 1 having been described, along with their mode of assembly, it is now appropriate to consider the manner in which the golf cup operates on an automated basis to impact golf balls outwardly therefrom.

MODE OF OPERATION OF FIRST PREFERRED **EMBODIMENT**

When a golf ball comes to rest in recess 69 of diaphragm 10 as shown in FIG. 3, the downwardly directed force imposed by the golf ball on the diaphragm will cause the cup 10 to tend to move downwardly and thereby induce downward movement of the coil 12 in the magnetic field of magnet means 14. This downward movement will be yieldably resisted by the supporting 10 cup, and come to rest at position 86. resilient means 57 underlying the wall 56. (Wall 56 may be considered as the upper wall of the coil 12 as well as the base of the frustoconical impacting means

This downward movement of coil 12 relative to the 15 magnet means 14 will generate an electrical signal which will be transmitted from coil windings through leads 39 and 40 to circuit 37. FIG. 6 schematically depicts this signal generating function in schematic circuit block 80.

This electrical signal will be electrically amplified by circuit means 37 in a circuit sequence generally depicted in block 80 of FIG. 6.

Circuit 37 will cause a pulse or flow of electrical energy to be directed back through leads 39 and 40 to coil 25 winding 79.

The aforesaid transmission of electrical energy through leads 39 and 40 to coil winding 79, will cause electrical interaction between coil 12 and magnet 14, resulting in abrupt upward movement of the coil 12. 30 This abrupt upward movement is generally depicted in block 83 of the schematic circuit of FIG. 6.

The termination of upward movement of coil 12 may be determined by either the progressive resistance to diaphragm distension caused by the diaphragm 10 itself 35 and/or the spring 21 or the engagement of impact cup wall 56 with the collar or retaining lip 20. At, or near, the end of this movement, the energization of coil 12 will terminate and spring 21, possibly in combination with diaphragm 10, will restore the cup 13 and coil 12 to the rest position of FIG. 3.

This upward movement of coil 12 will cause upward movement of the impacting means 13. The abrupt movement of the impacting means 13 would then be transmitted to the underside of the diaphragm 10.

The imposition of upwardly directed force to the under side of the diaphragm 10 will cause longitudinal elongation of the bellows means 63 and upward extension and flexing of the bellows means, and in certain instances could induce distension, stretching or tensioning of the wall means 68.

This distending of the wall means 68, even thus may tend to remove at least some of the slack in area 76 as the diaphragm 10 is moving upwardly. Such slack removal may vary as a factor dependent upon diaphragm flexibility, etc. However, where, as in the present case, the center wall means 68 remains engaged with center support means 22 as cup 13 is raised, diaphragm flexing in top wall 68 will occur. In any event, slack removal in bellows portion 63, tending to offset any vacuum or reduction in pressure in cavity 70 as cup 13 is raised, will facilitate ball impacting action.

While the precise phenomena attributable to the interacting of these events is not fully understood, observation of performance of the cup I shows that the operation of the diaphragm will produce a unique, random ejection pattern.

Thus, as schematically shown in FIG. 1, one golf ball 73 a impacted by diaphragm 10, would follow a trajectory 84, moving from the recess 69 on the right side of the cup shown in FIG. 1 across and upwardly out of the cup and passing through the left side of the cup to come to rest at position 85.

Another golf ball 73b, shown in FIG. 1, might be impacted from the left side of the cup in recess 69, pass upwardly out of the cup through the right side of the

As shown in FIG. 1, positions 86 and 85 may well be located at varying radial distances from the cup 1, as well as being located at different circumferential locations in relation to the cup 1.

This random mode of ejection is significant in that it causes players to retrieve ejected balls at widely varying locations of the green and at distances spaced substantially outwardly from the cup. This retrieval phenomena reduces or minimizes wear of the green at any particular location, and particularly wear in the vicinity immediately adjacent to the cup 1.

With the basic mode of operation of the golf cup 1 having been described with reference to schematic circuits depicted in FIG. 6, it is now appropriate to consider an electrical circuit which may control functions depicted in FIG. 6 and be integrated in the control panel 37.

CONTROL CIRCUIT

FIG. 6a depicts an exemplary control circuit 100 which may be enployed in control panel 37.

Leads 35 and 36 are connected to circuit 100 at positive and negative junctures 122 and 122a, respectively, while leads 39 and 40 are connected to other control circuit junctures 39a and 40a.

With reference now to the schematic circuit diagram of FIG. 6a, the coil 12 of the extreme right side of the figure functions as a sensing element. The coil 12 may be loosely suspended in a magnet field of about 8,000 to 10,000 gausses developed by magnet means 14. The displacement of coil 12 in response to the weight of a golf ball entering the cup 6 may generate an e.m.f. across the terminals of the winding 79 to coil 12 of approximately 15 millivolts.

This signal which indicates that a golf ball is present in the cup is applied by way of the terminal 102 and a coupling capacitor 104 to a two-stage amplifier circuit indicated generally at 106. The coupling capacitor 104 is connected in series with a surge limiting resistor 108 to the gate electrode of an N-channel junction-field effect transistor FET-1. The gate electrode of the transistor FET-1 is electrically connected with negative battery terminal 122a through a resistor 110, the source electrode of the transistor FET-1 is grounded through a resistor 112 and a capacitor 114 connected in parallel, and the drain electrode of the transistor FET-1 is connected through a resistor 116 to a source of positive d.c. potential which may, for example, comprise a 24 volt battery pack consisting of a plurality such as 10 "sub C" nickel cadmium cells 29.

The output signal from the transistor FET-1 is fed from the collector electrode thereof through a coupling capacitor 118 to the base electrode of a PNP transistor Q1. The base electrode of the transistor Q1 is connected through a resistor 120 to the source of positive potential 122, the emitter electrode of the transistor Q1 is connected through a resistor 124 to the source of positive potential 122, and the collector electrode of the transistor Q1 is grounded, through a resistor 126, to negative connection 122a.

The output signal from the two-stage amplifier 106 is taken from a terminal 128 at the collector electrode of 5 the transistor Q1 and is applied through a capacitor 130 to the gate electrode of a silicon controlled rectifier SCR-1 in a transmitter circuit indicated at 152. The anode of the rectifier SCR-1 is directly connected to the source of positive potential 122 and the cathode 10 electrode thereof is connected through a series connected resistor 132 and a capacitor 134 to negative potential 122a. The cathode of the SCR-1 is also connected by a resistor 136 to the gate electrode thereof, nected to ground potential through a resistor 138.

The cathode of the silicon controlled rectifier SCR-1 is connected through a resistor 140 to the second base electrode of a unifunction transistor UJ-1 and through a capacitor 142 to the first base electrode thereof. The 20 first base electrode of the transistor UJ-1 is connected with negative terminal 122a through a resistor 144 and the emitter electrode thereof is connected to the resistor 132-capacitor 134 junction in the cathode circuit of the rectifier SCR-1.

The junction of SCR-1 and the resistor 140 serves as the output terminal of a transmitter circuit 152 and is connected with a drive circuit 166 through a capacitor 154 to the base electrode of a negative potential grounded emitter NPN transistor Q2. The base elec- 30 trode of the transistor Q2 is grounded to potential 122a through a resistor 156 and the collector electrode thereof is connected to the source of positive potential 122 through a voltage divider network comprising resistors 158 and 160. The resistor 160-resistor 158 junc- 35 tion is directly connected to the base electrode of a PNP transistor Q3 whose emitter electrode is directly connected to the source of positive potential 122. The collector electrode of the transistor Q3 is connected to negative potential 122a through a voltage divider net-40 work comprising resistors 162 and 164 and is also connected through a feedback path comprising a series connected resistor 167 and a capacitor 168 to the base electrode of the transistor Q2. The resistor 162-resistor **164** junction is directly connected to the base electrode of a grounded emitter NPN transistor Q4. The collector electrode of the transistor Q4 is connected to the source of positive potential 122 through a PN junction diode D-3 which is connected across the coil 12.

In operation and with continued reference to FIG. 50 6a, the downward physical displacement of the coil 12, responsive to the weight of the golf ball dropping on diaphragm 10 as it enters the cup 6, generates a small electrical signal which is coupled from the terminal 102 through the capacitor 104 to the two-stage amplifier circuit 106. The field effect transistor FET-1 is connected as a class A amplifier and provides a voltage gain on the order of 1,000. The use of a field effect transistor is desirable both from the standpoint of a low drain current on the order of approximately 185 microamps and also for the low noise characteristics thereof at these low current values. This extends the life of the battery pack without misfires due to noise.

The amplified output signal from the transistor 65 FET-1 is coupled through the capacitor 120 to the base electrode of the transistor Q1 which is connected as a class C inverting amplifier. The output signal from the

amplifier 106 is taken from the collector electrode of the transistor Q1 and is applied to the transmitter circuit 152 to initiate the pulse or current flow which will eject the golf ball from the cup.

The conduction of the silicon controlled rectifier SCR-1 is triggered by this amplified signal from the coil 12. The transmission circuit 152 consists basically of an instantaneous signal transmitter and one relaxation oscillator. In the transmitter, the triggers of SCR-1 will immediately send a signal pulse through capacitor 154 to the drive circuit generally indicated at 166.

With reference to the relaxation oscillator of the circuit 152, conduction of the rectifier SCR-1 also applied the source of positive potential 118 across the resistor and the capacitor 130-resistor 136 junction is con- 15 132 and capacitor 134. The values of these elements are conveniently selected to fire or trigger the unifunction transistor UJ-1 about 1.2 seconds after the golf ball drops in the cup and physically displaces the coil 12 downwardly, in order to reactivate the cup for further operation. The capacitor 142 and resistor 144 act as a filter to prevent the initiation of conduction of the unijunction transistor UJ-1 when the golf ball is ejected by holding the voltage from the uppermost base electrode constant. The positive pulse developed on the lowermost base electrode of the unijunction transistor UJ-1 is coupled to the cathode of the SCR-1 through the capacitor 142 to provide a reverse bias which extinguishes the conduction of the SCR-1 after coil 12 has come to rest. As earlier explained, the diode D-1 provides a fast discharge path for the capacitor 148, when the conduction of the SCR-1 is extinguished, through the resistor 140, the base resistance of transistor UJ-1, and the resistor 144, to negative terminal 122a.

The delay between the coil coming to rest and cup reactivation tends to prevent damage which might otherwise result from recycled impacting of a ball in cup 6. But for this activation delay after impacting has occurred, a child or player could drop a ball into the cup 6, cover the cup 6 with a foot and induce potentially damaging "endless" recycling of the coil, cup, and diaphragm.

The drive circuit 166 receives the output pulse of the timing circuit 152 as an input pulse of the base electrode of transistor Q2 which conducts to effect the saturation of the transistor Q3. The conduction of the transistor Q3 holds the transistor Q2 in conduction until the coil 12 moves to its upper limit by the signal fed back through from the collector electrode of the transistor Q3 through the resistor 167 and capacitor 168.

The conduction of the transistor Q3 effects the conduction of the transistor Q4 which connects the positive d.c. potential from the source 118 through the coil 12 to ground. The resulting current flowing through the coil winding 79 reacts with the magnetic field in which the coil 12 is suspended to effect a rapid upward movement of the coil 12. This upward movement of the coil 12 effects the ejection of the golf ball as has been previously described.

The reactance of the coil winding 79 is desirably matched to the impedance of the source of positive potential 122 and the source potential accordingly drops significantly, when the coil 12 reaches the upper limit of its travel, due to the increased impedance load. This reduction in the potential seen at the collector electrode transistor Q2 drives the transistor Q2 into cut-off extinguishing the drive pulse.

13

Thus, the coil 12 serves at least two important functions in the circuit of FIG. 6a. It serves first as a sensing element to develop a signal when the golf ball drops into the cup. Secondly, the coil 12 functions as the linear actuator for ejecting the golf ball from the cup.

To facilitate the deactivation of circuit 100 when cup 1 is being transported, a mercury switch 172 may be incorporated in the circuit, possibly as shown in FIG. 6a. When the cup 1 is upright, switch 172 is closed and cirgreen to be charged, its inversion will open switch 172 and deactivate the circuit 100.

It now becomes appropriate to consider structural operating characteristics of a second presently preferred embodiment illustrated in FIGS. 7, 8, and 9.

SECOND PRESENTLY PREFERRED EMBODIMENT

FIGS. 7, 8, and 9 illustrate structural details of a second or alternate, presently preferred embodiment of 20 the automated golf cup mechanism 1.

In this connection, it will be understood that circuit means corresponding generally to that described in connection with FIG. 6, may be employed for the purpose of actuating the components of this second em- 25 bodiment.

A circuit similar to that shown in FIG. 6a may be employed for this purpose.

As will also be understood, the general mode of operation of the second embodiment corresponds to the 30 mode of golf cup operation described in connection with the first embodiment heretofore.

As shown in the "exploded" format view of FIG. 8, the components of the second preferred embodiment may comprise a unitized (or multicomponent) housing $^{-35}$ 200, a battery pack base 201, a control circuit panel means 202, and a generally annular battery pack assembly 203.

Battery pack assembly 203 may be taped together, with the battery electrodes being interconnected in the 40 manner previously described in connection with the arrangement shown in FIG. 5.

The components shown in FIG. 8 additionally include a magnet assembly 204, substantially identical to magnet assembly 14 and provided with a plurality of 45 downwardly extending and circumferentially spaced, threaded fastening means 205.

A centrally apertured terminal board 206 is provided along with a coil biasing spring 207 and a coil 208.

A generally frustoconical impacting cup 209 is included in the assembly of components, along with a generally radially flanged, threaded retaining member 210.

retaining ring means 212.

As will be apparent by reference to FIG. 7, the control panel 202 is inserted into an upwardly open receptacle or housing 213 carried by base plate 201. The battery assembly 203 is telescoped over the housing 213.

The magnet is positioned so as to overlie the assembled components 203, 201, and 202, with the threaded fastener 205 being threadably secured by threaded nut **205***a* to the base plate **201**.

Prior to effecting this assembly, the circuit panel 65 means 202 may be "potted" by fluid plastic means injected into, and allowed to harden within, the housing 213.

Of course, prior to such "potting" electrical connections would be made between the battery means 203 and the circuit means 202, as well as between the circuit means 202 and the terminal board 206,

Terminal board 206 merely provides a convenient connection juncture between the leads of the coil 208 and the control panel 202.

Before or after this assembly is completed, the spring 207 may be positioned between the top or center pole cuit 100 is active. When the cup is removed from a 10 214 of the magnet assembly 204 and the underside of a generally horizontally extending and centrally apertured top wall 215 of the core of coil assembly 208.

The positioning of the spring in this manner would support the coil 208 in a slightly elevated position in an 15 annular recess 216 of magnet 204.

In this slightly elevated recess, the coil 208 would be operable to move downwardly in response to the presence of a golf ball in the cup, dropping into the diaphragm 211.

The impacting means 209 comprise a generally frustoconical, albeit apertured, and upwardly diverging wall 217 and a generally horizontally extending, centrally apertured wall 218.

As shown in FIG. 7, impacting means 209 would be supported on the top of coil 208, and may rest directly on top of transversely extending core top wall 215. The annular periphery 215a of wall 215 may be somewhat rounded, as shown generally in FIGS. 7 and 8.

Leads 219 and 220 may extend from coil 208 outwardly between walls 215 and 218 to two terminals 221 and 222 on terminal board 206. Other leads 223 and 224 would extend from these terminals 221 and 222 downwardly through a magnet passage 225 to electrical connection means of control panel means 202.

In the assembly depicted in FIG. 7, coil 208 is operable to move upwardly through a central opening 226 in the terminal panel 206.

The threaded retaining member 210 passes through a central aperture 227 in impacting member base plate 218, and through a central aperture 228 in the top wall 215 of the core of coil 208, to threadably engage a threaded socket 229 in center pole 214 of magnet 204.

The under side 230 of flange 231 of retaining member 210 is operable to engage an upwardly moving base wall 218 of impacting member 209, and thus limit upward movement of this member.

The top surface 232 of retainer 210 may be threedimensionally rounded so as to provide support for the center of the under side of the diaphragm means 211, as generally depicted in FIG. 7.

With the components 210, 209, 208 and 207 connected with the other components 206, 204, 203, 202. and 201, housing 200 may be lowered over this com-A diaphragm 211 is included, along with diaphragm 55 pleted assemblage. The diaphragm 211 will then be positioned in abutting relation with, and disposed beneath, a housing flange 233.

> As shown in FIGS. 7 and 8, gasket 211 may be secured by retaining means comprising two arcuate rings 212a and 212b.

> These rings, when superposed on top of rim 233, will each partially circumscribe the diaphragm rim 211a and provide fastener receiving openings alignable with the fastener receiving openings in the diaphragm rim 211a, the superposed housing rim 233, and the top of magnet means 204.

> The diaphragm rim 211a may be effectively sandwiched between the securing rim or ledge means 233

and the top of magnet 204 by the use of threaded fastening means 212e, the rings 212a and 212b, as depicted generally in FIGS. 7 and 8. As there shown, the fastener means 212e pass through aligned openings in rim means 212a and 212b, housing rim 233, and diaphragm rim 211, to be threadably received within threaded sockets 204a in magnet means 204.

Each of the retaining rings 212a and 212b may be provided with a generally inverted L-shaped, radially inwardly projecting, hook-like structure.

Thus, the two hook-like structures 212c and 212d carried by the retaining means 212a and 212h, repectively, provide means within the golf cup interior engageable with a golf cup lifting tool.

This tool may comprise a handle, including means ¹⁵ operable to engage and exert a lifting force on the hook means 212c and 212d.

This arrangement enables an operator to effectively lift a golf cup axially out of its socket on the green without damaging housing or operating components of the golf cup itself. 20

As shown in FIG. 7, diaphragm 211 may include, in addition to rim 211a, a generally longitudinally extending bellows portion 235 encircling a cavity 236.

A transverse wall means 237 provides a generally annular recess 238 having a generally concave, upwardly opening cross section. Wall means 237 may be internally reinforced with fabric means, etc., such that its stiffness will exceed that of bellows means 235.

Recess 238 extends between a generally rim-like portion 239 of the diaphragm means and a generally upwardly converging, interiorly located wall means portion 240. A series of protuberances 239a, akin to elements 271a, may be carried by rim means 239.

A golf ball resting on concave recess 238 may generally conformingly engage the recess or the recess 238 may "sag" slightly beneath the golf ball as described in connection with the first embodiment. However, it is desirable that upper edge 242 be beneath diaphragm 40 recess rim 239.

Desirably, the recess 238 will provide stabilized concave support operable to support a golf ball in virtually any circumferential location about the recess 238.

While the diaphragm may be fabricated of fiber or 45 fabric reinforced elastomeric means, upward movement of the diaphragm caused by upward movement of the coil 208 and impacting cup 209 will serve to somewhat flex the diaphragm. Here, again, it is believed that this action may to some extent, not perfectly understood, cooperate with the impacting force directed against the diaphram by the cup 209 to provide a unique, effective random-type, golf ball ejecting action.

As will be appreciated, the arrangement shown in FIG. 7, is such that a downwardly biasing retaining spring is not employed in connection with the impacting means 209.

The overall mode of operation of the mechanism shown in FIG. 7 corresponds in general to that described with the first embodiment.

Thus, the presence of a golf ball dropping onto recess 238 will move the cup 209 and coil 208 downwardly so as to develop an electrical control signal indicative of the presence of a golf ball. This control signal, of course, is generated by the interaction between the windings of the coil 208 and the magnetic field generated by magnet means 204.

The thus generated control signal will be amplified by control circuit means 202 and in response to the amplified signal, a return flow of electricity will be transmitted from the battery pack 203, back to the windings of the coil 208. This upward abrupt movement will cause the cup 209 to move upwardly such that the upper rim 242 of cup 209 of the rim will engage the under side of the diaphragm generally adjacent the diaphragm rim area 239 and distend the diaphragm means upwardly.

This distension will impart an impacting force to the diaphragm, with the rim 242 imparting an impacting force through the diaphragm directly to the golf ball overlying the rim portion 239.

Here, again, it is contemplated that the golf ball would be impacted out of the recess 238 from one side of the cup so as to cross the cup and exit from the upper part of the cup on a generally opposite side. Desirably, the ball will be ejected back toward the location from which the ball was putted into the cup.

The independently movable characteristics of the impacting cup 209 and the coil 208 are believed to provide an intensified and improved impacting action. Empirical experience thus far gathered indicates that the separable nature of these components produces an impacting action operable to impact or hit a ball further away from the cup than the distance which would ordinarily be obtained by a mechanism where these components were unitized.

The reason for this improved impacting action is not fully understood. However, it is possible, as schematically depicted in FIGS. 9a and 9b that the improved impacting action may result from the ability of the cup 209 to pivot as the coil 208 elevates.

As shown in FIG. 9a, during the first part (possibly about half) of the upward movement of coil 208 through magnet gap 216, the edge of cup 209 below golf ball 73 will be weighted due to the presence of the ball, and it is believed that the cup 209 will tend to pivot counterclockwise, generally about coil top location 215b. Location 215b will tend to be located on rounded coil core top edge 215a, in general alignment with a plane extending radially of ball 73 and the central longitudinal axis of magnet 204 and coil 208.

With the components disposed as shown in FIG. 9a, such an initial pivotal movement will be in generally counterclockwise direction, possibly about left edge location 215h, and may continue until wall 218 engages retaining wall 230, generally as illustrated.

At this point, it will be recognized that some or all of the aforesaid tilting or pivotal movement may take place when ball 73 comes to rest on recess 238. In this event, the initial movement of cup 209 may be primarily of an elevating nature and serve to bring the tilted cup into engagement with the under side 230 of retainer 210.

During the last portion (possibly about the last half) of the elevating movement of coil 208, impact member 209 is believed to undergo a generally oppositely directed pivotal movement, the termination of which is schematically depicted in FIG. 9b. During this movement, a point of engagement 218a between wall 218 and the outer corner of retaining wall 230 may function as a pivot, wiht cup 209 undergoing upward, clockwise pivotal movement operable to impel ball 73 upward, from the left toward the right side of the ball receiving, upper cup portion 200a of housing 200.

Significantly, this latter phase of a multiple and reversely directed pivotal action would take place with coil 208 impacting member 209 through a relatively long pivot arm extending generally between engagement locations 215b and 218a. The length of this lever 5 arm would exceed the radius of coil 208 and such a lever arm would be displaced from the coil 208.

This latter ball impacting phase of a reverse pivotal movement of cup 209 would take place after coil 208 effective upward movement, and overcome the initial resistance to movement or system inertia.

As will be appreciated, this reverse pivotal movement would be facilitated by clearance between the edges of aperture 227 and the shank 210a of retainer 210 and 15by the rounded top coil corner 215a. This rounded corner would permit "rolling" pivotal contact between the under side of wall 218 and the top of coil 208.

It should also be noted, at this juncture, that it is believed that the center of diaphragm 21 will generally remain in superposed, contiguous engagement with, or at least close proximity to, the rounded top 232 of retainer 210 during the aforesaid reverse pivotal action.

The latter, clockwise, ball impacting movement phase, described in relation to Flg. 9b, would probably terminate when wall 218 pivoted into a generally horizontal plane shown in this FIGURE, into generally flush engagement with horizontal wall 230 of retainer 210. At this point, movement of coil 208 would cease, and 30the FIG. 6 and 6a circuit would deactivate coil 208 and permit the coil 208 and cup 209 to restore to the neutral position of FIG. 7.

It is also believed that the elimination of the downward biasing spring acting on the impacting cup 209 35 will contribute to more effective "long distance" ball impacting action, as will the removal of electrical leads from the cup 209.

Removal of the cup from its socket on the green may be facilitated by vent means. Such vent means may 40 comprise external recesses, extending longitudinally of the exterior of casing 200. Alternatively, or in addition to such a venting arrangement, vent tubes may extend between ledge 233 and base 201, internally of housing 200, and provide venting communication between the 45 base of the unit and the ball receiving area.

While various structural and operational embodiments of the overall invention have been described, it may be of clarifying interest to here review certain more salient advantages of the invention and its overall $\ ^{50}$ scope.

IMPROVED ENVIRONMENTAL PROTECTION

In order to effectively protect either of the aforesaid embodiments from environmental conditions, and particularly moisture, several protective measures may be

For example, it is contemplated that prior to the "potting" of the circuit panel within its housing through the use of materials such as epoxy resins, the battery pack, including terminals and at least parts of projecting leads, may be dipped in epoxy resin and the epoxy resin allowed to harden to form a moisture proof coating around the battery pack.

Various dipping and spraying techniques could be employed with partial or complete assemblies of either disclosed embodiment so as to virtually encapsulate and waterproof all electrical components of the system including the power source, circuit panel, leads, etc.

In order to positively electrically isolate battery terminals from the base of the magnet assembly, so as to avoid possible short circuiting problems, an insulating gasket may be interposed longitudinally between the magnet assembly and the upper end of the battery pack.

A representative insulating gasket 243, having a genhad acquired substantial stored energy and had started 10 erally annular, planar configuration overlaying the upper end of the battery pack, is shown in FIG. 7.

SUMMARY OF MAJOR ADVANTAGES AND SCOPE OF INVENTION

Most significantly, the present invention provides an automated golf cup concept of a practical and serviceable nature wherein complex throwing mechanisms are eliminated and reliance upon precision radial ejection is avoided.

When used on a practice putting green, the automated golf cup of this invention provides an ejecting mechanism which is continuously operable to cope with a plurality of players. In this instance, the cup may be located remote from, or out of access of, all players, with the ejecting mechanism serving to return balls back to an annularly arranged series of putting stations spaced outwardly of the cup.

The use of the diaphragm and the impacting cup arrangement provides a unique integration of a cup base, sealing mechanism and an impacting structure and affords a particularly effective random-type, ball ejecting or impacting action.

Significantly, this ball ejecting action is effected without relying upon precise, radially directed ejection or a "throwing" force as contemplated in prior patents such as English et al U.S. Pat. No. 3,467,378.

The use of the interacting coil means and magnet provides, in essence, a single movable actuating member which transmits force through the impacting cup and cooperates with the diaphragm means to effect random ejection. All this is accomplished without placing reliance on complex motor means or repositioning elements heretofore considered necessary by such patentees as English et al and Peeples (U.S. Pat. Nos. 3,310,311 and 3,310,312).

The use of the lightweight, speaker-type coil as the ejector mechanism affords a low-cost, highly effective mechanism operable to develop a ball presence indicating signal and also deliver ball impacting force to an ejecting mechanism such as a diaphragm.

The overall assembly provides a unique protection for relatively delicate control components. Such protection is achieved by housing the control panel or elements with the magnet and battery means and sealing these components in the base of the golf cup by the diaphragm means itself.

The overall characteristics of the unit are such that the golf cup is particularly immune or resistant to breakdowns caused by adverse environmental conditions and is thus characterized by a uniquely prolonged operating life.

The overall simplicity of the system contributes to acceptable low fabrication and installation costs and ensures minimal maintenance efforts and costs.

The golf ball impacting action of the present invention is believed to achieve its effectiveness through a variety of interacting phenomena, not all of which may be necessarily completely understood. However, it is believed that a most significant phenomena may reside in the alternately directed pivotal action described in connection with impacting cup 209 of the second embodiment.

In a sense, it is believed that the first pivotal movement of the cup 209 depicted in FIG. 9b may be viewed as a "cocking" movement which takes place as energy is developed in the ejecting or driving mechanism comprising the upwardly moving coil 208.

After the energy has been effectively accumulated, the reverse pivotal movement of the cup 209 depicted in FIG. 9h takes place and imparts effective impacting force to a golf ball supported by the cup or by a diaphragm overlaying the cup.

While the aforesaid diaphragm phenomena are believed to be significant, the impacting action of the cup alone, in the context of the invention as claimed, even in the absence of a diaphragm, would probably yield desirable, random ejection action.

As is described in parent application Ser. No. 186,289, this ejector mechanism of this invention may be employed in a golf cup operable to receive well known flag pins, such as those described in the prior 25 art, U.S. Pat. Nos. 1,568,320 (Coldwell) and 1,548,289 (Sparks). In addition the transmitter 152 may be provided with conventional circuitory, described in the aforesaid parent application, to delay the ejecting action, thereby employing the prior art ejection concept 30 featured, for example, in U.S. Pat. No. 3,105,683 (Kimbrell). However, such auxiliary concepts are independent of the invention aspects presented herein which relate to the ejector mechanism.

In describing the present invention, reference has 35 been made to certain variations which are exemplary of certain of the types of changes which may be made in practicing aspects of the ejector concept.

Those skilled in the automated golf cup art and familiar with this disclosure, may well recognize other addi- 40 tions, deletions, substitutions, modifications, or alterations, or changes which would fall within the scope of the ejector invention as defined in the appended claims.

What is claimed is:

1. A golf cup comprising:

first means including a housing operable to be positioned at least partially below ground level, and open upwardly, and receive a downwardly moving golf ball;

second means including a diaphragm operable to impact a golf ball out of said housing;

said diaphragm defining base of said housing and being operable to undergo downward and upward flexing movement;

said diaphragm including a recess operable to receive and support a golf ball at random locations therein;

third means operable to effect golf ball impacting, upward flexing movement of said diaphragm; and fourth means operable to actuate said third means in response to downward flexing movement of said

said upward flexing of said diaphragm being operable to impact said golf ball upwardly out of said housing, generally transversely across said diaphragm.

2. An apparatus as described in claim 1 wherein said diaphragm comprises:

a bellows encircling a cavity and operable to resiliently extend longitudinally upwardly of said housing; and

a flexible wall extending across an upper portion of said bellows and defining a generally annular, ball receiving recess, comprising said recess of said diaphragm, and generally encircling said cavity;

said annular, ball receiving recess having

a generally concave cross section,

an outer, generally annular rim operable to engage an under portion of a golf ball, and

an upwardly converging wall operable to engage an under portion of said golf ball.

3. An apparatus as described in claim 2 wherein said 15 third means comprises:

an impacting cup operable to engage the underside of said rim of said diaphragm and effect upward movement thereof;

said upward movement of said rim being operable to longitudinally extend said bellows and cause said annular, ball receiving recess to impact a golf ball supported thereby and cause said golf ball to be impacted generally upwardly out of said housing.

4. An apparatus as described in claim 3:

wherein said impacting cup comprises a generally frusto-conical, impacting wall diverging upwardly of a longitudinal axis of said housing; and

wherein said third means further includes

a lightweight, electromagnetic coil disposed beneath said frustoconical impacting wall,

said frustoconical impacting wall being movable upwardly, at least in part, away from said lightweight coil, and

a magnet defining an annular passage, within which annular passage said lightweight coil is telescopingly received;

said magnet and lightweight coil being operable to actuate said fourth means by generating an electrical signal in response to downward movement of said diaphragm, said frustoconical impacting wall, and said coil caused by engagement of a golf ball with said diaphragm;

said fourth means being operable to generate a flow of electricity through said coil in response to actuation of said fourth means, with said flow of electricity being operable, in cooperation with a magnetic field generated by said magnet, to induce upward, ball impacting movement of said lightweight coil;

said upward, ball impacting movement of said lightweight coil being operable to induce upward movement of said frustoconical impacting wall, with said upward movement of said frustoconical impacting wall in turn inducing upward movement of said diaphragm; and

said upward movement of said diaphragm being operable to impact a golf ball received therein generally across, and upwardly out of, said housing in a random manner;

said frustoconical impacting wall, during said upward movement, being movable relative to, and away from said coil; and

said fourth means including battery means operable to supply said flow of electricity.

5. An apparatus as described in claim 1:

wherein said third means includes

a coil movable downwardly in response to downward movement of said diaphragm caused by en-

gagement of a golf ball therewith and movable upwardly to effect golf ball impacting movement of said diaphragm;

said downward movement of said movable coil being operable to develop an electrical signal; 5

wherein said fourth means includes

an amplifier operable to amplify said electrical signal; and

means operable to deliver electrical energy to said 10 movable coil, with said electrical energy being operable to induce said upward movement of said coil.

6. An apparatus as described in claim **1** wherein said third means comprises:

a coil operable, when electrically energized, to impart a generally upwardly directed impacting force to said diaphragm; and

a magnet telescopingly receiving said coil and operable, in cooperation with said electrical energization 20 of said coil, to develop said impacting force.

7. A method of operating a golf ball ejecting cup which includes:

a golf ball receiving cup positioned at least partially below ground level, opening upwardly, and having 25 a base defined by a diaphragm;

said diaphragm having a recess operable to support a golf ball at random locations therein; and

a magnet mounted in said cup and a coil movable downwardly and upwardly in said cup relative to said magnet, said coil being movable downwardly relative to said magnet in response to downward movement of said diaphragm and movable upwardly relative to said magnet so as to induce upward flexing movement of said diaphragm;

said method comprising:

causing a golf ball to drop into said cup and be supported on said recess of said diaphragm;

generating an electric signal in response to downward movement of said coil relative to said magnet caused by downward movement of said diaphragm as caused by the presence of said golf ball in said cup on said diaphragm, and

in response to generation of said electrical signal, flexing said diaphragm upwardly and impacting said golf ball with said diaphragm generally upwardly out of said cup means in a generally random manner from one of said random locations, directed generally across said diaphragm.

30

35

4()

45

50

55

60