04/075466 A2 I TR 0 O RO OO

—
(@]

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

AT Y0 OO 0

(10) International Publication Number

WO 2004/075466 A2

2 September 2004 (02.09.2004) PCT
(51) International Patent Classification’: HO04L
(21) International Application Number:
PCT/US2004/004674

(22) International Filing Date: 17 February 2004 (17.02.2004)

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
60/447,736 14 February 2003 (14.02.2003)
(71) Applicant:
Street, Bellevue WA, 98004 (US).

English

English

UsS

NERVANA, INC. [US/US]; 10838 Main

(72) Inventor: OMOIGUI, Nosa; 549 239th Avenue S.E.,

Redmond, WA 98074 (US).

(74) Agent: BLACK, Richard, T.; Black Lowe & Graham

PLLC, 816 Second Avenue, Seattle, WA 98104 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL,

AM,

(84)

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-

ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR SEMANTIC KNOWLEDGE RETRIEVAL, MANAGEMENT, CAPTURE, SHAR-

ING, DISCOVERY, DELIVERY AND PRESENTATION

(57) Abstract: The present invention is directed to an integrated implementation framework and resulting medium for knowledge
retrieval, management, capture, sharing, discovery, delivery and presentation. The system is responsible for maintaining semantic

information.

WO 2004/075466 PCT/US2004/004674

SYSTEM AND METHOD FOR SEMANTIC KNOWLEDGE RETRIEVAL,
MANAGEMENT, CAPTURE, SHARING, DISCOVERY, DELIVERY AND
PRESENTATION

INVENTOR
Nosa Omoigui
PRIORITY CLAIM

This application is a Continuation-In-Part of U.S. Application Serial No. 10/179,651 filed
June 24, 2002, which claims priority to U.S. Provisional Application No. 60/360,610 filed
February 28, 2002 and to U.S. Provisional Application No. 60/300,385 filed June 22, 2001. This
Application also claims priority to U.S. Provisional Application No. 60/447,736 filed
February 14, 2003. This Application also claims priority to PCT/US02/20249 filed June 24,
2002. All of the foregoing applications are hereby incorporated by reference in their entirety as
if fully set forth herein.

COPYRIGHT NOTICE

This disclosure is protected under United States and International Copyright Laws. ©

2002 - 2004 Nosa Omoigui. All Rights Reserved. A portion of the disclosure of this ﬁatent

WO 2004/075466 PCT/US2004/004674

document contains material which is subject to copyright protection. The copyright owner has
no objection to the facsimile reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise

reserves all copyright rights whatsoever.

FIELD OF THE INVENTION
This invention relates generally to computers and, more specifically, to information

management and research systems.

BACKGROUND OF THE INVENTION

The general background to this invention is described in my co-pending parent
application (U.S. Application Serial No. 10/179,651 filed June 24, 2002), which is incorporated
by reference herein, and of which this application is a Continuation in Part.

SUMMARY OF THE INVENTION

The present invention is directed in part to a semantically integrated knowledge retrieval,
management, delivery and presentation system, as is more fully described in my co-pending
parent application (U.S. Application Serial No. 10/179,651 filed June 24, 2002). The present
invention and system includes several additional improved features, enhancements and/or
properties, including, without limitation, Entities, Profiles and Semantic Threads, as are more

fully described in the Detailed Description below.

BRIEF DESCRIPTION OF THE DRAWINGS
The preferred and alternative embodiments of the present invention are described in
detail below with reference to the following drawings.
FIGURE 1 is a partial screenshot overview and FIGURE 2 is an expansion of a dialog
box of FIGURE 1 for a scenario of a Patent Examiner using the preferred embodiment in a prior
art search, a screenshot of where “Magnetic Resonance Imaging” occurs in a Pharmaceuticals

taxonomy.

WO 2004/075466 PCT/US2004/004674

FIGURE 3 shows the Sharable Smart Request System Interaction, which is the binary
document format that encapsulates the SQML buffer with the smart request and also illustrates
how the extension handler opens a document.

FIGURE 4A is a partial screenshot overview of document files.

FIGURE 4B shows an illustration of two .REQ documents from FIGURE 4A (titled
‘Headlines on Reuters Related to My Research Report (Live)’ and ‘Headlines on Reuters (as of
January 21 2003, 08 17AM)’ on the far right) with a registered association in the Windows shell.

FIGURE 5 is a Diagram Mlustrating the Text-to-Speech Object Skin and shows an
illustration of an email message being rendered via a text-to-speech object skin.

\F IGURE 6 is a Diagram Illustrating a Text-to-Speech Request Skin.

FIGURE 7 is a Diagram Illustrating Knowledge Modeling for a Pharmaceuticals
Company Example.

FIGURE 8 is a Diagram Illustrating Client Component Integration and Interaction
Workflow.

FIGURES 9 — 11 show three different views of the Explore Categories dialog box.

FIGURES 12 and 13 show sample screenshots of the Dossier Smart Lens in operation.

FIGURE 14 shows how the server-side semantic query processor processes incoming
semantic queries (represented as SQML).

FIGURE 15 illustrates the semantic browser showing two profiles (the default profile
named “My Profile” and a profile named “Patents”). Observe how the user is able to navigate
his/her knowledge worlds via both profiles without interference. |

FIGURE 16A-C illustrate how a user would configure a profile (to create a profile, the
user will use the “Create Profile Wizard” and the profile can then be modified via a property
sheet as shown in other Figures).

FIGURE 17 shows how a user would select a profile when creating a request with the

“Create Request Wizard.”

WO 2004/075466 PCT/US2004/004674

FIGURE 18 shows a screenshot with the ‘Smart Styles’ Dialog Box illustrating some of
the foregoing operations and features.

FIGURE 19 illustrates the “Smart Request Watch” Dialog Box.

FIGURE 20 illustrates a Watch Window displaying Filtered Smart Requests (e.g.,
Headlines on Wireless). Figure 20 is an Ilustration of the Watch Window with a Current Smart
Request Title (e.g., “Breaking News”).

FIGURE 21 illustrates Entity views displayed in the Semantic Browser.

FIGURE 22A and 22B show the UI for the Knowledge Community Subscription.

FIGURE 23 illustrates a semantic thread object and its semantic links.

FIGURES 24 through 46B are additional screen shots further illustrating the functions,
options and operations as described in the Detailed Description.

FIGURE 47 as a sample semantic image for Pharmaceuticals/Biotech industry (DNA
helix).

FIGURE 48 is an illustration of a semantically appropriate image visualization for the
Breaking NeWs context template.

FIGURE 49 is a Visualization — Sample Image for smart hourglass, interstitial page,
transition effects, background chrome, etc. (Headlines).

FIGURE 50 is a Visualization — Sample Image for smart hourglass, interstitial page,
transition effects, background chrome, etc. (Two people working at a desk).

FIGURE 51 illustrates a semantic “Newsmaker” Visualization or Sample Image for smart
hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 52 illustrates a semantic “Upcoming Events” Visualization — Sample Image for
smart hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 53 is a Visualization — Sample Image for smart hourglass, interstitial page,
transition effects, background chrome, etc. (Petri Dish).

FIGURE 54 illustrates a semantic “History” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc.

WO 2004/075466 PCT/US2004/004674

FIGURE 55 illustrates a semantic Visualization — Sample Image for smart hourglass,
interstitial page, transition effects, background chrome, etc. (Spacecraft).

FIGURE 56 illustrates a “Best Buys” Visualization — Sample Image for smart hourglass,
interstitial page, transition effects, background chrome, etc.

FIGURE 57 illustrates a semantic Visualization — Sample Image for smart hourglass,
interstitial page, transition effects, background chrome, etc. (Coffee). |

FIGURE 58 illustrates a semantically appropriate Sample Image for “Classics” for smart
hourglass, interstitial page, transition effects, background chrome, etc. (Car).

FIGURE 59 illustrates a semantically appropriate “Recommendation” Visualization —
Sample Image for the contextual/application elements of smart hourglass, interstitial page,
tra;nsition effects, background chrome, etc. (Thumbs up).

FIGURE 60 illustrates a semantic “Today” Visualization — Sample Image for the
elements smart hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 61 illustrates a semantic “Annotated Items” Visualization — Sample Image for
smart hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 62 illustrates a semantic “Annotations” Visualization — Sample Image for smart
hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 63 illustrates a semantic “Experts” Visualization — Sample Image for smart
hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 64 illustrates a semantic “Places” Visualization — Sample Image for smart
hourglass, interstitial page, transition effects, background chrome, etc.

FIGURE 65 illustrates a semantic “Blenders” Visualization — Sample Image for smart
hourglass, interstitial page, transition effects, background chrome, etc.

FIGURES 66 through 84 illustrate semantic Visualizations for the following Information
Object Types, respectively: Documents, Books, Magazines, Presentations, Resumes,
Spreadsheets, Text, Web pages, White Papers, Email, Email Annotations, Email Distribution

Lists, Events, Meetings, Multimedia, Online Courses, People, Customers, and Users.

WO 2004/075466 PCT/US2004/004674

Figure 85 illustrates a semantic “Timeline” Visualization — Sample Image for smart

hourglass, interstitial = page, transition effects, background chrome, etc..

WO 2004/075466 PCT/US2004/004674

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

TABLE OF CONTENTS

A. ADDITIONAL ILLUSTRATIVE SCENARIOSc.cooteertrrerireierieserserieernssesssensersesessessesssssessssssonsossessassessanns 9
1. Patent Examiner Prior Art S€arch TOOL.....c.ccccooviinininiiiiiiiniciieteecee et sesese s sees 9
2. BioTech Company Research SCENArio.......ceeiiriirirssiminriericiiiiissesisssiesesisessssiessbassssssesssesessossnsssnes 13

B. SUBJECT MATTER FOR THE PRESENTLY PREFERRED EMBODIMENT OF THE INFORMATION
NERVOUS SYSTEM....cctioiirttireriniieereeesenesssiseesetassseesssesssesssssssssssessessiesossessssessseseesessssssossasasessecsssassncsncesane 17
1. Smart Selection Lens OVEIVIEWc.ecereererereriereriresietsieeessestsiesstessststessesstsesssesesssssessessesssessesessessessesensenes 18
2. Pasting Person ObJEcts OVEIVIEWcccveirecrrrerieneiiiessissies e ssessiessssssssssssssesesomsessssnenstenens 20
3. Saving and Sharing Smart ReQUESLS OVEIVIEWccveueeeiriiririieererierieirets e ettt st e se e s 22
4. Saving and Sharing Smart Snapshots OVEIVIEWcevivvvriniiimiiiiiismmm s 24
5. Virtual Knowledge COmMUIILIES.cocerviiiiniiniiiiiieniiiitieiitsenine oo sesestesssstssisessesssssessssseseseeses 25
6. Implementing Time-Sensitive Semantic QUETIES........c.cviriereririiriniieie ettt esee s sseseseasens 26
7. Text-To-Speech SKINS OVEIVIEWc.eererercrererrreereereteresestsessseesesessestsesseseerenecsesessraesseseseasessansasessessesesessns 26
8. Language Translation SKINScccvrerrerererererrerrneesecnsesissesesessesmsssessssessressassesesessesessssessesessssssssssessossesssensens 28
9. Categories as First Class Objects in the User EXPerience.......vvvvvereeriiecisnneiesennssesieesenseesnsesessesesesesenns 29
10, Categorized ANNOTALONSoiirereriieerere sttt sttt sset et st reteseb st b ba s et s eesenbnee et sbesebetseeseresabenenessssess 29
11. Additional Context TEMPIAESccovvirriiiriiiiicc i ab s sr s narenen 30
12. Importing and EXporting USET State........coovureireerrreireirrrerniraneercereesessseesbonessessesssanesesessesssessesessnsssesessssenss 31
13, Local Smart REGUESES.....oveeireieicreireieereieiees et ereesrsaesess s neseaneesesa saesesassessesesesseebessasasestansssssssesesessosen 32
14, Integrated NaVIZAtION......cueviviiiinicniiiiiiiei ettt cere e sreen s e s b e e s e ssesae s saestsb e s nesesnensene 32
15. Hints for Visited RESUIES ...ccceirivirniiiniiiiinniiiiiiieininsiissstrestsisseses et sesst e seesessesenasessansesesnesesensosas 33
16, KNoWIedge FEAETAtiOn ..cccvcrverrierrererrerrireeiersessesisreseeressessesssssssensessetssensissesesssssessassesessasssatesessessassssessersessnens 34
17. Anonymous Annotations and PUDHCATIONSc.cererivirrerniirnircrenisrs e rereesenreesecssessssesessesesesssesesnsnsenses 38
18. Offline Support in the SEMANtiC BIOWSET ..v.cvcverrecerrerreereressereereesesesisssneosaesaessesessssssessessasserssssessssssassesns 38
19. Guaranteed Cross-Platform Support in the Semantic BIOWSELcccvviviveeireriiervernniesirrnieresneseseesecsesseseneens 39
20, KnOWIedge MOGEIIZ. . .ovcciivieeecieriiitecrenteneeiaesresesreesesresaestesraeesesessersessssssnssaessssrsessesbessnessassessersonsassessesnsen 40
21, KIS HOUSEKEEPING RULES 1..veverrerererieierereniriersesseessessessessisenseressersesseseesissessassossessssessensassasesessnsessssessessesessens 41
22. Client Component Integration & Interaction WorkflOWcceceevvererereninicnecniecenneeasesesesesssesmseseseens 41
23. Categories Dialog Box User Interface Specification...........ocviricieninicneeiniieneneneiniseneseenssseesnens 42
24. Client-Assisted Server Data ConsiStency CHECKINZ.....ccvvvirerirerierteereerenieseeeieiseseersessneseessesersssssessersesassessnes 45
25, Client-Side DUplicate DEtECION.....ccvirereirrieereieererieeririererierensseeesesssisetesessesessetesessessssosesssessensasssesesserassnns 46
26. Client-Side Virtual RESUS CUISOT....c.cccviniiriiriiininininisisiesiescnnienserme sreeenssssenesesesessesssessassesesssasessssssssons 46
27, Virtnal Single SIZN-Om....ccoireririecrireeieiereteeerieeere s rrestrre s et s s e ssesaessse sssessessassentssessestesesssassssssssessessessssanss 47
28. Namespace Object ACHON MAIIXcoecirriieeiiieniniiiccreesestencnesete e reersess s esse e sie s et ens s essesasassasaessreseans 49
29. Dynamic End-to-End Ontology/Taxonomy Updating and Synchronization.........ueeeevenereeeeorenieeenrenenns 50
30. Invoking Dossier (Guide) QUETIBS w...vviriiiiiiriiinieeiciitnie i saereseresmesssssesesesesasesessssssssessesasssesens 51
31. Knowledge Community (AZENCy) SEMANtICScccvererererrrrarrrrrrerrerernresmiestsiesaressssssssssssesssssssessssssssesssasssssens 52
32. Dynamic Ontology and Taxonomy Mapping.........cceeveervereenienenienrsereesmenersesesssmesseressssesssssessessesserssssasssens 53
33, Semantic Alerts OPHIMIZAtIONS.....c.cecerrrereerreerireriressesesreesessnsasssreresesssnssesesassessossresesssssessonssesesssssessesesasesaes 53
34, Semantic “NEWS” IIMAZES......ccovirirererrrerertrrserieiseeseeresessesessesmesessiressnre sesessessessasseseessesassesersosessesesssesssaesanss 54
35. Dynamically Choosing Semantic IMages.......c.eveerererrerieniereeiariormerenisenmersesinssessessesessessassssersorsssseesserssaeseses 54
36. Dynamic Knowledge Community (Agency) Contacts Membership.......ecccvreeereninerernesresnssesesssenesrsseennes 54
37. Integrated Full-Text Keyword and Phrase INAEXINGcoevecerireniuerinmerieesereemsssnessnsssisessssssssesesseserssasses 55
38. Semantic “Mark ObJECt a5 REAA”......cocvicrerivirireniirertirienseisssenessssessers snsessesesssssesssssssessessssasmesssaessssnesersness 56
39, Multi-Select ODJECE LEIMS ...ceevereiirririeriiranresesirieistssassesesissssesesessersssesanre sassssesssssssssesessosessssesesnesssesensessssseses 57
40. Ontology-Based Filtering and Spam Managementcceceevierrerireesnssrssinsessssersssssssssssssessessssssssssssesases 58
41, Results REINEIMENE w..covecierrerirer ettt et sesssesasesssate sseseseseoresnasaereeseserseseesesesessnnnnsssnnesses 58
42, Semantic Management of INfOrmation STOTES.....cceeruirererrererireirerertiteriinsseesessestssesessesssssssssssseseseansesssnssans 60
43, Slide-Rule Filter USer INEITACEovueveverrirreeserereieiserisserseseeesssssesssesssrs sessssssssstsesesesesesessessacsenssssssnssssssasass 61
C. SERVER-SIDE SEMANTIC QUERY PROCESSOR SPECIFICATION........ccocosmmrmerurimiarisnsnsnenineesecsenens 62
1. OVEIVIEW cttitniucnetnerer et s sttt st et et sa st s b bt sasa st b s e e be R aa s e Hise e m et bbbt s e ans et seneesebanas 62
2. Semantic REIEVANCE SCOTEcccrurrrietrirereciriererer et s et st e sessnse s b e s bbb masre bbb bbbt seseneas 63
3. Semantic REIEVANCE FAIET....c.cciveiiieriierieiinteieeseeetessastssessaes e sseis eresese et ssssssssssnsssertsassssssssesanenssasenes 63

NousrwRe=T M= o

W

M M=

Ealb e R

ozzr

T
W=

Rl S o

RO

WO 2004/075466 PCT/US2004/004674

TIME-SENSIHVIEY FIHET ...vevvcvirecerciiiieeniinisree et sceesessenssessasstste oo sesesesssesnesssesessssesesesenssensssssesen 64
Knowledge Type Semantic Query Implementations.ccoeerereereverniernininrenesrisesssessessessesssssesssesssesesssennas 64
EXTENSIBLE CLIENT-SIDE USER PROFILES SPECIFICATION FOR THE INFORMATION NERVOUS
SYSTEM .oiiiiriiiirintiirititrteetsse e sestossseseststesassassssesesessasesessesessassasesensesasessesesssessssesessesosessesensesesesossssssessesssensones 71
SMART STYLES SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEMccoevrvrrrverernennan 73
SNATE SEYIES OVEIVIEW....uvevreerirrirsrresesersrantrsenereeseasssssesesesnstsessssesssnsssstassesssssesensasssssssesesesesesssesesesessssssssnens 73
Implicit and Dynamic Smart Style PIOPETHES.ceerviiviviriiniieerererersensmneseseuneseasesesesssstsesssssessssssssssssesssesens 73
SMART REQUEST WATCH SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM........... 75
OVEIVIBW ..ttt sttt st s et sese s e s s s sk e ae st st e sa et e se e s eseassaesesesssnbenessnanensens 75
Request Watch Lists (RWLs) and Groups (RWGS)......ccocereeirerrrierarirmsmmneessrnssnsersssssesessnsessssseseesssssesessnns 76
The Notification Manager (INIM)cocoeeererirrriininrinreriierenienssterenseesssssrssesessssersssessssssosossessassssesssressesesssssenee 79
Watch Group MOMIOLSvcuiviriseeiriiririniierseesesnserssesesessssesessssssssesesessssensesesssesessssssssesesssssssesesssssesessesssssesenes 80
The WatCh PANEc.ceiiiiiiiiiereirerccecenereretsisssse e sts e et stosss e s sbasases e s bes s bt essstessetessassessessetosensasasosssenen 80
The Watch WINAOW ...ceiiiiiiiiicecciniiecsise et ssessn et s st st sessssessssssessess e sesestesesensssesssases 81
Watch List AAAEnduImlc.ccuvviivieieiinininiecnieiniencereenseseseses et s assrsssssssssesesssesssssasesesessesessssssssonens 82
ENTITIES SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM........cccouvuveervrrneerennneneens 82
INEOAUCHION.vieiicicitticietct ettt st e n s sas s e s e s et e s e seae b b e st snnnanenesenssessensane 82
Portfolios (01 Entity COIECHONS)vvveririrueericaccerrierereisrntesiseseesiesesesssenssssssssssssssesssesssssssstessssssesssssssssesseens 88
SAIIPLE SCEMALIOS ...vvvvvvvrsrrseivaniessssssssssssssssssssessssssasesssssansssresesssasssassssassssssssssenssssssassaessesesesnssessesesesesesens 89
KNOWLEDGE COMMUNITY BROWSING AND SUBSCRIPTION SPECIFICATION FOR THE
INFORMATION NERVOUS SYSTEM.....ccccurirrrerircneeernmreteneresnnsesismsssisesssssssmsmsssssssssssssssssssssesssssssssssssssens 90
CLIENT-SIDE SEMANTIC QUERY DOCUMENT SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM.....coiiiiiiriniiririnintntsesseresessisessssstssssessesisessssssssssistessesesesesssssensssssssssesssosssssssssessssssnessons 91
Semantic Query Markup Language (SQML) OVEIVIEWcevvrerrenrerirerensereisnsisnesessnssssssssessssssssessssssssssisessnes 91
SQML GEIETALION....c..cseuecrererererirrreetetierteestsees et stesestsiessstessesesessesssesosere storsessessesssnessasostssosessnmonesessesossassen 100
SQML PaISINZ. ...uvireririiitiiiiisinic it sese st sb e see s ssresebesasessssse sertesssabansasssssasssnsenssesasesesesssnsssnssses 100
SEMANTIC CLIENT-SIDE RUNTIME CONTROL API SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM....oiiiiiririniniiriniscsessiensesireseeeessssseesesessesssesssssssises sesessssssssssssasesssetsssssssssssssssesssssses 101
Introducing the Nervana Semantic Runtime Control - OVEIVIEWcvceveveveeereeerersieeeiscisteceiseeereseseenaes 101
The Nervana Semantic Runtime Control AP..........ccoucereevnirnireniniee s sssssesessosssssssssssseesenees 101
Email ComtIol APISc.iiviiiriiiicincrcrietrtescneseseee s s assssss e st sss e nsssssesesosesstsesesssmnstossssssessessesesnens 112
Person ComtrOl APIS......civiiriiiininiiiieeersinieestsressssesesee s s sseebasse e en e sa st b ot aseeresessssensststosossasseneresnrassns 115
System COnITOL EVEILS ...c.cvcucuiuiireiieieintnininiereirsstrssssesesessssssessesessassessssessnsssssssssssssssnsossssessocsssesnensssenes 118
SECURITY SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM.....c.oooviveemeeererenen, 120
AUTNOTIZALION 1.ttt sttt st st b b et s e baes s sesbebesebesessasssssasssetatotsesssreneanasaraens 120
PEOPIE GIOUPS ...cvuvviriiiiniisiiitete ettt e teseis bbbt se e s st b e et st s s s ssanbebessessrnsanaesesarases st onssesstonessen 124
Identity Metadata FEAETatiOnccivevvrereieriieecrerieeeresseris et saereeesesessss sesesessssesessesesessesessssssssesessssesssseseses 125
ACCESS CONTOL...ouiviriiei it sst sttt bae sese bbb s bbb et esenber e s sasssassebenene 126
DEEP INFORMATION SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM.................. 132
CREATE REQUEST WIZARD SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM 138
CREATE PROFILE WIZARD SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM....... 140
CREATE BOOKMARK WIZARD SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM 141
Introducing the Create BoOKMArk WiIZardccccouvrveeriieriimieiererenessiesesesesssscssssssseseseeesessensessessesseesenes 141
SCEMATIOS «.vocececverirctiet st bbb et se b bt s ers s s b a s e s Ao n bR e b s en s e e e s s emeeseasenesens 142
Intelligent Publishing-Tool Metadata Suggestion and Maintenance.............o.cuevevrureeereeseseeerersesessessssssnes 142
SEMANTIC THREADS SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM™. 143
Semantic TRICAAScoccvviiiiriicnircseecsierne et s rrs e bt s e bt st base s st nee e see 143
Semantic Thread CONVEISAtONScccrurerrrirrererrenrersssssssssestesesesssesssssessessessesessssessossessssasessesessssmesesenses 146
Semantic Thread ManageIment..........cccvovreirriiriernreninineseeesrereissssssessissesssrssssssssssssssssssssssensmsesssessessesseses 147
SAMPLE SCREEN SHOTS......cococvtmirieinnerneeresrerernresssieisssssssrssssssssessesss sessessesassesessesssssssessossssssssssmassnessens 148
SPECIFICATION FOR SEMANTIC QUERY DEFINITIONS & VISUALIZATIONS FOR THE
INFORMATION NERVOUS SYSTEM.....cvecriirenirnrenrinmussnsiesssessessssesissessssssssssssssssssssssssisssssssssessesssssesns 148
Semantic IMAGES & IMOLION ...c.cuvrerrreerierrierireesesss s s etssse s esssss s seseesenssebessrastosessssssecmeneseeessssssasss 148
The STNATt HOUIGLASS. . ..ceuerereerriarnireseesnressiesiseisessssssesesssssesssssessnsssss sesssasssaesssesssssssssssastossssssesssssessneane 153
Visualizations -- Context TEIPIAESc.euevrrverererseersiesiniesssssseeesesesesssseesssssssasssssesssssesessessessessssessssesesens 154

WO 2004/075466 PCT/US2004/004674

In a currently preferred embodiment, the system incorporates not only the features and
functions described in my parent application and this CIP.
A. ADDITIONAL ILLUSTRATIVE SCENARIOS

The following scenarios help to explain the utility and operation of the system, and will

thereby make the rest of the detailed description easier to follow and understand.

1. Patent Examiner Prior Art Search Tool

Largely because of PTO fee diversion, there is a great deal of pressure on U.S. Patent
Examiners to conduct a robust prior art search in very little time. And, while the research tools
available to Examiners have improved dramatically in the last several years, those tools still have
many shortcomings. Among the shortcomings are that most of the research tools are text based,
rather than meaning based. So, for example, the search tool on the PTO website will search for
particular words in particular fields in a document. Similarly, the advanced search tool on
Google enables the Examiner to locate documents with particular words, or particular strings of
words, or documents without a particular word or words. However, in each case, the search
engine does not allow the Examiner to locate documents on the basis of meaning. So, for
example, if there is a relevant reference that teaches essentially the same idea, but uses
completely different words (e.g., a synonym, or worse yet, a synonymous phrase) than those in
the query, the reference, even though perhaps anticipating, may well not be discovered. Even if
the Examiner could spare the time to imagine and search every possible synonym, or even
synonymous phrase to the key words critical to the invention, it could still overlook references
because sometimes the same idea can be expressed without using any of the same words at all,
and sometimes the synonymous idea is not neatly compressed into a phrase, but distributed over

several sentences or paragraphs.
. The reason for this is that words do not denote or connote meaning one to one as, for
example, numerals tend to do. Put differently, certain meanings can be denoted or connoted by

several different words or an essentially infinite combination of words, and, conversely, certain

WO 2004/075466 PCT/US2004/004674

words or combinations of words can denote or connote several different meanings. Despite this
infinite many-to-many network of possibilities human beings can isolate (because of context,
experience, reasoning, inference, deduction, judgment, learning and the like) isolate probable
meanings, at least tolerably effectively most of the time. The current prior art computer-
automated search tools (e.g. the PTO website, or Google, or Lexis), cannot. The presently
preferred embodiment of my invention bridges this gap considerably because it can search on the
basis of meaning.

For example, using the some of the sea\trch functions of the preferred ergbodiment of the
present invention, the Examiner could conduct a search, and with no additional effort or time as
presently invested, obtain search results relevant to patentability even if they did not contain a
single word in common with the key words chosen by the Examiner. Therefore, the system
would obtain results relevant to the Examiner’s task that would not ordinarily be located by
present systems because it can locate references on the basis of meaning.

Also on the basis of meaning, it can exclude irrelevant references, even if they share a
key word or words in common with the search request. In other words, one problem in prior art
research is the problem of a false positive; results that the search engine “thought” were relevant
merely because they had a key word in common, but that were in fact totally irrelevant because
the key word, upon closer inspection in context, actually denoted or connoted an irrelevant idea.
Therefore, the Examiner must search for the needle in the haystack, which is a waste of time.

In contrast, using some of the search functions of the preferred embodiment of the
present invention, the density of relevant search results increases dramatically, because the
system is “intelligent” enough to omit search results that, despite the common key words, are not
relevant. Of course, it is not perfect in this respect any more than human beings are perfect in
this respect. But, it is much more effective at screening irrelevant results than present systems,
and in this respect resembles in function or in practice an intelligent research assistant than a

mere keyword based search engine. Thus, using the system, the Examiner can complete a much

10

WO 2004/075466 PCT/US2004/004674

better search in much less time. The specific mechanics of using the system this way, in one
example, would work as follows:

Imagine the Examiner is assigned to examine an application directed to computer
software for a more accurate method of interpreting magnetic resonance data and thereby
generating more accurate diagnostic images. To search for relevant prior art using the search
functions of the preferred embodiment of the present invention, the Examiner would:

a. Using the Create Entity wizard, create a “Topic” entity with the relevant
categories in the various contexts in which “Magnetic Resonance Imaging” occurs. As an
illustration, Figures 1 and 2 show where ‘“Magnetic Resonance Imaging” occurs in a
Pharmaceuticals taxonomy. Notice that there are several contexts in which the category occurs.
Add the relevant categories to the entity and apply the “OR” operation. Essentially, this amounts
to defining the entity “Magnetic Resonance Imaging” (as it relates to YOUR specific task) as
being equivalent to all the occurrences of Magnetic Resonance Imaging in the right contexts —
based on the patent application being examined.

b. Name the new entity “Magnetic Resonance Imaging” and perhaps “imaging” and
“diagnostic” or some variations and combinations of the same.

C. Drag and drop the “Magnetic Resonance Imaging” Topic entity to the Dossier
(special agent or default knowledge request) icon in the desired profile (the profile is preferably
configured to include the “Patent Database” knowledge community). This launches a new
Dossier request/agent that displays each special agent (context template). Each special agent is

displayed with the right default predicate as follows:

. All Bets on Magnetic Resonance Imaging

. Best Bets on Magnetic Resonance Imaging

. Breaking News on Magnetic Resonance Imaging
. Headlines on Magnetic Resonance Imaging

. Random Bets on Magnetic Resonance Imaging

. Experts in Magnetic Resonance Imaging

. Newsmakers in Magnetic Resonance Imaging

. Interest Group in Magnetic Resonance Imaging

. Conversations on Magnetic Resonance Imaging

11

WO 2004/075466 PCT/US2004/004674

. Annotations on Magnetic Resonance Imaging

. Annotated Items on Magnetic Resonance Imaging
. Upcoming Events on Magnetic Resonance Imaging
. Popular Items on Magnetic Resonance Imaging

. Classics on Magnetic Resonance Imaging

d. Alternatively, the request can be created by using the Create Request Wizard. To
do this, select the Dossier context template and select the “Patent Database” knowledge
community as the knowledge source for the request. Alternatively, you can configure the profile
to include the “Patents Database” knowledge community and simply use the selected profile for
the new request. Hit Next — the wizard intelligently suggests a name for the request based on the
semantics of the request. The wizard also selects the right default predicates based on the
semantics of the “Magnetic Resonance Imaging” “Topic” entity. Because the wizard knows the
entity is a “Topic,” it selects the right entities that make sense in the right contexts. Hit Finish.
The wizard compiles the query, sends the SQML to the KISes in the selected profile, and then
displays the results.

In the foregoing example, the results could be drawn, ultimately, from any source.
Preferably, some of the results would have originated on the Web, some on the PTO intranet,
some on other perhaps proprietary extranets. Regardless of the scope or origin of the original
documents, by use of the system they have been automatically processed, and automatically
“read” and “understood” by the system, so that when the Examiner’s query was initiated, and
also “read” and “understood” semantically, and by context, the system locates all relevant, and
only relevant results. Again, not perfectly, but radically more accurately than in any prior
systems. Note also that the system does not depend on any manual tagging or categorization of
the documents in advance. While that would also aid in accuracy, it is so labor intensive as to
utterly eclipse the advantages of online research in the first place, and is perfectly impractical
given the rate of increase of new documents.

In this scenario, the Examiner may also wish to use additional features of the preferred
embodiment of the invention. For example, the Examiner may wish to consult experts within the

PTO, or literature by experts outside the PTO, as follows (note that Experts in Magnetic

12

WO 2004/075466 PCT/US2004/004674

Resonance Imaging would be included in the Dossier on Magnetic Resonance Imaging;
however, the examiner might want to create a separate request for Experts in order to track it
separately, save it as a “request document,” email it to colleagues, etc.). Find all Experts in
Magnetic Resonance Imaging:

a. Follow steps 1-4 above.

b. Drag and drop the “Magnetic Resonance Imaging” entity to the Experts (special
agent or default knowledge request) icon in the desired profile. This automatically launches a
new request/agent appropriately titled “Experts in Magnetic Resonance Imaging.” The semantic
browser selects the right default predicate “in” because it “knows” the entity is a “Topic” entity
and the context template is a “People” template (Experts). As such, the default predicate is
selected based on the intersection of these two arguments (“in”) since this is what makes sense.

2. BioTech Company Research Scenario

Biotech companies are research intensive, not only in laboratory research, but in research
of the results of research by others, both within and outside of their own companies.
Unfortunately, the research tools available to such companies have shortcomings. Proprietary
services provide context-sensitive and useful results, but those services themselves have inferior
tools, and thus rely heavily on indexing and human effort, and subscriptions to expensive
specialized journals, and as consequence are very expensive and not as accurate as the present
system. On the other hand, biotech researchers can search inexpensively using Googlell, but it
shares all the key word based limitations described above.

In contrast, using the search features of the preferred embodiment of the present
invention, a biotech researcher could more efficiently locate more relevant results. Specifically,
the researcher might use the system as follows. For example, if some researchers wanted to Find
Headlines on Genomics and Anatomy written by anyone in Marketing or Research, they would

do that as follows:

13

WO 2004/075466 PCT/US2004/004674

a. Using the wizard, launch an information-type request/agent for distribution lists
with the keywords “Marketing Research”.

b. Select the Marketing distribution list result and click “Save as Entity” — this saves
the object as a “Team” entity (because the semantic browser “knows” the original object is a
distribution list — as such, a “Team” entity makes sense in this context).

c. Select the Research distribution list result and click “Save as Entity” — this saves
the object as a “Team” entity (because the semantic browser “knows™ the original object is a
distribution list).

d. Using the Create Entity Wizard, create a new “Team” entity and select the
“Marketing” and “Research” team entities as members. Name the new entity “Marketing or
Research”.

e. Using the Create Request Wizard, select the Headlines context template, and then
select the “Marketing or Research” entity as a filter. Also, select the Genomics category and the
Anatomy category. Next, select the “AND” operator. Hit Next — the wizard intelligently
suggests a name for the request based on the semantics of the request. The wizard also selects the
right default predicates based on the semantics of the “Marketing or Research” team entity (“by
anyone in”"). Because the wizard knows the entity is a “Team,” it selects “by anyone in” by
default since this makes sense. Hit Finish. The wizard compiles the query, sends the SQML to
the KISes in the selected profile, and then displays the results.

In addition, the researchers may wish to Find all Experts in Marketing or Research:

a. Follow steps 1-4 above.

b. Drag and drop the “Marketing or Research” entity to the Experts (special agent or
default knowledge request) icon in the desired profile. This launches a new request/agent
appropriately titled “Experts in Marketing or Research.” The semantic browser selects the right
default predicate “in” because it “knows” the entity is a “Team” entity and the context template
is a “People” template (Experts). As such, the default predicate is selected based on the

intersection of these two arguments (“in”) since this is what makes sense.

14

WO 2004/075466 PCT/US2004/004674

If the researchers expect to need to return to this research, or to supplement it, or to later
analyze the results, they may wish to Open a Dossier on Marketing or Research, as follows:

a. Follow steps 1-4 above.

b. Drag and drop the “Marketing or Research” entity to the Dossier (special agent or
default knowledge request) icon in the desired profile. This launches a new Dossier
request/agent that displays each special agent (context template). Each special agent is displayed

with the right default predicate as follows:

. All Bets by anyone in Marketing or Research

. Best Bets by anyone in Marketing or Research

. Breaking News by anyone in Marketing or Research

. Headlines by anyone in Marketing or Research

. Random Bets by anyone in Marketing or Research

. Experts in Marketing or Research

. Newsmakers in Marketing or Research

. Interest Group in Marketing or Research

. Conversations involving anyone in Marketing or Research
° Annotations by anyone in Marketing or Research

o Annotated Items by anyone in Marketing or Research

. Upcoming Events by anyone in Marketing or Research
. Popular Items by anyone in Marketing or Research

. Classics by anyone in Marketing or Research

The researchers may be interested in Finding “Breaking News on my Competitors”, and
would do so as follows:

a. For each competitor, create a new “competitor” entity (under “companies’) using
the Create Entity Wizard. Select the right filters as needed. For instance, a competitor with a
well-known English name — like “Groove” should have an entity that includes categories in
which the company does business and also the keyword.

b. Using the Create Entity Wizard, create a portfolio (entity collection) and add all
the competitor entities you created in step a. Name the entity collection “My Competitors.”

c. Using the Create Request Wizard, select the Breaking News context template and
add the portfolio (entity collection) you created in step b. as a filter. Keep the default predicate

selection. Hit “Next” — the wizard intelligently suggests a name for the request using the default

15

WO 2004/075466 PCT/US2004/004674

predicate (“Breaking News on My Competitors”). Hit Finish. The wizard launches a new
request/agent named “Breaking News on My Competitors.”

In addition, the researchers may wish to be kept apprised. They could instruct the system
to alert them on “Breaking News on our Competitors”, as follows:

a. Create the “Breaking News on My Competitors” request as described above.

b. Add the request to the request watch list. The semantic browser will now display
a watch pane (e.g., a ticker) showing “Breaking News on My Competitors.” Using the
Notification Manager (NM), you can also indicate that the semantic browser send alerts via
email, instant messaging, text messaging, etc. when there are new results from the request/agent.

In addition, the researchers may wish to keep records of competitors for future reference,
- and to have them constantly updated. The system will create and update such records, by the

researchers instructing the system to Show a collection of Dossiers on each of our competitors,

as follows:
a. Create entities for each of your competitors as described in 4a. above.
b. For each competitor entity, create a new Dossier on that competitor by dragging

the entity to the Dossier icon for the desired profile — this creates a Dossier on the competitor.

c. Using the Create Request Wizard, create a new request collection (blender) and
add each of the Dossier requests created in step b. above to the collection (you can also drag and
drop requests to the collection after it has been created in order to further populate the
collection). Hit Next — the wizard intelligently suggests a name for the request collection. Hit
Finish. The wizard launches a request collection that contains the individual Dossiers. You can
then add the request collection as a favorite and open it everyday to get rich, contextual
competitive intelligence.

The researchers may wish to review a particular dossier, and can do so by instructing the
system to Show a Dossier on the CEO (e.g., named John Smith):

a. Using the Wizard, launch an information-type request/agent for People with the

keywords “John Smith”.

16

WO 2004/075466 PCT/US2004/004674

b. Select the result and click “Save as Entity” — this saves the object as a “Person”
entity (because the semantic browser “knows” the original object is a person — as such, a
“Person” entity makes sense in this context). ‘

c. Using the Create Request Wizard, select the Dossier context template, and then
select the “John Smith” entity as a filter. Hit Next — the wizard intelligently suggests a name for
the request based on the semantics of the reqﬁest. The wizard also selects the right default
predicates based on the semantics of the “John Smith” person entity. Hit Finish. The wizard
compiles the query, sends the SQML to the KISes in the selected profile, and then displays the

results (as sub-queries/agents) as follows:

. All Bets by John Smith

. Best Bets by John Smith

. Breaking News by John Smith
. Headlines by John Smith

. Random Bets by John Smith

° Experts like John Smith (this returns Experts that have expertise on the same
categories as those in which John Smith has expertise)

. Newsmakers like John Smith (this returns Newsmakers that have recently “made
news” in the same categories as those in which John Smith has recently “made
news”)

. Interest Group like John Smith (this returns the people that have shown an interest

in the same categories as those in which John Smith has shown interest — within a
time-window (2-3 months in the preferred embodiment))

° Conversations involving John Smith

° Annotations by John Smith

. Annotated Items by John Smith

. Upcoming Events by John Smith

. Popular Items by John Smith

. Classics by John Smith

The foregoing scenarios illustrate the operation of the system. The system itself is

described in greater detail below.

B. SUBJECT MATTER FOR THE PRESENTLY PREFERRED EMBODIMENT OF
THE INFORMATION NERVOUS SYSTEM

Several improvements, enhancements and variations have been developed since the filing

of my co-pending parent application and prior provisional applications referenced above. Some

17

WO 2004/075466 PCT/US2004/004674

of these are improvements on, or only clarifications of, features previously included in the parent
application, and some are new features of the system altogether. These are listed and described
below. They are not arranged in order of importance, or in any particular order. While the
preferred embodiment of the present invention would allow the user to use any or all of these
features and- improvements described below, alone or in combination, no single feature is
necessary to the practice of the invention, nor any particular combination of features.

Also, in this application, reference is made to the same terms as are defined in my parent
application Serial No. 10/179,651, and the Description throughout this application is intended to
be read in conjunction with the definitions, terminology, nomenclature and Figures of my parent:

application except where the context of this application clearly indicates to the contrary.

1. Smart Selection Lens Overview

The Smart Selection Lens is similar to the Smart Lens feature of the Information Nervous
System information medium. In this case, the user can select text within the object and the lens
will be applied using the selected text as the object (dynamically generating new “images” as the
selection changes). This way, the user can “lens” over a configurable subset of the object
metadata, as opposed to being constrained to “lens” over either the entire object or nothing at all.
This feature is similar to a selection cursor/verb overloaded with context. For example, the user
can select a piece of text in the Presenter and hit the “Paste as Lens” icon over the object in
which the text appears. The Presenter will then pass the text to the client runtime component
(e.g., an ActiveX object) with a method call like:

bstrSRML = GetSRMLForText(bstrText);

This call then returns a temporary SRML buffer that encapsulates the argument text. The
Presenter will then call a method like:

bstrSQML = GetQueryForSmartLensOnObject(bstl;SRMLObject);

This method gets the SQML from the clipboard, takes the argument SRML for the object,

and dynamically creates new SQML that includes the resource in the SRML as a link in the

18

WO 2004/075466 PCT/US2004/004674

SQML (with the default predicate “relevant to”). The method then returns the new SQML. The
Presenter then calls the method:

ProcessSemanticQuery(bstrSQML);

This method passes the generated lens SQML and then retrieves the number of items in
the results and the SRML results, preferably asynchronously. For details on this call, see the
specification “Information Nervous System Semantic Runtime OCX.” The Presenter then

displays a preview window (or the equivalent, based on the current skin) with something like:

[Lens Agent Title]

Found 23 items

[PREVIEW OBJECT 1]

[PREVIEW WINDOW CONTROLS]

where the “Lens Agent Title” is the title of the agent on the clipboard. For details of the
preview window (and the preview window controls), please refer to my parent application Serial
No. 10/179,651.

In the preferred embodiment, the preview window will:

. Disappear after a timer expires (maybe 500ms) - on mouse move, the timer is
preferably reset (this will avoid flashing the window when the user moves the mouse around the
same area).

° Fade out slowly (eventually).

The preferred embodiment also has the following features:

1. One selection range per object but multiple selections per results-set is the best option.
Otherwise, the system would result in a confusing user experience and complex UI to show lens icons
per selection per object (as opposed to per object).

2. Outstanding lens query requests (which are regular SQML queries, albeit with SQML
dynamically generated consistent with the agent lens) should be cancelled when the Presenter no
longer needs them (e.g. if the Presenter is navigating to a new page, or if we are requesting new lens
info for an object). Tn any case, such cancellation is not critical from a performance (or bandwidth)

standpoint because lens queries will likely only ask for a few objects at a time. Even if the queries are

19

WO 2004/075466 PCT/US2004/004674

not cancelled, the Presenter can ignore the results. Regardless, because the Presenter also has to deal
with stale results, dropping them on the floor ~the Presenter will have to do this anyway (whether or
not lens queries are also cancelled). There will be a window of delay between when the Presenter
issues a cancel request and when the cancellation actually is complete. Because some results can
trickle in during this time, they need to be discarded. Thus, the preferred embodiment has
asynchronous cancellation implementations — the software component has been designed to always be
prepared to ignore bad or stale results. |

3. The Presenter preferably has both icons (indicating the current lens request state)
and tool-tips: When the user hovers over or clicks on an object, the Presenter can put up a tool-
tip with the words, “Requesting Lens Info” (or words to that effect). When the info comes back,
hovering will show the “Found 23 Objects” tip and clicking will show the results. This
interstitial tool tip can then be transitioned to the preview window if it is still up when the results
arrive.

In addition, note that the smart selection lens, like the smart lens, can be applied to
objects other than textual metadata. For instance, tﬁe Smart Selection Lens can be applied to
images, video, a section of an audio stream, or other metadata. In these cases, the Presenter
would return the appropriate SRML consistent with the data type and the “selection region.”
This region could be an area of an image, or video, a time span in an audio stream, etc. The rest
of the smart lens functionality would apply as described above, with the appropriate SQML
being generated based on the SRML (which in turn is based on the schema for the data type
under the lens).

2. Pasting Person Objects Overview

The Information Nervous System (which, again, is one of our current shorthand names
for certain aspects of our presently preferred embodiments) also supports the drag and drop or
copy and paste of ‘Person’ objects (People, Users, Customers, etc.). There are at least two

scenarios to illustrate the operation of the preferred embodiment in this case:

20

WO 2004/075466 PCT/US2004/004674

1. Pasting a Person object on a smart request representing a Knowledge community
(or Agency) from whence the Person came. In this case, the server’s semantic query processor
merely resolves the SQML from the client using the Person as the argument. For instance, if the
user pastes (or drags and drops) a person ‘Joe’ on top of a smart request ‘Headlines on Reuters,’
the client will create a new smart request using the additional argument. The Reuters
Information Nervous System Web service will then resolve this request by returning all
Headlines published or annotated by “Joe.” In this case, the server will essentially apply the
proper default predicate (‘published or annotated by’) — that makes sense for the scenario.

2. Pasting a Person object on a smart request representing a Knowledge community
(or Agency) from whence the Person did not come. In this‘case, because the Person object is not
in the semantic 'network of the destination Knowledge community (on its SMS), the server’s
semantic query processor would not be able to make sense of the Person argument. As such, the
server must resolve the Person argument, in a different way, such as, for example, using the
categories on which the person is an expert (in the preferred embodiment) or a newsmaker. For
ipstance, taking the above example, if the user pastes (or drags and drops) a person ‘Joe’ on top
of a smart request ‘Headlines on Reuters’ and Joe is not a person on the Reuters Knowledge
community, the Reuters Web service (in the preferred embodiment) must return Headlines that
are “relevant to Joe’s expertise.” This embodiment would then require that the client take a two-
pass approach before sending the SQML to the destination Web service. First, it must ask the
Knowledge community that the person belongs to for “representative data (SRML)” that
represents the person’s expertise. The Web service resolves this request by:

a. Querying the Knowledge community (e.g., Reuters) on which the person object is
pasted or dropped for that community’s semantic domain information which comprises and/or
represents that community’s specifictaxonomy and ontology. Note that there could be several
semantic domains. |

b. Querying the Knowledge community from whence the person object came for

that person object’s semantic domain information.

21

WO 2004/075466 PCT/US2004/004674

C. If the semantic domains are identical or if there is at least one common semantic
domain, the client queries the Knowledge community from whence the person came for the
person’s categories of expertise. The client then constructs SQML with these categories as
arguments and passes this SQML to the Knowledge community on which the person was pasted
or dropped.

If the semantic domains are not identical or there is not least one common semantic
domain, the client queries the Knowledge community from whence the person came for several
objects that belong to categories on which the person is an expert. In the preferred embodiment,
the implementation should pick a high enough number of objects that accurately represent the
categories of expertise (this number is preferably picked based on experimentation). The reason
for picking objects in this case is that the destination Web service will not understand the
categories of the Knowledge community from whence the person came and as such will not be
able to map them to its own categories. Alternatively, a category mapper can be employed (via a
centralized Web service on the Internet) that maps categories between different Knowledge
Communities. In this case, the destination Knowledge community will always be passed
categories as part of the SQML, even though it does not understand those categories — the
Knowledge community will then map these categories to internal categories using the category
mapper Web service. The category mapper Web service will have methods for resolving
categories as well as methods for publishing category mappings.

3. Saving and Sharing Smart Requests Overview

Users of the Information Nervous System semantic browser (the Information Agent or
Librarian) will also be able to save smart requests to disk, email them as an attachment, or share
them via Instant Messenger (also as an attachment) or other means. The client application will
expose methods to save a smart request as a sharable document. The client application will also
expose methods to share a smart request document as an attachment in email or Instant

Messenger.

22

WO 2004/075466 PCT/US2004/004674

A sharable smart request document is a binary document that encapsulates SQML (via a
secure stream in the binary format). It provides a safe, serialized representation of a semantic
query that, among other features, can protect the integrity and help protect the intellectual
property of the specification. For example, the query itself may embody trade secrets of the
researcher’s employer, which, if exposed, could enable a competitor to reverse engineer critical
competitive information to the detriment of the company. The protection can be accomplished in
several ways, including by strongly encrypting the XML version of the semantic query (the
SQML) or via a strong one-way hash. The sharable document has an extension (.REQ) that
represents the request. An extension handler on the client operating system is installed to
represent this extension. When a document with the extension is opened, the extension handler
is invoked to open the document. The extension handler opens the document by extracting the
SQML from the secure stream, and then creating a smart request in the semantic namespace with
the SQML. The handler then opens the smart request in the semantic namespace.

When a smart request in the semantic namespace is saved or if the user wants to send it as
an email attachment, the client serializes the SQML representing the smart request in the binary
REQ format and saves it at the requested directory path or opens the email client with the .REQ
document as an attachment.

Figure 3 shows the binary document format that encapsulates the SQML buffer with the
smart request and also illustrates how the extension handler opens the document. A similar
model can also be employed for sharing results (via SRML). In this case, a binary document
encapsulates the SRML, rather than the SQML as in the case above.

Figure 4A and 4B shows an illustration of two .REQ documents (titled ‘Headlines on
Reuters Related to My Research Report (Live)’ and ‘Headlines on Reuters (as of January 21
2003, 08 17AM)’ on the far right) with a registered association in the Windows shell. The first
request document is ‘live’ and the second one is a snapshot at a particular time (they are both

time-sensitive requests). Notice that the operating system has associated the semantic browser

23

WO 2004/075466 PCT/US2004/004674

application (Nervana Librarian) with the document. When the document is opened, the semantic
query gets opened in the application.

. Saving and sharing entities — the same process applies as above except with a
ENT extension to represent an entity. When an entity document is invoked, the Nervana
Librarian opens the entity SQML in the browser.

. Extension Property Sheet — this will create a temporary smart request or entity
(depending on the kind of document) in the semantic environment and display the property sheet
for a smart request or entity.

. Extension Tool tips — this will display a helpful tool tip when the user hovers over
a librarian document (a request, .REQ or an entity, .ENT).

4, Saving and Sharing Smart Snapshots Overview

The Information Nervous System also supports the sharing of what the inventor calls
“Smart Snapshots.” A smart snapshot is a smart request frozen in time. This will enable a
scenario where the user wants to share a smart request but not have it be “live.” For instance, by
default, if the user shares the smart request “Breaking News on Reuters related to this document”
with a colleague, the colleague will see the live results of the smart request (based on the
“current time”). However, if the user wants to share “[Current] Breaking News on Reuters
related to this document,” a smart snapshot will be employed.

A smart snapshot is the same as a smart request (it is also represented by an SQML query
+ document) except that the “attributes” section of the SQML document contains attributes
marking it as a snapshot (the flag QUERYATTRIBUTES SNAPSHOT). The creation date/time
of the SQML document is also stored in the SQML (as before — the SQML schema contains a
field for the creation date/time). When the user indicates that he/she wants to share the smart
request, the user interface (the semantic browser, Information Agent, or Librarian) prompts
him/her whether he/she wants to share the smart request (live) or a smart snapshot. If the user

indicates s smart request, the process described above (in Part 3) is employed. If the user

24

WO 2004/075466 PCT/US2004/004674

indicates a smart snapshot, the binary document is populated with the edited SQML (containing
the snapshot attribute) and the remainder the process is followed as above.

When the recipient of the binary document receives it (by email, instant messaging, etc.),
and opens it, the extension handler opens the document and adds an entry into the semantic
namespace as a smart request (as described above). When the recipient opens the smart request,
the client’s semantic query processor will send the processed SQML to the server’s XML web
service (as previously described). The server’s semantic query processor then processes the
SQML and honors the snapshot attribute by invoking the semantic query relative to the SQML
creation date/time. As such, results will be relative to the original date/time, thereby honoring

the intent of the sender.

5. Virtual Knowledge Communities

Virtual Knowledge Communities (agencies) refer to a feature of the Information Nervous
System that allows the publisher of a knowledge community to publish a group of servers to
appear as though they were one server. For instance, Reuters could have per-industry Reuters
Knowledge Communities (for pharmaceuticals, oil and gas, manufacturing, financial services,
etc.) but might also choose to expose one ‘Reuters’ knowledge community. To do this, Reuters
will publish and announce the SQML for the virtual knowledge community (rather than the URL
to the WSDL of the XML Web Service). The SQML will contain a blender (or collection) of the
WSDLs of the actual Knowledge Communities. The semantic browser will then pick up the
SQML and display an icon for the knowledge community (as though it were a single server).
Any action on the knowledge community will be propagated to each server in the SQML. If the
user does not have access for the action, the Web service call will fail accordingly, else the
action will be performed (no different from if the user had manually created a blender containing

the Knowledge Communities).

25

WO 2004/075466 PCT/US2004/004674

6. Implementing Time-Sensitive Semantic Queries

Semantic queries that are time-sensitive are preferably implemented in an intelligent
fashion to account for the rate of knowledge generation at the knowledge community (agency) in
question. For instance, ‘Breaking News’ on a server that receives 10 documents per second is
not the same as ‘Breaking News’ on a server that receives 10 documents per month. As such, the
server-side semantic query processor would preferably adjust its time-sensitive semantic query
handling according to the rate at which information accumulates at the server. To implement

this, general rules of thumb could be used, for instance:

. The most recent N objects where N is adjusted based on the number of new
objects per minute.
. All objects received in the last N minutes with a cap on the number of objects

(i.e., min (cap, all objects received in the last N minutes)).
N can also be adjusted based on whether the query is a Headline or Breaking News. In
the preferred embodiment, newsmaker queries is preferably implemented with the same time-

sensitivity parameters as Headlines.

7. Text-To-Speech Skins Overview

Text-to-speech is implemented at the object level and at the request level. At the object
level, the object skin runs a script to take the SRML of the object, interprets the SRML, and then
passes select pieces of text (in the SRML fields) to a text-to-speech engine (e.g., using the
Microsoft Windows Speech SDK) that generates voice output.

Figure 5 shows a diagram illustrating text-to-speech object skin. When executed, the

pipeline shown in Figure 5 results in the following voice output:

Reading Email Message
Appropriate Delay

Message From Nosa Omoigui
Appropriate Delay

Message Sent to John Smith
Appropriate Delay

Message Copied To Joe Somebody
Appropriate Delay

PR WD

26

WO 2004/075466 PCT/US2004/004674

9. Message Subject Is Web services are software building blocks used for distributed
computing

10. Appropriate Delay

11. Message Summary is Web services

12. Appropriate Delay

13. [Optional] Message Body is Web services are software building blocks used for
distributed computing

This example assumes a voice skin template as follows:

Reading Email Message

Appropriate Delay

Message From <message author name>
Appropriate Delay

Message Sent to <message to: recipient name>
Appropriate Delay

Message Copied To <message cc: recipient name>
Appropriate Delay

Message Subject Is <message subject text>

10. Appropriate Delay

11. Message Summary is <message body summary>
12. Appropriate Delay

13. [Optional] Message Body is <message body>

WO LN

Other templates can also be used to render voice that is easily understandable and which
conveys the semantics of the object type being rendered. Like the example shown above (which
is for email), the implementation should use appropriate text-to-speech templates for all
information object types, in order to capture the semantics of the object type.

At the request level, the semantic browser’s presentation engine (the Presenter) loads a
skin that takes the SRML for all the current objects being rendered (based on the user-selected
cursor position) and then invokes the text-to-speech object skin for each object. This essentially

repeats the text-to-speech action for each XML object being rendered, one after another.

Email Object (SRML)

Object Interpretation Engine (Object Skin)
Text-to-Speech Engine

From: Nosa Omoigui

To: John Smith

Cc: Joe Somebody

Subject: Web services

Summary: Web services are software building blocks used for distributed computing
Body: Web services...

27

WO 2004/075466 PCT/US2004/004674

Voice Output

Reading Email Message

Delay

Voice Output

Message From Nosa Omoigui
Delay

Voice Output

Message Sent To John Smith
Delay

Voice Output

Message Copied To Joe Somebody
Delay

Message Subject is Web services are software building blocks used for distributed
computing

Voice Output

Delay

Voice Output

Message Summary is Web services
Delay

Voice Output

Message Summary is Web services

Figure 6 shows an illustration of several email objects being presented in the semantic

browser via a request skin.

From: Nosa Omoigui
To: John Smith

Cc: Joe Somebody
Subject: Web services
Summary: Web services are software building blocks used for distributed computing
Body: Web services...
Email Object 1

Object Skin (Object 1)
Email Object 2

Email Object 3

Email Object N

8. Language Translation Skins

Language translation skins are implemented similar to text-to-speech skins except that
the transform is on the language axis. The XSLT skin (smart style) can invoke a software engine
to automatically perform language translation in real-time and then gemerate XML that is

encoded in Unicode (16 bits per character) in order to account for the universe of languages. The

28

WO 2004/075466 PCT/US2004/004674

XSLT transform that generates the final presentation output then will render the output using the
proper character set given the contents of the translated XML.

Language agnostic semantic queries

Semantic queries can also be invoked in a language-agnostic féshion. This is
implemented by having a translation layer (the SQML language translator) that translates the
SQML that is generated by the semantic browser to a form that is suitable for interpretation by
the KDS (or KBS) which in turn has a knowledge domain ontology seeded for one or more
languages. The SQML language translator translates the objects referred to by the predicates
(e.g., keywords, text, concepts, categories, etc.) and then sends that to the server-side semantic
query processor for interpretation. The results are then translated back to the original language

by the language translation skin.

0. Categories as First Class Objects in the User Experience

This refers to a feature by which categories of a knowledge community are exposed to
the end user. The end user will be able to issue a query for a category as an information type —
e.g., “Web services.” The metadata will then be displayed in the semantic browser, as would be
the case for any first-class information object type. Visualizations, dynamic links, context
palettes, etc. will also be available using the category object as a pivot. This feature is useful in
cases where the user wants to start with the category and then use that as a pivot for dynamic
navigation, as opposed to starting off with a smart request (smart agent) that has the category as a
parameter.

10. Categorized Annotations

Categorized annotations follow from categqries being first-class objects. Users will be
able to annotate a category directly — thereby simulating an email list that is mapped to a
category. However, for cases where there are many categories (for instance, in pharmaceuticals),
this is not recommended because information can belong to many categories and the user should

not have to think about which category to annotate — the user should publish the annotation

29

WO 2004/075466 PCT/US2004/004674

directly to the knowledge community (agency) where it will be automatically categorized or

annotate an object like a document or email message that is more contextual than a category.

11. Additional Context Templates

1. Experts — The Experts feature was indicated as a special agent in my y;érent
application Serial No. 10/179,651. As should have also been understood from that application,
the Experts feature can also operate in conjunction with the context templates section. Experts
are a context template and as the name implies indicate people that have expertise on one or
more subject matters or contexts (indicated by the PREDICATETYPEID EXPERTON
predicate).

2. Interest Group — this refers to a context template which as the name implies
indicate people that have interest (but not necessarily expertise) on one or more subject matters
or contexts (indicated by the PREDICATETYPEID_INTERESTIN predicate). This context
template returns People that have shown interest in any semantic category in the semantic
network. A very real-world scenario will have Experts returning people that have answers and
Interest Group returning results of people that have questions (or answers). In the preferred
embodiment, this is implemented by returning results of people who have authored information
that in turn has been categorized in the semantic network, with the knowledge domains
configured for the KIS. Essentially, this context template presents the user with dynamic,
semantic communities of interest. It is a very powerful context template. Currently, most
organizations use email distribution lists (or the like) to indicate communities of interest.
However, these lists are hard to maintain and require that the administrator manually track (or
guess) which people in the organization preferably belong to the list(s). With the Interest Group
context template, however, the “lists” now become intelligent and semantic (akin to “smart
distribution lists”). They are also contextual, a feature that manual email distribution lists lack.

Like with other context templates, the Interest Group context predicate in turn is

interpreted by the server-side semantic query processor. This allows powerful queries like

30

WO 2004/075466 PCT/US2004/004674

“Interest Group on XML” or “Interest Group on Bioinformatics.” Similarly, this would allow
queries (via drag and drop and/or smart copy and paste) like “Interest Group on My Local
Document” and “Interest Group on My Competitor (an entity).” The Interest Group context
template also becomes a part of the Dossier (or Guide) context template (which displays all
special agents for each context templates and loads them as sub-queries of the main
agent/request).

In the preferred embodiment, the context template should have a time-limit for which it
detects “areas of interest.” An example of this would be three months. The logic here is that if
the user has not authored any information (most typically email) that is semantically relevant to
the SQML filter (if available) in three months, the user either has no interest in that category (or
categories) or had an interest but doesn’t any longer.

3. Annotations of My Items — this is a context template that is a variant of
Annotations but is further filtered with items that were published by the calling user. This will
allow the user to monitor feedback specifically on items that he/she posted or annotated.

12. Importing and Exporting User State

The semantic browser will support the importation and exportation of user state. The
user will be able to save his/her personal state to a document and export it to another machine or

vice-versa. This state will include information (and metadata) on:

. Default user state (e.g., computer sophistication level, default areas of interest,
default job role, default smart styles, etc.)

. Profiles

. Entities (per profile)

. Smart requests (per profile)

. Local Requests (per profile)

. Subscribed Knowledge Communities (per profile)

The semantic browser will show UI (likely a wizard) that will allow the user to select
which of the user state types to import or export. The UI will also ask the user whether to
include identity/logon information. When the UI is invoked, the semantic browser will serialize

the user state into an XML document that has fields corresponding to the metadata of all the user,

31

WO 2004/075466 PCT/US2004/004674

state types. When the XML document is imported, the semantic browser will navigate the XML
document nodes and add or set the user state types in the client environment corresponding to the

nodes in the XML document.

13. Local Smart Requests

Local smart requests would allow the user to browse local information using categories
from an knowledge community (agency). In the case of categorized local requests, the semantic
client crawls the local hard drives, email stores, etc. extracts the metadata (including summaries)
and stores the metadata in a local version of the semantic metadata store (SMS). The client
sends the XML metadata (per object) to an knowledge community for categorization (via its
XML Web Service). The knowledge community then responds with the category assignment
metadata. The client then updates the local semantic network (via the local SMS) and responds
to semantic queries just like the server would. Essentially, this feature can provide functionality

equivalent to a local server without the need for one.

14. Integrated Navigation

Integrated Navigation allows the user to dynamically navigate from within the Presenter
(in the main results pane on the right) and have the navigation be integrated with the shell
extension navigation on the left. Essenfially, this merges both stacks. In the preferred
embodiment, this is accomplished via event signaling. When the Presenter wants to dynamically
navigate to a new request, it sets some state off the GUID that identifies the current browser
view. The GUID maps to a key in the registry that also has a field called ‘Navigation Event,’
‘Next Namespace Object ID’ and ‘Next Path.” The ‘“Navigation Event’ field holds a DWORD
value that points to an event handle that gets created by the current browser view when it is
loaded. When the Presenter wants to navigate to a new request, it creates the request in the
semantic environment and caches the returned ID of the request. It then dynamically gets the
appropriate namespace path of the request (depending on the information/context type of the

request) and caches that too. It then sets the two fields (“Next Namespace Object ID’ and ‘Next

32

WO 2004/075466 PCT/US2004/004674

Path’ with these two values). Next, it sets the ‘Navigation Event’ (in Windows, this is done by
calling a Win32 API named ‘SetEvent’).

To catch the navigation event, the browser view starts a worker thread when it first starts.
This thread waits on the navigation event (and also simultaneously waits on a shutdown event
that gets signaled when the browser view is being terminated — in Windows, it does this via a
Win32 API named ‘WaitForMultipleObjects’). If the navigation event is signaled, the ‘Wait’
API returns indicating that the navigation event was signaled. The worker thread then looks up
the registry to retrieve the navigation state (the object id and the path). It then calls the shell
browser to navigate to this object id and path (in Windows, this is done by retrieving a ‘PIDL’
and then calling IShellBrowser::BrowseTo off the shell view instance that implements

IShellView).

15. ’Hints for Visited Results

The Nervana semantic browser empowers the user to dynamically navigate a knowledge
space at the speed of thought. The user could navigate along context, information or time axes.
However, as the user navigates, he/she might be presented with redundant information. For
instance, the user can navigate from a local document to ‘Breaking News’ and then from one of
the °‘Breaking News’ result objects to ‘Headlines.” However, semantically, some of the
Headlines might overlap with the breaking news (especially if not enough time has elapsed).
This is equivalent to browsing the Web and hitting the same pages over and over again from
different ‘angles.’

The Nervana semantic browser handles this redundancy problem by having a local cache
of recently presented results. The Presenter then indicates redundant results to the user by
showing the results in a different color or some other Ul mechanism. The local cache is aged
(preferably after several hours or the measured time of a typical ‘browsing experience’). Old

entries are purged and the cache is eventually reset after enough time might have elapsed.

33

WO 2004/075466 PCT/US2004/004674

Alternately, at the users option, the redundant results can be discarded and not presented
at all. Specifically, the semantic browser will also haﬂdle duplicate results by removing
duplicates before rendering them in the Presenter — for instance if objects with the same metadata
appear on different Knowledge Communities (agencies). The semantic browser will detect this
by performing metadata comparisons. For unstructured data like documents, email, etc., the
semantic browser will compare the summaries — if the summaries are identical the documents are
very likely to be identical (albeit this is not absolutely guaranteed, especially for very long

documents).

16. Knowledge Federation

Client-Side Knowledge Federation

Client-side Knowledge Federation which allows the user to federate knowledge
communities and operate on results as though they came from one place (this federation feature
was described in my parent Application Serial No. 10/179,651). In the preferred embodiment,
such Client-side Knowledge Federation is accomplished by the semantic browser merging
SRML results as they arrive from different (federated) KISes.

Server-Side Knowledge Federation

Server-Side Knowledge Federation is technology that allows external knowledge to be
federated within the confines of a knowledge community. For instance, many companies rely on
external content providers like Reuters to provide them with information. However, in the
Information Nervous System, security and privacy issues arise — relating to annotations, personal
publications, etc. Many enterprise customers will not want sensitive annotations to be stored on
remote servers hosted and managed by external content providers.

To address this, external ;:ontent providers will provide their content on a KIS metadata
cache, which will be hosted and managed by the company. For instance, Reuters will provide
their content to a customer like Intel but Intel will host and manage the KIS. The Intel KIS

would crawl the Reuters KIS (thereby chaining KIS servers) or the Reuters DSA. This way,

34

WO 2004/075466 PCT/US2004/004674

sensitive Intel annotations can be published as ‘Post-Its’ using Reuters content as context while
Intel will still maintain control over its sensitive data.

Federated Annotations

Federated annotations is a very powerful feature that allows the user to annotate an object
that comes from one agency/server (KIS) and annotate the object with comments (and/or
attachment(s)) — like “Post-Its” on another server. For example, a server (call it Server A) might
not support annotations (this is configurable by the administrator and might be the common case
for Internet-based servers that don’t have a domain of trust and verifiable identity). A user might
get a document (or any other semantic result) from Server A but might want to annotate that
object on one or more agencies (KISes) that do support annotations (more typically Intranet or
Extranet-based agencies that do have a domain of trust and verifiable identity). In such a case,
the annotation email message would include the URI of the object to be annotated (the email
message and its attachment(s) would contain the annotation itself). When the server crawls its
System Inbox and picks up the email annotation, it scans the annotation’s encoded To or Subject
field and extracts the URI for the object to be annotated. If the URI refers to a different server,
the server then invokes an XML Web Service call (if it has access) to that server to get the
SRML metadata for the object. The server then adds the SRML metadata to its Semantic
Metadata Store (SMS) and adds the appropriate semantic links from the email annotation to the
SRML object. This is very powerful because it implies that users of the agency would then view
the annotation and also be able to semantically navigate to the annotated object even though that
object came from a different server.

If the destination server (for the annotation) does not have access to the server on which
the object to be annotated resides, the destination server informs the client of this and the client
then has to get the SRML from the server (on which the object resides) and send the complete
SRML back to the destination server (for the annotation). This embodiment essentially implies
that the client must first “de-reference” the URI and send the SRML to the destination server,

rather than having the destination server attempt to “de-reference” the URI itself. This approach

35

WO 2004/075466 PCT/US2004/004674

might also be superior for performance reasons as it spreads the CPU and VO load across its
clients (since they have to do the downloading and “de-referencing” of the URI to SRML).

Semantic Alerts for Federated Annotations

In the same manner that semantic browser would poll each KIS in the currently viewed
user profile for “Breaking News” relevant to each currently viewed object on a regular basis
(e.g., every minute), the same will be performed for annotations. Essentially, this resembles
polling whether each object that is currently displayed “was just annotated.” For annotations that
are not federated (i.e., annotations that have strong semantic links to the objects they annotate),
this is a straightforward SQML call back to the KIS from whence the annotated object came.
However, for federated annotations, the process is a bit more complicated because it is possible
that a copy of object has been annotated on a different KIS even though the KIS from whence the
object came doesn’t support annotations or contain an annotation for the specific object.

In this case, for each object being displayed, the semantic browser would poll each KIS
in the selected profile and pass the URI of the object to “ask” the KIS whether that object has

been annotated on it. This way, semantic alerts will be generated even for federated annotations.

36

WO 2004/075466 PCT/US2004/004674

Annotation Hints

This refers to a feature where the KIS returns a context attribute indicating that an object
has been annotated. This can be cached when the KIS detects an annotation (typically from the
System Inbox) and is updating the semantic network. This context attribute then becomes a
performance optimizer because for those objects with the attribute set, the client wouldn’t have
to query the KIS again to .check if the object has been annotated. This amounts to caching the
state of the object to avoid an extra (and unnecessary) roundirip call to the KIS.

Another Perspective on Annotations

An interesting way to think of the Simple and Semantic Annotations feature of the
Information Nervous System is that now every object/item/result in a user’s knowledge universe
will have its own contextual inbox. That way, if a user views the object, the inbox that is
associated with the object’s context is always available for viewing. In other words,

Category Naming and Identification (URIs) for Federated Knowledge Communities

This refers to how categories will be named on federated knowledge communities. For
instance, a Reuters knowledge community (agency) deployed at Intel will be named
Reuters@Intel with categories named like ‘Reuters@Intel/Information
Technology/Wireless/80211°. In the preferred embodiment, every category will be qualified

with at least the following properties:

. Knowledge Domain ID — this is a globally unique identifier that uniquely
identifies the knowledge domain from whence the category came
. Name — this is the name of the category

. Path — this is the full taxonomy path of the category

The preferred embodiment, the categories knowledge domain id (and not the name) is
preferably used in the category URI, because the category could be renamed as the knowledge
domain evolves (but the identifier should remain the same). An example of a category URI in
the preferred embodiment is:

nerv://c9554bce-aedf-4564-8117-48432bf8e5a0?type=category&path= Information
Technology/Wireless/80211

37

WO 2004/075466 PCT/US2004/004674

In this example, the knowledge domain id is c9554bce-aedf-4564-81{7-48432b18e5a0,
the URI type is “category” and the category path is “Information Technology/Wireless/80211”.

17. Anonymous Annotations and Publications

The semantic browser will also allow users to anonymously annotate and publish to an
knowledge community (agency). In this mode, the metadata is completely stored (with the user
identity) but is flagged indicating that the publisher wishes to remain anonymous. This way, the
Inference Engine can infer using the complete metadata but requests for the publisher will not
reveal his/her identity. Alternately, the administrator will also be able to configure the
knowledge community (agency) such that the inference engine cannot infer using anonymous

annotations or publications.

18. Offline Support in thé Semantic Browser

The semantic browser will also have offline support. The browser will have a cache for
every remote call. The cache will contain entries to XML data. This could be SRML or could
be any other data that gets returned from a call to the XML Web Service. Each call is given a
unique signature by the semantic browser and this signature is used to hash into the XML data.
For instance, a semantic query is hashed by its SOML. Other remote calls are hashed using a
combination of the method name, the argument names and types, and the argument data.

For every call to the XML Web Service, the semantic runtime client will extract the
signature of the call and then map this to an entry in the local cache. If the browser (or the
system) is currently offline, the client will return the XML data in the cache (if it exists). If it
does not exist, the client will return an error to the caller (likely the Presenter). If the browser is
online, the client will retrieve the XML data from the XML Web Service and update the cache
by overwriting the previous contents of the file entry with a file path indicated by the signature
hash. This assumes that the remote call actually goes through — it might not even if the

system/browser is online, due to network traffic and other conditions. In such a case, the cache

38

WO 2004/075466 PCT/US2004/004674

does not get overwritten (it only gets overwritten when there is new data; it does not get cleared
first).

19. Guaranteed Cross-Platform Support in the Semantic Browser

Overview

As discussed in my parent application (Serial No. 10/179,651), the Information Nervous
System can be implemented in a cross-platform manner. Standard protocols are preferably
employed where possible and the Web service layer should use interoperable Web service
standards and avoid proprietary implementations. Essentially, the test is that the semantic
browser does not have to “know” whether the Knowledge community (or agency) Web service it
is talking to is running on a particular platform over another. For example, the semantic browser
need not know whether the Web service it is talking to is running on Microsoft’s NETT™
platform or Sun’s J2EE platform (to take 2 examples of proprietary application servers), a Linux
or any other “open source” server. The Knowledge community Web service and the client-
server protocol should employ Web service standards that are commonly supported by different
Web service implementations like NET™ and J2EE™,

In an ideal world, there will be a common set of standards that would be endorsed and
properly implemented across Web service vendor implementations. However, this might not be
the case in the real world, at least not yet. To handle a case where the semantic browser must
handle unique functionality in different Web service implementations, the Knowledge
community schema is preferably extended to include a field that indicates the Web service
platform implementation. For instance, a .NET™ implementation of the Knowledge community
is preferably published with a field that indicates that the platform is NET™. The same applies
to J2EE™, The semantic browser will then have access to this field when it retrieves the
metadata for the Knowledge community (either directly via the WSDL URL to the Knowledge
community, or by receiving announcements via multicast, the enterprise directory (e.g., LDAP),

the Global Knowledge community Directory, etc.).

39

WO 2004/075466 PCT/US2004/004674

The semantic browser can then issue platform-specific calls depending on the platform
that the Knowledge community is running on. This is not a recommended approach but if it is
absolutely necessary to make platform-specific calls, this model is preferably employed in the

preferred embodiment.

20. Knowledge Modeling

Knowledge Modeling refers to the recommended way enterprises will deploy an
Information Nervous System. This involves deploying several KIS servers (per high-level
knowledge domain) and one (or at most few) KDS (formerly KBS) servers that host the relevant
ontology and taxonomy. KIS servers are preferably deployed per domain to strike a balance
between being too narrow such that there is mot enough knowledge sharing possibility of
navigation and inference in the network and being too high that scalability (in storage and CPU
horsepower needed by the database and/or the inference engine) becomes a problem. Of course,
the specific point of balance will shift over time as the hardware and software technologies
evolve, and the preferred embodiment does not depend on the particular balance struck. In
addition, KIS servers are preferably deployed where access control becomes necessary at the
server level (for higher-level security) as opposed to imposing access control at the group level
with multiple groups sharing the same KIS. For instance, a large pharmaceutical company could
have a knowledge community KIS for oncology for the entire company and another KIS for
researchers working on cutting-edge R&D and applying for strategic patents. These two KIS’
might crawl the same sources of information but the latter KIS would be more secure because it
would provide access only to users from the R&D group. Also, optionally, these researchers’
publications and annotations will not be viewable on the corporate KIS.

Figure 7 illustrates an example of a possible knowledge architecture for a
pharmaceuticals company. As shown in Figure 7, the KDS can serve several subsidiary KIS’, as

follows:

Client
Knowledge Integration Server 1 (Oncology)

40

WO 2004/075466 PCT/US2004/004674

Knowledge Integration Server 2 (Pharmacology)
Knowledge Integration Server 3 (Biotechnology)
Knowledge Integration Server 4 (Cardiology)
Knowledge Domain Server (Pharmaceuticals)

21. KIS Housekeeping Rules

The Knowledge Integration Server (KIS) will allow the admin to set up ‘housekeeping’
rules to purge old or stale metadata. This will prevent the SMS on the KIS from growing
infinitely large. These rules could be as simple as purging any metadata older than a certain age
(between 2-5 years depending on the company’s policies for keeping old data) and which does

not have any annotations and that is not marked as a favorite (or rated).

22. Client Component Integration & Interaction Workflow

The client components of the system can be integrated in several different steps or
\

sequences, as can the workflow interaction or usage patterns. In the presently preferred

embodiment, the workflow and component integration would be as follows:

1) Shell: User implicitly creates a SQML query (i.e. an agent) via Ul navigation or a
wizard.
2) Shell: User opens an agent (via tree or folder view).
3) The query buffer is saved as a file, and a registry entry created is created for the
agent.
a) Registry entry contains: Agent Name, Creation date, Agent (Request)-
GUID, SQML path, Comments, Namespace object type (agency, agent,
blender, etc), and attributes
4) Shell: The request is handed off to the presenter:
a) A registry request GUID entry is created containing (namespace path that
generated the request, and SQML file URL).
b) Browser is initialized and opened with command line
http://PresenterPage.html#RequestGUID http://presenterpage.html/. The
Presenter loads default Chrome contained in the page.

c) Presenter page loads presenter binary behavior and Semantic Runtime
OCX.
5) Presenter: Loads SQML and issues requests via the query manager.
a) Resolves request GUID to get SQML file path.
b) Loads SQML file into buffer, creates resource handler requests, passes

them to resource handlers, waits for and gathers results. Summarization of
local resources happens here. All summarization follows one of two paths:
Summarize the doc indicated by this file path, or summarize this text
(extracted from clipboard, Outlook, Exchange, etc.). Both paths produce a

41

WO 2004/075466 PCT/US2004/004674

summary in the same form, suitable for inclusion in a request to the
semantic server XML Web service.

c) Compiles SQML file into individual server request buffers, including any
- resource summary from above.
d) Initiates Server Requests by calling semantic runtime client Query
Manager.
6) Query Manager: Monitors server requests and makes callback on data. It also

signals an event on request completion or timeout. The callback is into the Presenter, which
mean inter-process messaging to pass the XML.

7) Presenter: receives data and loads appropriate skin:
a) Receives SRML data in buffer; this will happen incrementally.
b) Determines if there is a preferred skin (smart style) associated with this

agent, otherwise chooses default skin.

c) Transforms SRML into preferred skin format via XSLT. This is
multistage, for the tree of results (root is list, then objects, then
Deep/Lens/BN info) as results come in.

d) Display results in target DIV in page. The target is an argument to the
behavior itself and is defined by the root page.

8) Presenter: Calls Semantic Runtime to fill context panels (per context template),
deep info, smart copy and paste, and other semantic commands. The Presenter also loads the
smart style, which then loads semantic images, motion, etc. consistent with the semantics of the
request.

Figure 8 illustrates the presently preferred client component integration and interaction

workflow described above.

23. Categories Dialog Box User Interface Specification
a. Overview

The Categories Dialog Box allows the user to select one or more categories from a
category folder (or taxonomy) belonging to a knowledge domain. While more or fewer can be
deployed in certain situations, in the preferred embodiment, the dialog box has all of the
following user interface controls:

1. Profile — this allows the user to select a profile with which to filter the category
folders (or taxonomies) based on configured areas of interest. For instance, if a profile has areas
of interest set to “Health and Medicine,” selecting that profile will display only those category
folders that belong to the “Health and Medicine” area of interest (for instance, Pharmaceuticals,
Healthcare, and Genes). This control allows the user to focus on the taxonomies that are relevant

to his/her knowledge domain, without having to see taxonomies from other domains.

42

WO 2004/075466 PCT/US2004/004674

2. Area of Interest — this allows the user to select a specific area of interest. By
default, this combo box is set to “My Areas of Interest” and the profile combo box is set to “All
Profiles.” This way, the dialog box will display category folders for all areas of interest for all
profiles. However, by using the “Area of Interest” combo box, the user can directly specify an
area of interest with which to filter the category folders, regardless of the areas of interest in
his/her profile(s).

3. Publisher Domain Zone/Name — this allows the user to select the domain zone
and name of the taxonomy publisher. This is advantageous to distinguish publishers that might
have name collisions. In the preferred embodiment, the Publisher Domain Name uses the DNS
naming scheme (for instance, IEEE.org, Reuters.com). The domain zone allows the user to
select the scope of the domain name. In the preferred embodiment, the options are Internet,
Intranet, and Extranet. The zone selection further distinguishes the published category folder (or
taxonomy). A fairly common case would be where a department in a large enterprise has its own
internal taxonomy. In this case, the department will be assigned the Intranet domain zone and
will have its own domain name — for instance, Intranet\Marketing or Intranet\Sales.

4. Category Folder — this allows the user to select a category folder or taxonomy.
When this selection is made, the categories for the selected category folder are displayed in the
categories tree view.

5. Search categories — this allows the user to enter one or more keywords with which
to filter the currently displayed categories. For instance, a Pharmaéeuticals researcher could
select the Pharmaceuticals taxonomy but then enter the keyword “anatomy” to display only the
entries in the taxonomy that contain the keyword “anatomy.”

6. “Remember” check box — this allows the user to specify whether the dialog box
should “remember” the last search when it exits. This is very helpful in cases where the user
might want to perform many similar category-based searches/requests from the same category

folder and with the same keyword filter(s).

43

WO 2004/075466 PCT/US2004/004674

7. Search Options — these controls allow the user to specify how the dialog box
should interpret the keywords. The options allow the user to select whether the keywords should
apply to the entire hierarchy of each entry in the taxonomy tree, or whether the keywords should
apply to only the [end] names of the entries. For instance, the taxonomy entry
“Anatomy\Cells\Chromaffin Cells” will be included in a hierarchy filter because the hierarchy
includes the word “Anatomy.” However, it will be excluded from a names filter because the
end-name (“Chromaffin Cells”) does not include the word “Anatomy.”

Also, the search options allow the user to select whether the dialog box should check for
all keywords, for any keyWord, or for the exact phrase.

8. Categories Tree View — the tree view displays the taxonomy hierarchy and allows
the user to select one or more items to add to the Create Request Wizard or to open as a new
Dossier (Guide) request/ageht. The user interface breaks the category hierarchy into “category
pages” — for performance reasons. The UI allows the user to navigate the pages via buttons and
a slide control. There is also a “Deselect All” button that deselects all the currently selected
taxonomy items.

9. Explore Button — this is the main invocation button of the dialog box. When the
dialog box is launched from the Create Request Wizard, this button is renamed to “Add” and
adds the selected items to the wizard “filters” property page. When the dialog box is launched
directly from the application, the button is titled “Explore” and when clicked launches a Dossier
request on the selected categories. If the user has multiple profiles or if multiple taxonomy
categories are selected, the dialog box launches another dialog box, the “Explore Categories
Options” dialog box that prompts the user to select the profile with which to launch the Dossier
and/or the operator to use in applying the categories as filters to the Dossier (AND or OR).

The features described above are illustrated in Figures 9 — 11, which show thfee different

views of the Explore Categories dialog box.

44

WO 2004/075466 PCT/US2004/004674

24. Client-Assisted Server Data Consistency Checking

As the server (KIS) crawls knowledge sources, there will be times when the server’s
metadata cache is out of sync with the sources themselves. For instance, a web crawler on the
KIS that periodically crawls the Web might add entries into the semantic metadata store (SMS)
that become out of date. In this case, the client would get a 404 error when it tries to invoke the
source URI. For data source adapters (DSAs) that have monitoring capabilities (for instance, for
file-shares that can be monitored for changes), this wouldn’t be much of an issue because the
KIS is likely to be in sync with the knowledge source(s). However, for sources such as Web
sites that don’t have monitoring/change-notification services, this may present an issue of
concern.

My parent application (Serial No. 10/179,651) described how the KIS can use a
consistency checker (CC) to periodically purge stale entries from the SMS. However, in some
situations this approach might impair performance because the CC would have to periodically
scan the entire SMS and confirm whether the indexed objects still exist. An alternative
embodiment of this feature of the invention is to have the client (the semantic browser) notify the
server if it gets a 404 error. To do this, the semantic browser would have to track when it gets a

?

404 error for each result that the user “opens.” For Web documents, the client can poll for the
HTTP headers when it displays the results, even before the user opens the results. In this case, if
the source web server reports a 404 error (object not found), the client should report this to the
KIS.

When the KIS gets a “404 report” from the client, it then intelligently decides whether
this means the object is no longer available. The KIS cannot arbitrarily delete the object because
it is possible that the 404 error was due to an intermittent Web server failure (for instance, the
directory on the Web server could have been temporarily disabled). The KIS should itself then
attempt to asynchronously download the object (or at the very least, the HTTP headers in the
case of a Web object) several times (e.g., 5 times). If each attempt fails, the KIS can then

conclude that the object is no longer available and remove it from the SMS. If another client

45

WO 2004/075466 PCT/US2004/004674

reports the 404 error for the same object while the KIS is processing the download, the KIS
should ignore that report (since it is redundant).
This alternate technique could be roughly characterized as lazy consistency checking. In

some situations, it may be advantageous and preferred.

25, Client-Side Duplicate Detection

The server (KIS) performs duplicate detection by checking the source URIs before
adding new objects into the semantic metadata store (SMS). However, for performance reasons,
it is sometimes advantageous if the server does not perform strict duplicate-detection. In such
cases, duplicate detection is best performed at the client. Furthermore, because the client
federates results from several KISes, it is possible for the client to get duplicates from different
KISes. As such, it is advantageous if the client also performs duplicate detection.

In the preferred embodiment, the client removes objects that are definitely duplicates and
flags objects that are likely duplicates. Definite duplicates are objects that have the same URI,
last modified time stamp, summary/concepts, and size. Likely duplicates are objects that have
the same summary/concepts, but have different URISs, last modified times, or sizes. For objects
for which summary extraction is difficult, it is recommended that the title also be used to check
for likely duplicates (i.e., objects that have the same summary but different titles are not
considered likely duplicates because the summary might not be a reliable indicator of the
contents of the object). Also, if summary/concept extraction is difficult (in order to detect
semantic overlap/redundancy), the semantic browser can limit the file-size check to plus or
minus N % (e.g., 5%) — for instance, an object with the same summary/concepts and different
URISs, last-modified times, and sizes might be disqualified as a likely duplicate if the file-size is
within 5% of the file-size of the object it is being compared to for redundancy checking.

26. Client-Side Virtual Results Cursor

The client (semantic browser) also provides the user with a seamless user experience

when there are multiple knowledge communities (agencies) subscribed to a user profile. The

46

WO 2004/075466 PCT/US2004/004674

semantic browser preferably presents the results as though they came from one source. Similarly,
the browser preferably presents the user with one navigation cursor — as the user scrolls, the
semantic browser re-queries the KISes to get more results. In the preferred embodiment, the
semantic browser keeps a results cache big enough to prevent frequent re-querying — for
instance, the cache can be initialized to handle enough results for between 5-10 scrolls (pages).
The cache size are preferably capped based on memory considerations. As the cursor is
advanced (or retreated), the browser checks if the current I;age generates a cache hit or miss. Ifit
generates a cache hit, the browser presents the results from the cache, else if re-queries the KISes
for additional results which it then adds to the cache.

The cache can be implemented to grow indefinitely or to be a sliding window. The
former option has the advantage of simplicity of implementation with the disadvantage of
potentially high memory consumption. The latter option, which is the preferred embodiment,
has the advantage of lower memory consumption and higher cache consistency but with the cost
of a more complex implementation. With the sliding window, the semantic browser will purge
results from pages that do not fall within the window (e.g., the last N — e.g., 5-10 — pages as
opposed to all pages as with the other embodiment).

27. Virtual Single Sign-On

The client (semantic browser) also provides the user with a seamless user experience
when authenticating the user to his/her subscribed knowledge communities (agencies). It does
this via what the inventor calls “virtual single sign-on.” This model involves the semantic
browser authenticating the user to knowledge communities without the user having to enter
his/her username and password per knowledge community. Typically, the user will have a few
usernames and passwords but might have many knowledge communities of which he/she is a
member (especially within a company based on departmental or group access, and on Internet-
based knowledge communities). As such, the ratio of the number of knowledge communities to

the number of authentication credentials (per user) is likely to be very high.

47

WO 2004/075466 PCT/US2004/004674

With virtual single sign-on, the user specifies his/her logon credentials to the semantic
browser in a server (knowledge community)-independent fashion. The semantic browser stores

the credentials in a Credential Cache Table (CCT). The CCT has columns as illustrated below:

Account Name User Name Password Knowledge Community Entry List
. Account Name — this is a friendly name for the account

. User Name — this is the logon user name (e.g., an email address)

. Password — this is the password, stored encrypted with a secure private key

. Knowledge Community Entry List (KCEL) — this is a list of knowledge
communities that authenticate the user using the credentials for this account

When the user first attempts to subscribe to a knowledge community (or access the
knowledge community in some other way — for instance, to get the properties of the community),
the semantic browser prompts the user for his/her password and then tries to logon to the server
using the supplied credentials. If a logon is successful, the semantic browser creates a new CCT
entry (CCTE) with the supplied credentials and adds the KC to the Knowledge Community Entry
List (KCEL) for the new CCT entry.

For each subsequent subscription attempt, the semantic browser checks the CCT to see if
the KC the user is about to subscribe to is in the KCEL for any CCTE. If it is, the semantic
browser retrieves the credentials for the CCTE and logs the user on with those credentials. This
way, the user does not have to redundantly enter his/her logon credentials.

Note that the semantic browser also supports pass-through authentication when the
operating system is already logged on to a domain. For instance, if a Windows machine is
already logged on to an NT (or Active Directory) domain, the client-side Web service proxy also
includes the default credentials to attempt to logon to a KC. In the preferred embodiment, the
additional credentials supplied by the user are preferably passed via SOAP security headers (via
Web Services Security (WS-Security) or a similar scheme). For details of WS-Security and
passing authentication-information in SOAP headers, see hitp://www.oasis-

open.org/committees/download.php/3281/WSS-SOAPMessageSecurity-17-082703-merged.pdf

48

WO 2004/075466 PCT/US2004/004674

The semantic browser exposes a property to allow the user to indicate whether the
credentials for a CCTE are preferably purged when the KCEL for the CCTE is empty or whether
the credentials should be saved. In the preferred embodiment, the credentials are preferably
saved by default unless the user indicates otherwise. If the user wants the credentials purged, the
semantic browser should remove a KC from a CCTE in which it exists when that KC is no
longer subscribed to any profile in the browser. If after removing the KC from the CCTE’s
KCEL, the CCTE becomes empty, the CCTE is preferably deleted from the CCT.

The virtual single sign-on feature, like many of the features in this application, could be
used in applications other than with my Information Nervous System or the Virtual Librarian.
For example, it could be adapted for use by any computer user who must log into more than one
domain.

28. Namespace Object Action Matrix

The table below shows the actions that the semantic browser invokes when namespace

objects are copied and pasted onto other namespace objects.

- Destination” EOO O G Ao IR e
- ©h|n Entity T Object | oo T | Default 7| . L | Dossier - Community ;| Application
Source { ‘Entity Collection) | (Result) Profile Profile Request (Guide) (Agency) | (Root Icon)
Entity Object Copy Object Copy Copy Query Dossier Dossier N/A (Open

Lens Lens Query Query as bookmark
(Dossier) (Dossier) (fromKC) | in default
profile in
alternative
embodiment)
Portfolio Object Copy Object Copy Copy Query Dossier Dossier N/A (Open
(Entity Lens (contents) | Lens Query Query as bookmark
Collection) | (Dossier) (Dossier) (from KC) | in default
profile in
alternative
embodiment)
Object Object Object Object Copy Copy Query Dossier Dossier (Open as
(Result) Lens Lens Lens (Bookmark) | (Bookmark) Query Query bookmark in
(Dossier) (Dossier) (Dossier) \ (fromKC) | default
profile)
Profile N/A N/A N/A N/A N/A N/A N/A N/A N/A
Defauit N/A N/A N/A N/A N/A N/A N/A N/A N/A
Profile
Request Smart Smart Lens | Smart Copy Copy Agent Dossier Dossier Copy (to
Lens Lens Lens Agent Agent Lens | default
Lens (fromKC) | profile)
Dossier Dossier Dossier Dossier Copy Copy Dossier Dossier Dossier Copy (to
(Guide) Smart Smart Lens | Smart Agent Agent Agent Lens | default
Lens Lens Lens Lens (from KC) | profile)
Knowledge | Dossier Dossier Dossier Copy Copy Dossier Dossier Dossier Copy
Community | Smart Smart Lens | Smart (subscribe) | (subscribe) | Agent Agent Agent Lens | (subscribe)

49

WO 2004/075466 PCT/US2004/004674

Destination || Portfolio S
- o ¢ (Entity © PR ommunity *|. - Application.
“Source ¥-.~|*" Entity" "'} Collection) | " Profile .. e ncy) |1 (Root Ieon)
(Agency) Lens (fromKC) | Lens Lens to default
(from KC) (from KC) (from (from source KC) | profile
KC) KO

29. Dynamic End-to-End Ontology/Taxonomy Updating and Synchronization

The Information Nervous System™ will support dynamic updates of ontologies and
taxonomies. Knowledge domain plug-ins that are published by Nervana (or that are provided to
Nervana by third-party ontology publishers) will be hosted on a central Web service (an ontology
depot) on the Nervana Web domain (Nervana.com). Each KDS will then periodically poll the
central Web service via a Web service call (for each of its knowledge domain plug-ins,
referenced by the URI or a globally unique identifier of the plug-in) and will “ask™ the Web
service if the plug-in has been updated. The Web service will use the last-modified timestamp of
the ontology file to determine whether the plug-in has been updated. If the plug-in has been
updated, the Web service will return the new ontology file to the calling KDS. The KDS then
replaces its ontology file.

If the KDS is running during the update, it will ordinarily temporarily stop the service
before replacing the file, unless it supports file-change notifications and reloads the ontology
(which is the recommended implementation).

Each KIS also has to poll each KDS it is connected to in order to “ask” the KDS if its
ontology has changed. In the preferred embodiment, the KIS should poll the KDS and not the
central Web service in case the KDS has a different version of the ontology. The KDS also uses
the last modified time stamp of the knowledge domain plug-in (the ontology) to determine if the
ontology has changed. It then indicates this to the KIS. If the ontology has changed, the KIS
needs to update the semantic network accordingly. In the preferred embodiment, it does this by
removing semantic iinks that refer to categories that are not in the new version of the ontology
and adding/modifying semantic links based on the new version of the ontology. In an alternative

embodiment, it purges the semantic network and re-indexes it.

50

WO 2004/075466 PCT/US2004/004674

The client then polls each KIS it is subscribed to in order to determine if the taxonomies
it is subscribed to (directly via the central Web service or via the KISes) have changed. The KIS
exposes a method via the XML Web service via which the client determines if the taxonomy has
changed (via the last modified time stamp of the taxonomy/ontology plug-in file). If the
taxonomy has changed, the client needs to update the Categories Dialog user interface (and other
Ul-based taxonomy dependents) to show the new taxonomy.

For taxonomies that are centrally published (e.g., via Nervana), the client should poll the
central Web service to update the taxonomies.

With this model, the client, KIS, KDS, and central taxonomy/ontology depot will be kept

synchronized.

30. Invoking Dossier (Guide) Queries

Dossier Semantic Query Processing

Dossier (Guide) queries are preferably invoked by the client-side semantic query
processor by parsing the SQML of the request/agent and replacing the Dossier context predicate
with each special agent (context template) context predicate — e.g., All Bets, Best Bets, Breaking
News, Headlines, Random Bets, Newsmakers, etc. Each query (per context template) is then
invoked via the query processor — just like an individual query. This way, the user operates at
the level of the Dossier but the semantic browser maps the dossier to individual queries behind
the scenes.

For example, the SQML for “Dossier on Category C” is parsed and new SQML queries

are generated as follows:

. All Bets on Category C

. Best Bets on Category C

. Breaking News on Category C
. Headlines on Category C

. Random Bets on Category C

. Newsmakers on Category C

* Ete.

51

WO 2004/075466 PCT/US2004/004674

The client-side semantic query processor retains every other predicate except the context
predicate. This way, the filters remain consistent as illustrated by the example above.

Dossier Smart Lens

Like other requests/agents in the Information Nervous System™, dossiers (guides) can be
used as a Smart Lens (just like how they can be targets for drag and drop, smart copy and paste,
etc.). In this case, the smart lens displays a ‘“Dossier Preview Window” with
sections/tabs/frames for each context template (special agent). Sample screenshots of the
Dossier showing the UI of the Dossier Smart Lens are included in Figures 12 and 13.

Dossier Screenshots

31. Knowledge Community (Agency) Semantics

The following describe the semantics of a knowledge community (agency) within the
context of the semantic namespace/environment in the semantic browser:

1. Selecting a knowledge community — this opens a dossier request from that KC.
Essentially, the Dossier becomes the equivalent of the KC’s “home page.”

2. Drag and drop (document, text, entity, keywords, etc.) to a KC — this opens a
Dossier request/agent on the object (using the default predicate) from the KC

3. Copy KC to the clipboard — this selects KC as the Smart Lens. When the user
hovers over a result or entity, the semantic browser displays the Smart Lens by showing the KC
name and the KC’s profile name under the cursor and then opens a Dossier from the KC on the
object underneath the lens in the lens preview pane

4, Subscribing to a KC — when a KC is subscribed for the first time, the semantic
browser adds the KC’s email address to the local email contacts (e.g., in Microsoft Outlook or
Outlook Express). This makes it easy for the user to publish knowledge to the KC by sending it
email (via the integrated contacts list). Similarly, when the KC is unsubscribed from all profiles,
the semantic browser prompts the user whether it should remove the KC from the local email

contacts list,

52

WO 2004/075466 PCT/US2004/004674

32. Dynamic Ontology and Taxonomy Mapping

One of the challenges of using taxonomies and ontologies is how to map the semantics of
one taxonomy/ontology onto another. The Information Nervous System™ accomplishes this by
the following algorithm:

Each KDS will be responsible for ontology mapping (via an Ontology Mapper (OM)) and
will periodically update the central Web service (the ontology depot) with an Ontology Mapping
Table (OMT). The updates are bi-directional: the KDS will periodically update its ontologies
and taxonomies from the central Web service and send updates of the OMT to the central Web
service. Each OMT will be different but the central ontology depot will consolidate all OMTs
into a Master OMT. The ontology mapper will create a consistent user experience because the
user wouldn’t have to select all items in the umbrella taxonomy that are relevant but overlapping.
The semantic browser will automatically handle this. The KIS wouldn’t have any concept of the
mapper but will get mapped results from the KDS which it will then use to update the semantic
network.

The KDS and KIS administrators would still be responsible for selecting the right KDS
ontology plug-ins, however — based on the quality of each ontology/taxonomy (the ontology
mapping doesn’t improve ontologies; it merely maps them).

33. Semantic Alerts Optimizations

Semantic Alerts in the semantic browser can be optimized by employing the following
rule (in order):

For a given filter (e.g., result, document, text, keywords, entity):

1. Check for Headlines first.

2. If there are Headlines, check for Breaking News and Newsmakers.

This is because in the preferred embodiment, Headlines are implemented similar to
Breaking News except with a larger time window. As a consequence, if there are no Headlines

(in the preferred embodiment), there is no Breaking News. Also, in the preferred embodiment,

i

53

WO 2004/075466 PCT/US2004/004674

Newsmakers are implemented by returning the authors of Headlines. As such, if there are no
Headlines, there are no Newsmakers.

34, Semantic “News” Images

Both Corbis (http://www.corbis.com) and Getty Images (http://www.gettyimages.com)
have “News” images that are constantly kept fresh. The Information Nervous System™ can use
these kinds of images for semantic images that are not only context-sensitive but also “fresh.”
This can be advantageous in terms of keeping the user interface interesting and “new.” For
instance, “Breaking News on SARS” can show not only pharmaceutical images but images

showing doctors responding to recent SARS outbreaks, etc.

35. Dynamically Choosing Semantic Images

Semantic images can be dynamically and intelligently selected using the following rules:

1. If the currently displayed namespace object is a request, parse the SQML of the
object for categories. If there are categories, send the categories to the central Web service (that
hosts the semantic image cache) to get images that are relevant to the categories. Also, send the
request type (e.g., knowledge types like All Bets and Headlines, or information types like
Presentations) to the central Web service to return images consistent with the request type

2. If the namespace object is not a request, send the areas of interest for the current
profile (if available) to the central Web service. The Web service then returns semantic images
consistent with the profile’s areas of interest. If the profile does not have configured areas of
interest, send the areas of interest for the application (the semantic browser). If the application
does not have configured areas of interest, send an empty string to the central Web service — in
this case, the central Web service returns generic images (e.g., branded images).

36. Dynamic Knowledge Community (Agency) Contacts Membership

Knowledge communities (agencies) have members (users that have read, write, or read-
write access to the community) and contacts. Contacts are users that are relevant to the

community but are not necessarily members. For example, a departmental knowledge

54

WO 2004/075466 PCT/US2004/004674

community (KC) in a large enterprise would likely have the members of the department as
members of the KC but would likely have all the employees of the enterprise as contacts.
Contacts are advantageous because they allow members of the KC to navigate users that are
semantically relevant to the KC but might not be membe{s. The KC might semantically index
sent by contacts — the index in this case would include the contacts even though the contacts are
not members of the KC.

Another way to think of this is that communities of knowledge in the real world tend to
have core members and peripheral members. ACore members are users that are very active in the
community while peripheral members include “other” users such as knowledge hobbyists,
occasional contributors, potential recruits, and even members of other relevant communities.

With dynarﬁic KC contacts membership in the Information Nervous System™, the KIS
will add users to its Contacts table in the semantic metadata store (SMS) and to the semantic
network “when and as it sees them” (in other words, as it indexes email messages that have new
users that are not members). This allows the community to dynamically expand its contacts, but
in a way that distinguishes between Members and mere Contacts, and “understands” the
importance of the distinction semantically when operating the system (e.g., executing searches

and the like).

37. Integrated Full-Text Keyword and Phrase Indexing
The KIS also indexes concepts (key phrases) and keywords as first-class members of the
semantic network. This can be done in a domain-independent fashion as follows:

For each new object (e.g., documents) to be added to the semantic network:

1. Extract concepts (key phrases) from the body of the object.

2. For each concept, add the concept to the semantic network with the object type id
OBJECTTYPEID_CONCEPT. Add a semantic link with the predicate
PREDICATETYPEID_CONTAINSCONCEPT to the “Semantic Links” table with the new
object as subject and the new concept object as the subject.

3. For the current concept, extract the keywords from the concept key phrase and
add each keyword to the semantic network with the object type id
OBJECTTYPEID KEYWORD. Also, add a semantic link with the predicate

55

WO 2004/075466 PCT/US2004/004674

PREDICATETYPEID CONTAINSKEYWORD to the “Semantic Links” table with the new
object as subject and the new keyword object as the subject.

Repeat the steps above for the title of the object and other meta-tags as appropriate for the
schema of the object.

While some embodiments do not require integrated full-text indexing, it is included in the
presently preferred embodiment because it provides several useful advantages:

1. It allows a consistent model for implementing semantic filters (in SQML). The
user can add categories, documents, entities, and keywords as filters and the filters are applied
consistently to the semantic network (as sub-queries).

2. In particular, it supports the semantic query processing of entities. Entities can be
defined with categories and can be further narrowed with keywords (to disambiguate the
keywords in the case where the keywords could mean different things in different contexts).
Integrated full-text indexing allows the KIS semantic query processor (SQP) to interpret entities
seamlessly — by applying the necessary sub-queries with categories and keywords/concepts to the
semantic network.

3. In general, integrated full-text indexing results in a seamless and consistent data
and query model.

38. Semantic “Mark Object as Read”

In some cases, the KIS might not have the resources to store semantic links between
People and objects on a per-object basis. In addition, semantic-based redundancy is not the same
as per-object redundancy — as in email. To take an example, email clients allow users to select
an email message as read or unread — this is typically implemented as a flag stored on the mail
server with the email message. However, because email is not a semantic system, a semantically
similar or identical message on the server would not be flagged as such — the user has to flag
each message separately regardless of semantic redundancy.

In the Information Nervous System™, the user is able to flag an object as read not unlike

in email. However, in this case, the semantic browser extracts the concepts from the object and

56

WO 2004/075466 PCT/US2004/004674

informs all the KISes in the request profile that the “concepts” have been read. The KIS then
dynamically maps the concepts to categories via the KDSes it is configured with and adds a flag
to the objects belonging to those categories (in the preferred embodiment) and/or adds a flag to
the semantic network with a semantic link with the predicate
PREDICATETYPEID_’VIEWEDCATEGORY between the categories corresponding to the
concepts and all the objects that are linked to the categories. In the preferred embodiment, the
KIS should only flag those categories over a link-strength threshold (for the source concepts).
This ensures that only those objects (in the preferred embodiment) and/or categories that are
semantically close to the original object will be flagged.

When the semantic browser flags the object via the KISes, the KISes should return a flag
indicating whether the network was updated (it is possible that no changes would be made in the
event that the object does not have any “strong” categories or if there are no other objects that
share the same “strong” categories). If at least one KIS in the request profile indicates that the
network was updated, the semantic browser should refresh the request/agent. The semantic
browser can expose a property to allow the user to indicate whether he/she wants the KISes to
return only unread objects or all objects (read or unread), in which case the browser should
display unread objects differently (like how email clients display unread messages in a bold
font). The presentation layer in the semantic browser should then display the read and unread

objects with an appropriate font and/or color to provide a clear visual distinction.

39. Multi-Select Object Lens

Multi-select object lens is an alternative implementation of the object lens that was
described in my parent application. In that embodiment, the object lens was invoked via smart
copy and paste — pasting an object over another object would invoke the object lens with the
appropriate default predicate. This has the benefit of allowing the user to copy objects across
instances of the semantic browser, across profiles, and from other environments (like the file-

system, word processors, email clients, etc.).

57

WO 2004/075466 PCT/US2004/004674

In the currently preferred embodiment, the object lens is a Dossier Lens (the context
predicate is a Dossier, the filters are the source and target objects, and the profile is the profile in
which the source object was displayed). |

Multi-selection can also be used instead of copy and paste to invoke an object lens. The
semantic browser will allow the user to select multiple objects (results). The user can then hit a
button (or alternative user-interface object) to invoke the object lens on the selected objects. In
this case, a Dossier Lens will be displayed (in a preview pane) with a Dossier context predicate,

with the filters as the selected objects, and the current profile as the request profile.

40. Ontology-Based Filtering and Spam Management

The KIS (in the preferred embodiment) would only add objects to the Semantic Metadata
Store (SMS) if those objects belong to at least one category from at least one of the knowledge
domains the KIS is configured with (via one or more KDSes). This essentially means the KIS
will not index objects it “does not understand.” The exception to this is that the KIS will index
all objects from its System Inbox — because this contains at-times personal community-specific
publications and annotations that might be relevant but not always semantically relevant.

A side-effect of this ontology-based filtering model is spam management — ontology-
based indexing would be effective in preventing spam from being indexed and stored. If users
use the semantic browser to access email, as opposed to their inboxes, only email that has been
semantically filtered will get through.

41. Results Refinement

The results of a request/agent can be further refined via additional filters and predicates.
" For example, the request/agent Headlines on Bioinformatics could be further refined with
keywords specific to certain areas of Bioinformatics. This way, the end-user can further narrow
the result set using the request/agent as a base. In addition, for time-sensitive requests, the user
can specify a time-window to override the default time-window. For example, the default

Breaking News time-request could be set to 3 hours. The user should be able to override this for

58

WO 2004/075466 PCT/US2004/004674

a specific request/agent (in addition to changing the defaults on a per-profile or application-wide
basis) with an appropriate Ul mechanism (e.g., a slider control that ranges from 1 hour to 24
hours). The same applies to Headlines and Newsmakers (e.g., a slider control that ranges from 1
day to 1 week).

When the user specifies a filter-override, the semantic browser invokes the XML Web
Service call for each of the KISes in the request profile and passes the override arguments as part
of the call. If override arguments are present, the Web service uses those values instead of the
default filter values. The same applies to additional filters (e.g., keywords) — these will be
passed as additional arguments to the Web service and the Web service will apply additional
sub-queries appropriately to further filter the query that is specified in the agent/request SQML '
(in other words, the SQML is passed as always, but in addition, the filter overrides and additional
filters are also passed).

A good case for filter-overrides will be for Best Bets. The default semantic relevance
strength for Best Bets could be set to 90% (in the preferred embodiment). However, for a given
request/agent, the user might want to see “bets” across a semantic relevance range. Exposing a
relevance Ul control (e.g., a slider control that ranges from 0% to 100%) will allow this. This
essentially allows the user to change the Best Bets on the fly from “All Bets” (0%) all the way to
“Perfect Bets” (100%).

A hybrid model should also be employed for embodiments of context template (special
agent) implementations that involve multiple axes of filtering. For instance, Breaking News
could also impose a relevance filter of 25% and Headlines and Newsmakers could impose a
relevance filter of 50% (Breaking News has a lower relevance threshold because it has a higher
time-sensitivity threshold; as such, the relevance threshold can be relaxed). In this case, the
semantic browser should expose UI controls to allow the user to refine the special agents across
both axes (a slider control for time-sensitivity and another slider control for relevance).

With dossiers, the semantic browser can display UI controls for each special agent

displayed in the Dossier — the main Dossier pane can show all the UI controls (changing any UI

59

WO 2004/075466 PCT/US2004/004674

control would then refresh the Dossier sub-request for that special agent). Also, if the Dossier
has tabs for each special agent, each tab can have a Ul control specific to the special agent for the

tab.

42, Semantic Management of Information Stores

The Information Nervous System™ can also be used to manage information stores such
as personal email inboxes, personal contact lists, personal event calendars, a desktop file-system
(e.g., the Microsoft Windows Explorer file-management system for local and network-based
files), and also other stores like file-shares, content management systems, and web sites.

For client-based stores (such as email inboxes and file-systems), the client runtime of the
semantic browser should periodically poll the store via a programmatic interface to check for
items that have become redundant, stale, or meaningless. This would address the problem today
where email inboxes keep growing and growing with stale messages that might have “lost their
meaning and relevance.” However, due to the sheer volume of information users are having to
cope with, many computer users are losing the ability to manage their email inboxes themselves,
resulting in a junk-heap of old and perhaps irrelevant messages that take up storage space and
make it more difficult to find relevant messages and items.

The client runtime should enumerate the items in the user’s information stores, extract the
concepts from the items (e.g., from the body of email messages and from local documents) and
send the concepts to the KISes in the user’s profiles. In an alternative embodiment, only the
default profile should be used. The client then essentially “asks” the user’s subscribed KISes
whether the items mean anything to them. In the preferred embodiment, the client should

employ the following heuristics:

1. First, check for redundancy — by flagging (or deleting) duplicate email items,
duplicate documents that share concepts and summaries (but perhaps with different titles or file-
sizes). The client should either delete the duplicate items (user-configurable) or flag the items by
moving them into a special folder (user-configurable) in the email client or desktop.

2. Next, for non-duplicate items, the client should check for meaninglessness or
irrelevance. First, the client should only check items that are “older” than N days (e.g., 30 days)
by examining the last-modified time of the email item, document, or other object. For items that

60

WO 2004/075466 PCT/US2004/004674

qualify, extract the concepts and call the XML Web Service for each KIS in all the user’s
profiles (or the default profile in an alternative embodiment).

3. For very old items (e.g., older than 180 days), the client should specify a very low
threshold of meaning to the XML Web Service (e.g., 25%) for preservation. Essentially, this is
akin to deleting (or flagging) those items that are very old and weak in meaning.

4. For fairly old items (e.g., older than 90 days old but younger than 180 days old),
the client should specify a very low threshold (e.g., 10%) for preservation. This is akin to
deleting (or flagging) those items that are fairly old and very weak in meaning.

5. For old items (but not too old — e.g., older than 1 day old but younger than 30
days old), the client should specify a very low threshold (e.g., 0%) for preservation. This is akin
to deleting (or flagging) those items that are old (but not too old) but are meaningless, based on
the user’s profile(s).

Essentially, the model for this aspect or feature of the preferred embodiment balances
semantic sensitivity with time-sensitivity by imposing a higher semantic threshold on younger
items (thereby preserving items that might be largely — albeit not totally — meaningless if they are
fairly young. For example, fairly recent email threads might be very weak in meaning — the
client should preserve them anyway because their “youth” is also a sign of relevance. As they
“age,” however, the client can safely delete them (or flag them for deletion).

This model can also be applied to manage documents on local file-systems. The model
can be extended to content-management systems, document repositories, etc. by configuring an
TInformation Store Monitor (ISM) to monitor these systems (via calls to the Information Nervous
System™ XML Web Services) and configuring the ISM with KISes that are configured with
KDSes that have ontologies consistent with the domain of the repositories to be semantically
managed. This feature will save storage space and storage/maintenance costs by semantically
managing content management systems and ensuring that only relevant items get preserved on
those systems over time.

43. Slide-Rule Filter User Interface

The refinement pane in the semantic browser allows the user to “search within results.”
The user will be able to add additional keywords, specify date ranges, etc. The date-range
control can be implemented like a slide-rule. Shifting one panel in the slide-rule would shift the

lower date boundary while moving the other panel will shift the upper date boundary. Other

61

WO 2004/075466 PCT/US2004/004674

panels can then be added for time boundaries — shifting both time and date panels will impose

both date and time constraints. Panels can also be added for other filter axes.
C. SERVER-SIDE SEMANTIC QUERY PROCESSOR SPECIFICATION

1. Overview
This section describes a currently preferred embodiment of how the server-side semantic
query processor (SQP) resolves SQML queries. On a given server, queries can be broken into

several components:

a. Context (documents, keywords, entities, portfolios (or entity collections)).

b. Context/Knowledge Template (or Special Agent) or Information Template — this
describes whether the request if for a knowledge type (e.g., Breaking News, Conversations,
Newsmakers, or Popular Items) or for a particular information type (e.g., Documents, Email).

On the client, a semantic query is made up of the triangulation of context, request (or
Agent) type, and the knowledge communities (or Agencies). The client sends the SQML that
represents the semantic query to all the knowledge communities in the profile in which the
request lives. The client asks for a few results at a time and then aggregates the results from one
Or 1MOre Servers.

The server-side semantic query processor subdivides semantic queries into several sub-
queries, which it then applies (via SQL inner joins or sub-queries in the preferred embodiment).

These sub-queries are:

1. Request type sub-query — this represents a sub-query (semantic or non-semantic)
depending on the request type. Examples are context (knowledge) types (e.g., All Bets, Best
Bets, Headlines, Experts, etc.) and information types (like General Documents, Presentations,
Web Pages, Spreadsheets, etc.).

2. Semantic context sub-query — this represents a semantic sub-query derived from
the context (filter) passed from the client (an example of this is categories sent from the client or
mapped from keywords/text via semantic stemming).

3. Non-semantic context sub-query — this represents a non-semantic sub-query
derived from the context (filter) passed from the client (examples are keywords without semantic
stemming — mapping to ontology-based categories).

4. Access-control sub-query — this represents a sub-query that filters out those items
in the semantic metadata store (SMS) that the calling user does not have access to. For details,
see the “Security” specification.

62

WO 2004/075466 PCT/US2004/004674

The foregoing steps are illustrated in Figure 14 (Server-Side Semantic Query Processor
Components). Figure 14 shows how the server-side semantic query processor processes
incoming semantic queries (represented as SQML).

2. Semantic Relevance Score

The semantic relevance score defines the normalized score that the concept extraction
engine returns. It maps a given term of “blob” of text to one or more categories for a given
ontology. The score is added to the semantic network (in the “LinkStrength” field of the

“SemanticLinks” table) when items are added to the Semantic Network.

3. Semantic Relevance Filter

The relevance filter is different from the relevance score (indeed, both will typically be
combined). The relevance filter indicates how the SQP will semantically interpret context (note:
in the currently preferred embodiment, the filtering is always semantic in this case). There are
two relevance filters: High and Low. With the High relevance filter, the SQP will include a sub-
query that is the intersection of categories and terms. For instance, context for the keyword
“XML” will be interpreted as: Items that share the same categories as XML and also include the
keyword “XML.” This is the highest level of ontology-based semantic filtering that can occur.
However, it could lead to information loss in cases where there are objects in the Semantic
Network (or Semantic Metadata Store (SMS)) that are semantically equivalent to the context but
that do not share its keywords or terms. For instance, the query described above would miss
items that share the same categories as XML but which include the term “Extensible Markup
Language” instead. A Low relevance filter will only include objects that share the same
categories as the context but unlike the High relevance filter, would not include the additional
constraint of keyword equivalence.

For this reason, the relevance filter is preferably used only to create sub-query “buckets”
that are then used for ordering results. For instance, the SQP might decide to prioritize a High

relevance filter ahead of a Low relevance filter when filtering the semantic network but would

63

WO 2004/075466 PCT/US2004/004674

still return both (with duplicates removed) in order to help guarantee that synonyms don’t get
rejected during the final semantic filtering process.

4, Time-Sensitivity Filter

The time-sensitivity filter determines how time-critical the semantic sub-query is. There
are two levels: High and Low. A High filter is meant to be extremely time-critical. Default is 3
hours (this accounts for lunch breaks, time away from the office/desk, etc.). A Low filter is

meant to be moderately time-critical. The default is 12 hours.

5. Knowledge Type Semantic Query Implementations
Throughout this application certain specific knowledge types are referred to by apt
shorthand names, some of which the applicant uses or may use as trademarks. This section
explains the nature and function of some of these in greater detail.
a. All Bets
For “All Bets” queries, the server simply returns all the items in the semantic metadata
store. If the SQML has filters, the filters are imposed via an inner sub-query with no semantic
link strength threshold. For instance, All Bets on Topic A will return all items that have
anything (strongly or barely) to do with Topic A.
b. Random Bets
In the preferred embodiment, for “Random Bets” queries, the server simply returns all the
items in the semantic metadata store (like in the case of “All Bets” queries) but orders the results
randomly. If the SQML has filters, the filters are imposed via an inner sub-query with no
semantic link strength threshold. For instance, Random Bets on Topic A will return all items
(ordered randomly) that have anything (strongly or barely) to do with Topic A.
c. Breaking News
If the server has user-state, Breaking News can be implemented in a very intelligent way.
The table below illustrates the currently preferred ranking and prioritization for Breaking News

when the server tracks what items (and/or categories) the user has read:

64

WO 2004/075466 PCT/US2004/004674
Priority Sub-Query Time- Semantic Primary Secondary
Name Sensitivity | Relevance Ordering Ordering
Filter Filter Axis Axis

1 Breaking Low High Creation Semantic
Unread Time Relevance
Semantic Score
News

2 Breaking Low Low Creation Semantic
Unread Time Relevance
Semantic Score
News

3 Breaking High High Creation Semantic
Read Time Relevance
Semantic Score
News

4 Breaking High Low Creation Semantic
Read Time Relevance
Semantic Score
News

In the preferred embodiment, the server processes SQML for Breaking News (via the

Breaking News context predicate) as follows:

1.

“younger” than N hours (or days, or months, configurable) — this imposes the key time-

sensitivity constraint.

2.

Breaking News is always semantic.

All breaking news is filtered with a sub-query that the returned news must be

3. In the preferred embodiment, the Semantic Network Manager (SNM) should
update the semantic network to indicate the “last read time” for each user to each category. This
is then used in the sub-query to check whether news has been “read” or not (per category or per
object — per category is the preferred embodiment because the latter will not scale).

4. Priority is given to news items that the user has not “read” (this is implemented by
comparing the last read time in the SemanticLinks table with the semantic link type that links
“User” to “Category™).

5. The implication of the semantic prioritization scheme is that the user could get

“older” breaking news first because the news is more semantically relevant and “younger”

65

WO 2004/075466 PCT/US2004/004674

breaking news “later” because the news is less semantically relevant. This results in a hybrid
relevance-time sensitivity prioritization scheme.

6. The primary ordering axis (Creation Time) guarantees that results are filtered by
freshness. The seéondary ordering axis (Relevance Score) acts as a tiebreaker and guarantees
that equally fresh results are distinguished primary based on relevance.

7. Breaking News Intrinsic Alerts can be implemented on the client by limiting the
Breaking News priority to Priority 2 and by changing the Priority 1 and Priority time-sensitivity
filters to high. This way, only very fresh Breaking Unread Semantic News (of both High and
Low semantic relevance filters) will be returned. This is advantageous becaunse the alert should
have a higher disruption threshold than the Breaking News Request (or agent) — since it is
implicit rather than explicit.

8. Unread Breaking News is higher priority than Read Breaking News because users
are likely to be more interested in stuff they haven’t seen yet.

9. Unread Breaking News has a lower time-sensitivity filter than Read Breaking
News because users are likely to be more tolerant of older news that is new to them than younger
news that is not.

In some cases, the server might not have user-state (and “read” information). In this case,
a simple implementation of Breaking News is shown below:

1. By default (no filter), Breaking News should return only items younger than N
hours (default is 3 hours).

2. If there is at least one filter in the SQML, Breaking News should apply the time-
sensitivity filter (3 hours) to the outer sub-query and also apply a moderately strong relevance
filter to the imer sub-query (off the SemanticLinks table). In the preferred embodiment, this
sﬁould correspond to a relevance score (and link strength) of 50%. For instance, Breaking News
on Topic A should return those items that have been posted in the last 3 hours and which belong
to the category (or categories) represented by Topic A with at least a relevance score of 50%.

This will avoid false positives like Breaking News items which are barely relevant to Topic A.

66

WO 2004/075466 PCT/US2004/004674

d. Headlines .

Ditto with Breaking News (except that time-sensitivity constraints are more relaxed —
e.g., the High filter is 12 hours instead of 3 hours and the low filter is 1 day instead of 12 hours).
In the simple implementation, the time-sensitivity constraint is 1 day. This can also be made 3-
days on Mondays to dynamically handle weekends (making the number of days the “number of
working days”). |

e. Newsmakers

Newsmakers are handled the same way as Headlines, except that the SQP returns the

authors of the Headline items rather than the items themselves.
f. Best Bets

As described in my parent application (Serial No. 10/179,651), Best Bets are
implemented by imposing a filter on the strength of the semantic link with the “Belongs to
Category” predicate. The preferred default is 90%, although the client (at the option of the user)
can change this on the fly via an argument passed via the XML Web Service. Best Bets are
implemented with a SQL inner join between the Objects table and the SemanticLinks table and
joining only those rows in the SemanticLinks table that have the “Belongs to Category” predicate
and a LinkStrength greater than 90% (default). When the SQML that is being processed contains
filters (e.g., keywords, text, entities, etc.), the server-side semantic query processor must also
invoke a sub-query, which is a SQL inner join that maps to the desired filters. In the preferred
embodiment, this sub-query should also include a “Best Bets” filter.

In the preferred embodiment, it is advantageous and probably preferable for most users
for the outer sub-query to be a Best Bet, and for the inner sub-query. To illustrate this, “Best
Bets on Topic A” is semantically different from “Best Bets that are also relevant to Topic A.” In
the first example, only Best Bets, which are Best Bets “ON” Topic A, will be returned (via
" applying the “Best Bets” sefnantic filter on the inner sub-query). In contrast, the second example
will return Best Bets on anything that might have anything to do with Topic A. As such, the

second example might return false positives because for example, a document, which is a Best

67

WO 2004/075466 PCT/US2004/004674

Bet on Topic B but a “weak bet” on Topic B, will be returned and that is not consistent with the
semantics of the query or the presumably desired results. Extending the “Best Bets™ filter to not
only the outer sub-query but also all inner sub-queries will prevent this from happening. Other
query implementations can also follow this rule (with the right sub-queries applied based on the
semantics of the main query) if the SQML contains filters.
g. Query Implementation for Other Knowledge Types

Other knowledge types are implemented in a similar fashion as above (via the right
predicates). Several examples are described below.

Information Type Semantic Query Implementations

All information type semantic query implementations can follow, and preferably (but not
necessarily) follow, the same pattern: the SQP returns only those objects that have the object
type id that corresponds to the requested information type. An example is “Information
Type\Presentations.” When the SQP parses the SQML received from the client, it extracts this
attribute from the SQML and maps it to an object type id. It then invokes a SQL query with an
added filter for the object type id. For special information types that could span several
individual information types (such as “Information Type\All Documents™), the SQP maps the
request to a set of object type ids and invokes a SQL query with this added filter.

Context Semantic Query Implementations

When the client sends SQML that contains concepts (extracted on the client from text or
documents), the server-side SQP has to first semantically interpret the context before generating
sub-queries that correspond to it. To do this, the server sends the concepts to all KDS’es
(KBS’es) it is configured with (for the desired knowledge community or agency) for semantic
categorization. When the server gets the categories back, it preferably determines which of those
categories are “strong” enough to be used as filters before generating the appropriate sub-queries.

This “filter-strength” determination is advantageous because if the context is, for
example, a fairly long document, that document could contain thousands of concepts and

categories. As a result, the “representative semantics™ of the document might be contained in

68

WO 2004/075466 PCT/US2004/004674

only a subset of all the concepts/categories in the document. Mapping all the categories to sub;
queries will return results that might be confusing to the user — the user would likely have a
“sense” of what the document contains and if he/she sees results that are relevant to some weak
concepts in the document, the user might not be able to reconcile the results with the document
context. Therefore, in the preferred embodiment, the server-side SQP preferably chooses only
“strong categories” to apply to the sub-queries. It is recommended that these be categories with
a semantic strength of at least 50%. That way, only those categories that register strongly in the
semantic context would be applied to the sub-query. The implementation of the sub-query
would then follow the rules described above depending on whether the query contains a context
predicate, is based on a knowledge type, information type, etc.

Semantic Stemming Implementation

As described in my parent application, the server-side semantic query processor performs
semantic stemming to map keywords, text, and concepts to categories based on one or more
domain ontologies. One way it does this by invoking an XML Web Service call to the
KDS/KBS (or KDSes/KBSes) it is configured with in order to obtain the categories. It then
maps the categories to its semantic network. This form of stemming is superior to regular
stemming that is based on keyword variations (such as singular and plural variations, tense
variations, etc.) because it also involves domain-specific semantic mapping that stems based on
meaning rather than merely stemming based on keyword forms.

In the currently preferred embodiment, the KIS calls the KDS/KBS each time it receives
SQML that requires further semantic interpretation. However, this could result in delays if the
KDS/KBS resides on a different server, if the network connection is not fast, or if the KDS/KBS
is busy processing many requests. In this case, the KIS can also implement a Semantic
Stemming Cache. This cache maps keywords and concepts to categories that are fully qualified
with URIs (making them globally unique). When the server-side semantic query processor
receives SQML that contains keywords, text, or concepts (extracted from, say, documents on the

client by the client-side semantic query processor), it first checks the cache to see if the

69

WO 2004/075466 PCT/US2004/004674

keywords have already been semantically stemmed. If there is a cache hit, the SQP simply
retrieves the categories from the cache and maps those categories to the semantic network via
SQL queries. If there is a cache miss (i.e., if the context is not in the cache), it then calls the
KDSes/KBSes to perform semantic categorization. It then takes the results, maps them to unique
category URIs, and adds the entry to the cache (with the context as the hash code). Note that
even if the context does not map to any category, the “lack of a category” is preferably cached.
In other words, the context is added as a cache entry with no categories. This way, the server can
also quickly determine that a given context does not have any categories, without having to call
the KDSes/KBSes each time to find out.

Cache Management

The SQP can also manage the semantic stemming cache. It has to do this for two
reasons: first, to keep the cache from growing uncontrollably and consuming too much system
resources (particularly memory with a heap-based hash table); and, second, if the KIS
configuration is changed (e.g., if knowledge domains are added/removed), the cache is
preferably purged because the entries might now be stale. The first scenario can be handled by
assigning a maximum number of entries to the cache. In the preferred embodiment, the SQP
caches the current amount of memory consumed by the cache and the cache limit is dictated by
memory usage. For example, the administrator might set the maximum cache size to 64MB. To
simplify the implementation, this can be mapped to an approximate count of items (e.g., by
dividing the maximum memory usage by an estimate of the size of each cache entry).

For each new entry, if the cache limit has not been reached, the SQP simply adds the
entry to the cache. However, if the cache limit has been reached, the SQP (in the preferred
embodiment) should purge the least recently added items from the cache. In the preferred
embodiment, this can be implemented by keeping a queue of items that is kept in sync with a
hash table that implements the cache itself (for quick lookups using the context as a key). When
the SQP needs to purge items from the cache to free up space, it de-queues an item from the

least-recently-added queue and also removes the corresponding item from the hash table (using

70

WO 2004/075466 PCT/US2004/004674

the context as key). This way, fresh items are more likely to result in a cache hit than older
items. This will result in a faster user experience on the client because context for saved
agents/requests/queries will end up being cached with quick-lookups each time the user opens
the agent/request/query. The same goes for Dossier (Guide) queries which will have the same
context (but with different knowledge types) — the client will request for each knowledge type

for the same context and since the context will be cached, each sub-query will execute faster.

D. EXTENSIBLE CLIENT-SIDE USER PROFILES SPECIFICATION FOR THE
INFORMATION NERVOUS SYSTEM

Overview

Extensible client-side user profiles allow the user of a semantic browser to have a
different state for different job roles, knowledge sources, identities, personas, work styles, etc.
This essentially allows the user to create different “knowledge worlds” for different scenarios.
For instance, a Pharmaceuticals researcher might have a defanlt profile that includes all sources
of knowledge that are relevant to his/her work. As described in my parent application Serial
No. 10/179,651, the SRML from each of these sources will be merged on the client thereby
allowing the user to seamlessly go through results as though they were coming from one source.
However, the researcher might want to track patents separate from everything else. In such a
case, the researcher would be able to create a separate “Patents” profile and also include those
knowledge communities (agencies) that have to do with patents (e.g.,. the US Patent Office
Database, the EU Patent Database, etc.)

To take another example, for instance, the user might create a profile for ‘Work’ and one
for ‘Home.” Many investment analysts track companies across a variety of industries. With the
semantic browser, they would create profiles for each industry they tyack. Consultants move
from project to project (and from industry to industry) and might want to save requests and

entities created with each project. Profiles will be used to handle this scenario as well.

71

WO 2004/075466 PCT/US2004/004674

Profiles contain the following user state:

. Name/Description — the descriptive name of the profile.

. One or more knowledge communities (agencies) that indicate the source of
knowledge (running on a KIS) at which requests (agents) will be invoked.

. Identity Information — the user name (currently tagged with the user’s email
address) and password.

. Areas of Interest or Favorite Categories — this is used to suggest information

communities (agencies) to the user (by comparing against information communities with
identical or similar categories) and as a default query filter for requests created with the profile.

. Smart styles — the smart styles to be used by default for requests and entities
created with the profile.
. Default Flag — this indicates whether the profile is the default profile. The default

profile is initiated by default when the user wishes to create requests and entities, browse
information communities, etc. Unless the user explicitly selects a different profile, the default
profile gets used.

Profiles can be created, deleted, modified, and renamed. However, in the preferred
embodiment the default profile cannot be deleted because there has to be at least one profile in
the system at all times. In alternate embodiments, a minimum profile would not be required.

Preferably, all objects in the semantic browser are opened within the context of a profile.
For instance, a smart fequest is created in a profile and at runtime, the client semantic query
processor will use the properties of the profile (specifically the subscribed knowledge
communities (agencies) in that profile) to invoke the request. This allows a user to correlate or
scope a request to a specific profile based on the knowledge characteristics of the request (more
typically the sources of knowledge the user wants to use for the request).

Figure 15 illustrates the semantic browser showing two profiles (the default profile
named “My Profile” and 15Aand a profile named “Patents” 15B). Observe how the user is able
to navigate his/her knowledge worlds via b;)th profiles without interference.

Figures 16A-C illustrate how a user would configure a profile (to create a profile, the user
will use the “Create Profile Wizard” and the profile can then be modified via a property sheet as
shown).

Figure 17 shows how a user would select a profile when creating a request with the

“Create Request Wizard.”

72

WO 2004/075466 PCT/US2004/004674

E. SMART STYLES SPECIFICATION FOR THE INFORMATION NERVOUS

SYSTEM

1. Smart Styles Overview

A color theme and animation theme applied to a style theme yields a “smart style”.
“Smart” in this context means the style is adaptive or responsive to the mood of its request,
context panes, preview mode, handheld mode, live mode, slideshow mod@, screensaver mode, !
blender/collection mode, accessibility, user settings recognition, and possibly other variables
within the system (see below). There is an infinite number and kind or “Classes” of possible

styles. The preferred embodiment comprises at least the following style Classes:

1. Subtle - for task-oriented productivity.
2. Moderate - for task-oriented productivity with some presentation effects.
3. Exciting - exciting effects (good for both primary and secondary machines, and

for inactive Nervana windows - e.g., Nervana client windows in the background or docked on the
taskbar).

4. Super-exciting (great for smart screensavers with productivity - e.g., secondary
machines - when the user is using his/her primary machine).
5 Sci-Fi (for Matrix fans, great for smart screensavers without specific need for

pro\ductivity - e.g., when the user is away from his/her desk).
| Style, Color & Animation Themes - Variable, unlimited - created by Nervana, and
perhaps users and/or third party skin authors
Z. Implicit and Dynamic Smart Style Properties

a. Mood - the smart style must convey the mood of the request (i.e., the
request is a parameter passed to the smart style). This will involve semantic images, semantic
motions, Visualizations, etc. that convey the semantically informed or semantically determined
properties of the smart request (the context template or information type, the categories, whether
there are filters (e.g., local documents), the information types of those filters, etc.)

b. Context panes - e.g., deep info pane (per object), dockable preview panes,
dockable contextual PIP watch groups/panes, etc.

c. Preview Mode - each smart style must be able to display its results for

preview (in a small window).

73

WO 2004/075466 PCT/US2004/004674

d. Handheld Mode - each smart style must be able to display its results
optimized for a handheld device.

e. Live mode - each smart style must have a “live” mode during which it
would display real-time semantic Visualizations (per object). This can be toggled on or off (e.g.
if the user does not want real-time semantic Visualizations, or to save bandwidth that results
from real-time Web service calls per object).

f. Slideshow mode — preferably, each smart style must be able to “play” the
results of the request - like a live stream.

g. Screensaver mode — preferably, each smart style must be able to “play”
the results of the request as a screensaver. This is a variant of slideshow mode, except in full-
screen/theater mode.

h. Blender/collection mode — preferably, each smart style must change its Ul
appropriately if the request it is displaying is a blender/collection.

1. Accessibility - preferably, each smart style must support accessibility.

iR User settings recognition - the Nervana Librarian will allow users to
indicate whether they are beginners, moderate users, or power-users, and their respective job
function(s) (R&D, sales, marketing, executive, etc.). Preferably, each smart style considers (or is

influenced by) these functions where appropriate.

e Preferably, each smart style is responsible, consistent with the semantics of the request, for
recognizing (or discerning or perceiving) and then Visualizing (or presenting or depicting
or illustrating, consistent with what should deserve the user’s attention):

the Mood of the Current Request (including semantic images, motion, chrome, etc.

a Change in the number of Items in the Current Request

the Mood of each object (intrinsically)

the Mood of each object’s context (headlines, breaking news, experts, etc.)

Binary/Absolute issues or characteristics (e.g., is there breaking news, OR NOT? how
many experts are there? how many headlines?) as distinct from issues that are matters of
degree, or on a gradient or continuum

e If the characteristic is on a gradient or continuum, perceiving the relative placement along
it (e.g., how breaking is breaking news?, how critical are the headlines? what is the level of
expertise for the experts?, etc.)

74

WO 2004/075466 PCT/US2004/004674

e a change in each object’s context (there is new breaking news, there are new annotations,
etc.)

e the RELATIVE criticality of each object being displayed (different sized view ports,
different fonts, different chrome, etc.)

e arequest navigation and “loading” status (interstitials that INTRODUCE the mood of the

new request being loaded)

all properties of any individual PIP windows (animated with an animation control)

the addition of a new PIP window (to a PIP window palette)

any Resizing/Moving/Docking PIP Windows

any preview windows (for context palettes, “Visualization UI” on each object, timelines,

etc.)

e Sounds consistent with all of the foregoing Visualizations of mood and notifications
(across the board)

Figure 18 shows a screenshot with the ‘Smart Styles’ Dialog Box illustrating some of the
foregoing operations and features. As can be seen, the Dialog Box allows the user to browse
smart styles by pivoting across style classes, style themes, color themes, and animation themes.

A preview window shows the user a preview of the currently selected smart style.

F. SMART REQUEST WATCH SPECIFICATION FOR THE INFORMATION
NERVQUS SYSTEM

1. Overview

Smart Request Watch refers to a feature of the Information Nervous System that allows
users of the semantic browser (the Information Agent or the Librarian) to monitor (or “watch”)
smart requests in parallel. This is a very advantageous feature in that it enhances productivity by
allowing users to track several requests at the same time.

The feature is implemented in the client-side semantic runtime, the semantic browser, and
skins that allow a configurable way of watching smart requests (via a mechanism similar to
“Picture-In-Picture” (PIP) functionality in television sets). Preferably, one or more of the

following software components are used:

1. The Request Watch List (RWL)
2. Request Watch Groups

3. The Notification Manager (NM)
4. Watch Group Monitors (WLM)
5. The Watch Pane

6. The Watch Window

75

WO 2004/075466 PCT/US2004/004674

2. Request Watch Lists (RWLs) and Groups (RWGs)

The Request Watch List is a list of smart requests (or smart agents) that the client runtime
manages. This list essentially comprises the smart requests the user wishes to monitor. The
Request Watch List comprises a list of entries, the Request Watch List Entry (RWLE) with the

following data structure:

Field Name Field Field Description
Type
RequestID GUID The unique identifier of the smart request
Notification Reference | DWORD | The reference count indicating whether the
Count Notification Manager should track whether
there are “new” objects for this smart request
RequestViewInstanceID GUID The unique identifier of the:smart request

view instance that “owns” the RWLE. This
is used for dynamically added and browser-
instance-specific RWLEs like Categorized
Headlines, Breaking News, and Newsmakers
(see below). For system-wide RWLEs added
manually by the user or via non-categorized
Request Watch Rules (RWRs) (see below),
this entry is initialized to NULL.

LastUpdateTime Date/Time | The last date/time the notification manager
updated the request results count

RequestResultsCount DWORD | The number of results in the smart request

LastResultTime Date/Time | The date/time of the most recently published
result

The Request Watch List (RWL) contains an array or vector of RWLE structures. The
Request Watch List Manager manages the RWL. The semantic browser provides a user
interface that allows the user to add smart requests to the RWL — the UI talks to the BWLM to
add and remove RWLEs to/from the RWL. The RWL is stored (and persisted) centrally by the
client-side semantic runtime (either as an XML file-based representation or in a store like the
Windows registry).

The RWL can also be populated by means of Request Watch Groups (RWGs). A
Request Watch Group provides a means for the user to monitor a collection of smart requests. It
also provides a simple way for users to have the semantic browser automatically populate the

RWL based on configurable criteria. There are at least two types of RWGs: Auto Request

76

WO 2004/075466 PCT/US2004/004674

Watch Groups and the Manual Request Watch Group. Auto Request Watch Groups are groups
that are dynamically populated by the semantic browser depending on the selected profile, the
profile of the currently displayed request, etc. The Manual Request Watch Group allows the user
to manually populate a group of smart requests (regular smart requests or blenders) to monitor as
a collection. The Manual Request Watch Group also allows the user to add support context
types (e.g., documents, categories, text, keywords, entities, etc.) — in this case, the system will
dynamically generate the semantic query (SQML) from the filter(s) and add the resulting query
to the Manual Request Watch Group. This saves the user from having to first create a time-
sensitive request based on one or more filters before adding the filters to the Watch Group — the
user can simply focus on the filters and the system will do the rest. |

Users will be able to add the following types of Auto-RWGs (for one or more
configurable profiles, including “All Profiles” as shown in the Smart Request Watch Dialog Box
in Figure 19):

1. Breaking News — this tells the semantic browser to automatically add a Breaking
News smart request to the RWL (for the selected profile(s)).

2. Headlines — this tells the semantic browser to automatically add a Headlines smart
request to the RWL (for the selected profile(s)).

3. Newsmakers — this tells the semantic browser to automatically add a Newsmakers
smart request to the RWL (for the selected profile(s)).

4. Categorized Breaking News — this tells the semantic browser to automatically add
Categorized Breaking News smart requests to the RWL (for the contextual profile). The
semantic browser will dynamically add smart requests with category filters corresponding to
each subcategory of the currently displayed smart request (and for the contextual or current
profile) — if the currently displayed smart request has categories. For example, if the smart
request “Breaking News” about Technology” is currently being displayed in a semantic browser

instance, and if the category “Technology” has 5 sub-categories (e.g., Wireless, Semiconductors,

77

WO 2004/075466 PCT/US2004/004674

Nanotechnology, Software, and Electronics), the following smart requests will be dynamically

added to the RWL when the current smart request is loaded:

. Breaking News about Technology. Wireless [<Contextual Profile Name>]

. Breaking News about Technology.Semiconductors [<Contextual Profile Name>]
. Breaking News about Technology.Nanotechnology [<Contextual Profile Name>]
. Breaking News about Technology.Software [<Contextual Profile Name>]

. Breaking News about Technology.Electronics [<Contextual Profile Name>]

Also, the RWLEs for these entries will be initialized with the RequestViewInstancelD of
the current semantic browser instance. If the user navigates to a new smart request, the
categorized Breaking News for the previously loaded smart request will be removed from the
RWL and a new list of categorized Breaking News will be added for the new smart request (if it
has any categories) — and initialized with a new RequestViewInstanceID corresponding to the
new smart request view. This creates a smart user experience wherein relevant categorized
breaking news (for subcategories) will be dynamically displayed based on the currently
displayed request. The user will then be able to monitor Categorized Breaking News smart
requests as a watch group or collection.

5. Categorized Headlines — this tells the semantic browser to automatically add
Categorized Headlines smart requests to the RWL (for the confextual profile). This is similar to
Categorized Breaking News, except that Headlines are used in this case. The user will then be
able to monitor Categorized Headlines smart requests as a watch group or collection.

6. Categorized Newsmakers — this tells the semantic browser to automatically add
Categorized Newsmakers smart requests to the RWL (for the contextual profile). This is similar
to Categorized Breaking News, except that Newsmakers are used in this case. The user will then
be able to monitor Categorized Newsmakers smart requests as a watch group or collection.

7. My Favorite Requests — this tells the semantic browser to automatically add all
favorite smart requests to the RWL (for the selected profile(s)). This allows the user to watch or

monitor all his/her favorite smart requests as a group.

78

WO 2004/075466 PCT/US2004/004674

8. My Favorite Breaking News — this tells the semantic browser to automatically add
all favorite breaking news smart requests to the RWL (for the selected profile(s)). This allows
the user to watch or monitor all his/her favorite breaking news smart requests as a group.

9. My Favorite Headlines — this tells the semantic browser to automatically add all
favorite headlines smart requests to the RWL (for the selected profile(s)). This allows the user to
watch or monitor all his/her favorite headlines smart requests as a group.

10. My Favorite Newsmakers — this tells the semantic browser to automatically add
all favorite newsmakers smart requests to the RWL (for the selected profile(s)). This allows the
user to watch or monitor all his/her favorite newsmakers smart requests as a group.

Request Watch Group Manager User Interface

Figure 19 illustrates the “Smart Request Watch” Dialog Box in the semantic browser of
the preferred embodiment. The top half of the dialog is used to add auto-waich groups. The user
can select auto-watch group types and profile types (“All Profiles,” “Contextual Profile,” and the
actual profile names) and add them to the auto-watch-group list. The user can also remove auto-
watch-groups. The bottom half of the dialog box is used to add/remove smart requests to/from

the manual watch group.

3. The Notification Manager (NM)

In the preferred embodiment the Notification Manager (NM) is a component of the
semantic runtime client that monitors smart requests in the RWL. The NM has a thread that
periodically invokes each smart request in the RWL (via the client semantic query processor) and
updates the RWLE with the “results count” and the “last update time.” In the preferred
embodiment the NM preferably im—fokes the smart requests every 5-30 seconds. The NM can
intelligently adjust the periodicity or frequency of request checks depending on the size of the
RWL (in order to minimize bandwidth usage and the scalability impact on the Web service).

For time-sensitive smart requests (like Breaking News, Headlines, and Newsmakers), the

NM preferably invokes the smart request without any additional time filter. However, for non

79

WO 2004/075466 PCT/US2004/004674

time-sensitive requests (like for information as opposed to context types or for non time-sensitive
context templates like Favorites and Recommendations), the NM preferably invokes the query

for the smart request with a time filter (e.g., the last 10 minutes).

4, Watch Group Monitors

In the preferred embodiment, the semantic runtime client manages what the inventor calls
Watch Group Monitors (WGM). For each watch group the user has added to the watch group
list, the client creates a watch group monitor. A watch group monitor tracks the number of new
results in each request in its watch group. The watch group monitor creates a queue for the
RWLEs in the watch group that have new results. The WGM manages the queue in order to
maximize the freshness of the results. The WGM periodically polls the NM to see whether there
are new results for each request in its watch group. If there are, it adds the request to the queue
depending on the ‘last result time’ of the request. It does this in order to prioritize requests with
the freshest results first. The currently displayed visual style (skin) running in the Presenter
would then call the semantic runtime OCX to dequeue the requests in the WGM queue. This
way, the request watch user interface will be consistent with the existence of new results and the
freshness of the results. Once there are no more new results in the currently displayed request,
the smart style will dequeue the next request from the WGM queue.

5. The Watch Pane

The Watch Pane (WP) refers to a panel that gets displayed in the Presenter (alongside the
main results pane) and which holds visual representations of the user’s watch groups. The WP
allows the user to glance at each watch group to see whether there are new results in its requests.
The WP also allows the user to change the current view with which each watch group’s real-time

status gets displayed. The following views are currently defined:

. Tiled View — this displays the title of the watch group along with the total number
of new results in all its smart requests.
. Ticker View — this displays the total number of new results in all the watch

group’s smart requests but also shows an animation that sequentially displays the number of new
results in each smart request (as a ticker).

80

WO 2004/075466 PCT/US2004/004674

. Preview View — this is similar to the ticker view except that the most recent result
per smart request is also displayed alongside the number of new results in the ticker.
. Deep View — in this view, the WP displays the total number of new results in all

the watch group’s smart requests along with a ticker that shows the number of new results in
each smart request and a slide-show of all the new results per smart request.

6. The Watch Window

The WP also allows the user to watch a watch group. The user will do this by selecting
one of the watch groups in the WP and dragging it into the main results pane (or by a similar
technique). This forms a Watch Window (WW). This WW resembles or can be analogized to
TV’s picture-in-picture functionality in appearance or layout, but differs in several ways, most
noticeably in that in this case the displayed content is comprised of semantic requests and results
as opposed to television channels are being “watched.” Of course, the underlying technology
generating the content is also quite different. The WW can be displayed in any of the
aforementioned views. When the WW is in Deep View however, the WW’s view controls are

displayed. The following controls are currently defined:

e Pinning Requests — this allows the user to pin a particular request in the watch
group. The WW will keep displaying the new results for only the pinned requests (in 2 cycle)
and will not advance to other requests in the watch group for as long as the current request
remains pinned.

° Swapping Requests — this allows the user to swap the currenily displayed request
with the main request being shown in the semantic browser. The smart style will invoke a
method on the OCX to create a temporary request with the swapped request (hashed by its
SQML buffer) and then navigate to that request while also informing the Presenter to now
display the main request in its place (in the WW).

. Stop, Play, Seek, FF, RW, Speedup — these allow the user to stop, play, seek, fast-
forward, rewind or speedup the “watch group request stream.” For instance, a fast-forward will
advance to several requests ahead of the currently displayed one.

. Results controls — this allows the user to control the results in each request in the
watch group. Essentially, the results are a stream within a stream and this will also allow the
user to control the results in the current request in the current watch group.

. Auto-Display Mode — this will automatically hide the WW when there are no
results to display and fade it in when there are new results. This way, the user can maximize the
utility of his/her real estate on the screen knowing that watch windows will fade in when there
are new semantic results. This feature also allows the user to manage his/her attention during
information interaction in a personal and semantic way.

. Docking, Closing, Minimizing, Maximizing — these features, as the names imply,
allow the user to dock, close, minimize or maximize watch windows. Figure 20 illustrates a
Watch Window displaying Filtered Smart Requests (e.g.,. Headlines on Wireless). Figure 20 is

81

WO 2004/075466 PCT/US2004/004674

an Tllustration of the Watch Window with a Current Smart Request Title (e.g., “Breaking
News”).

7. Watch List Addendum

In the User Interface, the Watch List can be named “News Watch.” The user will be
asked to add/remove requests, objects, keywords, text, entities, etc. to/from the “News Watch.”
The “News Watch” can be viewed with a Newsstand watch pane. This will provide a spatially-
oriented view of the user’s requests and dynamically-created requests (via objects added to the
Watch List, and created dynamically by the runtime using those objects as filters) — not unlike
the view of a news-magazine rack when one walks into a Library or Bookstore.
G. ENTITIES SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM

1. Introduction

Entities are a very powerful feature of the preferred embodiment of the Information
Nervous System. Entities allow the user to create a contextual definition that maps to how they

work on a regular basis. Examples of entities include:

1. People 7. Meetings

2. Teams 8. Organizations
3. Action Items 9. Partners

4, Companies 10. Products

5. Competitors 11. Projects

6. Customers 12. Topics

There are also industry-specific entities. For instance, in pharmaceuticals, entities could
include drugs, drug interaction issues, patents, FDA clinical trials, etc. Essentially, an entity is a
semantic envelope that is a smart contextual object. An entity can be dragged and dropped like
any other smart object. However, an entity is represented by SQML and not SRML (i.e.,itis a
query-object because it has much richer semantics). An entity can be included as a parameter to

a smart request.

82

WO 2004/075466 PCT/US2004/004674

The user creates entities based on his/her tasks. Entities in the preferred embodiment

contain at least the following information (in alternate embodiments they could contain more or

.

less information):

1. Name/Description — a friendly descriptive name for the entity.

2. The categories of the entity — based on standard cross-industry taxonomies or
vertical/company-specific taxonomies.

3. Contextual resources — these could include keywords, local documents, Internet

documents, or smart objects (such as people).

An entity can be opened in the semantic browser, can be used as a pivot for navigation, as
a parameter for a smart request (e.g., Headlines on My Project), can be dragged and dropped, can
be copied and pasted, can be used with the smart lens, can be visnalized with a smart style, can
be used as the basis for an intrinsic alett, can be saved as a .ENT document, can be emailed,
" shared, etc. In other words, an entity is a first-class smart object.

The semantic runtime client dynamically creates SQML by appending the rich metadata
of the entity to the subject of the relational request to create a new rich SQML that refers to the
entity.

Entities preferably also have other powerful characteristics:

1. Regarding topics, entities allow the user to create his/her private taxonomy
(without being at the mercy of or restricted exclusively to a public taxonomy that is strictly
defined and as such, might not map exactly to the user’s specific context for a request). The
problem with taxonomies is that no taxonomy can ever fit everybody’s needs — even in the same
organization. Context is very personal and entities allow the user to create a personal taxonomy.
For instance, take the example of a dog (of the boxer breed) named Kashmir owned by a dog-
owner Steve. To everyone else (but Steve), Kashmir can be expressed (taxonomically) as:

Living Things

Animals
Mammals
Dogs

Boxers
Kashmir

83

WO 2004/075466 PCT/US2004/004674

But to Steve, Kashmir is also:

My Loved Ones
My Pets
Kashmir

To Steve’s veterinary doctor, however, Kashmir is:

My Clients
My Dogs
My Dogs in Good Health
Kashmir

If taxonomies (standalone) were used to “define” Kashmir, none of the three taxonomies
would satisfy the general public, Steve, and Steve’s veterinary doctor. With entities on the other
hand, Steve could create a “Kashmir” entity based on “what Kashmir means to him.” Everyone
else could then do the same. And so can Steve’s veterinary doctor. Entities therefore empower
the user with the ability to create private topics that might be extensions of broad taxonomies.

To take another example, a Pharmaceuticals researcher in a large Pharmaceutical
company might be working on a new top-secret project (named “Gene Project”) on Genomics.
Because “Gene Project” is an internal project, it would likely not exist in a public taxonomy
which could be used with the semantic browser of this the preferred embodiment of my
invention. However, the researcher could create an entity named “Gene Project”, typed as a
Project, and could then initialize the entity by scoping it to Genomics (which exists in broad
taxonomies) and then also qualifying it with the keyword-phrase “Gene Project” (using the AND
operator). Essentially, this is akin to defining “Gene Project” as anything on Genomics that has
the phrase “Gene Project.” This will impose much stricter context than merely using the
keywords “Gene Project” (which might return results that contain the word “Project” but have
nothing to do with Genomics). By defining a personal topic, “Gene Project” that is scoped to
Genomics but also extends “Gene Project” with a specific qualifier, the researcher now has much
more precise and personal context. The entity can then be dragged and dropped, copied and

pasted, etc. to create requests (e.g., “Experts on Gene Project.” At runtime, the server-side

84

WO 2004/075466 PCT/US2004/004674

semantic query processor will interpret this (by mapping the SQML to the semantic network) as
“Experts on any information that belongs to the category Genomics AND which also includes
the phrase “Gene Project.”

2. Entities also allow the user to create a dynamic taxonomy — public taxonomies are
very static and are not updated regularly. With entities, the user can “extend” his/her private
taxonomy dynamically and at the speed of thought. Knowledge is transferred at the speed of
thought. Entities allow the user to create context with the same speed and dynamism as his/her
mind or thought flow. This is very significant. For instance, the user can create an entity for a
newly scheduled meeting, a just-discovered conference, a new customer, a newly discovered
competitor, etc. — ALL AT THE SPEED OF THOUGHT. Taxonomies don’t allow this.

3. Taxonomies assume that topics are the only source of context. With entities, a
user can create abstract contextual definitions that include — but are not limited to — topics.
Examples include people, teams, events, companies, etc. Entities might eventually “evolve” into
topics in a taxonomy (over time and as those entities gain “fame” or “notoriety”) but in the
“short-term,” entities allow the user to create context that has not yet evolved (or might never
evolve) into a full-blown taxonomic entry. For instance, Nervana (our company) was initially an
entity (known only to itself and its few employees) but as we have grown and attracted public
attention, as an entity we are evolving into a topic in a public taxonomy. With entities, users
don’t have to wait for context (like Nervana) to “eventually become” topics.

4. Entities allow the user to create what the inventor calls “compound context.” An
example of this is a meeting. A meeting typically involves several participants with documents,
presentation slides, and/or handouts relevant to the topic of discussion. With entities in the
Information Nervous System, a user can create a “meeting” context that captures the semantics
of the meeting. Using the Create Entity Wizard, the user can specify that the entity is a meeting,
and then specify the semantic filters. Consider an example of a project meeting with five
participants and 2 handed out documents, and one presentation slide. The Presenter of the

meeting might want to create an entity in order to track knowledge specifically relevant to the

85

WO 2004/075466 PCT/US2004/004674

meeting. For instance, he/she might want to do this to determine when to schedule a follow-up
meeting or to track specific action items relating to the meeting. To create the entity, the user
would add the email addresses of the participants, the handed out documents, and also the
presentation to the entity filter definition. The user then saves the entity which is then created in
the semantic namespace/environment. The user can then edit the entity with new or removed
filters (and/or a new name/description) at a later date/time — for instance, if he/she has discovered
new documents that would have been relevant to the meeting. When the user drags and drops
the entity or includes it in a request/agent, the semantic browser then compiles the entity and
includes it in a master SQML with the sub-queries also passed to the XML Web Service for
interpretation. The server-side semantic query processor then processes the compound SQML
by constructing a series of SQL sub-queries (or an equivalent) and by joining these queries with
the entity sub-queries which in turn are generated using SQL sub-queries.

The user can use an AND or OR (or other) operator to indicate how the entity filters
should be applied. For instance, the user can indicate that the meeting (semantically) is the
participants of the meeting AND the documents/slides handed out during the meeting. When the
entity is compiled at the client and the server, the SQML equivalent is used to interpret the entity
(with the desired operator). This is very powerful. It means that the user can define an entity
named “Project Meeting” and drag and drop that entity to the special agent named “Breaking
News.” This then creates a request named “Breaking News on Project Meeting” (with the
appropriate SQML referring to the identifier of the entity — which will then be compiled into sub-
SQML before it is passed to the server(s) for interpretation. The server then applies default
predicates to the entries in the entity (based on what “makes sense” for the object). In this

particular example, because of the definition of the entity, the server will then only return:

Breaking News BY ALL the participants AND which is ALSO semantically relevant TO
ALL the documents/slides

For instance, this will only return conversations/threads that involve all the participants of

the meeting and which are semantically relevant to all the handouts given out during the meeting.

86

WO 2004/075466 PCT/US2004/004674

This is precisely what the user desired (in this case) and the semantic browser would have
empowered the user to essentially construct a rather complex query.

Even more complex queries are possible. Entities can include other entities to allow for
compound entities. For instance, if an entire team of people were involved in the meeting, the
Presenter might want to create an entity that includes an email distribution list of those people.
In this case, the user might search the Information Nervous System for the distribution list and
then save the result as an entity. The browser will allow the user to save results as entities and
based on the result type, it will automatically create an entity with a default entity type that
“makes sense.” For instance, if the user saves a document result as an entity, the semantic
browser it will create a “Topic” entity. If the user saves a Person result as an entity, the semantic
browser will create a “Person” entity. If the user saves an email distribution list as an entity, the
semantic browser will create a “Team” entity.

In this example, the user can save a Person result as a Person entity and then drag and
drop that entity into the Project Meeting entity. The Team entity that maps to the email
distribution list of the meeting participants can be dragged and dropped to the Project Meeting
entity. The user can then create a request called “Headlines on Project Meeting” that includes
the entity. The semantic query processor will then return Headlines BY anyone in the email
distribution list (using the right default predicate) and which is semantically relevant to ALL the
handouts given out during the meeting. Similarly, a Dossier (Guide) on the Project Meeting will
return All Bets on the meeting, Best Bets on meeting, Experts on the meeting, etc.

Note that such a compound entity that includes other entities gets checked by the client-
side semantic consistency checker for referential integrity. In other words, if Entity A refers to
Entity B and the user attempts to delete Entity B, the semaqtic browser will detect this and flag
the user that Entity B has an outstanding reference. If the user deletes Entity B anyway, the
reference in Entity A (and ariy other references to Entity B) will get removed. Alternately, in
some embodiments, the user could be prohibited (whether informed or not) from deleting Entity

B in the same situation, based on permissions of others within an organization associated with

87

WO 2004/075466 PCT/US2004/004674

the entity. For example, employers could monitor activities of employees for risk management
purposes, like as is done with email in some companies, only much potentially much more
powerfully (Of course, appropriate policies and privacy considerations would have to be
addressed). The same process applies to Request Collections (Blenders), Portfolios (Entity
Collections — see below), and other compound items in the semantic namespace/environment
(items that could refer to other items in the namespace/environment).

5. Popular entities can also be shared amongst members of a knowledge community.
Like other items in the semantic browser (like requests or knowledge communities (agencies),
entities can be saved as files (so the user can later open them or email them to colleagues, or save
them on a central file share, etc.). A common scenario would be that the corporate Librarians at
businesses would create entities that map to internal projects, meetings, seminars, tasks, and
other important corporate knowledge items of interest. These entities would then be saved on a
file-share or other sharing mechanism (like a portal or web-site) or on a knowledge community
(agency). The knowledge workers in the organization would then be able to use the entities. As
the entities get updated, in the preferred embodiment the Librarians can and will automatically
edit their context and users will be able refresh or synchronize to the new entities. Entities could
also and alternately be shared on a peer-to-peer basis by individual users. This is akin to a legal
peer-to-peer file sharing for music, but instead of music, what is shared is context to facilitate
meaning, or more meaningful communication.

2. Portfolios (or Entity Collections)

Portfolios are a special type of entity that contains a collection of entities. In the preferred
embodiment, to minimize complexity and confusion (at least of nomenclature or terminology),
while an entity can be of any size or composition, and portfolio can contain any kind or number
of entities, a portfolio would not contain other portfolios. A portfolio allows the user to manage
a group of entities as ome unit. A portfolio is a first-class entity and as such has all the

aforementioned features of an entity. When a portfolio is used as a parameter in a smart request,

88

WO 2004/075466 PCT/US2004/004674

the OR qualifier is applied (by default) to its containing entities. In other words, if Portfolio P
contains entities B1 and E2, a smart request titled ‘Headlines on P’ will be processed as
‘Headlines on E1 or E2.” The user can change this setting on individual smart requests (to an
AND qualifier).

3. Sample Scenarios

Again, in reviewing the scenarios below, it is helpful to recall that, conceptually, the
system can gather more relevant information in part because it “knows” who is asking for it, and
“understands” who that person or group is, and the kinds of information they are probably
interested in. Of course, strictly speaking, the system is not cognitive or self aware in the full
human sense, and the operative verbs in the preceding sentence are conceptual metaphors or
similes. Still, in operation and results, it mimics understanding and knowledge to an
unprecedented degree in part because of its underlying semantically-informed architecture and
execution.

This point can be illustrated by a simplistic contrast: If two very different people entered
the exact same search at the exact same time into a search engine such as Google, they would get
the exact same results. In contrast, with the preferred embodiment of the present system, if those
same two people entered the same request via an Entity, each would get different results tailored
to be relevant to each.

To appreciate some of the potential power of this feature, it is useful to note that while
the system or Entities “know” who is posing the query, the Entities do not depend for that
knowledge on the user informing them and keeping them constantly updated and informed
(although user information can be supplied and considered at any time). If that were the case,
the system could be too labor intensive to be efficient and useful in many situations; it would just
be too much work. Instead, the Entities “kmow” who the requester is by inference and from

semantics from characteristics sometimes supplied by others, sometimes derived or deduced,

89

WO 2004/075466 PCT/US2004/004674

sometimes collected from other requests and the like, as explained throughout this application
and its parent application.

Some example scenarios of Entities in operation:

1. A pharmaceuticals ‘patent’ entity could include the categories of the patent,
relevant keywords, and relevant documents.
2. A CIA agent could create a ‘terrorist’ entity to track terrorists. This could include

categories on terrorism, suspicious wire transfers, suspicious arms sales, classified documents,
keywords, and terrorism experts in the information community.

3. Find All Breaking News on Yesterday’s Meeting.

4. Find Headlines on any of my competitors (this is done by creating the competitor
entities, and then creating a smart request with the entities as parameters using the OR qualifier
with each predicate).

5. Find Experts on my investment portfolio companies (create the individual entities,
create a portfolio containing these entities and then create a smart request that has the ‘Experts’
context template and that uses the portfolio as an argument).

6. Open a Dossier (Guide) on my competitors (create the individual competitor
entities, create a portfolio containing these entities and then create a smart request that has the
‘Dossier’ (or ‘Guide’) context template and that uses the portfolio as an argument). Figure 21
shows Entity views displayed in the semantic browser (on the left).

H. KNOWLEDGE COMMUNITY BROWSING AND SUBSCRIPTION
SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM

Overview

The Nervana semantic browser will allow the user to subscribe and unsubscribe to/from
knowledge communities (agencies) for a given profile. These knowledge communities will be
readily available to the user underneath the profile entry in the semantic environment. In
addition, these knowledge communities will be queried by default for intrinsic alerts, context
panels, and etc. whenever results are displayed for any request created using the same profile.

The semantic environment includes state indicating the subscribed knowledge
communities for each profile. The client-side semantic query processor (SQP) uses this
information for dynamic requests that start from results for requests of a given profile (the SQP
will ask the semantic runtime client for the knowledge communities for the profile and then issue

XML Web Service calls to those knowledge communities as appropriate).

90

WO 2004/075466 PCT/US2004/004674

Figures 22A, and 22B show the user interface for the knowledge community subscription
and un-subscription. The dialog box has combo boxes allowing the user to filter by profile, to
view all, new, subscribed, suggested, and un-subscribed communities, by industry and area of
interest, by keywords, by publishing point (all publishing points, the local area network, the
enterprise directory, and the global knowledge community directory), and by creation time
(anytime, today, yesterday, this week, and last week). The semantic runtime client queries the
publishing point endpoint listeners (for each publishing point) using fhe filters. It then gathers
the results and displays them in the results pane. The user is also able to view the categories of
each knowledge community in the results pane via a combo box. Figure 20B illustrates the

bottom portion of the Knowledge Communities Dialog Box.

I CLIENT-SIDE SEMANTIC QUERY DOCUMENT SPECIFICATION FOR THE
INFORMATION NERVOUS SYSTEM

1. Semantic Query Markup Language (SQML) Overview

In the currently preferred embodiment, the Nervana Semantic DHTML Behavior is an
Internet Explorer DHTML Behavior that, from the client’s perspective, every thing it
understands as a query document. The client opens ‘query documents,” in a manner resembling
how a word processor opens ‘textual and compound documents.’” The Nervana client is
primarily responsible for processing a Nervana semantic query document and rendering the
results. A Nervana semantic query document is expressed and stored in form of the Nervana
Semantic Query Markup Language (SQML). This is akin to a “semantic file format.”

In the preferred embodiment, the SQML semantic file format comprises of the following:

o Head - The ‘head’ tag, like in the case of HTML, includes tags that describe the
document.

Title — The title of the document.

Comments — The comments of the document.

UserName — The username of the document creator.

SystemName — The systemname of the device on which the document was
created.

Subject — The subject of the document.
° Creator — The creator of the document.

91

WO 2004/075466 PCT/US2004/004674

Company — The company in which the document was created.

RequestType — This indicates the type of request. It can be “smart request”
(indicating requests to one or more information community web services) or
“dumb request” (indicating requests to one or more local or network resources).
ObjectType — This fully qualifies the type of objects returned by the query.

URI - The location of the document.

CreationTime — The creation time of the document.

LastModifiedTime — The last modified time of the document.

LastAccessedTime — The last accessed time of the document.

Attributes — The attributes of the document, if any.

RevisionNumber — The revision number of the document.

Language — The language of the document.

Version — this indicates the version of the query. This allows the web service’s
semantic query processor to return results that are versioned. For instance, one
version of the browser can use V1 of a query, and another version can use V2.
This allows the web service to provide backwards compatibility both at the
resource level (e.g., for agents) and at the link level.

Targets — This indicates the names and the URLs of the information community
web services that the query document targets.

Type — this indicates the type of targets. This can be “targetentries,” in which
case the tag includes sub-tags indicating the actual web service targets, or
“allsubscribedtargets,” in which case the query processor uses all subscribed
information communities.

Categories — This indicates the list of category URLSs that the query document
refers to. Each “category” entry contains a name attribute and a URI attribute that
indicates the URL of the Knowledge Domain Server (KDS) from which the
category came.

Type — this indicates the type of categories. This can be either “categoryentries,”
in which case the sub-tag refers to the list of category entries, “allcategories,” in
which case all categories are requested from the information community web
services, or “myfavoritecategories,” in which case the query processor gets the
user’s favorite categories and then generates compiled SQML that contains these
categories (this compiled SQML is then sent to the server(s)).

Query — This is the parent tag for all the main query entries of the query document
Resource - The reference to the ‘dumb’ resource being queried. Examples
include file paths, URLS, cache entry identifiers, etc. These will be mapped to
actual resource managers components by the interpreter.

Type — The type of resource reference, qualified with the namespace. Examples of
defined resource reference types are: nervana:url (this indicates that the resource
reference is a well-formed standard Internet URL, or a custom Nervana URL like
‘agent://...”), nervana:filepath (this indicates that the resource reference is a path
to a file or directory on the file-system), and nervana:namespaceref (this indicates
that the resource comes from the client semantic namespace).

92

WO 2004/075466 PCT/US2004/004674

o & e °

Uri — This indicates the universal resource identifier of the resource. In the case
of paths and Internet URLs, this indicates the URL itself. In the case of
namespace entries, this indicates the GUID identifier of the entry.

Mid — This indicates the metadata identifier, which is used by the SQML
interpreter to map the resource to the metadata section of the document. The
metadata id is mapped to the same identifier within the metadata section.

Args — This indicates the arguments of the resource identifier.

Links — this indicates the reference to the semantic links (for “targets” only)

Type — this indicates the type of links. This can be “linkentries,” indicating the
links are explicit entries. !

LinkEntries — this indicates the details of a link entry.

Predicate — this indicates the type of predicate for the link. For instance, the
predicate “nervana:relevantto” indicates that the query is “return all objects from
the resource R that are relevant to the object O,” where R and O and the specified
resource and object, respectively. Other examples of predicates include
nervana:reportsto, nervana:teammateof, nervana:from, nervana:to, nervana:cc,
nervana:bcc, nervana:attachedto, nervana:sentby, nervana:sentto,
nervana:postedon, nervana:containstext, etc.

Type — this indicates the type of object reference indicates in the ‘Link’ tag.

"Examples include standard XML data types like xml:string, xml:integer, Nervana

equivalents of same, custom Nervana types like nervana:datetimeref (which could
refer to object references like ‘today’ and ‘tomorrow’), and any standard Internet
URL (HTTP, FTP, etc.) or Nervana URL (objects://, etc.) that refers to an object
that Nervana can process as a semantic XML object.

Metadata — this contains the references to the metadata entries.

MetadataEntry — this indicates the details of a metadata entry.

Mid — this indicates the metadata identifier (GUID).

Value — this indicates the metadata itself.

EXAMPLE: DOCUMENTS (INFORMATION OR CONTEXT-BASED)

<?xml version="1.0" encoding="‘utf-8”7>
<sqml>

<head
requesttype="“smart request”
objecttype=“context\headlines”
uri=“c:\foo’s\bar.pdf”
creationtime="“fo0”
lastmodifiedtime="foo”
lastaccessedtime="“foo”
attributes=“0"
revisionnumber="“0"
langnage="“foo”
version="“foo” />
<title>foo</title>

93

WO 2004/075466 PCT/US2004/004674

<comments>foo</comments>
<username>foo</username>
<systemname>foo</systemname>
<subject>foo</subject>
<creator>foo</creator>
<company>foo</company>

<targets>
<target
name="Marketing”
reftype="“uri”
ref="kisp://marketing/default.wsdl”
/>
<target
name="Research”
reftype="uri”
ref=“kisp://research/default.wsdl”
/>
</targets>
<categories™>
<category
name=“reuters\pharmaceuticals\biotechnology”
reftype="uri”
ref="kdsp://reuters.com/categories.wsdl?id=45"
/>
<category
name="reuters\pharmaceuticals\life_sciences”
reftype="“uri”
ref="kdsp://reuters.com/categories.wsd1?id=57"
/>
</categories>
/>
<resources>
<resource
name="foo0”
type="information\documents\general document”
reftype=“nervana:filepath”
ref="file://c:\bar.doc”
mid=*“7886e4a0-55d9-45ac-a084-97adcofffd0f”
args="“
/>
<resource

name="foo”

type="“information\all information”
reftype=“nervana:url”

ref="“file://c:\bar.doc”
mid=*01fc64a3-c068-4339-bc97-17e5{f37e931”

94

WO 2004/075466

PCT/US2004/004674

11113

args=

/>

<resource
name="foo”
type=“information\all information”
reftype="nervana:folderpath”
ref="file://c:\”
mid=“f8cc39c3-e4{0-4a29-be2a-d2faf36eb3a0”
args="includesubfolders=true”

/>

<resource
name="foo”
type="information\documents\general document”
reftype=“nervana:url”
ref="http://www .bar.com/doc.htm”
mid=“{8cc39c3-e4{0-4a29-be2a-d2faf36eb3al”
args="

/>

<resource
name="“foo”
type=“information\documents\general document”
reftype="“nervana:url”
ref="ftp://gate.com/doc.txt”
mid="“f8cc39c3-e4{0-4a29-be2a-d2faf36eb3a0”
args=‘“

/>

<resource
name="foo”
type="information\documents\general document”
reftype="nervana:filepath”
ref="file:/\\servers\server\file.pdf”
mid="“1b870a25-4e98-45d8-a444-f0283a495357”
args="“

/>

<resource
name="“foo”
type="“information\documents\text document”
reftype="“nervana:text”
ref="“
mid=“7886e4a0-55d9-45ac-a084-97adc6fffd0f”
args="“

/>

<resource
name="foo”
type=“information\documents\general document”
reftype="nervana:cacheentry”

95

WO 2004/075466

PCT/US2004/004674

ref="ef9c90ea-282d-46d6-b355-ac8adfc2f3e5”

mid="“
args="“

/> :

<resource
name=“foo”
type="information\email\email message”
reftype=“nervana:url”
ref="request://email.all@ibm.com”
mid="““

. args="“

/>

<resource
name="‘foo0”
type="information\email\email annotation™
reftype=“nervana:url”
ref="objects://rad.com/agency.asp”
mid="““
args="““

/>

<resource
name="“fo0”
type=“information\documents\general document”
reftype=“nervana:url”
ref="“objects://rad.com/agency.asp”
mid="
args=""“

/>

<resource
name="“f00”
type="information\documents\general document”
reftype=“nervana:url”
ref=“objects://rad.com/agency.asp”
mid="
args="“

/>

<resource
name=*“f00”’
type="“information\documents\general document”
reftype="nervana:url”
ref="request://documents.all@intel.com”
mid="“
argszG“‘

/>

</resources>
<links>

96

WO 2004/075466

<link

/>
<link

/>
<link

/>
<link

/>
<link

PCT/US2004/004674

operator="and”

predicate="nervana:relatedto”

name="foo”
type="information\documents\general document”
reftype=“nervana:filepath”
ref="“file://c:\foo.doc”
mid="“7886e4a0-55d9-45ac-a084-97adc6fffd0f”

(1114

args=

operator="and”

predicate="“nervana:contains”

name="foo”
type=“information\documents\general document”
reftype=“nervana:text”

ref=*“
mid="46ea76cb-1383-4885-af6f-0e0fc6a66896”

£1119

args=

operator="and”

predicate="nervana:postedon”

name="{f00”

type=“types\datetime”
reftype="“nervana:datetimeref”

ref="
mid="3fa64c3c-4754-4380-91b5-521299036c62”

6666

args=

operator="“and”

predicate="nervana:relatedto”

name="foo”
type=“information\documents\general document”
reftype="“nervana:url”
ref="kisp://98@in.com/m.asp”
mid=“c2649¢39-alc3-4ca8-ae8d-c85c04372e9a”

11114

args=

operator="“and”
predicate="nervana:isofpriority”
name="foo”
type=“types\priority”
reftype=“nervana:priority”

97

WO 2004/075466 PCT/US2004/004674

ref="“

mid=“69bbc048-98c8-4f76-8edf-5a00ce91¢c183”

args="“

/>
</links>
<metadata>
<metadataentry

mid="“7886e4a0-55d9-45ac-a084-97adc6fffd0f”

reftype="“uri”

ref="file://c:\foo\bar.pdf” />

<value>

<document>

<title>scenario modelling</title>
<type>text</type>
<format>application/pdf</format>
<filepath>c:\foo\bar.pdf</filepath>
<shortfilename>bar.pdf</shortfilename>
<creationtime>foo</creationtime>
<lastmodifiedtime>foo</lastmodifiedtime>
<lastaccessedtime>foo</lastaccessedtime>
<attributes>0</attributes>
<size>0</size>
<subject>foo</subject>
<creator>foo</creator>
<manager>foo</manager>
<company>foo</company>
<category>foo</category>
<keywords>foo</keywords>
<comments>foo</comments>
<hlinkbase>foo</hlinkbase>
<template>foo</template>
<lastsavedby>foo</lastsavedby>
<revisionnumber>0</revisionnumber>
<totaleditingtime>foo</totaleditingtime>
<numpages>0</numpages>
<numparagraphs>0</numparagraphs>
<numlines>0</numlines>
<numwords>0</numwords> *
<numcharacters>0</numcharacters>

<numcharacterswithspaces>0</numcharacterswithspaces>
<numbytes>0</numbytes> -
<language>foo</language>
<version>foo</version>
<abstract>foo</abstract>
</document>

98

WO 2004/075466 PCT/US2004/004674

</value>

/>

<metadataentry
mid="“bfcb12b4-70bb-473a-847c-ebffe187828f”
reftype="ur1”
ref="“file://c:\foo\bar.pdf” />

<value>
<email>
<title>scenario modelling</title>
<type>text</type>

<format>application/pdf</format>
<filepath>c:\foo\bar.pdf</filepath>
<shortfilename>bar.pdf</shortfilename>
<creationtime>foo</creationtime>
<lastmodifiedtime>foo</lastmodifiedtime>
<lastaccessedtime>foo</lastaccessedtime>
<attributes>0</attributes>
<size>0</size>

<subject>foo</subject>
<creator>foo</creator>
<manager>foo</manager>
<company>foo</company>
<category>foo</category>
<keywords>foo</keywords>
<comments>foo</comments>
<hlinkbase>foo</hlinkbase>
<template>foo</template>
<lastsavedby>foo</lastsavedby>
<revisionnumber>0</revisionnumber>
<totaleditingtime>foo</totaleditingtime>
<numpages>0</numpages>
<numparagraphs>0</numparagraphs>
<numlines>0</numlines>
<numwords>0</numwords>
<numcharacters>0</numcharacters>

<numcharacterswithspaces>0</numcharacterswithspaces>
<numbytes>0</numbytes>
<language>foo</language>
<version>foo</version>
<abstract>foo</abstract>

</email>
</value>
/>
</metadata>
</sqml>

99

WO 2004/075466 PCT/US2004/004674

2. SQML Generation

Preferably, SQML is generated in any one or more of several possible ways:

. By creating a smart request

. By creating a local request

. By creating an entity

. By opening one or more local documents in the semantic browser

. By the client (dynamically) — in response to a drag and drop, smart copy and

paste, intrinsic alert, context panel/link invocation, etc.

3. SQML Parsing

In some embodiments in some situations, SQML that gets created on the client might not
be ready (in real-time) for remote consumption — by the server’s XML web service or at another
machine site. This is especially likely to be the case when the SQML refers to local context such
as documents, Entities, or Smart Requests (that are identified by unique identifiers in the
semantic environment)." In the preferred embodiment, the client generally creates SQML that is
ready for remote consumption. Preferably, it does this by caching the metadata for all references
in the metadata section of the document. This is preferable because in some cases, the resource
or object to which the reference points might no longer exist when the query is invoked. For
instance, a user might drag and drop a document from the Internet to a smart request in order to
generate a new relational request. The client extracts the metadata (including the summary) from
the link and inserts the metadata into the SQML. Because the resolution of the query uses only
the metadata, the query is ready for consumption once the metadata is inserted into the SQML
document. However, the link that the object refers to might not exist the day after the user found
it. Insucha case, even if the user invokes the relational request after the link might have ceased
to exist, the request will still work because the metadata would already have been cached in the
SQML.

The client SQML parser performs “lazy” updating of metadata in the SQML. When the
request is invoked, it attempts to update the metadata of all parameters (resources, etc.) in the

SQML to handle the case where the objects might have changed since they were used to create

! Blenders (or collections) contain references to smart requests.

100

WO 2004/075466 PCT/US2004/004674

the relational request. If the object does not exist, the client uses the metadata it already has.
Otherwise, it updates it and uses the updated metadata. That way, even if the object has been
deleted, the user experience is not interrupted until the user actually tries to open the object from

whence the metadata came.

J. SEMANTIC CLIENT-SIDE RUNTIME CONTROL API SPECIFICATION FOR
THE INFORMATION NERVOUS SYSTEM

1. Introducing the Nervana Semantic Runtime Control - Overview

In the preferred embodiment, the Nervana Semantic Runtime Control is an ActiveX
control that exposes properties and methods for use in displaying semantic data using the
Nervana semantic user experience. The control will be primarily called from XSLT skins that
take XML data (using the SRML schema) and generate DHTMLATIME or SVG output,
consistent with the requirements of the Nervana semantic user experience. Essentially, in this
embodiment, the Nervana control encapsulates the “SDK” on top of which the XSLT skins sit in
order to produce a semantic content-driven user experience. The APIs listed below illustrate the
functionality that will be exposed or made available by the final API set in the preferred

embodiment.

2. The Nervana Semantic Runtime Contrel API
a. EnumObjectsinNamespacePath
INTRODUCTION

The EnumObjectsInNamespacePath method returns the objects in a namespace path.

USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to open a namespace path in order for the user to navigate the namespace from

within the semantic browser.

PROTOTYPE

SCODE
EnumObjectsInNamespacePath(
[in] BSTR Path,

101

WO 2004/075466 PCT/US2004/004674
[in] LONG QueryMask,
[out] BSTR *pQueryRequestGuid);
b. CompileSemanticQueryFromBuffer
INTRODUCTION

The C\ompileSemanticQueryFromBuffer method opens an SQML buffer and compiles it
into one or more execution-ready SQML buffers. For instance, an SQML file containing a
blender will be compiled into SQML buffers representing each blender entry. If the blender
contains blenders, the blenders will be unwrapped and an SQML buffer will be returned for each
contained blender. A compiled or “execution-ready” SQML buffer is one that can be
semantically processed by an agency. The implication is that a blender that has agents from
multiple agencies will have its SQML compiled to buffers with the appropriate SQML from each
agency.

Note: If the buffer is already compiled, the method returns S FALSE and the return

arguments are ignored.

USAGE SCENARIO

A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to compile an SQML buffer and retrieve generated “compiled code” that is
ready for execution. In typical scenarios, the application or skin will compile an SQML buffer
and then prepare frame windows where it wants each individual SQML query to sit. It can then
issue individual SQML semantic calls by calling OpenSemanticQueryFromBuffer and then have
the results displayed in the individual frames.

PROTOTYPE

SCODE

ComipileSemanticQueryFromBuffer(

[in] BSTR SQMLBuffer,

[in] DWORD Flags,

[out] DWORD *pdwNumCompiledBuffers,
[out] BSTR *pbstrCompiledBuffers);

102

WO 2004/075466 PCT/US2004/004674

c. OpenSemanticQueryFromBuffer

INTRODUCTION
The OpenSemanticQueryFromBuffer method opens an SQML Buffer and asynchronously
fires the XML results (in SRML) onto the DOM, from whence a Nervana skin can sink the
event. Note that in this embodiment the SQML has to be “compiled” and ready for execution. If

the SQML is not ready for execution, the call will fail. To compile an SQML buffer, call
CompileSemanticQueryFromBuffer.

USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

call this method to open a compiled SQML buffer.

PROTOTYPE

SCODE
OpenSemanticQueryFromBuffer(
[in BSTR SQMLBuffer,

[n] DWORD Flags,
[out] GUID *pQueryID);

d. GetSemanticQueryBufferFromFile

INTRODUCTION
The GetSemanticQueryBufferFromFile method opens an SQML file, and returns the

buffer contents. The buffer can then be compiled and/or opened.

'USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to convert an SQML file into a buffer before processing it.

PROTOTYPE

SCODE
GetSemanticQueryBufferFromFile (
[in] BSTR SQMLFilePath,

[in DWORD FileOpenFlags,
[out] BSTR *pbstrSQMLBuffer),

103

WO 2004/075466 PCT/US2004/004674

e. GetSemanticQueryBufferFromNamespace
INTRODUCTION

The GetSemanticQueryBufferFromNamespace method opens a namespace object, and

retrieves its SQML buffer.

USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to open an SQML buffer when it already has access to the id and path of the

namespace object.

PROTOTYPE

SCODE
GetSemanticQueryBufferFromNamespace(
[in] GUID ObjectID,
[in] BSTR Path,
[out] BSTR *pbstrSQMLBuffer);

f. GetSemanticQueryBufferFromURIL

INTRODUCTION

The GetSemanticQueryBufferFromURL method wraps the URL in an SQML buffer, and

returns the buffer.
USAGE SCENARIO

A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to convert an URL of any type to SQML. This can include file paths, HTTP
URLSs, FTP URLs, Nervana agency object URLs (prefixed by “wsobject://””) or Nervana agency
URLs (prefixed by “wsagency://”). |

PROTOTYPE

SCODE
GetSemanticQueryBufferFromURL(
[in] BSTR URL,

[out] BSTR *pBuffer);

104

WO 2004/075466 PCT/US2004/004674

g. GetSemanticQueryBufferFromClipboard
INTRODUCTION

The GetSemanticQueryBufferFromClipboard method converts the clipboard contents to

SQML, and returns the buffer.
| USAGE SCENARIO

A Nervana client application (for instance, the semantic browser) or a Nervana skin will
call this method to get a semantic query from the clipboard. The application can then load the
query buffer.

PROTOTYPE
SCODE GetSemanticQueryBufferFromClipboard([out] BSTR *pBuffer);

h. Stop
INTRODUCTION
The Stop method stops current open request.
USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

call this method to stop a load request is just issued.

PROTOTYPE
SCODE Stop([in] GUID QueryID);

i Refresh
INTRODUCTION
The Refresh method refreshes the current open request.
USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

call this method to refresh the currently loaded request.

PROTOTYPE
SCODE Refresh([in] GUID QueryID);

105

WO 2004/075466 PCT/US2004/004674

i CreateNamespaceObject

INTRODUCTION

The CreateNamespaceObject method creates a namespace object and returns its GUID.

USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will
typically call this method to create a temporary namespace object when a new query document

has been opened.

PROTOTYPE

SCODE

CreateNamespaceObject(

[in] BSTR Name,

[in BSTR Description,

[in] BSTR QueryBuffer,

[in LONG AgentObjectType,

[in] LONG Attributes,

[in] LONG NamespaceObjectType,
[out] GUID *pObjectID),

k. DeleteNamespaceObject
INTRODUCTION
The DeleteNamespaceObject method deletes a namespace object.
USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will
typically call this method to delete a temporary namespace object.

PROTOTYPE
SCODE DeleteNamespaceObject([in] GUID ObjectID);

L. CopyObject
INTRODUCTION
The CopyObject method copies the semantic object to the clipboard as an SQML buffer
using a proprietary SQML clipboard format. The object can then be “pasted” onto agents for

relational semantic queries, or used as a lens over other objects or agents.

106

WO 2004/075466 PCT/US2004/004674

USAGE SCENARIO
A Nervana skin will typically call the CopyObject method when the user clicks on the
“Copy” menu option — off a popup menu on the object.
PROTOTYPE
SCODE CopyObject([in] BSTR ObjectSRML);
m. CanObjectBeAnnotated
INTRODUCTION
The CanObjectBeAnnotated method checks whether the given object can be annotated.
USAGE SCENARIO
A Nervana skin will typically call the CanObjectBeAnnotated method to determine

whether to show Ul indicating the “Annotate” command.

PROTOTYPE
SCODE CanObjectBeAnnotated([in] BSTR bstrObjectSRML);

n. AnnotateObject
INTRODUCTION
The AnnotateObject method invokes the currently installed email client and initializes it
to send an email annotation of the object to the email agent of the agency from whence the object
came.
USAGE SCENARIO

A Nervana skin will typically call the AnnotateObject method when the user clicks on the

“Annotate” menu option — off a popup menu on the object.

PROTOTYPE
SCODE AmnnotateObject([in] BSTR bstrObjectSRML);

0. CanObjectBePublished

INTRODUCTION
The CanObjectBePublished method checks whether the given object can be published.

107

WO 2004/075466 PCT/US2004/004674

USAGE SCENARIO
A Nervana skin will typically call the CanObjectBePublished method to determine

whether to show Ul indicating the “Publish” command.

PROTOTYPE
SCODE CanObjectBePublished ([in] BSTR bstrObjectSRML);

p. PublishObject
INTRODUCTION
The PublishObject method invokes the currently installed email client and initializes it to
send an email publication of the object to the email agent of the agency from whence the object
came.
USAGE SCENARIO

A Nervana skin will typically call the PublishObject method when the user clicks on the
“Publish” menu option — off a popup menu on the object.

PROTOTYPE
SCODE AnnotateObject([in] BSTR bstrObjectSRML);

q. OpenObjectContents
INTRODUCTION
The OpenObjectContents method opens the object using an appropriate viewer. For
instance, an email object will be opened in the email client, a document will be opened in the
browser, etc..
USAGE SCENARIO
A Nervana skin will typically call the OpenObjectContents method when the user clicks

on the “Open” menu option — off a popup menu on the object.

PROTOTYPE ,
SCODE OpenObjectContents ([in] BSTR ObjectSRML);

108

WO 2004/075466 PCT/US2004/004674

r. SendEmailToPersonObject

INTRODUCTION
The SendEmailToObject method is called to send email to a person or customer object.

The method opens the email client and initializes it with the email address of the person or

customer object.
USAGE SCENARIO
A Nervana skin will typically call the SendEmailToObject method when the user clicks

on the “Send Email” menu option — off a popup menu on a person or customer object.

PROTOTYPE
SCODE SendEmailToObject([in] BSTR ObjectSRML);

S. GetObjectAnnotations

INTRODUCTION

The GetObjectAnnotations method is called to get the annotations an object has on the

agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the GetObjectAnnotations method when it wants to
display the titles of the annotations an object has — for instance, in a popup menu or when it
wants to display the annotations metadata in a window.

PROTOTYPE

SCODE

GetObject Annotations(

[in] BSTR ObjectSRML,

[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

t. IsObjectMarked AsFavorite

INTRODUCTION

The IsObjectMarked AsFavorite method is called to check whether an object is marked as

a favorite on the agency from whence it came.

109

WO 2004/075466 PCT/US2004/004674

USAGE SCENARIO
A Nervana skin will typically call the IsObjectMarkedAsFavorite method to determine
what UI to show — either the “Mark as Favorite” or the “Unmark as Favorite” command. If the
object cannot be marked as a favorite (for instance, if it did not originate on an agency), the error

code E INVALIDARG is returned.

PROTOTYPE
SCODE
IsObjectMarked AsFavorite(in] BSTR ObjectSRML);

u. MarkObjectAsFavorite
INTRODUCTION
The MarkObjectAsFavorite method is called to mark the object as a favorite on the
agency from whence it came.
USAGE SCENARIO
A Nervana skin will typically call the MarkObjectAsFavorite method when the user
clicks on the “Mark as Favorite” command.

PROTOTYPE
SCODE
MarkAsFavorite(in] BSTR ObjectSRML);

v. UnmarkObjectAsFaverite
INTRODUCTION

The UnmarkObjectAsFavorite method is called to unmark the object as a favorite on the
agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the UnmarkObjectAsFavorite method when the user

clicks on the “Unmark as Favorite” command.

110

WO 2004/075466 PCT/US2004/004674

PROTOTYPE
SCODE

UnmarkAsFavorite(in] BSTR ObjectSRML);

w. IsSmartAgentOnClipboard

INTRODUCTION

The IsSmartAgentOnClipboard method is called to check whether a smart agent has been
copied to the clipboard.

USAGE SCENARIO
A Nervana skin will typically call the IsSmartAgentOnClipboard method when it wants
to toggle the user interface to display the “Paste” icon or when the “Paste” command is invoked.

PROTOTYPE
SCODE
IsSmartAgentOnClipboard();

X. GetSmartLensQueryBuffer

INTRODUCTION
The GetSmartLensQueryBuffer method is called to get the query buffer of the smart lens.

This returns the SQML of the query that represents the objects on the smart agent that is on the

clipboard, and which are semantically relevant to a given object.

USAGE SCENARIQ
A Nervana skin will typically call the GetSmartLensQueryBuffer method when the user
hits “Paste as Smart Lens” to invoke the smart lens off the smart agent that is on the clipboard.

PROTOTYPE

SCODE

GetSmartLensQueryBuffer(

[in] BSTR ObjectSRML,

[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

111

WO 2004/075466 PCT/US2004/004674

y. OpenObjectContents

INTRODUCTION
The OpenObjectContents method opens the object using an appropriate viewer. For

instance, an email object will be opened in the email client, a document will be opened in the

browser, etc.

USAGE SCENARIO
A Nervana skin will typically call the OpenObjectContents method when the user clicks
on the “Open” menu option — off a popup menu on the object.

PROTOTYPE

SCODE OpenObjectContents([in] BSTR ObjectSRML);
Part

3. Email Control APIs

a. Email GetFromLinkObjects

INTRODUCTION
The Email GetFromLinkObjects method is called to get the metadata for the “From”

links on an email object from the agency from whence it came.
USAGE SCENARIO
A Nervana skin will typically call the Email GetFromLinkObjects method when it wants

to navigate to the “From” list from an email object, or to display a popup menu with the name of

the person in the “From” list.

PROTOTYPE

SCODE

Email GetFromLinkObjects(

[in] BSTR EmailObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

112

WO 2004/075466 PCT/US2004/004674

b. Email_GetToLinkObjects

INTRODUCTION
The Email _GetFromLinkObjects method is called to get the metadata for the “To” links

on an email object from the agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the Email_GetToLinkObjects method when it wants to

navigate to the “To” list from an email object, or to display a popup menu with the name of the

person in the “To” list.

PROTOTYPE

SCODE ‘

Email GetToLinkObjects(-

[in] BSTR EmailObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

c. Email_GetCeLinkObjects

INTRODUCTION

The Email GetCcLinkObjects method is called to get the metadata for the “CC” links on

an email object from the agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the Email_GetCcLinkObjects method when it wants to

navigate to the “CC” list from an email object, or to display a popup menu with the name of the

person in the “CC” list.

PROTOTYPE

SCODE

Email_GetCcLinkObjects(

[in] BSTR EmailObjectSRML,
[in] LONG QueryMask, _
[out] BSTR *pQueryRequestGuid);

113

WO 2004/075466 PCT/US2004/004674

d. Email_GetBccLinkObjects

INTRODUCTION

The Email GetBccLinkObjects method is called to get the metadata for the “BCC” links

on an email object from the agency from whence it came.

? USAGE SCENARIO
A Nervana skin will typically call the Email_GetBccLinkObjects method when it wants
to navigate to the “BCC” list from an email object, or to display a popup menu with the name of

the person in the “BCC” list.

PROTOTYPE

SCODE

Email_GetBccLinkObjects(

[in] BSTR EmailObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

e. Email GetAttachmentLinkObjects

INTRODUCTION
The Email GetAttachmentLinkObjects method is called to get the metadata for the

“Attachment” links on an email object from the agency from whence it came.

USAGE SCENARIQ
A Nervana skin will typically call the Email_GetAttachmentLinkObjects method when it
wants to navigate to the “Attachments” link from an email object, or to display a popup menu

with the titles of the attachments in the “Attachments™ list.

PROTOTYPE

SCODE

Email GetAttachmentLinkObjects(
[in] BSTR EmailObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

114

WO 2004/075466 PCT/US2004/004674

4. Person Control APIs

a. Person_GetDirectReports

INTRODUCTION

The Person_GetDirectReports method is called to get the metadata for the “Direct

Reports” links on a person object from the agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the Person_GetDirectReports method when it wants to
navigate to the “Direct Reports™ link from a person object, or to display a popup menu with the
names of the direct reports in the “Direct Reports” list.

PROTOTYPE

SCODE

Person_GetDirectReports(

[in] BSTR EmailObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

b. Person_GetDistributionLists

INTRODUCTION
The Person_GetDistributionLists method is called to get the metadata for the “Member of

Distribution Lists” links on a person object from the agency from whence it came.

USAGE SCENARIQO
A Nervana skin will typically call the Person_GetDistributionLists method when it wants
to navigate to the “Member of Distribution Lists” link from a persoh object, or to display a
popup menu with the names of the distribution lists of which the person is a member.

PROTOTYPE

SCODE
Person_GetDistributionLists(

[in] BSTR PersonObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

115

WO 2004/075466 PCT/US2004/004674

c. Person_GetInfoAuthored

INTRODUCTION
The Person_GetInfoAuthored method is called to get the metadata for the “Info Authored

by Person” links on a person object from the agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the Person_GetInfoAuthored method when it wants to
navigate to the “Info Authored by Person” link from a person object, or to display a preview
window with time-critical or recent information that the person authored.

PROTOTYPE

SCODE

Person_GetInfoAuthored(

[in] BSTR PersonObjectSRML, '
[ln] BOOL SemanticQuery, '

[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

d. Person_GetinfoAnnotated
INTRODUCTION
The Person_GetInfoAnnotated method is called to get the metadata for the “Info

Annotated by Person” links on a person object from the agency from whence it came.

USAGE SCENARIO
A Nervana skin will typically call the Person_GetInfoAnnotated method when it wants to
navigate to the “Info Annotated by Person” link from a person object, or to display a preview
window with time-critical or recent information that the person annotated.

PROTOTYPE

SCODE

Person_GetInfoAnnotated(

[in] BSTR PersonObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

116

WO 2004/075466 PCT/US2004/004674

e. Person_GetAnnotationsPosted

INTRODUCTION
The Person_GetAnnotationsPosted method is called to get the metadata for the
“Annotations Posted by Person™ links on a person object from the agency from whence it came.
USAGE SCENARIO
A Nervana skin will typically call the Person GetAnnotationsPosted method when it
wants to navigate to the “Annotations Posted by Person” link from a person object, or to display
a preview window with time-critical or recent annotations that the person posted.

PROTOTYPE

SCODE
Person_GetAnnotationsPosted(

[in] BSTR PersonObjectSRML,
[in] LONG QueryMask,

[out] BSTR *pQueryRequestGuid);

f. Person_SendEmailTo
INTRODUCTION
The Person_SendEmailTo method is called to send email to a person or customer object.
The method opens the email client and initializes it with the email address of the person or
customer object.
USAGE SCENARIO
A Nervana skin will typically call the Person_SendEmailTo method when the user clicks

on the “Send Email” menu option — off a popup menu on a person or customer object.

PROTOTYPE
SCODE Person_SendEmailTo([in] BSTR ObjectSRML)

117

WO 2004/075466 PCT/US2004/004674

5. System Control Events
a. Event: OnBeforeQuery
INTRODUCTION
The OnBeforeQuery event is fired before the control issues a query to resources
consistent with the current semantic request.
USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

sink this event if it wants to cancel a query or cache state before the query is issued.

PROTOTYPE

VOID

OnBeforeQuery(

[in] GUID QuerylD,

[in] BSTR QueryBuffer,

[in] DWORD QueryMask,
[in] DWORD Flags,
[out] BOOL *Cancel),
b. Event: OnQueryBegin

INTRODUCTION

The OnQueryBegin event is fired when the control issues the first query to a resource

consistent with the current semantic request.
USAGE SCENARIO

A Nervana client application (for instance, the semantic browser) or a Nervana skin will
sink this event if it wants to cache state or display status information when the query is in
progress.

PROTOTYPE

VOID
OnQueryBegin([in] GUID ObjectID);

c. Event: OnQueryComplete

INTRODUCTION
The OnQueryComplete event is fired before the control issues a query to resources

consistent with the current semantic request.

118

WO 2004/075466 PCT/US2004/004674

USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

sink this event if it wants to cancel a query or cache state before the query is issued.

PROTOTYPE
VOID
OnQueryComplete([in] GUID QueryID);

d. Event: OnQueryResultsAvailable
INTRODUCTION
The OnQueryResultsAvailable event is fired when there are available results of an
asynchronous method call. The event indicates the request GUID, via which the caller can
uniquely identify the specific method call that generated the response.
USAGE SCENARIO
A Nervana client application (for instance, the semantic browser) or a Nervana skin will

sink this event to get responses to method calls on the control.

PROTOTYPE

VOID

OnQueryResultsAvailable(

[in] GUID QueryID,

[in] SCODE QueryResult,
[in] BSTR Results,

[in] DWORD NumResults,
[in] DWORD QueryMask,

[in] VARJANT ResultsParam);

e. Appendix A

QUERY MASK VALUES

#define QM_RESULTS 0x01

#define QM_RESULTCOUNT 0x02

#define QM_NEWRESULTS 0x04

#define QM_NEWRESULTCOUNT 0x08

#define QM_DEFAULT (QM_RESULTS)
Example:

Person_GetInfoAuthored(

119

WO 2004/075466 PCT/US2004/004674

PersonObjectSRML,
QM_RESULTS | QM_RESULTCOUNT,
&QueryRequestGuid);

K. SECURITY SPECIFICATION FOR THE INFORMATION NERVOUS SYSTEM
1. Authorization

INTRODUCTION

The ‘People’ DSA will be initialized with an LDAP Directory URL and Group Name.
The ‘Users’ DSA will also be initialized with an LDAP Directory URL and Group Name.
Typically, the ‘Users’ will be a subset of ‘People.” For instance, a pharmaceuticals corporation
might install a KIS for different large pharmaceutical categories (e.g., Biotechnology, Life
Sciences, Pharmacology, etc). Each of these will have a group of users that are knowledgeable
or interested in that category. However, the KIS will also have the ‘People’ group populated
with all employees of the corporation. This will enable users of the KIS to navigate to members
of the entire employee population even though those members are not users of the KIS. In
addition, the inference engine will be able to infer expertise with semantic links off people that
are in the corporation, not necessarily just users of the KIS.

This is also advantageous for access control at the KIS level — this complements or
supplements access control provided by the application server at the Web service layer. The
Users group will contain people that have access to the KIS knowledge. However, the People
group will contain people that are relevant to the KIS knowledge, even though those people don’t
have access to the KIS.

Both People and Users DSA populate the People table in the Semantic Metadaté Store
(SMS) and indicate the object type id appropriately. Note that preferably the passwords are NOT
stored in the People table in the SMS.

The Users DSA also populates the User Authentication Table (UAT). This is an in-
memory hash table that maps the user names to passwords. The server’s Web service will

implement the IPasswordProvider interface or an equivalent. The implementation of the

120

WO 2004/075466 PCT/US2004/004674

PasswordProvider object will return the password that maps to a particular user name. The C#

example below illustrates this:

namespace WSDK_Security
{

public class PasswordProvider : Microsoft. WSDK.Security.IpasswordProvider

{

public string GetPassword(string username)

{
return “opensezme”;
}
}

The following C# code shows how the Web service can retrieve the user information
after the user has been authenticated:

using System;

using System.Collections;

using System.ComponentModel;
using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;
using Microsoft. WSDK.Security;
using Microsoft. WSDK,
namespace WSDK_Security

{

public class Servicel : System.Web.Services. WebService

{
[WebMethod]

public string PersonalHello()
{
string response = ““;
SoapContext requestContext = HttpSoapContext.RequestContext;
if (requestContext == null)
{
throw new ApplicationException(“Non-SOAP request.”);
}

foreach (SecurityToken tok in requestContext.Security. Tokens)

{

if (tok is UsernameToken)

{

response += “Hello “ + ((UsernameToken)tok).Username;

}
}

121

WO 2004/075466 PCT/US2004/004674

return response;

}
}
¥

The Nervana Web service can then go ahead and call the Server Semantic Runtime with
the calling user name. The runtime then maps this to SQL and uses the appropriate filters to
issue the semantic query.

For the Nervana ASP.NET application, the following entry is added as a child of the

parent configuration element in the Web.config file:

<microsoft.wsdk>
<security>
<passwordProvider
type=“WSDK_Security.PasswordProvider, WSDK-Security” />
</security>
</microsoft.wsdk>

a. Client-Side Authorization Request
In order to create a UsernameToken for the request, the Nervana client has to pass the
username and password as part of the SOAP request. The Nervana client can pass multiple
tokens as part of the request — this is preferable for cases where the user’s identity is federated
across multiple authentication providers. The Nervana client will gather all the user account
information the user has supplied (including user name and password information), convert these
to WS-Security tokens, and then issue the SOAP request. The client code will look like the

following (reference: http://www.msdn.microsoft.com):

localhost.Servicel proxy = new localhost.Servicel();
UsernameToken clearTextToken
= new UsernameToken(“Joe”,
“opensezme”,
PasswordOption.SendHashed);
proxy.RequestSoapContext.Security. Tokens.Add(clearTextToken);
labell.Text = proxy.PersonalHello();

b. Validating the UsernameToken on the Server
(http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnwssecur/html/wssecwithwsdk.asp)

122

WO 2004/075466 PCT/US2004/004674

Although the WSDK verifies the Security header syntax and checks the password hash
against the password from the Password Provider, there is some extra verification that is
preferably be performed on the request. For instance, the WSDK will not call the Password
Provider if a UsernameToken is received that does not include a password element. If there is no
password to check, there is no reason to call the password provider. This means we need to
verify the format of the UsernameToken ourselves.

Another possibility is that there is more than one UsernameToken element included with
the request. WS-Security provides support for including any number of tokens with a request
that may be used for different purposes.

The code above can be modified for the Nervana Web method to verify that the
UsernameToken includes a hashed password and to only accept incoming requests with a single

UsernameToken. The modified code is listed below.
[WebMethod]
public string ProcessSemanticQuery(string Query)
{
SoapContext requestContext = HttpSoapContext.RequestContext;
if (requestContext == null)

{

throw new ApplicationException(“Non-SOAP request.”);
,

)
if (requestContext.Security. Tokens.Count == 1)

{

foreach (SecurityToken tok in requestContext.Security. Tokens)

{

if (tok is UsernameToken)
{
UsernameToken UserToken = (UsernameToken)tok;
if (UserToken.PasswordOption
== PasswordOption.SendHashed)
{

return ProcessSemanticQueryInternal(Query, UserToken.Username),

}

else

{

throw new SoapException(
“Invalid UsernameToken password type.”,
SoapException.ClientFaultCode);

}

123

WO 2004/075466 PCT/US2004/004674

}

else

{

throw new SoapException(
“UsernameToken security token required.”,
SoapException.ClientFaultCode);

}
}
}

else

throw new SoapException(
“Request must have exactly one security token.”,
SoapException.ClientFaultCode);

}

return null;

}
2. People Groups

The KIS will include metadata for people groups. These are not unlike user groups in
modern operating systems. The People Group will be a Nervana first-class object (i.e., it will

inherit from the Object class). In addition, the People Group schema will be as follows:

Field Name Field Type Description

ObjectID String The object id of the people group

Name String The name of the people group

Description String The description of the people group

URI String The URL of the people group — this uniquely
identifies the group and in the preferred
embodiment, will be an LDAP URI

Tn most cases, people groups will map to user groups in directory systems (like LDAP).
For instance, the KIS server admin will have the KIS crawl a configurable set of user groups.
There will be a People DSA that will crawl the user groups and populate the People Groups and
Users tables in the SMS. The People DSA will perform the following actions:

. Create the group (if it doesn’t exist in the SMS) or update the metadata of the
Group (if it exists).
. Enumerate all the users in the group (at the source — an LDAP directory in the

preferred embodiment).

124

WO 2004/075466 PCT/US2004/004674

. For all the users in the group, create People objects (or update the metadata if the
objects already exist in the SMS).

. Update the semantic network (via the ‘SemanticLinks’ table in the SMS) by
mapping the people objects to the group objects (using the BELONGS _TO _GROUP semantic
link type). This ensures that the SMS has semantic links that capture group membership
information (in addition to the groups and users themselves). ‘

3. Identity Metadata Federation

Identity Metadata Federation (IMF) refers to a feature wherein an Information
Community (agency) is deployed over the Internet but is used to service corporate or personal
customers. For instance, Reuters could set up an information community for all its corporate
customers that depend on its proprietary content. In such a case where multiple customers share
an information community (likely in the same industry), Reuters will have a group on the SMS
for each customer. However, each of these customers would have to have its corporate directory
mirrored on Reuters in order for people metadata to be available. This would cause problems,
particularly from a security and privacy standpoint. Corporations will probably nof be
comfortable with having external content providers obtaining access to the metadata of their
employees. IMF addresses this problem by having the Internet-hosted information community
(agency) host only enough metadata for authentication of the user. For instance, Reuters will
store only the logon information for the users of its corporate customers in its SMS. When the
semantic browser receives SRML containing such incomplete metadata, the client will then issue
another query to the enterprise directory (via LDAP access or via UDDI if the enterprise
directory metadata is made available through a Web services directory) to fetch the complete
metadata of the user. This is possible because the externally stored metadata will have the
identity information with which the remaining metadata can be fetched. Since the client fetches
the remaining metadata within the firewall of the enterprise, the sensitive corporate metadata is

not shared with the outside world.

125

WO 2004/075466 PCT/US2004/004674

4, Access Control
a. Access Control Policy

In the preferred embodiment, the KIS will include and enforce access control semantics.
The KIS employs a policy of “default access.” Default access here means that the KIS will grant
access to the calling user to any metadata in the SMS, except in cases where access is denied. As
such, the system can be extended to provide new forms of denial, as opposed to new forms of
access. In addition, this implies that if there is no basis for denial, the user is granted access (this
leads to a simpler and cleaner access control model).

The KIS will have an Access Control Manager (ACM). The ACM is primary responsible
for generating a Denial Semantic Query (DSQ) which the SQP will append to its query for a
given semantic request from the client. The ACM will expose the following method (C#
sample):

String GetDenialSemanticQuery(String CallingUserName)

Preferably, the method takes in the calling user name and returns a SQL query (or
equivalent) that encapsulates exception objects. These are objects that must not be returned to
the calling user by the SQP (i.e., objects for which the user does not have access).

The SQP then builds a final raw query that includes the denial query as follows:

Aggregate Raw Query AND NOT IN (Denial Query)

For example, if the aggregate raw query is:

SELECT OBJECTID FROM OBJECTS WHERE OBJECTTYPEID = 5,

and the denial query is:

SELECT OBJECTID FROM OBJECTS WHERE OWNERUSERNAME <>
‘JOHNDOE’,

The final raw query (which is that the SQP will finally execute and serialize to SRML to
return to the calling user) will be:

SELECT OBJECTID FROM OBJECTS WHERE OBJECTTYPEID =5 AND NOT IN

126

WO 2004/075466 PCT/US2004/004674

(SELECT OBJECTID FROM OBJECTS WHERE OWNERUSERNAME <>
‘JOHNDOE’)

Semantically, this is probably equivalent to:

“Select all objects that have an object type id of 5 but that are not in an object list not
owned by John Doe.”

This in turn is probably semantically equivalent to:

“Select all objects that have an object type id of 5 that are owned by John Doe.”

b. General Access Control Rules

Bach semantic query processed by the semantic query processor (SQP) will contain an
access control check. This will guarantee that the calling user only receives metadata that he/she
has access to. The SQP will employ the following access control rules when processing a
semantic query: '

1. Preferably, if the query is for ‘People’ objects (people, users, customers, experts,
newsmakers, etc.), the returned ‘People’ objects must either:

. Include the calling user, or

. Include people that share at least one people group with the calling user, and be
owned by the calling user or the system

Preferably, the corresponding denial query maps to the following rule: The returned

objects must satisfy the following:

. Is not the calling user +

. Is not owned by the calling user or the system +

. Has people that do not share any people group with the calling user
Sample Denial Query SQL

The SQL below illustrates the access control denial query that will be generated by the
ACM and appended by the SQP to enforce the access control policy. In this example, the name
of the calling user is ‘JOHNDOE.’

127

WO 2004/075466 PCT/US2004/004674

SELECT OBJECTID FROM OBJECTS WHERE

OWNERUSERNAME <> ‘JOHNDOE’ OR

OWNERUSERNAME <> ‘SYSTEM’ OR

WHERE OBJECTID NOT IN (SELECT OBJECTID FROM PEOPLE WHERE
NAME=‘JOHNDOE") OR

WHERE OBJECTID NOT IN
(SELECT OBJECTID FROM SEMAN TICLINKS WHERE
OBJECTTYPEID “PERSON AND

PREDICATETYPEID="BELONGS_TO GROUP’ AND SUBJECTID IN (SELECT
SUBJECTID FROM SEMANTICLINKS WHERE OBJECTID IN (SELECT OBJECTID
FROM PEOPLE WHERE NAME=‘JOHNDOE"))

2. Preferably, if the query is for non-People objects (documents, email, events, etc.),

the returned objects must:

Be owned by the calling user or the system user, and
Be the subject of a semantic link with the calling user as the object, or
Be the object of a semantic link with the calling user as the subject, or
Be the subject of a semantic link with the object being a person that shares at least
one people group with the calling user, or

. Be the object of a semantic link with the subject being a person that shares at least
one people group with the calling user

Preferably, the corresponding denial query maps to the following rule: The returned

objects must satisfy the following:

Is not owned by the calling user +
Is not owned by the system user +
Is not the subject of a semantic link with the calling user as the object +
Is not the object of a semantic link with the calling user as the subject +

=] © o L]

. Is not the subject of a semantic link with the object being a person that shares at
least one people group with the calling user +
. Is not the object of a semantic link with the subject being a person that shares at

least one people group with the calling user

Sample Denial Query SQOL

The SQL below illustrates the access control denial query that will be generated by the
ACM and appended by the SQP to enforce the access control policy. In this example, the name
of the calling user is ‘JOHNDOE.’

SELECT OBJECTID FROM OBJECTS WHERE OWNERUSERNAME <>
‘JOHNDOE’ OR

OWNERUSERNAME <> ‘SYSTEM’ OR
OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE

128

WO 2004/075466 PCT/US2004/004674

OBJECTTYPEID = “PERSON’ AND OBJECTID IN (SELECT OBJECTID FROM
PEOPLE WHERE NAME=‘JOHNDOE’) OR

WHERE OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS
INNER JOIN PEOPLE WHERE SEMANTICLINKS.SUBJECTTYPEID="PERSON’ AND
SEMANTICLINKS.SUBJECTID = PEOPLE.OBJECTID) OR

OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID=‘PERSON’ AND PREDICATETYPEID="BELONGS_TO_GROUP’ AND
SUBJECTID IN (SELECT SUBJECTID FROM SEMANTICLINKS WHERE OBJECTID IN
(SELECT OBJECTID FROM PEOPLE WHERE NAME=‘JOHNDOE”)) OR

OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID=‘PERSON’ AND PREDICATETYPEID="BELONGS_TO_GROUP’ AND
OBJECTID IN (SELECT OBJECTID FROM PEOPLE WHERE NAME=‘JOHNDOE"))

Sample Merged Denial Query SOL
By merging these two rules, the ACM returns the following merged query to the SQP for

access denial:

SELECT OBJECTID FROM OBJECTS WHERE

OWNERUSERNAME <> ‘JOHNDOE’ OR

OWNERUSERNAME <> ‘SYSTEM’ OR

OBJECTID NOT IN (SELECT OBJECTID FROM PEOPLE WHERE
NAME="JOHNDOE’) OR

OBJECTID NOT IN (SELECT OBJ ECTID FROM SEMANTICLINKS WHERE

OBJECTTYPEID “PERSON AND
PREDICATETYPEID="BELONGS_TO__ GROUP’ AND SUBJECTID IN (SELECT
SUBJECTID FROM SEMANTICLINKS WHERE OBJECTID IN (SELECT OBIJECTID
FROM PEOPLE WHERE NAME=‘JOHNDOE’)) OR

OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID = “‘PERSON’ AND OBJECTID IN (SELECT OBJECTID FROM PEOFPLE
WHERE NAME="JOHNDOE’) OR

OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS INNER JOIN
PEOPLE ON SEMANTICLINKS.SUBJECTTYPEID="PERSON’ AND
SEMANTICLINKS.SUBJECTID = PEOPLE.OBJECTID) OR

OBJECTID NOT IN (SELECT OBIJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID="PERSON’ AND PREDICATETYPEID="BELONGS_TO_GROUP’ AND
SUBJECTID IN (SELECT SUBJECTID FROM SEMANTICLINKS WHERE OBJECTID IN
(SELECT OBJECTID FROM PEOPLE WHERE NAME=‘JOHNDOE’)) OR

OBJECTID NOT IN (SELECT OBIJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID="PERSON’ AND PREDICATETYPEID="BELONGS_TO_GROUP’ AND
OBJECTID IN (SELECT OBJECTID FROM PEOPLE WHERE NAME=‘JOHNDOE"))

Example Scenario

For instance, A Reuters agency (KIS) might have people groups for each enterprise

customer that Reuters serves. The agency will have a common information base (Reuters

129

WO 2004/075466 PCT/US2004/004674

content) but will have people groups per enterprise customer. These groups might include
competitors. As such, it is preferable to ensure that the knowledge flow, generation, and
inference do not cross competitor boundaries. For instance, an employee of Firm A must not
derive knowledge directly from an employee of Firm B that competes with Firm A, not must he
or she derive knowledge indirectly (via inference). An employee of Firm A must not be able to
get recommendations for items annotated by employees of Firm B. Or an employee of Firm A
must not be able to find experts that work for Firm B. Of course, this assumes that Firm A and
Firm B are not partners in some fashion (in which case, they might want to share knowledge). In
the case of knowledge partners, Reuters would create a people group (likely via LDAP) that
includes the people groups of Firm A and Firm B. The Reuters KIS will then have the following
people groups: Firm A, Firm B, and Firms A&B. The SMS will also include metadata that
indicates that the people in Firms A and Firms B belong to these groups (via the “belongs to
group” semantic link type). With this process in place, the aforementioned rules will guarantee
that knowledge gets shared between Firms A and B.
c. Access Control Rules for Annotations
In the case of annotations, the calling user will be editing the semantic network, as

opposed to querying it. In this case, the following rules would apply:

1. Preferably, if the object being annotated is a Person object, the object must either
be:

. The calling user, or

. A person that shares at least one people group with the calling user, and be owned

by the calling user or the system
2. Preferably, if the object being annotated is a non-Person object (e.g., a document,

email, event, etc.), the object must either be:

. Owned by the calling user
. Owned by the system

130

WO 2004/075466 PCT/US2004/004674

Sample Denial Query SOL
The SQL below illustrates the access control denial query that will be generated by the
ACM (for chécking access control for annotations) and appended by the SQP to enforce the

access control policy. In this example, the name of the calling user is ‘JOHNDOE.’

SELECT OBJECTID FROM OBJECTS WHERE

OWNERUSERNAME <> ‘JOHNDOE’ OR

OWNERUSERNAME <> ‘SYSTEM’ OR

OBJECTID NOT IN (SELECT OBJECTID FROM PEOPLE WHERE
NAME=‘JOHNDOE’) OR

OBJECTID NOT IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE
OBJECTTYPEID="PERSON’ AND PREDICATETYPEID=‘BELONGS_TO GROUP’ AND
OBJECTID IN (SELECT OBJECTID FROM SEMANTICLINKS WHERE OBJECTID IN
(SELECT OBJECTID FROM PEOPLE WHERE NAME=‘JOHNDOE"))

Access Control Enforcement

The ACM enforces access control for annotations and other write operations on the KIS.
The KIS XML Web Service exposes an annotation method as follows (C# sample):

AnnotateObject(String CallingUserName, String ObjectID);

This method calls the ACM to get the denial query. It then creates a final query as
follows:

Annotation Object Query AND NOT IN (Denial Query)

In the preferred embodiment, the annotation object query is always of the form:

SELECT OBJECTID FROM OBJECTS WHERE OBJECTID=0bjectID,

where ObjectID is the argument to the AnnotateObject method.

The ACM then builds a final access control query SQL and uses this SQL to check for
access control. Because the ACM does not have to return the SQL, it merely invokes it directly
in order to check for access control. In addition, because it is a binary check (access or no
access), the ACM merely checks whether the denial query returns at least one row. For instance,
a final query might look like:

SELECT OBJECTID FROM OBJECTS WHERE OBJECTID = ObjectID AND NOT IN
(SELECT OBJECTID FROM OBJECTS WHERE OWNERUSERNAME <> ‘J OHNDOE”)

131

WO 2004/075466 PCT/US2004/004674

The ACM then runs this query (via the SQL query processor) and asks for the count of
the number of rows in the result set. If there is one row, access is granted, else access is denied.
This model is implemented this way in order to have consistency with the denial query model

(the ACM always builds a denial query and uses this as a basis for all access control checks).

L. DEEP INFORMATION SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM

Deep Information Overview
INTRODUCTION

In the preferred embodiment, the Nervana ‘Deep Info’ tool is aimed at providing context-
sensitive story-like information for a Nervana information object. Deep Info essentially provides
Nervana users with information that otherwise would be lost, given a particular context. By way
of rough analogy, Deep Info is like the contextual information that gets displayed on music
videos on MTV (showing information on the current artist, the current song, and in some case,
the current musical instrument in the song).

The ‘deep’ in ‘deep info’ refers to the fact that the contextual information will often span
multiple “hops” in the semantic network on the agency from whence the object came. ‘Deep
Info’ is comprised of ‘deep info nuggets’ which can either be plan textual metadata or metadata
with semantic query links (via SQML).

In the preferred embodiment, there are at least five kinds of Deep Info nuggets:

1. Basic Semantic Link Nuggets
2. Context Template Nuggets

3. Trivia Nuggets

4, Matchmaker Nuggets

5. Recursive Nuggets

a. Basic Semantic Link Nuggets

With basic semantic link truths, deep info nuggets merely convey a semantic link of the
current object. These nuggets involve a semantic link distance of 1. In this case, there is overlap

with what will be displayed in the ‘Links’ context/task pane. Examples are:

132

WO 2004/075466 PCT/US2004/004674

. Patrick Schmitz reports to Nosa Omoigui
. Patrick Schmitz has 5 Direct Reports

. Patrick Schmitz annotated 47 objects
. Patrick Schmitz authored 13 objects
. Patrick Schmitz was copied on 56 email objects

b. Context Template Nuggets
Context template nuggets display contextual information for each relevant context
template, based on the information at hand. These nuggets are identical to those that will be

displayed in the context bar or context panel for each type of context template. For example:

. Patrick Schmitz posted 3 breaking news items
. Patrick Schmitz posted 14 classics

. Patrick Schmitz authored 7 headlines

. Patrick Schmitz is involved in 13 discussions

. Patrick Schmitz is a newsmaker on 356 objects
c. Trivia Nuggets

For all email objects on an agency:

o

Steve Judkins appears on the “To” list of all of them
Steve Judkins replied to 23% of them

Patrick Schmitz annotated 50% of them

. Only 3 of these have a thread depth greater than 2

For all people objects on an agency:

° Patrick Schmitz has sent email to 47% of them

° 14% of them report to Nosa Omoigui

. Sally Smith has had discussions with'85% of them

. 12% of them are newsmakers on at least one topic

. All of them have been involved in at least one discussion this week
. 33% of them are experts on at least one topic

. 8% of them are experts on more than three topics

For a given distribution list on an agency:

. Steven Judkins has posted the most email to this list

. Sarah Trent has replied to the most email on this list

. Nosa Omoigui has never posted to this list

. Patrick Schmitz has posted 87 messages to this list this month
. Richard Novotny has posted 345 messages to this list this year

133

WO 2004/075466 PCT/US2004/004674

them)

For all distribution lists on an agency:

. Steven Judkins has posted the most email to all lists

. Lisa Heibron has replied to email on only 2% of the lists

. Nosa Omoigui has never posted to any list

. Patrick Schmitz has posted at least once every week to all the lists
. Richard Novotny has posted messages on 3 lists

For all information objects on an agency:

. Steven Judkins has been the most prolific publisher (he published 5% of them)

. Sally Smith has been the most prolific annotator (she annotated 2% of them)

. Nosa Omoigui has been the most active newsmaker

. Patrick Schmitz has the most aggregate expertise

. Steve Judkins has the most expertise for information published this year

. Gavin Schmitz has been involved in the most discussions (12% of them)

. Richard Novotny has been involved in the most discussions this month (18% of

d. Matchmaker Nuggets

Person To Person

Semantic Link Based

. Patrick Schmitz has sent mail to 13 people

. 47 people have appeared on same To list as Patrick Schmitz

. 47 people have appeared on same CC list as Patrick Schmitz

° 89 people in total have been referenced on email sent by Patrick Schmitz
@ 24 people have annotated the same information as Patrick Schmitz

° 3 people are on all the same distribution lists as Patrick Schmitz

. 29 people are on at least one of Patrick Schmitz’s distribution lists

Context-Template Based

. 12 people have expertise on the same information categories as Patrick Schmitz
. 14 people and Patrick Schmitz are newsmakers on the same information items
. 27 people are in discussions with Patrick Schmitz

Information To Person

Semantic Link Based

. Patrick Schmitz posted this information item
. Steve Judkins authored this information item
. This information item was copied to 2 people
. 3 people annotated this information item

134

WO 2004/075466 PCT/US2004/004674

Context Template Based (similar to context template nuggets)

. There are 4 experts on this information item
. There are 27 newsmakers on this information item

Information To Information

Context Template Based (similar to context template nuggets)(

. There are 578 relevant ‘all bets’

. There are 235 relevant ‘best bets’

. There are 4 relevant breaking news items
. There are 46 relevant headlines

Semantic Link Based (via people)

. There are 21 information items that have the same experts with this one

. There are 23 information items that have the same newsmakers with this one

. There are 34 information items posted by the same person that posted this one

. There are 34 information items authored by the same person that authored this
one

. There are 44 information items annotated by people that annotated this one

€. Recursive Nuggets

With recursive nuggets, displaying deep info on the subject of the current information
nugget forms a contextual hierarchy. The system then recursively displays the nuggets based on
the object type of the subject. With recursive nuggets, the system essentially probes the semantic
network starting from the source object and continues to display nuggets along the path of the
network. Probing is preferably stopped at a depth that is consistent with resource limitations and
based on user feedback.

Another way to think of recursive nuggets is like a contexfﬁal version of an business
organization chart. However, with Deep Information in the Information Nervous System, users
will be able to browse a tree of KNOWLEDGE, as opposed to a tree of INFORMATION. To
take an example, if a user selects an object and a tree view will show up like what is displayed
below:

Example with document as context:
[+]Newsmakers on ‘Title of document’
[+] Gavin Schmitz
[+] Reports To ->

135

WO 2004/075466 PCT/US2004/004674

[+] Steve Judkins :
[+] Experts Like Steve Judkins ->
[+] Nosa Omoigui
[+] Patrick Schmitz
[+] Interest Group Like Steve Judkins ->
[+] Patrick Schmitz

[+] Chuck Johnson

[+]Direct Reports ->
[+]Joe Williams
[+] Direct Reports [
[+] Interest Group Like Joe Williams ->

[+] Richard Novotny
[+] Nosa Omoigui

[+] Interest Group
[+] Experts

Example with email as context:

[+] Email is From:
[+] Nosa Omoigui
[+] Experts like Nosa Omoigui

[+] Email is To:
[+] Chuck Johnson
[+] Experts like Chuck Johnson

[+] Email is Copied To:
[+] Richard Novotny
[+] Experts like Richard Novotny

[+] Email Attachments:
foo.doc
[+] Experts on foo.doc
[+] Gavin Schmitz
[+] Newsmakers like Gavin Schmitz

[+] Newsmakers on ‘Title of Email’

Example with conversation object as context:

136

WO 2004/075466 PCT/US2004/004674

[+]Conversation Participants
[+]Steve Judkins
[+] Interest Group Like Steve Judkins...

[+]Nosa Omoigui
[+] Interest Group Like Nosa Omoigui

[+] Experts on ‘Title of Conversation’ A
[+] Richard Novotny
[+] Interest Group Like Richard Novotny

Notice the use of default predicates in the above example - e.g., with People subjects
linked to People objects, the LIKE predicate is uses (e.g., Interest Group LIKE Richard
Novotny).

Another example of recursive nuggets is shown below:
[+] Patrick Schmitz authored this email
[+] Patrick Schmitz reports to Nosa Omoigui
[+] Nosa Omoigui has 6 Direct Reports
[+] Steve Judkins ...
[+] Steve Judkins posted ...
[+] Steve Judkins is an expert on ...
[+] Steve Judkins is a newsmaker on ...
[+] Steve Judkins has been involved in 6 discussions
[etc.]
[+]1 Richard Novotny...
[+] [The remaining 6 direct reports]
[+] Nosa Omoigui annotated 13 objects...
[+] [More context template nuggets on the 13 objects]
[+] Nosa Omoigui has authored 278 objects
[+] Nosa Omoigui has annotated 23 items [...]
[+] Patrick Schmitz has 5 Direct Reports
[+] John Doe ...
[+] More Native Nuggets based on the direct reports
[+] Patrick Schmitz annotated 47 objects

In the preferred embodiment, recursive nuggets will most typically be displayed via a
drill-down pane beside each result object in the semantic browser. This will allow the user to

select a result object and then recursively and semantically “explore” the object (as illustrated

above).

137

WO 2004/075466 PCT/US2004/004674

Also, each header item in the Deep Info drill down tree view will be a link to a request
(e.g., Bxperts Like Steve Judkins), and each result will be a link to an entity. For example, users
will be able to “navigate” to the “person” (semantically) Patrick Schmitz from anywhere in the
Deep Info tree view. Users will then be able to view a dossier on Patrick Schmitz, copy Patrick
Schmitz, and Paste it on, say, Breaking News - in order to open a request called Breaking News
by Patrick Schmitz. Again, notice the use of a default predicate based on the Person subject
(“BY™).

The preferred embodiment Presenter Deep Info tree view (with support from the semantic
runtime API in the semantic browser) will keep track of those links that are requests and those
links that are result objects; that way, it will intelligently interpret the user’s intent when the user

clicks on a link the tree view (it will navigate to a request or navigate to an entity).

M. CREATE REQUEST WIZARD SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM

Introducing the Create Request Wizard

OVERVIEW

The preferred embodiment Create Request (or Smart Agent) Wizard allows the user to
easily and intuitively create new requests that represent semantic queries to be issued to one or
more knowledge sources (running the Knowledge Integration Service).

Wizard Page 1: Select a Profile and Request Type: This page allows the user to select
what profile the request is to be created in. The page also allows the user to select the type of
request he/she wants to create. This type could be a Dossier (Guide) which will create a request
containing sub-requests for each context template (based on the filters indicated in the request),
knowledge types (corresponding to context templates such as Best Bets, Headlines, Experts,
Newsmakers, etc.), information types (corresponding to types such as Presentations, General
Documents, etc.), and request collections which are Blenders and allow the user to view several

requests as a cohesive unit. See Figure 17A.

138

WO 2004/075466 PCT/US2004/004674

Wizard Page 2: Select Knowledge Communities (Agencies): This page allows the user to
select which knowledge communities (running on Knowledge Integration Servers (KISes) the
request should get its knowledge from. The user can indicate that the request should use the
same knowledge communities as those configured in the selected profile. The user can
alternatively select specific knowledge communities. See Figure 17B.

Wizard Page 3: Select Filters: This page allows the user to select which filters to include
in the request. Filters can include one or more of the following: keywords, text, categories, local
documents, Web documents, email addresses (for People filters), and Entities. In alternate
embodiments, other filter types will be supported. The property page also allows the user to
select the predicate with which to apply a specific filter. Preferably, the most common predicate
that will be exposed is “Relevant to.” Other predicates can be exposed consistent with the filter
type (for instance a filter that refers to a Person via an email address or entity will use the default
predicate “BY” if the requested type is not ‘People’ — e.g. Headlines BY John Smith and will use
the default predicate “LIKE” if the request type is ‘People’ — e.g., Experts LIKE John Smith).
The property page also allows the user to select the operation with which to apply the filters.
The two most common operators are AND (in which case only results that satisfy all the filters
are returned) and OR (in which case results that satisfy any of the filters are returned). See
Figure 17C.

Wizard Page 4: Name and describe this request: This page allows the user to enter a
name and description for the request. The wizard automatically suggests a name and description

for the request based on the semantics of the request. Examples include:

1. Headlines on Security AND on Application Development AND on Web Services.
2. Experts from R&D on Encryption Techniques OR on User Interface Design, etc.
3. Presentations on Artificial Intelligence.

4. Dossier on Data Mining AND on Web Development. See Figure 17D.

The user is allowed to override the suggested name/description. The suggestions are

truncated as needed based on a maximum name and description length.

139

WO 2004/075466 PCT/US2004/004674

The semantic browser also exposes the properties of an existing request via a property
sheet. This allows the user to “edit” a request. The property sheet exposes the same user
interface as the wizard except that the fields are initialized based on the semantics of the request

(by de-serializing the request’s SQML representation). See Figure 17E.

N. CREATE PROFILE WIZARD SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM

Introducing the Create Profile Wizard
OVERVIEW

The Create Profile Wizard allows the user to easily and intuitively create new user
profiles.

Wizard Page 1: Select your areas of interest: This page allows the user to select his/her
areas of interest. This allows the semantic browser to get some high-level information about the
user’s knowledge interests (such as the industry he/she works in). This information is then used
to narrow category selections in the categories dialog, recommend new knowledge communities
(agencies) configured with knowledge domains consistent with the user’s area(s) of interests, etc.
See Figure 45A.

Wizard Page 2: Select your knowledge communities: This page allows the user to
subscribe to knowledge communities for the profile. This allows the semantic browser to
“know” which knowledge sources to issue requests to, when those requests are created for the
profile. The semantic browser also uses the knowledge communities in the profile when it
invokes Visualizations, semantic alerts, the smart lens (when the lens is a request/agent for the
given profile), the object lens (when the target object is a result from the given profile), when the
user drags and drops (or copies and pastes) an object to a request/agent for the given profile, etc.
See Figure 45B.

Wizard Page 3: Name and describe this profile: This page allows the user to enter a name
and description for the profile. The page also allows the user to indicate whether the profile is

preferably made the default profile. 'The default profile is used when the user does not explicitly

140

WO 2004/075466 PCT/US2004/004674

indicate a profile in any operation in the semantic browser (for example, dragging and dropping a
document from the file system to the icon representing the semantic browser will open a
bookmark with that document from the default profile, whereas dragging and dropping a
document to an icon representing a specific profile will open a bookmark with that profile). See

Figure 45C.

0. CREATE BOOKMARK WIZARD SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM

1. Introducing the Create Bookmark Wizard

OVERVIEW

The Create Bookmark (or Local/Dumb Request Agent) Wizard allows the user to easily
and intuitively create new bookmarks (local/dumb requests) to view local/Web 'documents,
entities, etc. in the semantic browser via which he/she can get access to the toolbox of the system
(i-e., drag and drop, smart copy and paste, smart lens, smart alerts, Visualizations, etc.).

Wizard Page 1: Select a Profile and Request Type: This page allows the user to select
what profile the bookmark is to be created in. The page also allows the user to add/remove items
to/from the bookmark. See Figure 46A.

Wizard Page 2: Name and describe this bookmark: This page allows the user to enter a
name and description for the bookmark. The wizard automatically suggests a name and

description for the bookmark based on the items in the bookmark. Examples include:

Document 1, Document 2, and Document 3
Documents Matching ‘Encryption’
Documents in the Folder ‘My Documents’ and Subfolders

Nervana Presentation (July 2003).ppt AND Documents Matching “Security” in
the Folder ‘My Documents’ and Subfolders

The user is allowed to override the suggested name/description. The suggestions are

truncated as needed based on a maximum name and description length. See Figure 46B.

141

WO 2004/075466 PCT/US2004/004674

2. Scenarios

Show me all Presentations on Protein Engineering

Using the Create Request Wizard, select the Presentations information-type (in
Documents\Presentations), and then select the Protein Engineering category as a filter. Hit Next
— the wizard intelligently suggests a name for the request (Presentations on Protein Engineering)
based on the semantics of the request. The wizard also selects the right default predicates. Hit
Finish. The wizard compiles the query, sends the SQML to the KISes in the selected profile, and

then displays the results.

3. Intelligent Publishing-Tool Metadata Suggestion and Maintenance

While the Information Nervous System does not rely or depend on metadata that is .stored
by Publishing Tools (e.g., the author of a document), having such metadata available and reliable
can be advantageous. One problem with prior art is that publishing tools (e.g., Microsoft Word,
Adobe Acrobat, etc.) do not intelligently manage the metadata creation and maintenance process.
Here are some ways that the preferred embodiment of the present invention can be used to make
the metadata creation and maintenance process better:

a. When the user creates a new document, add the author’s email address (this can
be programmatically retrieved from the user’s email client and in the event that the user has
several addresses, the publishing tool should prompt the user for which address to use) to the
metadata header of the document (rather than merely the author’s name). This is because email
addresses provide much more uniqueness (for instance, the name ‘John Smith’ could refer to one
of millions of people — as such the existence of such data in the metadata of a document is not
that useful). Note that one possible email address to use in the metadata header can be retrieved
from, say, the logged on user’s single sign-on account (e.g., Microsoft Passport™),

b. When the document is edited and if the current user is different from the author of
the document (as is indicated in the metadata header), prompt the user if he/she wants to change
the metadata header accordingly. This provides some basis form of intelligent metadata

maintenance.

142

WO 2004/075466 PCT/US2004/004674

This model can be applied across different object types and metadata fields in cases
where the publishing tool can validate the field (e.g., as in the case of the currently logged on

user’s name and email address).

P. SEMANTIC THREADS SPECIFICATION FOR THE INFORMATION
NERVOUS SYSTEM™

1. Semantic Threads

OVERVIEW

In the preferred embodiment, semantic threads are objects in the KIS semantic network
' that represent threads of annotations or conversations. They are different from regular email
threads in that they are also semantic — they have object identifiers and type identifiers (the
OBJECTTYPEID THREAD identifier) thread-specific semantic links, they convey meaning via
one or more ontology-based knowledge domains and they support dynamic linking. Also,
because they are first-class objects in the Information Nervous System, they can be queried,
copied, pasted, dragged, dropped, and used with the smart and object lenses. Figure 23
illustrates a semantic thread object and its semantic links.

Because a semantic thread object is a first-class member of the semantic network and the
entire Information Nervous System, it is subject to manipulation, presentation, and querying like
other objects in the system. For example, the semantic browser will allow the user to navigate
from a Person object to all threads that that person has participated in (via the “Participant”
predicate — with a predicate type id of PREDICATETYPEID PARTICIPANTOFTHREAD).
The user can then navigate from the thread to all the thread’s participants (People) and keep
dynamically navigating from then on. To take another example, a thread object can also be a
Best Bet in a given context (or none, if none is specified).

In the preferred embodiment, the semantic thread object also conveys meaning. This is
advantageous because it means that the thread can be returned via a semantic query in the
system. For instance, “Find me all threads on Topic A and Topic B.” The KIS maintains

semantic links for semantic threads just like it does with other objects such as documents.

143

WO 2004/075466 PCT/US2004/004674

However, because semantic threads can refer to multiple objects, the semantics of the thread
evolve with the objects the thread contains. For example, a thread can start with one topic and
quickly evolve to include other topics.: Email threads can end in a very different “semantic
domain” from where they started — participants introduce new perspectives, new information is
added to the thread, email attachments might be added to the thread, etc., all on the basis of
meaning,

The KIS manages the “semantic evolution” of semantic threads. It does this by adding
semantic links to the thread to “track” the contents of the thread. For instance, if a thread starts
off with one document and an annotation, the KIS adds a semantic link to the thread for each to
which the category the document and annotation belong. In other words, the thread is asserted to
have the same semantics as the document and annotation it contains. If another annotation is
- added to the thread (e.g., if a user annotates the first annotation), the KIS computes a new link
strength for the categories of the new annotation that are already linked off the thread. It is
preferable if it does this because the new annotation can attenuate or strengthen the semantics of
the entire thread from a particular perspective. However, this modification of the strength of the
semantic link(s) for the categories that are already present off the thread are preferably done on a
per-category basis — as with other objects, the thread can belong to multiple categories with
different strengths. The new link strength can be computed in at least two ways: in a simple
embodiment, the average of all link strengths for the category being linked to the thread is used.
However, this has the disadvantage that too many items in the thread of weak strength can erode
the “perceived” (as far as the KIS semantic query processor is concerned) semantics of the entire
thread. An alternative embodiment is to use the maximum link strength. However, this also has
a disadvantage that the semantics of the thread might remain fixed to a domain/category even
though the thread “has moved on” to new domains/categories. From a weighted-average
perspective, this would likely return confusing results as the thread grows in size.

In the preferred embodiment, the KIS preferably computes a weighted average of all the

link strengths for the categories to be linked to the thread. This new weighted average becomes

144

WO 2004/075466 PCT/US2004/004674

the link strength. The weighted average is preferably computed using the number of concepts in
each object in the thread. This has the benefit of ensuring that “semantically light” objects (such
as short postings) do not erode the semantics of the thread relative to “semantically denser”
objects in the thread (such as email attachments and long postings). The number of concepts,
and not the size, is preferably used in the preferred embodiment because the size of the object is
a less reliable indicator of the conceptual weight of the object. For instance, a document could
contain images or could include much information that does not map well to key phrases or
concepts

Preferably, the computed weight could also include the time when the entry was added
(thereby “aging” the semantics of older items relative to newer ones). This weight is then
multiplied by the category link strength and the multiples are added and then divided by the
number of entries. Other weighting schemes can also be applied.

The following rules are applied when a new item is added to the semantic network and
which is to be added to a semantic thread:

1. Categorize the new item to be added to the thread
For each category in the returned list of categories which are already on the
semantic thread

{
° Compute new weighted-average link strength
. Update category semantic link off the semantic thread object
}
3. For each category in the returned list of categories which are not already on the
semantic thread
{
. Assign link strength
. Add category semantic link off the semantic thread object
}

The weighted-average link strength is computed as follows:

New Link Strength= Y Ci * Li

145

WO 2004/075466 PCT/US2004/004674

Where Ci is the normalized number of concepts (from 0 to 1) of object i, Li is the link
strength of object i, and N is the number of objects in the thread (including the new object). The
normalized number of concepts is computed by dividing the number of concepts in each object
(extracted by the Knowledge Domain Manager (KDM)) by the number of concepts in the largest
object in the thread (including the new object).

If a semantic thread comprises of standard, intrinsic (and unedited) email threads, the KIS
modifies the semantic network differently. This is because most email clients include all prior
email messages that form the thread in the most recent email message. As such, in this case, the
KIS preferably simply uses the most recent email message as being representative of the entire
thread. To accomplish this, the KIS preferably categorizes the most recent email message, and
replace all prior semantic links (relating to categories) from the thread object with new semantic
links corresponding with the new categories and link strengths.

For non-email threads (for example, threads that form based on an annotation of an
existing object in the semantic network), the model described above should be employed.
Alternatively, the KIS can maintain an Aggregate Thread Document (ATD) which is then
categorized. This document should contain the text of the objects in the thread — roughly
analogous to how an email message contains the text of prior messages in the same thread.

When a new object is added to the thread, the KIS preferably updates the last-modified-
time of the thread object in the Semantic Metadata Store (SMS).

2. Semantic Thread Conversations

Semantic thread conversations in the Information Nervous System are a special form of
semantic threads. Essentially, a conversation is a semantic thread that has more than one

participant. Semantic thread conversations have the object type id,

OBJECTTYPEID_THREADCONVERSATION.

146

WO 2004/075466 PCT/US2004/004674

The KIS creates a thread based on the number of participants in that thread and could
immediately create the thread as a thread conversation. Alternatively, the KIS could “upgrade” a
thread to a conversation once additional participants are detected.

3. Semantic Thread Management

The pseudo-code below illustrates how the KIS adds preferred threads and conversations

to the semantic network:

1. If an individual email message is detected and is a member of an existing thread
object
{
. Add the new email object to the thread and update the semantic
network
. If the thread has more than one participant, change the thread’s

object type identifier to
OBJECTTYPEID_THREADCONVERSATION

}
2. If an email thread is detected
{
. Create a new thread object and update the semantic network
. If the thread has more than one participant, change the thread’s
object type identifier to
OBJECTTYPEID_THREADCONVERSATION
1
J
3. If an email annotation of an existing object is detected
{
. Add the annotation to the semantic network
. If the annotated object is not itself an annotation
{
. Create a new thread object and update the semantic
network
}
Else
{
. Add the new annotation to the thread containing the

annotated object (i.e., the existing annotation) and
update the semantic network

. If the updated thread has more than one participant,
change the thread’s object type identifier to
OBJECTTYPEID THREADCONVERSATION

147

WO 2004/075466 PCT/US2004/004674

}
Q. SAMPLE SCREEN SHOTS
Figures 24-44B are additional screen shots further illustrating the functions, options and

operations discussed above.

R. SPECIFICATION FOR SEMANTIC QUERY DEFINITIONS &
VISUALIZATIONS FOR THE INFORMATION NERVOUS SYSTEM

1. Semantic Images & Motion
a. Overview

Semantic images and motion can be an advantageous component of the preferred
embodiment in terms of the Nervana semantic user experience. In other words, the user’s
experience with the system can be enhanced in an embodiment that has semantic image/motion
metadata stored on a Nervana agency (information community) and accessed via the Nervana
XML Web Service. In that embodiment, via Nervana, end users will have context and time-
sensitive semantic access to their images. Imagine, for example only, using a Getty Images (or
Corbis) agent as a smart lens over an email message - when invoked, this will open images that
are semantically related to the message. Or, imagine dragging and dropping a document from
your hard drive to a Getty agent to view semantically related images. This will involve having
image metadata (consistent with an image schema). The Nervana toolbox remains the same - we
merely add a new information object type for images. Also, there are semantic skins for
semantic images - different views, thumbnails, slide shows, filtering, aggregation, etc. For
examples of semantic images, visit:

http://creative.gettyimages.com/source/search/resultsmain.asp?source=advSearch&hdnSy
nc=Medicine%7E0%2C12%2C449%2C3%2C15%2C1%2C0%2C0%2C0%2C12287%2C0%2C
7%2C14%2C6%2C3%2C3%2C0%2C12%2C449%2Cen%2Dus&UQR=tfxfwz

Very generally, the properties of the semantic visualizations will vary depending upon

several different variables. Among these variables will often be the context, including the

148

WO 2004/075466 PCT/US2004/004674

context of what feature or property of the system is being invoked. In the next several sections
some of the contextual variables that influence the semantic determinations will be listed and/or
described. In many instances, there will be overlap or commonality of the variables or
determinants of the semantic visualizations, but in some cases, the considerations or combination
of considerations will be unique to the particular situation.
b. Industry-Specific Semantic Images and Motion

Industry-specific semantic images/motion are images/motion that can be used (and in the
preferred embodiment are used) as part of the presentation atmosphere for semantic results for
one or more categories (that map to industries). For instance, visit hitp://www.corbis.com and
http://www.ge’étyimages.com and enter a search for the keywords listed below (which, in the
aggregate, map to target industries, based on industry-standard taxonomies). Such
images/motion can also be used as backgrounds, filter effects, transformations, and animations
for context and category skins (that map to context templates and categories). In addition, these
images/motion can be used for visuals for motion paths extracted from some of these images for
superior screensavers. For example, imagine a skin displaying metadata and visualizations along
a motion path extracted from one of these semantic images (e.g., metadata rotating inside a light
bulb - for the “electric utilities” industry), along with chrome with other surrounding images and

animations, etc. Other industries, with industry specific images and motion might include:

e Pharmaceuticals e Telecommunications e Airlines

e Medicine e Telecom Equipment e Retail

e Healthcare e Telecom Services e Fashion

e Life Sciences ‘o Telecom Technology |e Advertising

e Biotechnology e Telecom Regulations | e Aerospace

o (il and gas e Tobacco e Defense

e Chemical e Automotive o Agribusiness

e Energy e Automobiles e Agriculture

e Electric Utilities e Insurance e Beverages

e Gas Utilities e Consulting e Business services

e Water Utilities e Information e E-commerce
Technology

e Entertainment e Technology e Food

149

WO 2004/075466 PCT/US2004/004674

¢ Environmental o Computer Equipment | e Forest products
Services

e Publishing e Computer e Health Care Providers
Manufacturers

o Real Estate e Computing o Hospitality

e Financial e Semiconductors e Internet

e Brokerages e Nanotechnology o Law

¢ Financial Services e Public Sector e Legal

s Banking e Government e Manufacturing

o Consumer o Homeland Security e Marketing

e Consumer Products e Travel e Media

e Consumer Services o Tourism e Networking

e Communications e Transportation

For example, if the user launches a request/agent, Headlines on Bioinformatics or on
Protein Engineering, the semantic browser will map the biotechnology-related categories from
the SQML to a set of images in the biotechnology industry. It will then display one or more
images as part of the skin for the results of the request/agent (thereby proving a pleasant user
experience as well as visually conveying the “mood” of the request/agent).

Figure 101 as a sample semantic image for Pharmaceuticals/Biotech industry (artistic
DNA helix superimposed over a human face on the left and a organic chemical chart on the right,
licensed from the Corbis web site).

The same applies to information types and context templates. Skins will do the smart
thing based on the context/information type and the category/ontology and mix and match
semantic images/motion across these properties in an intelligent manner. For instance, an agent
titled “Headlines on Wireless Technology” can have chrome (and/or a smart hourglass — see
below) that shows an image/motion-based animation toggling between a “Headlines”
image/motion and a “Wireless” image/motion. A blender titled “Headlines on Wireless and
Breaking News on Semiconductors and Email by anyone in my group related to the product
specification” can have chrome (and/or a smart hourglass) that “toggles” between images/motion

for “Headlines,” “News,” “Wireless,” “Semiconductors,” and “Email.”

150

WO 2004/075466 PCT/US2004/004674

The Presenter’s query processor can enumerate all context template and information
types and all categories (from the agent/blender SQML) and set up the chrome animation
accordingly.

For information types, enter searches (e.g., on Corbis and Getty) for:

o Documents ° Online Learning

. Email . People

. Books o Users

e Magazines . Customers

° Multimedia

Also, for context templates, enter searches for:

o Headlines . Favorites

® News . Places

. Discovery o Time (for “timeline” and
“upcoming events”)

° Conversations o Schedule

o Experts o Appointment

Also, note that semantic images/motion are preferably not completely random. However,
preferably they are not from a bounded set either. Preferably, they are carefully picked and then
skins can randomly select from the chosen set. But, preferably they are not random from the
entire set on, for example, Corbis or Getty Images. Otherwise there may be silly images,
cartoons, and some potentially offensive or inappropriate images. Also, some of these guidelines
preferably vary depending on whether the skin theme is in subtle, moderate, exciting, or super-
exciting mode. In subtle mode, the skin might decide to choose one image/motion per
visualization pivot. In other modes, this would likely lead to a boring user experience.

In low-flashiness mode, the skin can use a semantic image/motion as part of the chrome -
not unlike a PowerPoint slide-deck background (e.g., alpha blended). Semantic images/motion
can also be used in the smart hourglass (see below) as well as in part of the visualization (on the

context bar, panel, or palette). For visualizing context and information types, semantic

151

WO 2004/075466 PCT/US2004/004674

images/motion are preferably carefully picked to clearly indicate the information type or context.
In addition, the selection mode can also be a skin property.

Also, the number of possible semantic images/motion used per skin would likely need to
be capped - depending on where the images/motion are being displayed. However, in some
scenarios, this might not be necessary. For instance, a blender skin might cycle between chrome
backgrounds as the user navigates the blender results (from page to page or agent to agent) - to
be consistent with what is currently being displayed from the blender. This can also be a skin
property.

c. The Client-Side Semantic Image & Motion Cache

The Presenter has a smart expandable client-side cache with semantic images and
motions that are downloaded and stored on the client (on installation). Skins can then select
from these pre-cached images and motions. The images/motions can be pre-cached based on the
user’s favorite categories and areas of interest (which he or she selects) — which map to target
industries. Skins can then complement the pre-cached semantic images/motions with on-demand
image queries o an image server (an XML Web Service that exposes server-side images/motions
— hosted by Nervana or a third party like Corbis or Getty Images).

The Presenter will also do the smart thing and have a bias function such that recently
downloaded images/motions are selected before older ones (as a ticbreaker). A “usage count” is
also cached along with each image/motion - the Presenter uses this count in filtering which
images/motions to display and when. Such “load balancing” will yield a fresher and non-
repetitive user experience. ’

The cache is preferably populated on demand (based on the user’s semantic queries) - for
instance, there is no point in pre-caching pharmaceutical images/motions for a user’s machine at
Boeing. Preferably, he cache size is also capped and the image cache manager preferably purges
“old” and “unused” images using an LRU algorithm or the equivalent. This way, the cache can

be in “semantic sync” with the user’s agent usage pattern and favorite agent’s list.

152

WO 2004/075466 PCT/US2004/004674

2. The Smart Hourglass

A majority of the calls that the Nervana Presenter will make to provide the “semantic
user experience” probably will be remote calls to the XML Web Service. As such, there will be
unpredictable, potentially unbounded delays in the UL One can expect a fair amount of
bandwidth and server horsepower within the enterprise but the Nervana user interface must still
“plan” for unknown latency in method invocations.

Operating systems today have this problem with unboundéd I/O calls to disk or to the
network. Some CPU-bound operations also have substantial delays. In the Windows and Mac
Ul the user is made to perceive delay via a “wait” cursor - usually in the shape of an
“hourglass.” |

In the preferred embodiment, the Presenter will have semantic hints (via direct access to
the SQML “method call”) with which it can display the equivalent of a “smart or semantic
hourglass.” This could be in the form of an intermediate page that displays “Loading” or some
other effect. Additionally, the Presenter can convey the semantics of the query by reading the
SQML to get hints on the categories that the query represents and the information type or context
template. The Presenter can then use these hints to display semantic images and text consistent
with the query, even though it has not received the results. The more hints the query has, the
smarter the hourglass can get. The “Loading” page can then convey the atmosphere of “what is
to come” - even before the actual results arrive from the Web service and are merged (if
necessary) by the Presenter to yield the final resuits.

This “smart hourglass” can be displayed not just on the main results pane, but perhaps
also on smart lens balloon popup windows and inline preview windows (essentially at every call
site to the Web service and where there is “focus™). The Presenter can do the smart thing by
timing out on the query (perhaps after several hundred milliseconds — the implementation should

use usability tests to arrive at a figure for this) before displaying the “hourglass.”

153

WO 2004/075466 PCT/US2004/004674

3. Visualizations -- Context Templates
INTRODUCTION

Context templates are scenario driven information query templates that map to specific
semantic models for information access and retrieval. Essentially, context templates can be
thought of as personal, digital semantic information retrieval “channels” that deliver information
to a user by employing a predefined semantic template. Context templates preferably aggregate
information across one or more Agencies.

The context templates described below have been defined. Additional context templates,
directed towards the integration and dissemination of varied types of semantic information, are
contemplated (examples include context templates related to emotion, e.g., “Angry,” “Sad,” etc.;

context templates for location, mobility, ambient conditions, users tasks, etc.).

BREAKING NEWS
The Breaking News context template can be analogized to a personal, digital version of
CNN’s “Breaking News” program insert in how it conveys semantic information. The context
template allows a user to access information that is extremely time-critical from one or more
Agencies, sorted according to the information creation or publishing time and a configurable
amount of time that defines information criticality.
Figure 102 is an illustration of a semantically appropriate image visualization for the

Breaking News context template.

BREAKING NEWS - SAMPLE OBJECT AND CONTEXT BAR VISUALIZATIONS
Below is a list of sample or representative elements of visualizations appropriate to the
Breaking News context. As with all Visualizations (or components thereof) in the preferred
embodiment, the “mood” or semantic feeling or connotation will be appropriate to the specific
context. By way of very rough analogy, the Visualization will be appropriate to the context
within the application in the same way that a “set” must be appropriate to the particular scene in
a screenplay for a movie. This will be true not only for this particular Object and Context Bar

Visualization, but for all Visualizations in the preferred embodiment.

154

WO 2004/075466 PCT/US2004/004674

1. Ticking clock showing publication or scheduled time of most recent or pending
breaking news item over a background of the total number of upcoming breaking news items

2. Ticking clock showing publication or scheduled time of most recent or pending
breaking news item over semantic image(s)

3. Ticking clock showing publication or scheduled time of most recent or pending
breaking news item over semantic image(s) and the total number of breaking news items

4, Ticking clock showing publication or scheduled time of most recent or pending
breaking news item over a plain background

5. Non-ticking clocks showing publication or scheduled time of all breaking news
items (sequentially) over various backgrounds

6. Calendar view showing publication or scheduled time of most recent or pending
breaking news item over various backgrounds

7. Calendar view showing publication or scheduled time of all breaking news items
(sequentially) over various backgrounds

8. Scaled font size — depending on the publication or scheduled time of the most
recent or pending breaking news item

0. Scaled font size — depending on the number of breaking news items

10. Animated font (e.g., flashing text, rotating text, text on motion path, etc.) with
animation rate depending on the publication or scheduled time of the most recent or pending
breaking news item

11. Animated font (e.g., flashing text, rotating text, text on motion path, etc.) with
animation rate depending on the number of breaking news items

12. Varying font color — depending on the publication or scheduled time of the most
recent or pending breaking news item

13. Varying font color — depending on the number of breaking news items

14. Animated graphic of breaking news semantic image(s) or an equivalent

15. Number of breaking news items

16. Titles of breaking news items animated in a sequence (list view)

17. Titles and details of breaking news items animated in a sequence (tiled view)

18. Semantic image/motion moving on an orbital motion path around the object

19. Balloon popup showing number of items on semantic image/motion background

20. Balloon popup showing number of items with plain background but animated
with semantic image/motion

HEADLINES
The Headlines context template can be analogized to a personal, digital version of CNN’s
“Headline News” program in how it conveys semantic information. The context template allows
a user to access information headlines from one or more Agencies, sorted according to the
information creation or publishing time and a configurable amount of time or number of items
. that defines information “freshness.” For example, CNN’s “Headline News” displays headlines

every 30 minutes (around the clock). In a preferred embodiment, the Headlines context template

155

WO 2004/075466 PCT/US2004/004674

will be implemented as a SQL query on the server with the following sub queries chained in
sequence: Recommendations Published Today, Favorites Published Today, Best Bets Published
Today, Upcoming Events Occurring Today and Tomorrow, Annotated Items Published Today.
Preferably, all sub queries will be sorted by the publishing date/time and then be chained
together. Additional filters will be applied to the query based on the predicate list in the SQML.
The foregoing principles are illustrated in Figure 103, which is a Headlines Visualization —

Sample Image for smart hourglass, interstitial page, transition effects, background chrome, etc.

CONVERSATIONS CONTEXT TEMPLATE '

The Conversations context template can be analogized to a personal, digital version of
CNN’s “Crossfire” program in how it conveys semantic information. Like “Crossfire,” which
uses Conversations and debates as the context for information dissemination, in the preferred
embodiment, the Conversations context template tracks email postings, annotations, and threads
for relevant information.

The Conversations context template comprises the following information object types:

1. Email of a thread depth of at least one (An email reply to an email message)
Annotations of a thread depth of at least one (The annotation of an annotation of
an object)

3. Internet News Postings (A news posting reply to a news posting)

The query will be sorted by thread depth. Additional filters will be applied to the query
based on the predicate list in the SQML. In addition, the context skin should display the
information items by thread.

Figure 104 is a Visualization — Sample Image for smart hourglass, interstitial page,

transition effects, background chrome, etc. (Two People working at a desk)

CONVERSATIONS CONTEXT - SAMPLE OBJECT AND CONTEXT BAR
VISUALIZATIONS

Below is a list of considerations for, or characteristics of visualization elements

semantically appropriate to the corresponding indicated context (in parentheses).

1. Animated graphic of semantic image/motion(s) (icon and context guide view)

156

WO 2004/075466 PCT/US2004/004674

2. Maximum thread depth over plain background (icon and context guide view)

3. Maximum thread depth over semantic image/motion (icon and context guide
view)

4. Titles of conversations animated in a sequence (list view)

5. Titles and details of conversations animated in a sequence (tiled view)

6. The number of conversations over a plain background (icon and context guide
view)

7. The number of conversations over semantic image/motion(s) (icon and context

guide view)

Newsmakers Context Template

The Newsmakers context template can be analogized to a personal, digital version of
NBC’s “Meet the Press” program in how it conveys semantic information. In this case, the
emphasis is on “people in the news,” as opposed to the news itself or Conversations. Users
navigate the network using the returned people as Information Object Pivots. The Newsmakers
context template can be thought of as the Headlines context template, preferably with the
“People” or “Users” object type filters, and the “authored by,” “possibly authored by,” “hosted
by,” “annotated by,” “expert on,” etc. predicates (predicates that relate people to information).
The “relevant to” default predicate preferably is used to cover all the germane specific
predicates. The sort order of the relevant information, e.g., the newsmakers, is sorted based on
the order of the “news they make,” e.g., headlines.

The query will be sorted by number of headlines. Additional filters will be applied to the
query based on the predicate list in the SQML.

Figure 105 illustrates a semantic “Newsmaker” Visualization or Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc. (Football Championship)

NEWSMAKERS - SAMPLE OBJECT AND CONTEXT BAR VISUALIZATIONS

1. Animated graphic of 2 talking heads in conversation (icon and context guide
view)

2. Animated graphic of semantic image/motion(s) (icon and context guide view)

3. Total number of newsmakers (icon and context guide view)

4. Total number of newsmakers over semantic image/motion (icon and context guide
view)

3. Names of newsmakers animated in a sequence (list view)

6. Names and details of newsmakers animated in a sequence (tiled view)

157

WO 2004/075466 PCT/US2004/004674

Upcoming Events Context Template

The Upcoming Events context template (and its resulting Special Agent) can be
analogized to a personal digital version of special programs that convey information about
upcoming events. Examples include specials for events such as “The World Series,” “The NBA
Finals,” “The Soccer World Cup Finals,” etc. The equivalent in a knowledge-worker scenario is
a user that wants to monitor all upcoming industry events that relate to one or more categories,
documents or other Information Object Pivots. The Upcoming Events context template is
preferably identical to the Headlines context template except that only upcoming events are
filtered and displayed (preferably using a semantically appropriate “context Skin” that connotes
events and time criticality). Returned objects are preferably sorted based on time criticality with
the most impending events listed first.

Figure 106 illustrates a semantic “Upcoming Events” Visualization — Sample Image for
smart hourglass, inferstitial page, transition effects, background chrome, etc. (Appointment
Binder).

UPCOMING EVENTS - SAMPLE OBJECT AND CONTEXT BAR VISUALIZATIONS

1. Ticking clock showing time till next event over a background of the total number
of upcoming events (icon and context guide view)

2. Ticking clock showing time till next event over semantic image/motion(s) (icon
and context guide view)

3. Ticking clock showing time till next event over semantic image/motion(s) and the
total number of upcoming events (icon and context guide view)

4, Ticking clock showing time till next event over a plain background (icon and
context guide view)

5. Non-ticking clocks showing time till all upcoming events (sequentially) over
various backgrounds (icon and context guide view)

6. Calendar view showing scheduled time of next upcoming event over various
backgrounds (icon and context guide view)

7. Calendar view showing scheduled time of all upcoming events (sequentially) over
various backgrounds (icon and context guide view)

8. Animated graphic showing calendar motion (icon and context guide view)

9. Animated graphic of semantic image/motion(s) (e.g., schedule book) (icon and

context guide view)
10. The total number of upcoming events over semantic image/motion(s) (icon and
context guide view)

158

WO 2004/075466 PCT/US2004/004674

11. The total number of upcoming events over a plain background (icon and context

guide view)
12. Titles of upcoming events animated in a sequence (list view)
13. Titles and details of upcoming events animated in a sequence (tiled view)
Discovery

The Discovery context template can be analogized to a personal, digital version of the
“Discovery Channel.” In this case, the emphasis is on “documentaries” about particular topics.
The Diséovery context template simulates intelligent aggregation of information by randomly
selecting information objects that relate to a given set of categories and which are posted within
an optionally predetermined, configurable time period. The semantic weight as opposed to the
time is the preferred comsideration for determining how the information is to be ordered or
presented. The context template can be implemented by filtering all information types by the
semantic link strength for the categorization predicate. In this case, the filter should be less
selective than the ‘Best Bets’ filter — the context template lies somewhere between ‘Best Bets’
and ‘All Items’ in terms of filtering.

Figure 107 is a “Discovery” Visualization — Sample Image for smart hourglass,

interstitial page, transition effects, background chrome, etc. (Petri Dish).

DISCOVERY - SAMPLE OBJECT AND CONTEXT BAR VISUALIZATIONS

L. Animated graphic of semantic image/motion(s) (e.g., a telescope, a voyager
spacecraft, an old ship at sea) (icon and context guide view)

2. Titles of the first N information items in a sequential animation (list view)

3. Titles and details of the first N information items in a sequential animation (tiled
view)

4. The total number of items over semantic image/motion(s) (icon and context guide
view)

5. The total number of items (icon and context guide view)
History

The History context template can be analogized to a personal, digital version of the
“History Channel.” In this case, the emphasis is on disseminating information not just about
particular topics, but also with a historical context. For this template, the preferred axes are

category and time. The History context template is similar to the Discovery context template,

159

WO 2004/075466 PCT/US2004/004674

further in concert with “a minimum age limit.” The parameters are preferably the same as that of
the Discovery context template, except that the “maximum age limit” parameter is replaced with
a “minimum age limit” parameter (or an optional “history time span” parameter). In addition,
returned objects are preferably sorted in reverse or random order based on their age in the system
or their age since creation.

Figure 108 illustrates a semantic “History” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc. (War Memorial).

HISTORY - SAMPLE OBJECT AND CONTEXT BAR ANIMATIONS

VISUALIZATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the oldest (or random) N information items in a sequential animation (list
view)

3. Titles and details of the oldest (or random) N information items in a sequential
animation (tiled view) ,

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)
All Items

The All Items context template represents context that returns any information that is
relevant based on either semantics or based on a keyword or text based search. In this case, the
empbhasis is on disseminating information that may be even remotely relevant to the context. The
primary axis for the All Items context template is preferably the mere possibility of relevance. In
the preferred embodiment, the All Items context template employs both a semantic and text-
based query in order to return the broadest possible set or universe of results that may be
relevant.

Figure 109 illustrates a semantic Visualization — Sample Image for smart hourglass,

interstitial page, transition effects, background chrome, etc. (Outer Space).

ALL ITEMS - VISUALIZATION & SAMPLE OBJECT AND CONTEXT BAR
ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

160

WO 2004/075466 PCT/US2004/004674

2. ‘L1tles ot the most recent N ntormation 1tems in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)
Best Bets

The Best Bets context template (and its resulting Special Agent) represents context that
returns only highly relevant information. In a preferred embodiment, the emphasis is on
disseminating information that is deemed to be highly relevant and semantically significant. For
this context template, the primary axis is relevance. In essence, the Best Bets context template
employs a semantic query and will not use text based queries since 1t cannot guarantee the
relevance of text-based query results. The Best Bets context template is preferably initialized
with a category filter or keywords. If keywords are specified, the server performs categorization
dynamically. Results are preferably sorted based on the relevance score, or the strength of the
“belongs to category” semantic link from the object to the category filter.

Figure 110 illustrates a “Best Bets” Visualization — Sample Image for smart hourglass,

interstitial page, transition effects, background chrome, etc. (Microscope).

BEST BET VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

FAVORITES
The Favorites context template (and its resulting Special Agent) represents context that
returns “favorite” or “popular” information. In this case, the emphasis is on disseminating

information that has been endorsed by others and has been favorably accepted. In the preferred

embodiment, the axes for the Favorites context template include the level of readership interest,

161

WO 2004/075466 PCT/US2004/004674

the “reviews” the object received, and the depth of the annotation thread on the object. In one
embodiment, the Favorites context template returns only information that has the “favorites”
semantic link, and is sorted by counting the number of “votes” for the object (based on this
semantic link).

Figure 111 illustrates a semantic Visualization— Sample Image for smart hourglass,

interstitial page, transition effects, background chrome, etc. (coffee and pastry).

FAVORITES VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view) ’

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

CLASSICS

The Classics context template (and its resulting Special Agent) represents context that
returns “classical” information, or information that is of recognized value. Like the Favorites
context template, the emphasis is on disseminating information that has been endorsed by others
and has been favorably accepted. For this context template, the preferred axes include a
historical context, the level of readership interest, the “reviews” the object received and the depth
of the annotation thread on the object. The Classics context template is preferably implemented
based on the Favorites context template but with an additional minimum age limit filter and
voting score, essentially functioning as an “Old Favorites” context template.

Figure 112 illustrates a semantically appropriate Sample Image for “Classics” for smart

hourglass, interstitial page, transition effects, background chrome, etc. (Car)

CLASSICS VISUALIZATIONS - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS
1. Animated graphic of semantic image/motion(s) or an equivalent
2. Titles of the most recent N information items in a sequential animation (list view)

162

WO 2004/075466 PCT/US2004/004674

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)
4. Total number of items over semantic image/motion(s) (icon and context guide
view)
5. Total number of items over plain background (icon and context guide view)
* RECOMMENDATIONS

The Recomrﬁendations context template represents context that returns “recommended”
information, or information that the Agencies have jnferred would be of interest to a user.
Recommendations will be inserted by adding “recommendation” semantic links to the
“SemanticLinks” table and by mining the favorite semantic links that users indicate.
Recommendatioﬁs are preferably made using techniques such as machine learning and
collaborative filtering. The emphasis of this context template is on disseminating information
that would likely be of interest to the user but which the user might not have already seen. For
this context template, the primary axes preferably include the likelihood of interest and
freshness.

Figure 113 illustrates a semantically appropriate “Recommendation” Visualization —
Sample Image for the contextual/application elements of smart hourglass, interstitial page,

transition effects, background chrome, etc. (Thumbs up).

RECOMMENDATION VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

TODAY
The Today context template represents context that returns information posted or holding

(in the case of events) “today.” The emphasis with this context template is preferably on

163

WO 2004/075466 PCT/US2004/004674

disseminating information that is deemed to be current based on “today” being the filter to
determine freshness.
Figure 114 illustrates a semantic “Today” Visualization — Sample Image for the elements

smart hourglass, interstitial page, transition effects, background chrome, etc.

“TODAY VISUALIZATION” - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

ANNOTATED ITEMS
The Amnotated Items context template represents context that returns annotated
information. The emphasis with this context template is on disseminating information that is
~ likely to be important based on the fact that one or more users have annotated the items.
Figure 115 illustrates a semantic “Annotated Items” Visualization — Sample Image for

smart hourglass, interstitial page, transition effects, background chrome, etc..

“ANNOTATED ITEMS” VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4, Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

164

WO 2004/075466 PCT/US2004/004674

ANNOTATIONS
The Annotations context template represents context that returns annotated information.
The emphasis with this context template is on disseminating information that are annotations.
Figure 116 illustrates a semantic Visualization — Sample Image for smart hourglass,

interstitial page, transition effects, background chrome, etc. (Note pinned to Bulletin Board)

“ANNOTATIONS” VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Titles of the most recent N information items in a sequential animation (list view)

3. Titles and details of the most recent N information items in a sequential animation
(tiled view)

4. Total number of items over semantic image/motion(s) (icon and context guide
view)

5. Total number of items over plain background (icon and context guide view)

EXPERTS
Figure 117 illustrates a semantic “Experts” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc. (Professor)

“EXPERTS” VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Names of the most recent N experts in a sequential animation (list view)

3. Names and details of the most recent N experts in a sequential animation (tiled
view)

4. Total number of experts over semantic image/motion(s) (icon and context guide
view)

5. Total number of experts over plain background (icon and context guide view)

PLACES
Figure 118 illustrates a semantic “Places” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc. (Paris)

“PLACES” VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS
1. Animated graphic of semantic image/motion(s) or an equivalent
2. Names of the most recent N places in a sequential animation (list view)

165

WO 2004/075466 PCT/US2004/004674

' 3. Names and details of the most recent N places in a sequential animation (tiled
VTGW) 4. Total number of places over semantic image/motion(s) (icon and context guide
Ve 6. Total number of places over plain background (icon and context guide view)

BLENDERS

Figure 119 illustrates a semantic “Blenders” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc. (Blenders)

“BLENDERS” VISUALIZATION - SAMPLE ICONIC ANIMATIONS

1. Animated graphic of semantic image/motion(s) or an equivalent

2. Animated graphic of blender or mixer in action

3. Titles of the blender items in a sequential animation (list view)

4. Titles and details of the blender items in a sequential animation (tiled view)

5. Total number of items over semantic image/motion(s) (icon and context guide
view)

6. Total number of items over plain background (icon and context guide view)

INFORMATION OBJECT TYPES

Figures 120 through 138 illustrate semantic Visualizations for the following Information
Object Types, respectively: Documents, Books, Magazines, Presentations, Resumes,
Spreadsheets, Text, Web pages, White Papers, Email, Email Annotations, Email Distribution
Lists, Events, Meetings, Multimedia, Online Courses, People, Customers, and Users.

PRESENTATION SKIN TYPES
TIMELINE
Figure 139 illustrates a semantic “Timeline” Visualization — Sample Image for smart

hourglass, interstitial page, transition effects, background chrome, etc..

“TIMELINE” VISUALIZATION - SAMPLE OBJECT AND CONTEXT BAR

ANIMATIONS
1. Calendar view showing effective time (publication time, scheduled time, etc.) of
information item over various backgrounds (icon and context guide view)
2. Calendar view showing effective time of all information items (sequentially) over
various backgrounds (icon and context guide view)
3. Animated graphic showing calendar motion (icon and context guide view)

166

WO 2004/075466 PCT/US2004/004674

4. Animated graphic of semantic image/motion(s) (e.g., time warp image/motion)
(icon and context guide view)

5. The total number of information items over semantic image/motion(s) (icon and
context guide view)

6. The total number of information items over a plain background (icon and context
guide view)

7. Titles of information items animated in a sequence (list view)

8. Titles and details of information items animated in a sequence (tiled view)

9. Scrolling, linear timeline control with items populated based on effective
date/time

10. Animated timeline ticker control sorted by effective date/time
The Power of Semantic Visualizations.

One final note concerning Visualizations. The preferred embodiment not only searches
for information semantically, and not only organizes and stores it semantically, it also presents it
semantically. And, the presentation is not semantic only in the sequence, organization and
relationships of the information, but also visually, as the foregoing Visualizations are, in part,
intended to convey. As a result, the user is aided in understanding the information being
presented by the system in roughly in the same way that a viewer of a movie is aided in
understanding the meaning of dialogue by the surrounding context of the Iightiﬁg, costume,
music and entire set or scene. Put differently, the Visualizations, as with everything else
presented or managed by, or located with, the preferred embodiment system, serve the purpose
of conveying meaningful information; or, just as aptly, to convey information meaningfully.
Meaning is a unifying theme of the preferred embodiment; it permeates the design and operation
of the system, and each constituent component part of which the system is comprised.

While the preferred and some alternate embodiments of the invention have been
illustrated and described, as noted above, many changes can be made without departing from the
spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the
disclosure of the preferred embodiment. Instead, the invention should be determined entirely by

reference to the claims that follow.

167

10

15

20

25

WO 2004/075466 PCT/US2004/004674
Appendix A

SYSTEM AND METHOD FOR KNOWLEDGE RETRIEVAL,
MANAGEMENT, DELIVERY AND PRESENTATION

INVENTOR
Nosa Omoigui

PRIORITY CLAIM

This application claims priority from earlier filed U.S. Provisional Patent Application
Serial No. 60/300,385 filed June 22, 2001 and U.S. Provisional Patent Application Serial
No. 60/360,610 filed February 28, 2002.

CoPYRIGHT NOTICE

This disclosure is protected under United States and International Copyright Laws.
© 2002 Noéa Omoigu'i. All Rights Reserved. A portion of the disclosure of this patent
documeﬁt contains material which is subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

- FIELD OF THE INVENTION

This invention ‘r.e']ates generally to information management systems and, more

specifically, to an integraied and séamless implementation framework and resulting medium

for knowledge retrieval, management, delivery and presentation.

168

10

15

20

25

WO 2004/075466 PCT/US2004/004674

BACKGROUND OF THE INVENTION
Knowledge is now widely recognized as a core asset for organizations around the

world, and as a tool for competitive advantage. In today’s connected, information-based
world, knowledge-workers must have access to the knowledge and the tools they need to

make better, faster, and more-informed decisions to improve their productivity, enhance

)

_customer relationships, and to make their businesses more competitive. In addition, industry

obsérvers have touted “agility” and the “real-time énterprise” as important business goals to
have in the information economy. |

Many organizations have begun to realize the valué of disseminating knowledge
within their organizations in order to improve products and customer service, and the value
of having a well-trained workforce. The investments businesses are making in e-Learning
and corporate training provides some evidence of this. Companies have also invested in tools
for content management, search, collaboration, and business intelligence. Companies are also

«
spending significant resources on digitizing their business processes, particularly with respect
to acquiring and retaining customers.

However, many» knowledge/leaming and customér—relationship assets are still stored
in a diverse set of repositories that do not understand each other’s language, and as a result
are managed and interacted with as independent islands of information. As such, what many .
organizations call “knowledge” is merely data and information. The information economy in
large part is a struggle to find a way to provide context, meaning and efficient access to this
ever increasing body of data and information. Or, stated differently, to turn the mass of
available data and information into usable knowledge.

Information has been long accessible in a variety of forms, such as in newspapers,
books, radio and television media, and in electronic form, with varying degrees of
proliferation. Information management and access changed dramatically with the use of

computers and computer networks. Networked computer systems provide access throughout

169

10

15

20

25

WO 2004/075466 PCT/US2004/004674

the system to information maintained at any point along the system. Users need only
establish the reqdisite connection to the network, provide proper authorization and identify .
the desired information to obtain access.

Information access further improved with the advent of the Internet, which connects a
large number of computers across diverse geography to provide access to a vast body of
information. The most wide spread method of providing information over the Internet is via
the World Wide Web. The Web consists of a subset of the computers or Web servers
connected to the Internet that typically run Hypertext Transfer Protocol (HTTP), File
Transfer Protocol (FTP), GOPHER or other servers. Web servers host Web pages at Web
sites. Web pages are encoded using one or more languages, such as the original Hypertext
Markup Language (HTML) or the more current eXtensible Markup Language (XML) or the
Standard Generic Markup Language (SGML). The published specifications for these
languages are incorporated by reference herein. Web pages in these formatting languages
may be accessed by Internet users via web browsing software such as Microsoft’s Internet
Explorer or Netscape’s Navigator.,

The Web has largely been organized based on syntax and structure, rather than
context and semantics. As a result, information is typically accessed via search engines and
Web directories. Current search engines use keyword and corresponding search techniques
that rely on textual or basic subject matter information and indices without al's'ébciated context
and semantic information. Unfortunately, such searching methods produce thousands of
largely unresponsive results; documents as opposed to actionable knowledge. Advanced
searching techniciues have been developed to focus queries and improve the relevance of
search results. Many such techniques rely on historical user search trends to make basic
assumptions as to desired information. Alternatively, other search techniques rely on
categorization of Web sites to further focus the search results to areas anticipated to be most

relevant. Regardless of the search technique, the underlying organization of searchable

170

10

15

20

25

WO 2004/075466 PCT/US2004/004674

information is index-driven rather than context-driven. The frequency or type of textual

information associated the document determines the search results, as opposed to the

, attributes of the subject matter of the document and how those attributes relate to the user’s

context. The result is continued ambiguity and inefficiency surrounding the use of the Web
as a tool for acquiring actionable knowledge.

In enterprises around the world today, the Web is the information platform for

data and information while its users operate at the level] of “‘knowledge.” Tﬁié disconnect is a
very fundamental one and cannot be understated. The Web, in large measure, has fulfilled the
dream of “information at your fingertips.” However, knowledge-workers demand
“knowledge at your fingertips” as opposed to mere “information at your fingertips.”
Unfortunately, -today’s knowledge-workers use the Web to browse and search for
documents—compilations of data and information—rather than actual knowledge relevant to
their inquiry. To achieve improved knowledge requires providing proper context, meaning
and efficient access to data and information, all of which are missing with the traditional
Web.

Efforts have been made to achieve the goal of “knowledge at your fingertips.” One
example is a new concept for information organization and distribution referred to as the
Semantic Web. The Semantic Web is aﬁ extension of the current Web in which information
is given well-defined mgﬁning, better enabling computers and people to work in cooperation.
While conceptually a significant step forward in supporting improved context, meaning and
access of information on the Int;met, the Semantic Web has yet to find successful
implementation that lives up to its stated potential.

Both the current Web and the Semantic Web fail to provide proper context, meaning
and efficient access to data and information to allow users to acquire actionable knowledge.

This is partially a problem related to the ways in which Today’s Web and the contemplated

171

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Semantic Web are structured or, in other words, related to their technology layers. As shown
in FIGURE 1, Today’s Wéb, for example, which is a hypertext medium, provides the three
technélogy layers, which include “dumb” links, or links having no context-sensitivity,
time-sensitivity, etc. Present conceptualizations of the Semantic Web, also referred to as a
“semantic hypermedia,” provide for five technology layers, as shown in FIGURE 2. As
explained in greater detail below, there are serious limitations associated with each of the
technology layer structures.

In addition, various properties must be present in a comprehensive information
management system to provide an integrated and seamless implementation framework and
resulting medium for knowledge retrieval, management and delivery. A non-exhaustive list
of these properties include: Semantics/Meaning; Context-Sensitivity; Time-Sensitivity;
Automatic and intelligent Discoverability; Dynamic Linking; User-Controlled Navigation
and Browsing; Non-HTML and Local Document Participation in the Network; Flexible
Presentation that Smartly Conveys the Semantics of the Information being Displayed; Logic,
Inference, and Reasoning; Flexible User-Driven Information Analysis; Flexible Semantic
Queries; Read/Write Support; Annotations; “Web of Trust”; Information Packages
(“Blenders;”); Context Templates, and User-Oriented Information Aggregation. Each of these
properties w.ill be discussed below in the context of their applicati“on to boi}i Today’s Web
and the Semantic Web.

SEMANTICS/MEANING

Today’s Web lacks semantics as an intrinsic part of the platform and user experience.
Web pages convey only textual and graphical data rather than the semantics of the data they
contain. As a result, users cannot issue semantic queries such as those that one might expect
with natural language—for example, “find me all books less than hundred pages long, about
Latin Jazz, and published in the last five years.” To be able to process such a query, a Web

site or search engine must “know” it contains books and must be able to intelligently filter its

172

10

15

20

25

WO 2004/075466 PCT/US2004/004674

contents based on the semantics of the query request. Such a query is not possible on the
Web today. Instead, users are forced to rely on text-based searches. These searches usually
result in information overload or infofmaflion loss because the ﬁser is forced to pick search
terms that might not match the text in the information base. In the aforementioned example, a
user might pick the search term “Books Latin Jazz” and hope that the search engine can make
the connection. The user is usually then left to independently filter the search results. This
sort of text-based search also implies that terms that might convey the same meanin‘i(g. In the
above example, results from search terms such as “Books on South or Central American
Tazz” or “Publications on Jazz from Latino Lands” mi ght bé ignored during the processing of
the search query.

The lack of semantics also implies that Today’s Web does not allow users to navigate
based on they way humans think. For example, one might want to navigate a corporate
intranet using the organizational structure. For example, from people to the documents they
create to the experts on that documents to the direct reports of those experts to the
distribution lists the direct reports are members of to the members of the distribution lists to
the documents those members created, etc. This “web” is semantic and is based on actual
information classification (“things”) and not just “pages” as Today’s Web is.

The lack of semantics also has other implications. First, it means that the Web is not
programmable. With semantics, the Web can be consumed by‘ Smart Agents that can make
sense of the pages and the links and then make inferences, recommendations, etc. With
Today’s Web, the only “Agent” that can make inferences is the human brain. As such, the
Web dées not employ the enormous processing power that computers are capable of—
because it is not repfesented in a way that computers can understand.

The lack of semantics also implies that information is not actionable. A search engine

does not “understand” the results it spits out. As such, once a user receives search results, he

or she is “on his or her own.” Also, a web browser does not “understand” the information it is

173

10

15

20

25

WO 2004/075466 PCT/US2004/004674

displaying and as such cannot do smart things with the information. With semantics in place,
a smart display, for example, will “know” that an event is an event and might do interesting
things like check if the event is already in the user’s calendar, display free/busy information,
or allow the user to automatically insert the event into his/her calendar thereby making the
information actionable. Information presented without semantics is not actionable or mi ght
require that the semantics be inferred, which might result in an unpleasant user experience.

The Semantic Web seeks to address semantics/meaning limitations with Today’s Web
by encoding information with well-defined semantics. Web pages on the Semantic Web
include metadata and semantic links to other metadata, thereby allowmg search engines to
perform more intelligent and accurate searches. In addition, the Semantic Web includes
ontologies that will be employed for knowledge representation, thereby allowing a semantic
search engine to interpret terms based on meamng and not merely on text. For example, in
the previous example, Latin Jazz ontology mlght be employed on a Semantic Web 31te and
would allow a search engine on the site to “know” that the terms “Books on South or Central
American Jazz” or “Publications on Jazz from Latino Lands” have the same meaning as the
term “Books on Latin Jazz.” While conceptually overcoming many of the deficiencies with'
Today’s Web, there has not to date been a successful implementation of a well-defined data
model providing context and meaning, including in particular the necessary semantic links,
ontologies, etc. to provide for additional characteristics such as context-sensitivity and
time-sensitivity.
CONTEXT-SENSITIVITY

Today’s Web lacks context-sensitivity. The implication of a lack of context is that
Today’s Web is not personal. For example, documents in accessible storage are
independently static and therefore stupid. Information relevant to the subject matter of the
document has already been published, is being newly published, or will soon be published.

Because the document in storage is static, however, there is no way to dynamically associate

174

5

10

15

20

25

WO 2004/075466 PCT/US2004/004674

its subject matter with this relevant information in real-time. Stated differently, users have no
way to dynamically connect their private context with external information in real-time.
Information sources (such as the document) that form context sit in their own islands, totally
isolated from other relevant information sources. This results in information and productivity
losses.

The primary reason for this is that Today’s Web is a presentation-oriented ‘medium
designed fo present views of information to a dumb client (e.g., remote computer). The client
has virtually no role t;) play .in the user experience, aside from merely di;*.};laying what the
server tells it to display. Even in cases where there is client-side code (like Java applets and
ActiveX controls), the controls usually do one specific thing and do not have coordinated
action with the remote server such that code on the client is being orchestrated with code on
the server.

From a productivity standpoint, the implication of this is that knowledge-workers and
information consumers are totally at the mercy of information authors. Today,
knowledge-workers have portals that are maintained and updated to provide custom views of
corporate information, external data, etc. However, this is still very limiting because
knowledge-workers are completely helpless if nothing dynamically and intelligently connects
relevant informétion in the context of their task with information that users have access to.

If a knowledge-worker does not see a link to a relevant piece of information on his of
her portal, of if a friend or colleague does not email him or her the link, the information gets
dropped; information does not connect with or adapt to the user context or the context in
which it is displayed. Likewise, it is not enough to just notify a user that new data for an
entire portal is available and shove it down to their local hard drive. It lacks a customizable
presentation with context sensitive alert notifications.

. "\The Semantic Web suffers from the same limitations as Today’s Web when it comes

to context-sensitivity. On the Semantic Web, users are likewise at the mercy of information

175

10

25

WO 2004/075466 PCT/US2004/004674

autho’rs. The Semantic Web itself will be authored, but the authoring will include semantics.
As a result, users are still largely on their own to locate and evaluate the relevance of
available information. The Semantic Web, as a standalone entity, will not be able to make
these dynamic connections with other information sources.
TIME-SENSITIVITY

Today’s Web lacks time-sensitivity, The Web platfdrm (e.g., browser) is a dumb
piece of software that merely presents information, without aﬁy regard to the time-sensitivity
of the information. The user is left to infer time sensitivity or do without it. This results in a
huge loss in productivit\y because the Web platform cannot make time-sensitive connections
in real-time. While some Web sites focus on presenting time-sensitive information, for
example, by indexing information past a predetermined date, the Web browser itself has no
notion of time-sensitivity. Instead, it is left to individual Web sites to include time-sensitivity
in the information they display in their own island. In other words, there is no axis of time on
a Web link.

The Semantic Web, like Today’s Web, also does not address time-sensitivity.
A Semantic Web can have semantic links that do not internalize time. This is largely because

the Semantic Web implicitly has no notion of software Web services that address context and

‘time-sensitivity.

AUTOMATIC AND INTELLIGENT DISCOVERABILITY

Today’s Web lacks automatic and intelligent discoverability of newly created
information. There is currently no way to know what Web sites started anew today or
yesterday. Unless the user is notified or the user serendipitously discovers a new site when he
or she does a search, he or she might not have any clue as to whether there are any new Web
sites or pages. The same problem exists in enterprises. On Intranets, knowledge-workers
have no way of knowing when new Web sites come up unles:s informed via some external

means. The Web platform itself has no notion of announcements or discovery. In addition,

176

10

15

20

25

WO 2004/075466 PCT/US2004/004674

there is no context-sensitive discovery to determine new sites or pages within the context of

the user’s task or current information space.

The Semantic Web, like Today’s Web, does not address the lack of automatic
.d'is'"c‘;oyerability. Semantic Web sites suffer from the same problem—users either will have to
find out about the existence of new information sources from exteral sources orjthrough
personal discovery when they perform a search.

DYNAMIC LINKING
| Today’s Web employs a pure network or graph “data structure” for its information
model. Each Web page represents a node in the network and each page can contain links to
other nodes in the network. Each link is manually authofed into each page. This has several
problems. First, it means that the network needs to be maintained for it to have continuous
value. If Web pages are not updated or if Web page or site authors do not have the discipline
to add links to their pages based on relevance, the network loses value. Today’s Web is
essentiélly prone to having dead links, old links, etc. Another problem with a pure network or
graph information model is that the information consumer is at the mercy of—rather than in
control of—the presentation of the Web page or site. In other words, if a Web page or site
does not contain any links, the user has no recourse to find relevant information. Search
engines are of little help because they merely return pages or nodes into the network. The
network itself does not have any indepéndeﬁt or dynamic linking ability. Thus, a search
engine can easily return links to Web pages that themselves have no links or dead, stale or
irrelevant links. Once users obtain search results, they are on their own and are completely at
the mercy of whether the author of the returned pages inserted relevant, time-sensitive links
into the page.
x The Semantic Web suffers from the same problem as Today’s Web because the
Semantic Web is merely Today’s Web plus semantics. Even though users will be able to

navigate the network sémantically (which they cannot currently do with the Web), they will

177

10

15

20

25

WO 2004/075466 PCT/US2004/004674

still be at the miercy of how the information has been authored. In other words, the Semantic
Web is also dependent on the discipline of the authors and hence suffers from the same
aforementioned problems of Today’s Web. If the Semantic Web includes pages with
ontologies and metadata, but those pages are not well maintained or do not include links to
other relevant sources, the user will still be unable to obtain current links and other
information. The Semantic Web, as currently contemplated, will not be a smart, dynamic,
self-authoring; self-healing network.
USER-CONTROLLED NAVIGATION AND BROWSING

‘With Today’s Web, the usér has no control over the navigation and browsing
experience, but rather ist completely at the mercy of a Web page and how it is authored with
links (if any). As shown with reference to prior art FIGURE 3, Today’s Web consists of
“dumb links,” or statically authored generic links that are wholly dependent on continuous
maintenance to be navigable. |

The Semantic Web suffers from a similar problem as Today’s Web in that there is no
user-controlled browsing. Instead, as shown with reference to prior art FIGURE 4, the
Semantic Web consists of “dumb links,” further including .semantic information and
metadata. However, the Semantic Web links remain equally dependent on continuous
maintenance to be navigable.
NON-HTML AND LOCAL DOCUMENT PARTICIPATION IN THE NETWORK

Another problem with Today’s Web is the requirement that only documents that are
authored as HTML can participate in the Web, in addition to the fact that those documents
have to contain links. The implication is that other information objects like non-HTML
documents (e.g., PDF, Microsoft Word, PowerPoint, and Excel documents, etc.)—especially
those on users” hard drives—are excluded from the benefits of linking to other objects in the
network. This is very limiting, especially since there might be semantic relevance between

information objects that are not HTML and which do not contain links.

178

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Furthermore, search engines do not return results for the entire universe of

information since vast amount of content available on the web is inaccessible to standard web

“crawlers. This includes, for example, content stored in databases, unindexed file repositories,

subscription sites, local machines and devices, proprietary file formats (such as Microsoft

‘Office documents and email), and non-text multimedia files. These form a vast constellation

of inr;ccessible matter on the Internet, referred to as “the invisible Intranet” inside
corporatiéns. Today’s Web servers do not provide web crawler tools that address this -
problem. B

The Semantic Web also suffers from this limitation. It does not address the millions
of non-HTML documents that are already out there, especially those on users” hard drives.
The implication is that documents that do not have RDF metadata equivalents or proxies

cannot be dynamically linked to the network.

FLEXIBLE PRESENTATION THAT SMARTLY CONVEYS THE SEMANTICS OF THE
INFORMATION BEING DISPLAYED

Today’s Web does not allow users to customize or “skin” a Web site or page. This 1s
because Today’s Web servers return information that is already formatted for presentation by
the browser. The end user has no flexibility in choosing the best means of displaying the
information—based on different criteria (e.g., the type of information, the available amount
of real estate, etc.)

The Semantic Web does not address the issue of flexible presentation. While
a semantic Web site conceptually employs RDF aﬁd ontologies, it still sends HTML to the
browser. Essentially, the Semantic Web does not provide for specific user empowerment for
presentation. As such, a Semantic Web site, viewed by Today’s Web platform, will still not
empower the user with flexible presentation. Moreover, despite industry movement towards
XML, only a new platform can dictate that data will be separated from presentation and

define gﬁidelines for making the data programmable. Authors building content for the

179

10

15

20

25

WO 2004/075466 , PCT/US2004/004674

Semantic Web either return XML and avoid issues with presentation entirely, or focus their
efforts on a single presentation style (vertical industry scenario) for rendering. Neither
approach allows the Semantic Web to achieve an optimum degree of knowledge distribution.
LOGIC, INFERENCE AND REASONING

Because Today’s Web does not have any semantics, metadata, or knowledge
representation‘, bomputers cannot process Web pages using logic and inference to infer new
links, issue notifications, etc. Today’s Web was designéd and built for human consumption,
not for computer consumption. As such, Today’s Web cannot operate on the information
fabric without resorting to brittle, unreliable techniques such as screen scraping to try to
extract metadata and apply logic and inference.

While the Semantic Web conceptually uses metadata and meaning to provide Web
pages and sites with encoded information that can be processed by computers, there is no
current implementation that is able to successfully achieve this computer processing and
whicﬁ ‘llustrates new or improved scenarios that benefit the information consumer or

producer.

FLEXIBLE ﬁSER-DRI\;EN INFORMATION ANALYSIS

Today’s Web lacks user-driven information analysis. Today’s Web does not allow
users to display different “views” of the links, using different filters and conditions. For
example, Web search engines do not allow users to test the results of searches under different
scenarios. Users cannot view results using different pivots such as information type (e.g.,
documents, email, etc.), context (e.g., “Headlines,” “Best Bets,” etc.), category (e.g.,
“wireless,” “technology,” etc.) etc.

While providing a greater degree of flexible information analysis, the Semantic Web

does not describe how the presentation layer can interact with the Web itself in an interactive

' fashion to provide flexible analysis.

180

10

15

20

WO 2004/075466 PCT/US2004/004674

FLEXIBLE SEMANTIC QUERIES

Today’s Web only allows text-based queries or queries that are tied to the schema of

a particular Web site. These queries lack flexibility. Today’s Web does not allow a user to
issue queries that approximate natural language or incorporate semantics and local context.
For example, a query such as “Find me all email messages written by my boss or anyone in

i

research and which relate to this specification on my hard disk” is not possible withk'Today’s

Web.

By emplpying metadata and ontologies, the conceptual Semantic Web allows a user
to issue more flexible queries than Today’s Web. For example, ﬁsers will be able to issue a
query such as “Find me all email messages written by my boss or anyone in research.”
However, users will not be able to incorporate local context. In addition, the Semantic Web
does not define an easy manner with which users will query the Web without using natural
language. Natural language technology is an option bﬁt is far from being a reliable
technology. As such, a query user interface that approximates natural language yet does not
rely on natural language is required. The Semantic Web does not address this.
READ/WRITE SUPPORT

Today’s Web is a read-only Web. For example, if users encounter a dead link
(e.g., via the “404” error), they cannot “fix” the link by pointing it to an updated target that
might be known toi the user. This can be limiting, especially in cases where users might have
important knowledge to be shared with others and where users might want to have input as to
how the network should be represented énd evolve.

While the Semantic Web conceptually allows for read/write scenarios as provided by
independent participating applications, there is no current implementation that provides this

ability.

181

10

15

20

25

WO 2004/075466 PCT/US2004/004674

ANNOTATIONS

Today’s Web has no implicit support for annotations. And while some specific Web
;ites support annotations, they do so in a very restricted and self-contained way. Today’s
Web medium itself does not address annotations. In other words, it is not possible for users to
annotate any link with their comments or additional information that they have access to.
This results in potential information loss.

While the Semantic Web conceptually allows for annotations to be built into the
system subject to security constraints, there is no current implementation that provides this
ability.

“WEB OF TRUST”

Today’s Web lacks seamless integration of authentication, access control, and
authorization into the Web, or what has been referred to as a “Web of Trust.” With a Web of
Trust, for example, users are able to make assertions, fix and update links to the Web and
have access control restrictions built in for such operations. On Today’s Web, this lack of
trust .talso means that Web services remain independent islands that must implement a
schemes for centralizing th'is information on 3™ party servers meet with conSﬁfner and vendor
distrust because of privacy concems. To gain access to rich coﬁtent, asset users must log in
individually and provide identity information at each site.

While the Semantic Web conceptually allows for a Web of Trust, there is no current
implementation that provides for this ability.

INFORMATION PACKAGES (BLENDERS)

Neither Today’s Web nor the Semantic Web allows users to deal with related
semantic information as a whole unit by combining characteristics of potentially divergent
semantic information to produce overlapping results (for example, like creating a custom,

personal newspaper or TV channel).

182

10

15

20

25

WO 2004/075466 PCT/US2004/004674

i

CONTEXT TEMPLATES

Neither Today’s Web nor the Semantic Web allows users to independently create

-and map to specific and familiar semantic models for information access and retrieval.

USER-ORIENTED INFORMATION AGGREGATION :
Today’s Web lacks support for user-oriented information aggregatlon The user can

only access one Web site or one search engine at a time, within the context of one browsing

session. As such, even if there is context or time-sensitive information on other information

sources that relate to the information that the user is currently viewing, those sources cannot
be presented iﬁ a holistic fashion in the current context of the user’s task. |

The Semantic Web also suffers from a lack of user-oriented information aggregation.
The medium itself is an extension of Today’s Web. As such, users will still access one site or
one search engine at a time and will not be able to aggregate information across information
repositories in a context or time-sensitive manner.

Given the growing demand for “knowledge at your fingertips” as well as the
deficiencies in Today’s Web and the conceptual Semantic Web, many of which are noted
above, there is a need for a new and comprehensive system and method of knowledge

retrieval, management and delivery.

SUMMARY OF 'fHE INVENTION
The present invention is directed in part to an integrated and seamless implementation
framework and resulting medium for knowledge retrieval, management, delivery and
presentation. The system includes a server comprised of ‘several components that work
together to provide context and time-sensitive semantic information retrieval services to

clients operating a presentation platform via a communication medium. The server includes a
Nl

W

ﬁrst server component that is responsible for adding and mamtammg domain-specific

semantic information - or intelligence. The first server component preferably includes

structure or methodology directed to providing the following: a Semantic Network, a

183

10

15

20

25

WO 2004/075466 PCT/US2004/004674

~ Semantic Data Gatherer, a Semantic Network Consistency Checker, an Inference Engine, a

Semantic Query Processor, a Natural Language Parser, an Email Knowledge Agent and a
Knowledge Domain Manager. The server includes a second server c‘omponent that hosts
domain-specific information that is used to classify and categorize semantic information. The
first and second server components work together and may be physically integrated or -
separate. |

Within the system, all objects or events in a given hierarchy are active Agents
semantically related to each other and representing queries (comprised of underlying action
code) that return data objects for presentation to the clieﬁt according to a predetermined and
customizable theme or “Skin.” This system provides various means for the client to
customize and “blend” Agents and the underlying related queries to optimize the presentation
of the resulting information.

The end-to-end system architecture of the present invention provides multiple client
accesé ‘means of communication between diverse knowledge information sources via an
independent Semantic Web platform or via a traditional Web_ portal (e.g., Today’s Web
access browser) as modified by the present invention providing additional SDK layers that
enable programmatic integration with a custom client.

The methodology of the present invention is directed in part to the operational aspects
of the entire system, including the retrieval, management, delivery and presentation of
knowledge. This preferably includes securing information from information sources,
semantically linking the information from the information sources, maintaining the semantié
attributes of the body of semantically linked information, delivering requested semantic
information based upon user queries and presenting semantic information according to
customizable user preferences. Alternative embodiments of the methodology of the present

invention are directed to the operation of Agents representing queries that are used with

184

10

15

20

25

WO 2004/075466 PCT/US2004/004674

server-side and client-side applications to enable efficient, inferential-based queries

‘producing semantically relevant information.

BRIEF DESCRIPTION OF THE DRAWINGS
_ The preferred and altematlve embodlments of the present invention are described in

detail below with reference to the following drawmgs

FIGURE 1 is a table showing the technology layers of Today’s Web

FIGURE 2isa table showing the technology layers of the conceptual Semantic Web.

FIGURE 3 is a diagram showing user navigation to links in Today’s Web.

FIGURE 4 is a diagram showing user navigation to links in the conceptual Semantic
Web. '

FIGURE 5 is a screenshot showing a sample Information Agent Results Pane in
accordance with the present invention.

FIGURE 6 shows the technology platform stacks of Today’s Web and the
Information Nervous System of the present invention.

FIGURE 7 is a diagram showing an overview of the system of the present invention.

FIGURE 8 is a diégram showing the end-to-end system architecture for the
Information Nervous System of the present invention.

FIGURE 9 is a diégrain showing the system architecture for the Knowledge
Integration Server (KIS) of the Information Nervous System of the present invention.

FIGURE 10 is a comparison between the high-level descriptive platform layers of
Today’s Web and the equivalents (where applicable) in the Information Nervous System of
the present invention.

FIGURE 11 illustrates the preferred embodiment of the Information Nervous System
and illustrates the heterogeneous, cross-platform context for the present invention.

I*;IGURES 12-14 show exemplar screenshots of aspects of the Blender Wizard user

interface according to a preferred embodiment of the present invention.

185

10

15

20

25

WO 2004/075466 PCT/US2004/004674

FIGURE 15 is an exemplar pane of a Breaking News Agent user interface.

FIGURE 16 illustrates a preferred embodiment showing the Open Agent dialog of the
present invention.

FIGURES 17-19 illustrate the Tree View of a sample‘ Semantic Environment
involving the Opeh Agent dialog.

FIGURE 20 shows the Agent schema of the preferred embodiment of the present
invention.

FIGURE 21 shows the AgentTypeIDs of the preferred embodiment of the present
invention.

FIGURE 22 shows the AgentQueryTypeIDs of the preferred embodiment of the
present invention.

FIGURE 23 illustrates sample semantic queries that correspond to Agent names

shbWing how server-side Agents are preferably -configured on the KIS of the present

invention.
FIGURE 24 is a diagram showing an overview of the KIS of the present invention.

FIGURE 25 is a diagram showing a sample Semantic Network directed towards an

enterprise situation in accordance with the present invention.

FIGURE 26 is a table showing the preferred schema of the Object type in accordance
with the present invention.

FIGURE 27 shows the SemanticLinks table of the present invention. -

FIGURE 28 is a table showing predicate type IDs of the preferred embodiment of the
present invention.

FIGURE 29 is a table showing the preferred user object schema made in accordance
with the present invention. “

FIGURE 30 is a table showing MailingAddressTypelDs preferably associated with

the User (person) object schema.

186

10

15

20

25

WO 2004/075466 PCT/US2004/004674

FIGURE 31 is a table of the preferred category object schema made in accordance
with the present invention.

FIGURE 32 is a table of the preferred document object schema made in accordance

“with the present invention.

.VFIGURE 33 shows the Print Media Type IDs of the preferred embodiment.

FiGURE 34 shows the preferred FORMATTYPEID.

FIGURE 35 shows the preferred email message list object schema made in
accordance with the present invention.

FIGURES 36 and 37 are exemplar tables showing the email distribution list and email
public folder object schemas, respectively, of a preferred embodiment of the present
invention.

FIGURE 38 shows the preferred PublicFolderTypelD of the present invention.

FIGURE 39 shows the preferred event object schema message list object schema
made in accordance with the present invention.

FIGURE 40 shows the events types of a preferred embodiment of the present
invention. 5

FIGURE 41 shows the“i)referred media object schema message list object schema
made in accordance with the present invention.

FIGURE 42 shows the media types of a preferred embodiment of the present
invention.

FIGURES 43-45 illustrate additional samples showing how objects are categorized
and utilized in the preferred embodixﬁent of the present invention.

FIGURE 46 is an object graph showing mapping of raw email XML metadata to the
Senianti_g Network according to the present invention: |

FIGURES 47-53 are exemplar screenshots showing aspects of Agent management by
the KIS.

187

10

15

20

25

WO 2004/075466 PCT/US2004/004674

FIGURE 54 shows a sample user interface illustrating an information object
displayed in the Information Agent Results Pane.

FIGURE 55 shows an example of a balloon popup associated with an Intrinsic
Semantic Link showing an email sample according to the present invention.

FIGURE 56 shows an exampie of a balloon popup associated with a Verb user
interface according to the present invention. |

FIGURE 57 shows an example of a balloon popup associated with a Deep
Information Mode user interface according to the present invention.

FIGURES 58 and 59 are illustrations showing an exemplar Semantic Environment
according to the present invention. '

FIGURES 60-68 provide exemplar screenshots of an Information Agent according to
a preferred embodiment of the present invention.

FIGURES 69-71 provide exemplar balloon popup menus associated with the Smart
Lens feature of an Information Agent according to the present invention,

FIGURE 72 shows a sample of a variant of the balloon popup menu of FIGURE 71
showing the relatedness measure of the two objects.

FIGURES 73-75 show sample tables illustrating the behaviors and reiational contains
objects types predicates when using Smart Lenses.

FIGURE 76 is a user interface sample illustrating semantic results Player/Preview
Control according to the present invention.

FIGURE 77 is a user interface sample showing the semantic results of a Blender.

FIGURES 78 and 79 illustrate exemplar functionality mappings of the present
invention. |

FIGURE 80 illustrétes a user interface showing Agent results and corresponding

Context Palettes according to the present invention.

188

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

FIGURE 81 shows a sample Smart Recommendations popup context Results Pane

according to the present invention.
~. FIGURE 82 is a table showing the technology layers of the Information Nervous
System of the present invention. |
FIGURE 83 illustrates dynamic linking and user—con-t‘rgll'ed navigat.ion and browsing
according to a preferred embodiment of the present invention.
DOCUMENTS INCORPORATED BY REFERENCE
The Appendix attached hereto and referenced herein is incorporated by referénce.

This Appendix includes exemplar code illustrating a preferred embodiment of the present

invention.
CONTENTS OF DETAILED DESCRIPTION OF THE INVENTION
A. DEFINITIONS
B. OVERV[E\‘IV
1. INVENTION CONTEXT
2. VALUE PROPOSITIONS
3. TODAY'S “INFORMATION” WEB VS, THE INFORMATION NERVOUS SYSTEM OF
THE PRESENT INVENTION
C. SYSTEM ARCHITECTURE AND TECHNOLOGY CONSIDERATIONS
1. SYSTEM OVERVIEW
2. SYSTEM ARCHITECTURE
3. TECHNOLOGY STACKS
4. SYSTEM HETEROGENEITY
5. SECURITY
6. EFFICIENCY CONSIDERATIONS
D. SYSTEM COMPONENTS AND OPERATION
) 1. AGENCIES AND AGENTS
a. Agencies
b. Agents
2. . KNOWLEDGE INTEGRATION SERVER
a. Semantic Network
b. Semantic Data Gatherer

189

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

c Semantic Network Consistency Checker
d. Inference Engine
e Semantic Query Processor
f Natural Language Parser
g Email Knowledge Agent
h. Knowledge Domain Manager
I Other Components
3. KNOWLEDGE BASE SERVER
4. INFORMATION AGENT (SEMANTIC BROWSER PLATFORM)

a Overview
b Client Configuration
c Client Framework Specification
d. Client. Fi ramework
e. Semantic Query Document
f Semantic Environment
g Semantic Environment Manager
h. Environment Browser (Semantic Browser or Information Agent™)
i Additional Application Features
s PROVIDING CONTEXT IN THE PRESENT INVENTION
a. Context Templates
b. Context Skins
c. Skin Templates
d- Default Predicates
e. Context Predicates
f Context Attributes
g Context Palettes
h. Intrinsic Alerts
i Smart Recommendations
6. PROPERTY BENEFITS OF THE PRESENT INVENTION
SCENARIOS

1 EXAMPLES OF SEMANTIC QUERIES UTILIZING THE PRESENT INVENTION
2. BUSINESS PROBLEMS
3. SITUATIONS

. DETAILED DESCRIPTION OF THE INVENTION

190

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

A. DEFINITIONS

ActionScript. Scripting language of Macromedia Flash. This two-way
communication assists users in creating interactive movies. See
http://www.macromedia.com/suppon/ﬂash/action_scripts/actionscript_tutorial/.

_ Agency. A named instance of a Knowledge Integration Server (KIS) that is the
semantic equivalent of a website. ‘ .

Agency Directory. A directory that stores metadata 'i‘lﬂlfomlation;fqr Agencies and
allows clients to add, remove, search; and browse Agencies stored within. Agencies can be
published on difectories iike LDAP or the Microsoft Active Directory. Agencies can also be
published ona proprietary directory built specifically for Agencies.

Agent. A semantic filter query that returns XML information for a particular
semantic object type (e.g., documents, email, people, etc.), c;)ntext (e.g., Headlines,
Conversations, etc.) or Blender.

e Blender™ or Compound Agent™. Trademarked name for an Agent that
contains other Agents and allows the user (in the case of client-side blenders) or
the Agency administrator (in the case of server-side blenders) to create queries
that generate results that are the union or intersection of the results of their
contained Agents. In the case of client-side blenders, the results can be generated
using different views (showing each Agent in the blender in a different frame,
showing all the objects of a particular object type across the contained Agents,
etc.) _

e Breaking News Agent™., Trademarked name for a Smart Agent that users
specially tag as being indicative of time-criticality. Users can tag any Smart Agent
as a Breaking News Agent. This attribute is then stored in users’ Semantic
Environment. A Breaking News Agent preferably shows an alert if there is
breaking news related to any information being displayed.

e Default Agent™. Trademarked name for standardized, non-user modifiable
Agents presented to the user.

‘e Domain Agent™, Trademarked name for an Agent that belongs to a semantic
domain. It is initialized with an Agent query that includes reference to the

“categories” table.

191

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

* Dumb Agent™. Trademarked name for an Agent that does not have an Agency
and which refers to local information (on a local hard drive), on a network share
oron a Web link or URL. Dumb Agents are used to essentially load information
items (e.g., documents) from a non-smart sandbox (e.g., the file-system or the
Internet) to a smart sandbox (the Information Nervous System via the Information
Agent (semantic browser)).

e Email Agent™ (or Email Knowledge Agent™), Trademarked names for a
Public Agent used to publish or annotate information and share knowledge on an
Agency. '

* Favorite Agent™, Trademarked name for Agents that users indicate they like
and access often. : |

- » Public Agent™, Trademarked name for Agents that are created and managed by

the system administrator.

e Private or Local Agents™, Trademarked names for Agents that are created and
managed by users.

e Search Agent™. Trademarked name for a Smart Agent that is created by
searching the semantic environment with keywords or by searching an existing
Smart Agent, in order to invoke an additional, text-based query filter on the Smart

- Agent.

o Simple or Standard Agent™., Trademarked names for Standalone Agents that
encapsulate structured, non-semantic queries (e.g., from the local file system or
data source).

* Smart Agent™. Trademarked name for a standalone Agent that encapsulates
structured, semantic queries that refers to an Agency via its XML Web Service.

o Special Agent™., Trademarked name for a Smart Agent that is created based on a
Context Template. |

Agent Dis’c'overy. The property of the information medium of the present invention
that allows users to easily and automatically discover new server-side Agents or client-side
Agents created by others (friends or colleagues). Also see “Discoverability.”

Annotations. Notes, comments, or explanations that are used to add personal context
to an information object. In the preferred embodiment, annotations are email messages that

are linked to the object they qualify, and which can have attachments (just like regular email

192

‘10

15

20

25

WO 2004/075466 PCT/US2004/004674

messages). In addition, annotations are first class information objects in the system and as
such can be annotated themselves, thereby resulting in threaded annotations or a tree of
annotations with the initial object as the root.

Application Programming Interface (API). Defines how software programmers
utilize a particular computer feature. APIs exist for wiﬁdowing systems, file “systems,
database \systems, networking systems, and other systems.

Calendar Access Protocol (CAP). Internet protocol that permit's users to digitally
access a calendar store based on the iCalendar standard.

Compound Agent Manager™, Trademarked name for an Agency component that
programmatically allows the user to create and delete Compound Agents and to manage them
by adding and deleting Agents.

Context. Information surrounding a particular item that provides meaning and
otherwise assists the information consumer in interpreting the item as well as finding other
relevant information related to the item.

Context Results Pane. A Results Pane that displays results for context-based queries.
These include results for Context Palettes, Smart Lenses, Deep Information, etc. See “Results
Pane.”

Context-Sensitivity. The property of an information medium that enables it to
intelligently and dynamically perceive the context of all the information it presents and to
present additional, relevant information given that context. A context-sensitive system or
medium understands the semantics of the information it presents and provide appropriate
behaviors (proactive and reactive based on the user’s actions) in order to present information
in its proper context (both intrinsically and relationally).
| - Context Template™., Trademarked name. for scenario-driven information query
templates that map to specific and familiar semantic models for information access and

retrieval. For example, a “Headlines” template in the preferred embodiment; has parameters

193

10

15

20

25

WO 2004/075466 PCT/US2004/004674

that are consistent with the delivery of “Headlines” (where freshness and the likelihood of a
high interest level are the primary axes for retrieval). An “Upcoming Events” template has
parameters that are consistent with the delivery of “Upcoming Events.” And so on.
Essentially, Context Templates can be analogized to personal, digital semantic information
retrieval “channels” that deliver information to the user by employing a well-known semantic
template. | |

Deep Information™. Trademarked name for a feature of the present invention that
enables the Information Agent to displéy intrinsic, contextual information relating to an
information ‘object. The contextual information that includes information that is mined from
the Semantic Network of the Agency from whence the object came. |

Discoverability. The ability of the information medium of the present invention to
intelligently and proactively make information known or visible to the user without the user
having to explicitly look for the information.

Domain Agent Wizard™., Trademarked name for a system component and its user
interface for allowing the Agency administrator to create and manage Domain Agents.

DOTNET (.NET). Microsoft® .NET is a set of Microsoft software technoloéies for
connecting information, people, systems, and devices. It enables software integration through
the use of XML Web Servicés: small, discrete, building-block applications that connect to
each other, as well as to other, larger applications, via the Internet. NET-connected software

facilitates the creation and integration of XML Web Services. See

_ http://www.microsoft.com/net/defined/default.asp).

Dynamic Linking™. Trademarked name for the ability of the Information Nervous

System of the present invention to allow users to link information dynamically, semantically,

and at the speed of thought, even if those information items do not contain links themselves.
By virtue of employing smart objects that have intrinsic behavior and using recursive

intelligence embedded in the Information Agency’s XML Web Service, each node in the

194

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Semantic Network is much smarter than a regular link or node on Today’s Web or the

conceptual Semantic Web. In other words, each node in the Smart Virtual Network or Web

- . of the present invention can link to other nodes, independent of authoring. Each node has

beha‘\'}im that can dynamically link to Agencies and Smart Agents via drag and drop and
smart copy and paste, create links to Agencies in the Semantic Environment, respond to lens
requests from Smart Agents to create new links, include intrinsic alerts thatziwill dynamically
create links to context and time-sensitive information on its Agency, include presentafion
hints for breaking news (wherein the node can automatically link to breaking news Agents in
the namespace), form the basis for deep info that can allow the user to find new links, etc. A
user of the present invention is’therefore not at the mercy of the author of the metadata. Once
the user reaches a node in the network, the user has many semantic means of navigating
dynamically and automatically—using context, time, relatedness to Smart Agencies and
Agents, etc.

Email XML Object. An information object with the “Email” information object
type. The XML object has the “Email” SRML schema (which uses XML).

A Environment Browser. See Information Agent.

Favorite Agents Manager™. Trademarked name for a system component and user

interface clement that allows the Agency administrator to manage server-side Favorite

Agents.

Flash. Macromedia Flash user interface platform that enables developers and content
authors to embed sophisticated graphics and animations in their content. See
http://www.macromedia.com/flash.

. Flash MX. Macromedia Flash MX is a text, graphics, and animation design and
development environment for creating a broad range of high-impact content and rich
applicatioﬁs fgr[- the - Internet. See

hitp://www.macromedia.com/software/flash/productinfo/product_overview/.

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Global Agency Directory™. Trademarked name for an instance of an Agency
Directory that runs on the Internet (or other global network). The Global Agency Directory
allows users to find, search, and browse Internet-based Agencies L{sing their Information
Agent (directly in their semantic environment). Also, see “Agency Directory.”

HTTP. Hypertext‘ Transfer Protocol (HTTP) is an application-level protocol for
distributed, collaborative, hypermedia information systems. It is a generic, stateless, protocol
that can be used for many tasks beyond its use for, hypertext, such as name servers and
distributed object management systems, through extension of its request methods, error codes
and headers. A feature of HTTP is the typing and negotiation‘of data representation, allowing
systems to be built " independently of the data being transferred. See
http://www.w3.org/Protocols/ and hitp://www.w3 .org/Protocols/Specs.html.

Inference Engine™. Trademarked name for the mcthodology of the présent
invention that observes patterns and data to arrive at relevant and logically sound conclusions
by reasoning. Preferably utilizes Inference Rules (a predetermined set of heuristics) to add
semantic links to the Semantic Network of the present invention. V

Information. A quantitative or qualitative measure of the relevance and intelligence
of content or data and which conveys knowledge.

Information Agent™. Trademarked name for the semantic client or browser of the
present invention that provides context and time-sensitive delivery and presentment of
actionable information (or knovs}ledge) from multiple sources, information types, and
templates, and which allows dynamic linking of information across various repositories.

Information Nervous System™., Trademarked name for the dynamic,
éelf-authoring, conteﬁt and time-sensitive information system of the present invention that
enables users to intelligently and dynamically link information at the speed of thought, and

with context and time-sensitivity, in order to maximize the acquisition and use of knowledge

for the task at hand.

196

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Information Object™ (or Item or Packet). Trademarked name for a unit of

information of a particular type and which conveys knowledge in a given context.

Information Object Pivot™L Trademarked name for an information object that users

~ employ as a navigational pivot to find other relevant information in the same context.

" Information Object Type. See Object Type. :

Intelligent Agent. Software Agents that act on béhalf of the user to find ;md filter
information, negotiate for services, easily automate complex tasks, or collaborate with other
software Agents to solve complex problems. By definition, Intelligent’ Agents must be
autonomous or, in other words, freeiy able to execute without user intervention. Additionally,
Intelligent Agents must be able to communicate with other software or human Agents and
must have the ability to perceive and monitor the environment in which they reside. See
http://www.findarticles.com/cf_dls/mOFWE/7_4/64694222/p1/article.jhtml).

Internet Calendaring and Scheduling (iCalendar). Protocol that enables the
deployment of interoperable calendaring and schedulibng services for the Internet. The
protocol provides the definition of a common format for openly exchanging calendaring and
scheduling information across the Internet.

Internet Message Access Protocol (IMAP). Communications mechanism for mail
clients to interact with mail servers, and manipulate mailboxes thereon. Perhaps the most
popular mail access protocol currently is the Post Office Protocol (POP), which also
addresses remote mail access needs. IMAP offers a superset of POP features, which allow
much more complex interactions and provides for much more efficient access than the POP
model. See http://www-smi.stanford.edu/projects/imap/ml/imap.html.

Intrinsic Semantic Link™., Trademarked name for semantic links that are intrinsic
to- the séhema of a particular information object. For instance, an email information object

has intrinsic links like “from,” “to,” “cc,” “bee,” and “attachments” that are native to the

object itself and are defined in the schema for the email information object type.

197

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Island. An information repository that is isolated from other repositories which may
contain relevant, semantically related, context and time-sensitive information but which are
disconnected from other contexts in which such information might be relevant.

J2EE. The JavaTM 2 Platform, Enterprise Edition (J2EE) used for developing
multi-tier enterprise applications. J2EE bases enterprise applications on standardized,
modular components by providing a set of services to those compohents and by handling
many details of application behavior automatically. See
http://java.sun.com/j2ee/overview.html.

Knowledge. Information presented in a context and time-sensitive manner that
enables the information consumer to learn from the information and apply the information in
order to make smarter and more timely decisions for relevant tasks.

Knowledge Agent™, See Information Agent.

. Knowledge Base Server™ (KBS). Trademarked name for a server that hosts
knowledge for the Knowledge Integration Server (KIS). '

Knowledge Domain Manager™ (KDM). Trademarked name for a component of
the Knowledge_ Integration Server that is responsible for adding and maintaining

domain-specific intelligence on the Semantic Network.

Knowledge Integration Server™ (KIS). Trademarked name for a server that

semantically integrates data from multiple diverse sources into a Semantic Network, which

can also host server-side Agents that provide access to the network and which hosts XML
Web Services that prO\}ide context and time-sensitive access tb knowledge on the server.
Knowledge Web™, See Information Nervous System.
Liberty Al]iance. The vision of the Liberty Alliance is to enable a networked world
in which individuals and businesses can more easily conduct transactions while protecting

the privacy and security of vital identity information. To accomplish its vision, the Liberty

198

10

15

20

WO 2004/075466 PCT/US2004/004674

Alliance seeks to establish an open standard for federated network identity through open
technical specifications. See http://www.projectliberty.org/index.html.

Lightweight Directory Access Protocol (LDAP). Technology for accessing

common directory information. LDAP has been embraced and implemented in most

network-oriented middleware. As an open, vendor-neutral standard, LDAP pro'\:‘/ides an
extendable_afchitéctum for centralized storage and management of information that needs to
be available for today's distributed systems and services. LDAP is currently supported in

most network operating systems, groupware and even shrink-wrapped network applications.

A See http://publib—b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244986.html?Open.

Link Template™, See Context Template.

Local Context. Local Context refers to client-side information objects and Agents
accessible to the users. This includes Agents in the Semantic Environment, local ﬁles,‘
folders, email items in users’ email inboxes, users’ favorite and recent Web pages, the
current Web page(s), currently opened documents, and other information objects that
represent users’ current task, location, time, or condition.

Meaning. The attributes of behavior of information that allows the consumer of the
information to locate and navigate to it based on its relevant information content (as opposed
to its text or data) and to act on it in a context and time-sensitive manner, in order to
maximize the utility of the information.

Metadata. “Data about data.” It includes those data fields, links, and attributes that
fully describe an information object.

Natural Languége Parser. Parsing and interpreting software component that
u_nderstands natural language queriés and can translate them to structured semantic

information queries.

199

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Nervana™., Trademarked name for a proprietary, end-to-end implementation of the
Information Nervous System information medium/platform. The name also defines a
proprietary namespace for resource type émd predicate name qualiﬁers.

NET Passport. Microsoft .NET Passport is a suite of Web-based services directed
towards the Internet and online purchasing. .NET Passport provides users with single sign-in
(SSI) and fast purchasing capability at a growing number of participating sites, reducing Ithe
amount of information users must remember or retype. .NET Passport provide a high-quality
online experience for a large user base and uses powerful encryption technologies—such as
Secure Sockets Layer (SSL) and the Triple Data Encryption Standard (3DES) algorithm—for
data protection. Privacy is a key priority as well, and all participating sites sign a contract in
which they agree to post and follow a privacy policy that adhéres to industry-accepted
guidelines.

Network Effects. This exists when the number of other users affects the value of a
product or service to a particular user. Telephone service provides a clear e:;(ample. The value
of telephone service to users is a function of the number of other subscribers. Few would be
interested in telephones that were not connected to anyone, and most would assess higher
value to a phone service linked to a national network rather than just 4 Tocal network.
Similarly, many computer users prize a computer system that allows them to exchange
information readily with other users.

Network Effects are thus demand-side externalities that generate a positive feedback
effect in which successful products become more successful. In this way, Network Effects
are analogous to supply-side economies of scale and scope. As a firm increases output,
cconomies of scale lead to lower average costs, permitting the firm to Jower prices and gain
additional business from rivals. Continued expansion results in even lower average costs,
justifying even lower prices. Similarly, the positive feedback from Network Effects builds

upon previous successes. In the computer industry, for example, users pay more for a more

200

10

15

20

25

WO 2004/075466 PCT/US2004/004674

popular computer system, all else equal, or opt for a system with a larger installed base if the

prices and other features of two competing systems are equivalent. See

‘http: //www ei.com/publications/1996/fall1.htm.

“Network News Transfer Protocol (NNTP) Protocol for the distribution,’inquiry,
retrieval, ‘and posting of news articles using a reliable stream-based transmlssmn of news
among the ARPA Intemet community. NNTP is designed so that news artlcles are stored in a
central database allowing subscribers to select only those items they wish to read. Indexing,
cross-referencing, and expiration of aged messages are also provided.

Notiﬂcations. Notifications are alerts that are sent by the Informafion Agent or an
Agency to indicate to a user that there is new information on an Agent (either a client-side
Agent or a server-side Agent). Users cém request notifications from Agents in their Semantic
Environment. Users can indicate that they have received the notification. The notification
source (the client or server) stores information for the user and the Agent indicating the last
time the user acknowledged a notification for the Agent. The notification source polls the
Agent to check if there is new information since the last acknowledge time. If there is, the
notification source alerts the user. Alerts can be sent via email, pager, voice, or a custom alert
mechanism such as Microsoft’s .NET Alerts service. Users have the option of indicating their
preferred notification mechanism for the entire notification source (client or server)—which
applies to all Agents on the notification source—on a per-Agent basis (which overrides the
indicated preference on the notification source.

Object. See Information Object.

Object Type. Identification data associated with information that allows the
cbzc'mlsumger to understand the nature of the information, to interpret its contents, to predict how
the infor;nation can be acted upon, and to link it to other relevant information items bé:"sed on

how the object types typically relate in the real world. Examples include documents, events,

email messages, people, etc.

201

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Ontology. Hierarchical structuring of knowledge according to essential qualities.

Ontology is an explicit specification of a conceptualization. The term is borrowed from
philosophy, where “Ontology” is a systematic account of Existence. For artificial intelligence
systems, what “exists” is that which can be represented. When the knowledge of a domain is
represented in a declarative formalism, the set of objects that can be represented is called the
universe of discourse. This set of objects, and the describable relationships among them, are
reflected in the representational vocabulary with which a knowledge-baseci program
represents knowledge. Thus, in the context of artificial intelligence, the ontology of a
program is described by defining a set of representational terms. In such ontology, definitions
associate the names éf entities in the universe of discourse (e.g., classes, relations, functions,
or other objects) with human-readable text describing what the names mean, and formal
axioms that constfain the interpretation and well-formed use of these terms. Formally,
ontology is the statement of a logical theory.
I - The subject of ontology is the study of the categories of things that exist or may exist
in some domain. The product of such a study, called ontology{is a catalog of the .types of
things that are assumed to exist in a domain of interest D frdm the perspective of a persor;
who uses a langnage L for the purpose of talking about D. The types in the ontology
represent the predicates, word senses, or concept and relation types of the language L when
used to discuss topics in the domain D. See, generally, http://www-ksl.stanford.edu/kst/what-
is-an-ontology.html and http:}/users.bestweb.net/~sowa/ontology/).

Predicates., A Predicate is an attribute or link whose result represents the truth or.
falsehood of some condition. For.example, the predicate “authored by” links a person with an
information object and indicates whether a person authored the obj éct.

Presenter™, System component in the Information Agent (semantic browser) of the
present invention that handles the aggregation and presentation of results from the semantic

query processor (that preferably interprets SQML). The Presenter handles layout

202

10

15

20

25

WO 2004/075466 PCT/US2004/004674

management, aggregation, navigation, Skin management, the presentation of Context

Palettes, interactivity, animations, etc.
RDF. Resource Description Framework (RDF) is a foundation for processing

metadata; it provides interoperability between applications that exchange

'rhé‘c’:’hir‘le-understandabIe information on the Web. RDF emphasizes facilities to enable

automated processing of Web resources. RDF defines a simple model for dé‘scribing
relationships among resources in terms of named properties and values. RDF properties may
be thought of as attributes of resources and in this sense correspond to traditional attribute-
value pairs. RDF properties also represent relationships between resources. As such, the RDF
data model can therefore resemblé aﬁ entity-relationship diagram.

RDF can be used in a variety of application areas including, for example: in resource
discovery to provide better search engine capabilities, in cataloging for describing the content
and content relationships available at a particular Web site, page, or digital library, by
intelligent software Agents to facilitate knowledge sharing and exchange, in content rating, in
describing collections of pages that represent a single logical “document”, for describing
intellectual property rights of Web pages, and for expressing the privacy preferences of a
user as well as the privacy policies of a Web site. RDF with digital signatures is preferably a
component of building the “Web of Trust” for electronic commerce, collaboration, and other
applications. See, generally, http://www.w3.org/TR/PR-rdf-syntax/ and
http://www.w3.org/TR/rdf-schema/. ‘

RDFS. Acronym for RDF Schema. Resource description communities require the
ability to say certain things about certain kinds of resources. F‘or describing bibliographic
resources, for example, descriptive attributes including “author”, “title”, and “subject” are
common. For digital certification, attributes such as “checksum” and “authorization” are

often .'fequired. The declaration of these properties (attributes) ard their correspg)nding

semantics are defined in the context of RDF as an RDF schema. A schema defines not only

i

203

10

15

20

25

WO 2004/075466 PCT/US2004/004674

the properties of the resource (e.g., title, author, subject, size, color, etc.) but may also define
the kinds of resources being described (books, Web pages, people, companies, etc.). See
http://www.w3.org/TR/rdf-schema/).

Results Pane™, Trédemarked name for the graphical ‘display area within the
Information Agent (semantic browser) that displays results qf an SQML query. See
FIGURE 5, showing a sample Information Agent screenshot illustrating server-side Agents,
an optional player control/navigation/filter toolbar, a “Server-Side Agents Dialog” (which
allows users to browse and open server-side Agents), and sample results (with the

“Documents” information object type) from a server-side Agent,

Semantics. Connotative meaning.

Semantic EnvironmentT™, This refers to all the data stored on users’ local machines,
in addition to user-specific data on an Agency server (e.g., subscribed server-side Agencies,
seﬁé’r—side Favorite Agents, etc.). Client-side state includes favorite and recent Agents and
authentication aﬁd authorization information (e.g., user names and passwords forﬁvarious
Agencies), in addition to the SQML files and buffers for each client-side (user-created)
Agent. The Information Agent is preferably configured to store Agents for a set amount of
time before automatically deleting them, except those that have been added to the “favorites”
list. For exarr&ple, users may configure the Information Agent to store Agents for two weeks.
In this case, Agents older than two weeks are automatically purged from the system and the
Semantic Environment is adjusted accordingly. The Semantic Environment is employed for
Context Palettes (Context Palettes use the Agencies iﬁ the “recent” and “favorites” list in
order to predict what default Agencies users want to view context from).

Semantic Environment Manager™., Trademarked name for a software component
that manages all the local state for the Semantic Environment (in the Information Agent).
This includes storing and managing the metadata for all the client-side Agents (and the

history and favorites Agent sub-lists), per-Agent state (e.g., Agent Skins, Agent preferences,

204

10

15

20

25

WO 2004/075466 PCT/US2004/004674

etc.), notification management, Agency browsing (on Agency directories), listening for
Agencies via multicast and peer-to-peer announcement protocols, services to allow users to

browse the Semantic Environment via the semantic browser (via the Tree View, the “Open

~Agent” dialog, and the Results Pane), etc.

‘Semantic Data Gatherer™ (SDG). Trademarked nanié for XML Web Service used
by the K;aowledge Integration Server (KIS) and which is responsible for adding, removing
and updating entries in the Semantic Network via the Semantic Metadata Sfc;fe (SMS).

Semantic Metadata Store™ (SMS). Trademarked name for a software component
on the KIS that ‘employs a database (e.g., SQL Server, Oracle, DB2) having tables for each
primary object type to store all the metadata on the KIS. .

Semantic Network. System and method of linking objects associated with schemas
together in a semantic way via the database tables on the Semantic Metadata Store.

Semantic Network Consistency Checker™, Trademarked name for a software
component that runs on an Agency of the present invention that is tasked with maintaining
the integrity and consistency of the Semantic Network. The checker runs periodically and
ensures that entries in the “SemanticLinks” table exist in the native object tables, that entries
in the “objects” table exist in the native object tables and that all entries in the Semantic
Metadata Store still exist at the repositories from where they were gathered.

Semantic Queries. Queries that incorporate meaning, context, time-sensitivity,
context-templates, and richness that approach natural language. Much more powerful than
simple, keyword-based queries in that they are context and time-sensitive and incorporate
meaning or semantics.

Semantic Query Markup Language (SQML). A proprietary XML-based query
l‘éhéixéigg used by this invention to define, store, interpret and execute client-side semantic
queries. SQML includes tags to define a query that gets its data from diverse resources (that

represent data sources) such as files, folders, application repositories, and references to

205

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Agency XML Web Services (via resource identifiers and URLS). In addition, SQML includes
tags that enable semantic filtering (via custom links and predicates) which indicate how data
is to be queried and filtered from the resources, and afguments that indicate how the
resources are to be queried and how the reéqlts are to be filtered. In particular, the arguments
can include{ references to local or remote context. The context arguments are then resolved by
the client-side SQP at run-time to XML metadata. The XML metadata is then passed to the
appropriate resource (e.g., an Agency’s XML Web Service) as a method call along with the
reference to the resource and thei semantic links and predicates that indicate how the query is
to be resolved by the re;source (e.g., the Agency’s XML Web Service). SQML is to the
Information Nervous System as HTML is to Today’s Web. The main difference is that
SQML defines the rules for semantic querying while HTML defines the rules for Hypertext
presentation. However, SQML is superior in that it enables the client to recursively create
new semantic queries from existing ones (by creating new SQML with new links derived
from an existing SQML query), e.g., via drag and drop and smart copy and paste, the Smart
Lens, Context Templates and Palettes, etc. In addition, because SQML does not define the
rules‘ for presentation, the results of the semantic query can be presented in multiple ways,
using a “ski.n” that takes the results (in SRML) to generate presentation bdséd on the user’s
preferences, interests, condition, or context. Furthermore, SQML can contain abstract links
and predicates such as those that refer to or employ Context Templates. The resource (e.g.,
the Agency’s XML Web Service) then resolves the SQML to an appropriate query format
(e.g., SQL or the equivalent in the case of an Agency’s XML Web Service) and then invokes
the “actual” query in order to generate the results (which will then account for the user’s A
context or Context Template). Also, an SQML buffer or ﬁle can refer to multiple resources

(and Agencies), thereby empowering the client to view results in an aggregated fashion (e.g.,

-based on context or time-sensitivity), rather than based on the source of the data — this is a

| powerful feature of the invention that enables user-controlled broWsing and information

206

10

20

25

WO 2004/075466 PCT/US2004/004674

aggregation (see the sections on both below). Lastly, every client-side Agent has an SQML

definition and file, just as every Web page has an HTML file.

Semantic Query Processor™ (SQP). Trademarked name for the server-side
semantic query processor (XML Web Service in the preferred embodiment) that takilés SQML
and converts it to SQL (in the preferred embodiment) and then returns the results as XML.
On the Knowledge Integration Server (KIS), the SQP is the main entry point to the Semantic
Network of the present invention responsible for responding to semantic querieé from clients
of the KIS. On the server, this is the software component that processes semantic queries
represented as SQML from the client. On the client, the client-side SQP takes aggregate
SQML and compiles or maps it to individual SQML queries that can be sent to a server (or
Agency) XML Web Service.

Semantic Results Markunp Language (SRML). A proprietary XML-based data
schema and format used by this invention toldeﬁne, store, interpret and present semantic
results. On the client, SRML is returned from the SQP via semantic resource handlers that
interpret, format, and issue query requests to semantic data sources. Semantic data sources
will include an Agency’s XML Web Service, local files, local folders, custom data sources
from local or remote applications (e.g., 2 Microsoft Outlook email application inbox), etc.
The XML Web Service will return SRML to a client, in response to the client’s semantic
quéry. This way, the XML Web Service will not “care” how the results are being presented at
the client. This is in contrast with Today’s Web and the Semantic Web ‘where servers return
already-\fomaatted HTML for a client to 'present and where clients merely present
presentation data (as opposed to semantic data) and cannot custl()mize the presentation of the
data; In this invention, two clients can render the same SRML in completely differeni’g ways,
based on the current “skin” that has been selected or applied by the user of either client. The
“skin” then converts the SRML to a presentation-ready format suchi- as XHTML,

DHTMLATIME, SVG, Flash MX, etc.

207

10

15

20

25

WO 2004/075466 PCT/US2004/004674

SRML is a meta-schema, meaning that it is a container format that can include data
for different -information object types (e.g., documents, email, people, events, etc.). An
SRML file or buffer can contain intertwined results for each of these object types.
Well-formed SRML will contain well-formed XML document sections that are consistent

with the schema of the information object types that are contained in the semantic result the

- SRML represents. See Sample A of the Appendix hereto.

Semantic Web. Extension of Today’s Web in which information is given
well-defined meaning, better enabling computers and people to work in cooperation. See Tim
Berners-Lee, James Hendleg Ora Lassila, The Semantic Web, Scientific American,
May 2000.

Facilities to put machine-understandable data on Today’s Web are becoming a high
priority for many communities. The Web can reach its full potential only if it becomes a

place where data can be shared and processed by automated tools as well as by people. For

the Web to scale, tomorrow’s programs must be able to share and process data even when

these programs have been designed totally independently. The Semantic Web is a cdhceptual
vision: the idea of having data on the Web defined and linked in a way that it can be used by
machines not just for display purposes, but for automation, integration and reuse of data
‘across various applications. See also http:/www.w3.0rg/2001/sw/.

Session Announcement Protocol (SAP). In order to assist the advertisement of
multicast multimedia conferences and other multicast sessions, and to communicate the
relevant session setup information to prospective participants, a distributed session directory
may be used. An instance of such a session directory periodically multicasts packets
containing a description of the session, and these advertisements are received by other
session directories such that potential remote participants can use the session description to

start the tools required to participate in the session.

208

10

15

20

25

WO 2004/075466 PCT/US2004/004674

In its simplest form, this involved periodically multicasting a session announcement

packet describing a particular session. To receive SAP, a receiver simply listens on a

well-known multicast address and port. Sessions are described using the Session Description

. Protocol (ftp://fip.isi.edu/in-notes/rfc2327.txt). If a receiver receives a session announcement

paclA.{ét it simply decodes the SDP message, and then can display the session information for
the user. The interval between repeats of the same session description message depends én
the number of sessions being announced (each sender at a particular scope can hear the other
senders in the same scope) such that the bandwidth being used for session announcements of
a particular sclzope is kept approximafely constant. If a receiver has been listening for a set
time, and fails to hear a session announcement, then the receiver can conclude that the
session has been deleted and no longer exists. The set period is based on the receivers’

estimate of how often the sender should be sending.

See, generally, http://www.fags.org/rfcs/rfc2974.html,
http://www.video.ja.net/mice/archive/sdr_docs/nodel.html, ftp://ftp.isi.edu/in-
notes/rfc2327.txt.

Simple Mail Transfer Protocol (SMTP). Protocol designed to transfer mail reliably
and efficiently. SMTP is independent of the particular transmission subsystem and requires
only a reliable ordered data stream éhannel. An important feature of SMTP is its capability to
relay mail across transport environments. See http://www.ietf.org/rfc/rfc0821.txt.

Skins. Presentation templates that are used to customize the user experience on a
per-Agent basis or which custoﬁizes the presentation of the entire layout (independent of the
Agent), or object (based on the information object type), context (based on the Context
Template), Blender (for Agents that are Blenders), for the semantic domain name/path or
ontology, and other considerations. Each Agent will include a Skin which in turn will have

an XML metadata representation of parameters to customize the layout of the XMLiresults

209

10

15

20

25

WO 2004/075466 PCT/US2004/004674

are animated, the manner in which each result is displayed, including a representation of th;e *
object type (the object Skin), styles, colors, graphics, filters, transforms, effects, animations
(and so on) that indicate the ontology of the current results (the ontology Skin), styles that
indicate the Context Template of the current results (the context Skin) and styles that indicate
how to view and ﬁavigate results from Blenders (i.e., the Blender Skin).

Smart Lens™. Trademarked name for a proprietary feature of this invention that
allows users to select a Smart Agent or an object as a context with which to view another .
object or Agent. The lens then displays met;adata, links, and result previews that give users an
indication of what they should expect if the context is invoked. Essentially, the Smart Lens
displays the results of a “potential query.” The Smart Lens allows users to quickly preview
context results without actually invoking queries (thereby increasing their productivity). In
addition, the Smart Lens can display views that are consistent with the context, using pivots,
télilpl'atg:s and preview windows, thereby allowing-users to analyze the context in different
ways before invoking a query. :

Smart Virtual Web™., Trademarked name for the property of the present invention
to integrate semantics, context-sensitivity, time-sensitivity, and dynamism in order to
empower users to browse a dynamic, virtual, “on-the-fly,” usér—contfol]ed “Web” that they

control and can customize. This is in contrast with Today’s Web and the conceptual

- Semantic Web, both of which employ a manually authored network wherein users are at the

mercy of the authors of the information on the network.

Structured Query Language (SQL). Pronounced “ess-que-el.” SQL is used to
communicate with a database. According to ANSI (American National Standards Institute), it
is the standard language for relational database management systems. SQL statements are
used to perform tasks such as update data on a database, or retrieve data from a database.
Some common relational database management systems that use SQL are: Oracle, Sybase,

Microsoft SQL Server, Access, Ingres, etc. Although most database systems use SQL, most

210

10

15

20

25

WO 2004/075466 PCT/US2004/004674

of them also have their own additional proprietary extensions that are usually only used on
their system. However, the standard SQL commands such as “‘Select”, “Insert”, “Update”,

“Delete”, “Create”, and “Drop” can be used to accomplish almost everything that one needs

to aé=~with a database.

SQL works with relational databases. A relational database stores data in tables
(relations)“AJ database is a collection of tables. A table consiéfs of a list'of records, each
record in a table preferably includes the same structure, and each has a fixed number of
“fields” of a given type.

See, generally, http://www.sqlcourse.com/intro.html “ and
http://www.dcs.napier.ac.uk/~andrew/sql/0/w.htm.

Secalable Vector Graphics (SVG). Language for dcscribing two-dimensional
graphics in XML. SVG allows for three types of graphic obj ects: vector graphic shapes (e.g.,
paths consisting of sfraight lines and curves), images and text. Graphical objects can be
grouped, styled, transformed and cbmposited into previously rendered objects. Text can‘be in
any XML namespace suitable to the application, which enhances searchability and
accessibility of the SVG graphics. The feature set includes nested transformations, clipping
paths, alpha masks, filter effects, template objects and extensibility. SVG drawings can be
dynamic and interactive. The Document Object Model (DOM) for SVG, which includes the
full XML DOM, allows for straightforward and efficient vector graphics animation via
scripting. A rich set of event handlers such as onmouseover and onclick can be assigned to
any SVG graphical object. Because of its compatibility and leveraging of other Web
standards, features like scripting can be done on SVG elements and other XML elements
from different namespaces simultaneously within the same Web page. See
http://Ww.w3.org/Graphics/SVG/Overview.htm8.

Taxonomy. An organizational structure wherein divisiong are ordered into groups or ‘

categories.

211

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Time-Sensitivity. Property of an information medium to deliver and present
information based on wl;exm the information would be most relevant in time. For instance,
freshness is an attribute that denotes time-sensitivity. In addition, the delivery. and
presentation of upcoming events (which, by definition, are time-sensitive) and the manner in
which the time-criticality of the events are displayed are propérties of a time-sensitive
medium.

Today’s Web. This refers to the World Wide Web as we know it today. Today’s
Web is a universe of hypertext servers (H’I‘TP servers), which are the servers that allow text,
graphics, sound files, etc. to be linked together. Hypertext is simply a non-linear way of
presenting information. Rather than reading or learning about things in the order that an
author, or editor, or publisher sets out for us, readers of hypertext may follow their own path,
create their own order or meaning out the material. This is accomplished by creating ““links”
between information. These links are provided so that user may “jump” to further
information about a specific topic being discussed (which may have more links, leading each
reader off into a different direction). The Hypertext medium can incorporate pictures, sound,
and video present a multimedia approach to presenting information, also referred to as
hypermedia‘. See, generally, http://www.w3.org/Histor?.ﬁtml and
http://www.umassd.edu/Public/People/K Amaral/Thesis/hypertext.html.

| Multicast Time to Live (TTL). Multicast routing protocol uses the field of
datagrams to decide how “far” from a sending host a given multicast packet should be
forwarded. The default TTL for multicast datagrams is 1, which will result in multicast
packets going only to other hosts on the local network. A setsockopt(2) call may Be used to
change the TTL. As the value for TTL increases, routers will expand the number of hops they
will forward a multicast packet. To provide meaningful scope control, multicast routers

typically enforce the following “thresholds” on forwarding based on the TTL field:-

e (restricted to the same host

212

10

"15

20

25

WO 2004/075466 PCT/US2004/004674

e 1 restricted to the same subnet

e 32 restricted to the same site

e G4 restricted to the same region
e 128 restricted to the same continent

o 255 unrestricted

See http://www.isl.org/projects/eies/mbone/mbone27.htm.

User State. This refers to (all state that is either created by a user or which is needed
to cache a user’s preferences, favorites, or other personal information on a client or server.
Client-side User State includes authentication credential information, users’ Agent lists (and
all the metadata including the SQML queries for the Agents), home Agent, configuration
options, preferences such as Skins, etc. Essentially, client-side User State is a persisted form
of users’ Semantic Environment. Server-side User State includes information such as users’
Favorite Agents, subscribed Agents, Default Agent, semantic links to information objects on
the server (e.g., “favorites” links) etc. Server-side User State is optional for servers but
support for it is preferred. Servers preferably support user logon and a “people” object type
(even without server-side Agents) because these are needed for features such as favorites,
recommendations, and for Context Templates such as “Newsmakers,” “Experts,”
“Recommendations,” “Favorites,” and “Classics.”

Virtual Information Object Type™. Trademarked name for object types that do not
map to distinct object types, yet are semantically of interest to users.

Virtual Parameter™, Trademarked name for variables, parameters, arguments, or
names that are dynamically interpreted at runtime by the semantic query processor. This

allows the Agency administrator to store Agents that refer to virtual names and then have

those names be converted to actual relevant terms when the query is invoked.

Web of Trust. Term coined by members of the Semantic Web research community
that refers to a chain of authorization that users of the Semantic Web can. use to validate’

assertions and statements. Based on work in mathematics and cryptography, digital

213

10

15

20

25

WO 2004/075466 PCT/US2004/004674

signatures provide proof that a certain person wrote (or agrees with) a document or
statement. Users can preferably digitally sign all of their RDF statements. That way, users
can be sure that they wrote them (or at least vouch for their authenticity). Users simply tell

the program whose signatures to trust. Each can set their own levels of trust (or paranoia),

.and the computer can decide how much of what it reads to believe.

By way of example, with a Web of Trust, a user can tell a computer that he or she
trusts his or her best friend, Robert. Robert happens to be a rathér popular guy on the Net,
and trusts quite a number of people. All the people he trusts in turn trust another set of
people. Each of these measures of trust is to a certain degree (Robert can trust Wendy a
whole lot, but Sally only a little). In addition to trust, levels of distrust can be factored in. If a
user’s computer discovers a document which no one explicitly trusts, but no one has said it
has totally false either, it will probably trust that information a little more than one which
many people have said is false. The computer takes all these factors into account when
deéidi‘ng the trustworthy of a piece of information. Preferably, the computer combines all this
information into a simple display (thumbs-up / thumbs-down) or a more complex expiénation
(a descripion of all the various trust factors involved). See
http://blogspace.com/rdf/SwartzHendler.

Web Services-Interoperability (WS-I). An open industry organization chartered to
promote Web services interoperability across platforms, operating systems, and
programming languages. The organization works across the industry and standards
organizations to respond to user needs by providing guidance, best practices, and resources -
for developing Web services solutions. See http://www.ws-i.org.

Web Services Security (WS-Security). Enhancements to SOAP méssagiﬁg
providing quality of protection through message integrity, message confidentiality, and single

message authentication. These mechanisms can be used to accommodate a wide variety of

security models and encryption technologies. WS-Security also provides a general-purpose

214

10

15

25

WO 2004/075466 PCT/US2004/004674

mechanism for associating security tokens with messages. No specific type of security token

is required by WS-Security. It is designed to be extensible (e.g. support multiple security

token formats). For example, a client might provide proof of identity and proof that they have

-a particular business certification. Additionally, WS-Security describes how to encode binary

secu'ri‘t"y tokens. Specifically, the specification desc;ibes how to encode X.509 certificates and
Kerberos tickets as well as how to include opaque encrypted keys. It also includes
extensibility mechanisms that can be used to furiher describe the chafééteristics of the
credentials " that are included with a message. See
http://msdn.microsoft.comy/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
security.asp.

Extensible Markup Language (XML). Universal format for structured documents
and data on the Web. Structured data includes things like spreadsheets, address books,
configuration parameters, financial transactions, and technical drawings. XML is a set of
rules (you may also think of them as guidelines or conventions) for designing text formats
that let you structure your data. XML is not a programming language, and one does not have
to be a programmer to use it or learn it. XML makes it easy for a computer to generate data,
read data, and ensure that the data structure is unambiguous. XML avoids common pitfalls in
language design: it is extensible, platform-indepéndent, and it supports internationalization
and localization. XML is fully Unicode-compliant. See
http://www.w3.org/XML/1 999/XML;in— 10-points.

XML Web Service (also known as “Web Service”). Service providing a standard
means of communication among different software applications involved in presenting
dynamic context-driven information to the user. More specific definitions include:

“-.1. A software application identified by a URI whose interfaces and binding are
; capable of being defined, described and discovered by XML artifacts. Stipports
direct interactions with other software applications using XML based messages
via Internet-based protocols.

215

10

15

20

25

WO 2004/075466 PCT/US2004/004674

2. An application delivered as a service that can be integrated with other Web

Services using Internet standards. It is an URL-addressable resource that
programmatically returns information to clients that want to use it. The major

communication protocol used is the Simple Object Access Protocol (SOAP),
which in most cases is XML over HTTP. -

3. Programmable application logic accessible using standard Internet protocols. Web
Services comibine aspects of component-based development and the Web. Like
components, Web Services represent black-box functionality that can be reused
without worrying about how the service is implemented. Unlike current
component technologies, Web Services are not accessed via object-model-specific
protocols, such as DCOM, RM], or IIOP. Instead, Web Services are accessed via
ubiquitous Web protocols (ex: HTTP) and data formats (ex: XML).

See http://www.xmlwebservices.cc/, http://www.perfectxml.com/WebSvcl.asp and
http://www.w3.0rg/2002/ws/arch/2/06/wd-wsa-reqs-20020605.html].

XQuery. Query language that uses the structure of XML to intelligently express
queri"eﬁs across all these kinds of data, whether physically stored in XML or viewed as XML
via middleware. See http://www.w3.org/TR/xquery/ and http://wrarv-
106.ibm.com/developerworks/xml/library/x-xquery.html.

XPath, The result of an effort to provide a common syntax and semantics for
functionality shared between XSL Transformations (http://www.w3.0org/TR/XSLT) and
XPointer (http://www.w3.org/TR/xpath#XPTR). The primary purpose of XPath is to address
parts of an XML [XML] document. In support of this primary purpose, it also providés basic
facilities for manipulation of strings, numbers and Booleans. XPath uses a compact, non--
XML syntax to facil\{tatc use of XPath within URIs and XML attribute values. XPath
operates on the abstract, logical structure of an XML document, rather than its surface
syntax. XPath gets its name from its use of a path notation as in URLs for navf gating through
tile hierarchical structure of an XML document.

In addition to its use for addressing, XPath is also designed so that it has a natural

subset that can be used for matching (testing whether or not a node matches a pattern); this

216

10

15

20

25

WO 2004/075466 PCT/US2004/004674

use of XPath is described in XSLT. XPath models an XML document as a tree of nodes.
There are different types of nodes, including element nodes, attribute nodes and text nodes.

XPath defines a way to compute a string-value for each type of node. Some types of nodes

also ~have names. ‘ XPath fully supports XML Namespaces

(11ttp://ww.w3.org/TR/xpath#XMLNAMES). Thus, the name of a ﬁode is modeledas a pair
consisting lof a Iocgl part and a possibly null namespace -URI; t}l_?S is called an
(http://www.w3. org/TR/xpath#dt~expanded-name) See http://www.w3. org/Tk/xpath#XPTR
XSL. A style sheet language for XML that includes an XML vocabulary for
specifying formatting. See hitp://www.w3.org/TR/xslt11/.
XSLT. Used by XSL to describe how a document is transformed into another XML
document that uses the formatting vocabulary. See http://www.w3.0rg/TR/xslt11/.

B. OVERVIEW

1. IN VENTI&N CONTEXT

There is a misconception that the Holy Grail for information access is the provision of
natural language searching capability. Prior technologies for information access have focused
principally on improving the interface for searching for or accessing information to optimize
information retrieval. The presumption has largely been that providing a natural language
interface to information will perfectly solve users’ information access problems and end the
frustration users have with finding information.

In truth, however,l many axes of analysis are involved in how people acquire
knowledge in the real world. One example is context. There are many things people know
only because of where they were at a certain place and time. If they were not at that place at
that time, they would not know what is in fact known or, indeed, might not care to know.
Haviné'the ability to-search for what is presently known with natural language does not assist
in uncovering the knowledge related to that particular time and place. There are simply no A

natural parameters that form the correct query to retrieve the desired information.

217

10

15

20

25

WO 2004/075466 PCT/US2004/004674

The conundrum is that a person cannot ask for what he or she might not even know
would have value until after the fact. Stated differently, one cannot query for what they do
not know they do not know, or for what they do not know that they might want to know.
Context-sensitivity, time-sensitivity, discovery, dynamic linking, user-controlled browsing,
users’ “Semantic Environment,” flexible presentation, Context Skins, context attributes,
Context Palettes (which bring -up relevant, context and time—sensiﬁve information based on
Context Templates) and other aspects of this invention recognize and correct this
fundamental deficiency with existing information systems.

For example, people may have many CDs in their library (thereby adding to the
“knowledge” of music) because they attended certain parties and spoke with certain peoble.
Those people'at those parties mentioned the CDs to the person, thereby increasing the
person’s knowledge of music. As another example, a person may purchase a book (if read,
increasing the person’s knowledge on the particular topic of the book), based on a
recommendation from a hitherto unknown stranger the person happened to sit beside on an
airplane flight. In the real world, people acquire knowledge based not just on what tgey read
and search for, but also based on the friends they keep, the people with whom they .interact
and the people whose judgment they trust. The “knowledge envirqnment;’~ is arguably as
critical if not more critical for knowledge dissemination and acquisition as the model for
retrieval (whether digital or analog).

The present invention mirrors virtually every real-world knowledge-acquisition
scenario in the digital world. The resulting Information Nervous System™ is the medium
doing most of the work but the scenarios map very cleanly to the analog (real) world. The -
inability of efforts such as natural-language search techniques of Today’s Web as well as the
Semantic Web to recognize the many ways in which knowledge is disseminated and acquired

render them ultimately ineffective. The present invention accounts for the variety of ways in

218

10

15

20

25

WO 2004/075466 PCT/US2004/004674

which humans have always acquired knowledge—independent of the actual technology used
for informafion delivery.

By way of example, there has always been context and there has always been time.
Likewise there has always been the notion of discovery and the need to link information
dynamloally and with user control. There have always been certain Context Templates albeit
in different medlums that presented herein, including “classics,” “hlstory,” “timelines,”
‘upcoming events,” “headlines.” T hese templates existed before the creation of the Internet,
Today’s Web, Email, e-Learning, etc. Nevertldelese, prior to the present invention, there was
no ability in the electronic medium to focus on the mode, protocol and presentation of
knowledge delivery which maps to real-world scenarios (for example, via Context
Templates, context-sensitivity, time-sensitivity, dynamic linking, flexible presentation,l
Context Skins, context attributes, etc.) as opposed to actual information types, semantic links,
metadata, etc. There will always be new information types. But the dissemination and
acquisition axes of knowledge (e.g.,icentext Templates) have always and will always remain
the same. The present invention captures this reality.

In addition, the present invention provides the ability to disseminate knowledge via
serendipity. Serendipity plays a large part in knowledge acquisition in the real world and it is
a first-class mode of knowledge delivery. The present invention enables a user to acquire
information serendipitously (elbeit intelligently) by its support for context, time, Context
Templates, etc.

Information models or mediums that employ a strict, static structure like a “Web”
break down because they assume the presence of an authored “network” or “Web;’ and fail to
account for the various axes of knowledge formation. Such information models are not
user-focused, do not incorporate context, time, dynamism and templates, and do not map to

real-world knowledge . acquisition and dissemination scenarios. The present invention

minimizes information loss and maximizes information retained, even without the presence

219

10

15

20

25

WO 2004/075466 PCT/US2004/004674

of 2 “Web” per se, and even if no natural language is employed to find information. This is
possible because, unlike existing mediums for information access, a preferred embodiment éf
the present invention focuses on the knowledge dissemination models that incorporate
context, time, dynamism, and templates (for the benefit of both the end-user and the content
producer) and not on the sﬁeciﬁcs of the access iﬁterface, or the linking (semantic or non-
semantic) of information resources based on étatic data models or human-based authoring. In
many scenarios, a “Web” (semantic or non-semantic) is necessary as a means of navigation,
but is far from being sufficient as a means of knowledge dissemination and acquisition. The
Information Nervous System of the present invention incorporates “knowledge axes”
described in the invention (including but not limited to link-based navigation) and
intelligently and seamlessly integrates them to facilitate the dissemination and acquisition of
knowledge and to benefit all parties involved in the transfer of knowledge.

2. VALUE PROPOSITIONS

“ Today, knowledge must be “manually hard-coded” into the digital fabric of an
information structure, whether it be for an enterprise, a consumer or the general iﬁquiring
population, -If it is not authored and distributed properly, no‘ o‘ne knows of its existence;
knows how it relates to other sources of intelligence, or knows how to act on it in real-time
and in the proper fashion. This is ‘largely because Today’s Web was not designed to be 2
platform for knowledge. It was designed to be a platform for presentation and is intentionally
dumb, static, and reactive. Today, knowledge-workers—those who seek to use information
by adding context and meaning—are at the mercy of knowledge-authors.

A significant aspect of knowledge interaction is to have knowledge-workers be able
to navigate their way through a knowledge space ina very ipfuitive manner, and at the speed
at which they wish to make decisions and act on the knowledge. In other words,
knowledge-workers do not have to “think” about an e-Learning island as being separétc frorﬁ

documents in their organizations, e-mail that contains customer feedback, media files,

220

10

15

20

25

WO 2004/075466 PCT/US2004/004674

upcoming video-conferences, a meeting they had recently, information stored in newsgroups,
or related books. The ‘preferred situation is to relegate the information “type” and “source”
and to create a “seamless knowledge experience” that cuts across all those islands in a
semantic way.

_In creating a knowledge experience, it is also preferred to be able to integrate
knowledge assets across content-provider, partner, supplier, customer and people boundaries.
In the enterprise scenario, for example, no single orgaﬁization has all the knowledge it needns
to remain competitive. Knowledge is stored in industry reports, research documents from
consulting firms and investment banks, media companies like Reuters™ and Bloomberg™,
etc. All this constitutes “knowledge.” It is not enough to deploy an e-Leaming repository to
train users on a one-time or periodic basis. Users should have always-on access to knowledge
from a variety of sources, in-place, and in an intelligent context that is relevant to their
current task.

All this requires 2 layer of intelligence and pro-activity that is not available today.
Today, for example, enterprises use information portals, such as intranets and the Internet, as
a way of disseminating infommtibn to their employees. However, this is far from being
enough, as it provides only presentation-level integration. This is akin to subscribing to
newsletters to keep updated with information, as opposed to having an Agent.that manages
your information for you, helps you discover new information on-the-fly, helps you capture
and share information with colleagues, etc.

To accomplish the desired level of knowledge inferaction requires Agents working in
the background, reasoning, learning, inferring, matching users together based on their
profiles, capturing new knowledge and automatically deducing new knowledge, and
federating knowledge from external sources so that they become a seamless part of the
knowﬁ:dge experience. This in turn requires the semantic integration of knowledge agsets so

that they all make sense in a holistic fashion, rather than merely providing the basis for

221

10

15

20

25

WO 2004/075466 PCT/US2004/004674

presentation-level integration and document searching. The implementation framework and
resulting medium must provide real-time, agile discovery and recommendation services so
that context and time-sensitive information is “honored” and such that knowledge-workers
can.be more productive and get more done faster and with‘less. And lastly, the system must
work with existing information sources in a plug-n-play manner, must seamlessly and
automatically classify and integrate known knowledge assets, and must embed the
knowledge tools in the knowledge themselves, thereby adding another “dimension” into
knowledge assets.

The present invention is designed to be an intelligent, proactive, real-time knowledge
platform that co-exists With Today’s Web (or any other layer of presentation). Incorporation
and use of the present invention will allow knowledge-workers to be in control of their
knowledge experiences because authoring (via “connections™) will be done intelligently,

dynamically, automatically, and at the speed of thought.

3. Topay’s “INFORMATION” WEB VS. THE INFORMATION NERVOUS SYSTEM OF
THE PRESENT INVENTION

With Today’s Web environment, the semantics of information preser’xiéd are lost upon
conversation of the structured data to HTML at the server, meaning that the “knowledge” is
stripped from the objects before the user has an opportunity to interact with them. In
addition, Today’s Web is authored and “hard-coded” on the server based on how the author
“believes” the information will be navigated and consumed. Users consume only information
as it is presented to them.

The present invention adds a layer of intelligence and layers of customization that
Today’s HTML-based Web environment cannot support. The present invention provides an
XML-based dynamic Web of smart knowledge objects rather than dumb Web pages wherein
the seméntics of the objects are preserved between the server and the client, thereby giving

users much more power and control over their knowledge experience. In addition, with the

222

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Web of the present invention, knowledge-workers are able to consume and act on
information on their own terms because they will interactively author their own knowledge
experiences via “dynamic linking” and “user-controlled browsing.”

"+ The Information Agent (seﬁlantic browser? of the present invention is designed t6
co-exi;t with Today”s Web and to integrate with and angment all facets of private and public
intranets ‘as well as the Internet. The technology platform stacks of Today’s Web and the
Informatioﬁ Nervous ‘System of the present invention are summarized in FIGURE 6. With
reference to FIGURE 6, the stack for the Today’s Web has at the bottommost layers
Structured Information Sources, inqluding such infon.nation as the data stored in databases,
and Unstructured Information Sources, including such information as documents, email
messages, etc. Information in both of these layers is handled distinctly. No semantics are
used at the Information Indexing Layer; rather, search engines based on keywords ‘are used.
The Logic Layer consists primarily of a database that allows programmability for searching,
rules, view, triggers, etc. The Application Layer consists of server-side scripts that drive e-
Business applications based on user input. At the topmost or Presentation Layer, Today’s
Web has presentation information (in the form of Web pages) that is exposed via portals with
a Web platform (e.g., browser).

Apart from overlapping layers of processing, the present invention uniquely handles
information from the bottommost level of operation in a manner that preserves the semantics
of the underlying information sources. At both the Structured and Unstructured Information
Sources Layers, the system 10 handles information uniformly, taking into account metadata
and semantics associated with the information. At the Information Indexing Layer,
information metadata and semantics are extracted from unstructured. The system 10 adds
thféé additional platform layers not present in Today’s Web: Knowledge Indexing and
Classification Layer, wherein information from both structured and unstructured sou;;:es are

semantically. encoded; -Knowledge Representation Layer, wherein associations are created

223

10

15

20

25

WO 2004/075466 PCT/US2004/004674

that allows maintenance of a self-correcting or healing Semantic Network of knowledge
objects; and Knowledge Ontology and Inference Layer, wherein new connections and
properties are inferred in the Semantic Network. At the Logic Layer a knowledge-base is
created that allows for programmability at a semantic level. At the Application Layer,
server-side scripts are used in association with the knowledge-base. These scripts
dynamlcally generate knowledge objects based on user input, and may include semantic
commands for retrieval, notifications and logic. This Layer may also include Smart Agents to
optimize the handling of semantic user input. The Presentation Layer of the system 10
preserves the semantics that are tracked from the bottommost layers. Presentation at this
Layer is dynamically generated on the client computer system and completely customizable.
By the maintenance integration and use of semantics in all technology layers, the
present invention creates a virtual Web of actionable “obJects” that directly correspond to
“things” that humans interact with physically or “virtually or, in other words, as familiar
“Context Templates.” As opposed to Today's Web, which is a dumb Web of documents, the
present invention provides for a smart virtual Web of actionable objects that have properties

and relationships, and in which events can dynamically cause changes in other parts of the

_virtual Web.

The present invention provides a programmable Web. Unlike Today’s Web which is
a dumb Web of .documents, the Web of the present invention is programmable akin to a
database— it is able to process logic and rules, and will be able to initiate events.

While Today’s Web is encoded for human, and thus is focused primarily on
presentation of static information, the virtual Web of the present invention is encoded _
primarily for machines, albeit ultimately presented to humans as the end of the knowledge
delivery chain. The present invention provides an intelligent, learning Web. This means that
the virtual Web of the present invention will be able to learn new connections and become

smarter over time. The Web is dynamic, virtual and self-authoring, thereby providing much

224

10

15

20

25

WO 2004/075466 PCT/US2004/004674

more power to knowledge-workers by intelligently and proactively making semantic

connections that Today’s Web is unable to provide, thereby leading to a reduction in and

- eventual elimination of information loss.

" The Web of the present invention is a self-healing Web. Unlike Today’s web which
has to be manually maintained by document authors, the present invention provides a- Web
that is self—ﬁaintaineci by machines. This feoture rectifies broken links becoose the Web will
fix disconnections in the network automatically.

Finally, as will be set forth in greater detail below, the various embodiments of the
present invention incorporate some or all of the axes of knowledge acquisition described
above to provide substantial advantages over existing systems directed to Today’s Web or
the conceptual Semantic Web.

C. SYSTEM ARCHITECTURE AND TECHNOLOGY CONSIDERATIONS

1. SYSTEM OVERVIEW

The present invention is directed to a system and method for knowledge retrieval,
management and delivery. This system and method is referred to herein by the trademarked .
term Information Nervous System™. With reference to FIGURE 7, at its highest level the
system 10 includes a server 20 comprised of several components that work together to
provide context and time-sensitive semantic information retrieval services to clients 30
operating a presentation platform (e.g., a browser) via a communication medium 40, such as
the Internet or an intranet. LI‘he server components preferably include a Knowledge
Integration Server (KIS)50 and a Knowledge Base Server (KBS) 80, which may be
physically integrated or separate. Within the system, all objects or events in a given hierarchy
are Hacfive Agents 90 semantically related to each othelr and representing queries (comprised
of underlying action code) that return data objects for presentat1on to the client accordmg to a

predetermined and customizable theme or “Skin.” This system contemplates wide variety of

applications, as well as various means for the client to customize and “blend” Agents and the

225

10

15

20

WO 2004/075466 PCT/US2004/004674

underlying related queries to optimize the presentation of the resulting information. Each of

the preferred components of the system 10 of the present invention, as well as the interaction
among the components, is described in greater detail below.

2. SYSTEM ARCHITECTURE

The end-to-end system architecture for the Information Nervous System of the
present invention is shown with reference to FIGURE 8. FIGURE 8 illustrates how the
present invention provides multiple client access means of communication between the
Information Nervous System XML Web Service (KIS) and Smart Agents. In the preferred
embodiment, this occurs via the Infomﬂation Agent. In an alternative embodiment, the
communication may oé,cur programmatically via an Enterprise Knowledge Portal (e.g.,
Today’s Web access browser) or via an SDK layer that enables programmatic integration
with a custom client.

The system architecture for the KIS of the Information Nervous System, including
éorhponents thereof, are shown with reference to FIGURE 9. These components are
described in greater detail below.

3. . TECHNOLOGY STACKS

The significant differences between Today’s Web and the conceptual Semantic Web
are further highlighted by reference to the technology stacks of each as shown with reference
to FIGURE 10. FIGURE 10 is a side-by-side comparison of the high-level descriptive

platform layers of Today’s Web and the equivalents (where applicable) in the Information

* Nervous System of the present invention. FIGURE 10 illustrates how scenarios in Today’s

Web map to scenarios in the Information Nervous System in certain instances, thus providing
users with a logical migration path, but also highlights aspects of the Information Nervous

System that do not exist in Today’s Web.

226

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

4. SYSTEM HETEROGENEITY

Heterogeneity is an advantage of the present invention. In ‘the preferred embodiment,
the KIS Agency XML Web Service is portable. This means that it supports open standards
such as XML, XML Web Services that are interoperable (e.g., that employ the WS-I standard

for interoperability), standards for data storage and access (e.g., SQL and ODBC/JDBC) and

stéridapd protocols for the information repositories from which the DSAs gather data
(e.g., LDAP, SMTP, HTTP, etc.), etc.
For.example, in a preferred embodiment, a KIS (on which an Agericy is running) is

able to:

¢ Gather its “people” metadata from an LDAP store (using an LDAP DSA). This
allows it to support Microsoft’s Windows 2000 Active Directory, Sun’s Directory
Server, and other Directory products that support LDAP. This is preferable to
having a platform-specific Active Directory DSA that uses platform-specific APIs
to gather “people” metadata. _

* Gather its email metadata from an SMTP store (for email from any source or for
the system inbox). This allows it to support Microsoft Exchange, Lotus Notes,
and other email servers (which support SMTP). This is preferable to having a
platform-specific Microsoft Exchange Email DSA or a Lotus Notes Email DSA.

¢ Gather its “event” metadata from a calendar store supporting an open standard
like iCalendar and use a protocol such as Calendar Access Protocol (CAP). This
allows it to support any event repository that supports the iCalendar or CAL
protocol standard. This is preferable to having a platform-specific Microsoft
Exchange Calendar (or Event) DSA, a Lotus Notes Calendar DSA, etc.

In an alternative embodiment, the KIS Agency may be configured to extract metadata
stored in a proprietary repository (via an appropriate DSA).

To achieve heterogeneity, in the preferred embodiment, for client-server
communications, the system 10 uses XML Web Service standards that work in an
interoperable manner (across platforms). These include appropriate open and interoperable
stéxildéi'rds for SOAP, XML, Web Services Security (WS-Security), Web Services Caching
(WS-Caching), etc. »~

227

10

15

20

25

WO 2004/075466 PCT/US2004/004674

In the preferred embodiment of the present invention, the semantic browser (also

referred to by the trademarked term Information Agent™) is able to operate cross-platform
and in different environments, such as Windows, .NET, J2EE, Unix, etc. This ability is
consistent with the notion of a semantic user experience in that users do not and should not
care about what “platform” the browser is running on or what platform the Agency (server) is
running on. The semantic browser of the present invention provides users with a consistent
experience regardiess whether they are “ta.l}(ing” to a Windows (or .NET) server or a J2EE
server. Users are not required to take any extra steps while installillg or uéing‘the client based
on the platform on which any of the Agencies they are interacting with is running.

The Information Agent preferably uses open standards for its Skins and étller
presentation effects. These include standards such as XSLT, SVG, and proprietary
presentation formats that work across platforms (e.g., appropriate versions of
Flash MX/ActionScript). |

= A sample, heterogeneous, end-to-end implémentation of a preferred embodiment of
the Information Nervous System of the present invention is shown with reference to
FIGURE 11. FIGURE 11 illustrates the preferred embodiment of the Information Nervous
System and illustrates the heterogeneous, cross-platform context for the present invention.
The components shown in FIGURE 11 are described in greater detail below. ‘

5. SECURITY

The preferred embodiment of the Information Nervous System provides support for
all aspects of security: authentication, authorization, auditing, data privacy, data integrity, -
availability, and non-repudiaﬁon. This is accomplished by employing standards such as
WS-Security, which provides a platform for security with XML Web Service applications.
Security is preferably handled at the protocol layer via security standards in the XML Web
Service protocol stack. This includes encrypting method calls from clients (semantic

browsers) to servers (Agencies), support for digital signatures, authenticating the calling user

228

10

15

20

25

WO 2004/075466 PCT/US2004/004674

before granting access to an Asgency’s Semantic Network and XML Web Service methods,
ete.

The preferred embodiment that the present invention supports local (client-side)
credential management. This is preferably implemented by requiring users to enter a list of
their\usemames and passwords that they use on multiple Agencies (within an Intranet) or
over tﬁe Internet. The semantic browser aggregates information from multiple Agencies that‘
may ha\;e different authentication credentials for the user: Supported authentication
credentials ‘optionally‘ include common schemes such as basic autheﬁﬁcation using a
usemname and password, basic authentication over SSL, Microsoft’s NET Passport
authentication service, the new Liberty Alliance authentication service, cliént certificates
over SSL, digest authentication, and integrated Windows authentication (for use in Windows
environments).

In the preferred embodiment, with the users” credentials cached at the client, them
semantic browser uses the appropriate credentials for a- given Agency by checking the
supported authentication level and scheme for the Agency (which i§ part of the Agency’s
schema). For example, if an Agency supports integrated Windows authentication, the
semantic browser invokes the XML Web Service method’ with the logon handle or other
identifier for the current user. If the Agency supports only basic authentication over SSL, the
semantic browser passes either the username and password or a cached copy of the logon
handle (if the client was previously logged on and the logon handle has not expired) in order
to logon. The preferred embodiment employs techniques such as logon handle caching, aging
and expiration on the KIS in order to speed up the authentication process (and logon handle
]ookups) and in order to provide more security by guarding against hijacked logon handles.

The Agency XML Web Service preferably supports different authentication schemes
either implicitly (if the feature is natively supported by the server operating system or

application, server) or at the application-level by the XML Web Service implementation

229

10

15

20

25

WO 2004/075466 PCT/US2004/004674

itself. Alternative embodiments of the KIS Agency’s XML Web Service preferably employ a

variety of authentication schemes such as basic authentication, basic over SSL, digest,

_integrated Windows authentication, and client certificates over SSL, and integrated .NET

passport authentication.

6. EFFICIENCY CONSIDERATIONS

Client-Side and Server-Side Query and Object Caches. The present invention
provides for query caches, which are reéponsible for caching queries for quick access. On the
client, the client-side query cache caches the results of SQML queries with specified
arguments. The cache is preferably configured fo purge its contents after a predetermined
amount of time (e.g., a few minutes). The amount of time is pfeferably set by modeling
system usage and arriving at an optimal value for the cache time limit. Other parameters may
also be considered, such as the data arrival rate on the Agency (in the case of per-Agency
caches, which is another implementation option), the usage model (e.g., navigation rate) of
the user, etc.

Caching improves performance because the client does not have to needlessly access
recéntly used servers as the user navigates the semantic environment. In the preferred
embodiment, the client employs standard XML Web Service Caching techrliologies
(e.g., WS-Caching). In-addition, on the client, there is preferabl;an object cache. This cache
caches the results of each SQML resource and is tagged with the resource reference (e.g., the
file path, the URL, etc.). This optimizes SQML processing because the client can get the
XML metadata for an SQML resource directly from the object cache, without having to
access the resource itself, The resource may be the local file system, a local application
(e.g., Microsoft Outlook), or an Agency’s XML Web Service. Like the query cache, the.
object cache may be configured to purge its contents after a set amount of time (e.g., a few

minutes).

230

10

15

20

25

WO 2004/075466 PCT/US2004/004674

In an alternative embodiment, on-the server, the server-side query cache caches the
category results for XML arguments. This speeds ‘up the query response time because the
server does not have to ask the KDM to categorize XML arguments (via the éne or more
ins,tgnces of the KBS that the KIS is configured to get its domain knowledge from) on each
quer); request. In addition, the server can cache the‘SQL equivalents of the SQML arguments
it receives from clients. This speeds up the query response time. because the server would not
have to convert SQML arguments to SQL each time it receives a request fr&ﬁ a client. In the
preferred embodiment, aggressive client-side cachin‘g is employed and sérver-side caching is
avoided unless it clearly improves performance. This is because client-side caching scales
better than server-side caching since the client caches réquests based on its local context.

Virtual, Distributed Queries. The present invention émploys virtual, distributed
queries. This is consistent with its “dynamic linking” and “user-controlled browsing”
functionality. The system does not require static networks that link—or massive individual
databases that house—all the metadata for the system. This precludes the need for manual
authoring and maintenance on a local or global scope. In addition, this precludes the need for
integrated (or universal) storage, wherein all the metadata is required to be stored on a'single
metadata store and accessible through one database query interface (e.g., SQL). Rather, the
present invention employs the principle of “Dynamic Access” via its use of XML Web
Services to dynamically distribute queries across various Agencies (in a context and time-
sensitive marmer), and to aggregate the results of those queries in a consistent and user-

friendly manner on the client.
D. SYSTEM COMPONENTS AND OPERATION

1. AGENCIES AND AGENTS
The present invention introduces a unique approach to using Agencies and Agents to

retrieve, manage and deliver knowledge.

231

10

15

25

WO 2004/075466 PCT/US2004/004674

a. Agencies
In a preferred embodiment of the present invention, the Agency is an instance of the
Knowledge Integration Server (KIS) 50 and is the invention’s equivalent of a Web site. An
Agency is preferably installed as a Web applipation (on a Web server) so as to expose XML
Web Services. An Agency will preferably include an Agency administrator. In a preferred
embodimgnf of the present invention, an Agency has the following primary components:

e A flag indicating whether the Agency supports or requires authentication (or
both). If the Agency requires authentication, the Agency will require basic user
information and a password and will store information on the type of
authentication it supports. For Agencies that store user information, the Agency
will also require user subscription information (for subscription to Agents on a
specific Agency). ‘

o Structured stores of semantic objects (documents, email messages, etc.)—
Corresponding to schemas for the respective classes.

¢ Runtime components that respond to semantic queries—Components return XML
to the calling application and provide system services for all the information

retrieval features of the semantic browser.

Server-Side User State. In the preferred embodiment of the present invention,
Agencies support server-side User State, which associates related concepts i%cluding
“people” metadata and user authentication. Server-side User State facilitates many of the
implementation details of the present invention, including the storage of user favorites (by
semantic links between people objects and information objécts), the inference of favorites in
order to generate new links (e.g., recommendations), Annotations (that map users’ comments
to information objects), and the inference of “experts” based on semantic links that map users
to information (e.g., posted emails, annotations, etc.). Server-side User State is preferably
used with some Context Templates like “Experts,” “Favorites,” Recommendations,” and
“Newsmakers.”

Client-Side User State. The Information Agent (semantic browser) preferably

supports roaming of Jocal client-side User State. This includes users’ Semantic Environment

232

10

15

20

25

WO 2004/075466 PCT/US2004/004674

and users’ credentials (securely transferred). In the preferred embodiment, users are able to
easily export their client-side User State to another machine in order to replicate their
Semantic Environment onto another machine. This is preferably achieved by transferring
users’ Agent list (recent and favorites), the metadata for the Agents (including the SQML
buffers), users’ local security credentials, etc. to an XML format that serializes all this state
and -:gpables the state to be easily transferred. Alternatively, an XML schema may be
developed for all the local client-side User State. Caching the User State on a sérver and
synchronizing the User State using common synchronization {échniques can also facilitate
roaming. The semantic browser preferably downloads and uploads all cliéﬂ-side User State

onto the server, rather than storing the state locally (in an XML file or a proprietary store like

the Windows registry).

b. Agents

An Agent is the main entry point into the Semantic Network of the present invention.
An Agent preferably consists of a semantic filter query that returns XML information .for a
particular semantic object type (e.g., documents, email, people, etc.). In other words, an
Agent is preferably configured with a specific object type (described below). Agents can also
be configured with a Context Template (described below). In this case, the query will return
an object type, but it will incorporate the semantics of the Context Template. For example,
Agents configured with a “Headlines” Context Template will be sorted by time and
relevance, etc. Agents are also used to filter notiﬁca{tions, alerts and announcements. Agents
can be given any name. However, in the preferred embodiment of the present invention, the
naming format for most Agcﬁts is: |

<Agentobjecttype>.<semanticqualifier>.<semanticqualifier>
Agents can be named érbitrarily. However, examples of Agent names include:

AlLAl
~ Email.All

233

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Documents.Technology. Wireless.80211B.All
Events.Upcoming.NextThirtyDays.All

There will also be Domain Agents (see below) that may follow a different naming
convention (see below). At the semantic browser of the present invention, a fully qualified
Domain Agent name will have the format:

<Agentobjecttype>.<semanticdomainname>.<categoryname>
[Agency=<Agency url>, kb=<kb url>]
For exé}nple, the Email Domain Agent on the Agency http://research.Agency.asp
configured with the category wireless.all from the knowlédge-base ABC.comv/kb.asp with the
\

semantic domain name industries.informationtechnology will be fully named as:

Email.Industries.InformationTechnclogy. Wireless. All
[Agency=http://research/Agency.asp, kb="http://abccorp.com/kb.asp”

The semantic browser of the present invention is preferably configurable to use only
the Agent name or to inc]uéie the “Agency” and “kb” qualifiers.

L ‘Agent Types. There are three primary types of Agents created on server 20: Standard
Agents, Compound Agents, and Domain Agents. A Standard Agent is a standalone Agent
that encapsulates structured, non-semantic queries, i.e., without-domain knowledge (or an
onto]ogy/ta;(onomy mélpping). For example, on the server, the Agent All.PéétedToday.All is
a simple Agent that is resolved by filtering all objects based on the CreationTime property.
Standard Agents can also be more complex. For example, the Agent
All.PostedByAnyMemberOfMyTeam.All may resolve into a complicated query that involves
joins and sub-queries from the Objects tablé and the Users table (see below).

A Compound Agent contains other Agents and allows the Agency administrator to |
create queries that generate results that are the UNION or the INTERSECTION of the results
of their contained Agents (depending on the configuration). Compound Agents can also

contain other Compound Agents. In the presently preferred embodiment, Compound Agents

_contain Agents from the same Agency. However, the present invention anticipates the

234

10

15

20

25

WO 2004/075466 PCT/US2004/004674

integration of Agents from different Agencies. By way of example, a Compound Agent
All.Technology.Wireless.All might be created by compounding the following Agents:

e Documents.Technology. Wireless.All
e Email.Technology. Wireless.All
. People.Experts.Technology.Wireless.All

.. As described above, a Domain Agent is an Agent that belongs to a sernantlc domain.
A Domain Agent is initialized with an Agent query, just like any other Agent. However this
query includes the CATEGORIES table, which is popu]ated by the Knowledge Domain
Manager (see below). While the preferred embodiment of the present invention utilizes a
KBS 80 having proprietary ontologies corresponding to a private Semantic Environment, the
present invention contemplates integrated support of ontology interchange standards that will
enable an Agency to connect to one or more custom private KBS, for example within an
orgallizafion where the Agency was previously initialized with a proprietary ontology for that
organization.

An example of a Domain Agent is Email. Technology. Wireless.All. This Agent is
preferably created with a knowledge source URL such as:

category://technology.wireless.all@ABC.com/marketingknowledge.asp

This knowledge source URL corresponds to the Technology.Wireless.All category
for the default domain on the knowledge base installed on the
ABC.com/marketingknowledge.asp Web service. This is resolved to the following HTTP
URL: http://ABC.com/marketingknowledge.asp?category="technology.wireless.all.” In this
example, a fully qualified version of the category URL may be:

category://technology.wireless.all@abccorp.com/marketingknowledge.asp?se

manticdomainname=“InformationTechnology”
In this case, the category URL is qualified with the domain names.

‘Domain Agents are preferably created via a Domain Agent Wizard, and the Agency

administrator is able to add Domain Agents from the KBS 80 to the Semantic Network of the

235

10

20

25

WO 2004/075466 PCT/US2004/004674

present invention. The Domain Agent Wizard allows users to create Domain Agents for
specific categories (using a category URL) or for an entire semantic domain name. In the
latter case, the Agency is préferably configured to automatically create Domain Agents as
new categories are added to the semantic domainvon the KBS. This feature allows domains
and categories to remain dynamic and therefore easily adaptable to the user’s needs over
time. When Domain Agents are managed in this fashion, the Agency is configurable so as to
remove Agents that are no longer in the semantic domain. Essentially, in this mode, the
Domain Agents are synchronized with the CATEGORIES table (which in turn is
synchronized witﬁ thé CATEGORIES list at the relevant KBS by the Knowledge Domain
Manager, described bélow).

A Domain Agent is initialized with a structured query that filters the data the Agent
manages based on a category name or URL. In this situation, the structured query is identical
to the queries for Standard Agents. An eﬁample of a resultant query for a category Agent is:

SELECT OBJECT FROM OBJECTS WHERE OBJECTID IN (SELECT
OBJECTID FROM SEMANTICLINKS WHERE PREDICATETYPEID=50
AND SUBJECTID=1000 AND OBJECTID IN (SELECT OBJECTID FROM
" .CATEGORIES WHERE URL LIKE
ca’gegory://technology.wire]ess.alI@ABC.com/kb.asp?domain=“marketing”)) ’

In this example, the “belongs to the category” predicate type ID is assumed to have the’
value 50, and the category objectid is assumed to have the value 1000. This query can be
translated to English as follows:

Select all the objects in the Agency that belong to the category whose object
has an objectid value: of 1000 and whose URL s
category://technology.wireless.all@abccorp.com/kb.asp?domain="marketing”

This in turn translates to:

Select all the objects in the Agency of the category
category://technology.wireless.all@abccorp.com/kb.asp?domain="*marketing”

236

10

15

20

25

WO 2004/075466 PCT/US2004/004674

The Domain Agent Wizard asks the user whether he or she wants to name the Agent

based on the short category name or a friendly version of the fully qualified category name.

An example of the latter is: Marketing. Technology.Wireless.All [@ABC]. The fully

..qualified Domain Agent naming convention is:

R <objecttypename> <semanticdomainname>.<categoryname>.all [@KB Name].
In this example, the Domain AgentAnar‘ne is: ’

EniailéMarketing.Technolqu.Wire]Tess.All [@ABC].

Blenders. Blenders are users’ personal super-Agents. Users are able to create a
Blender and add and remove Agents (across Agencies) to and from thé Blender. This is
analogous to users having their own “Personal Agency”. Blenders are preferably invoked
only on the system client since they include Agents from multiple Agencies. The client of the
present Invention aggregates all objects from a Blender’s Agents and presents them
appropriately. Blenders preferably include all manipulation characteristics of other types of
Agents, e.g., drag and drop, Smart Lens (see below). A Blender can contain any type of
Agent (e.g., Standard Agents, Search Agents, Special Agents, as well as other Blenders).

The present invention provides for a Blender Wizard, which is a user interface
designed to facilitate users in creating Blenders FIGURES 12-14 show exemplar screenshots
of aspects of the Blender Wizard user interface according to a preferred embodiment of the
present invention. FIGURE 12 is a samp]e Information Agent screenshot showing a Tree
View of a sample Semantic Environment and a sample of the “Add Blender” wizard that
allows users to create and manage a new Blender. FIGURE 13 shows the second page of the
Add Blender wizard where users enter the name and description of the Blender and

optionally select information object type filters. FIGURE 14 shows the third page of the

sample Add Blender wizard in accordance with a preferred embodiment of the present

invention. In this example, users add and remove Agents from the Semantic Enviroiment to

237

10

15

20

25

WO 2004/075466 PCT/US2004/004674

or from the Blender. When the “Add Agents” option is selected, the “Open Agent” dialog is
displayed from which users can add a new Agent, Blender or Agency to the new Blender,

Breaking News Agents. A Breaking News Agent is a specially tagged Smart Agent.
In additioh to the option of having time-criticality being defined by the Agency
administrator, the user has the option of indicating which Agents refer to information that he
or she wants to be alerted about. Any information being displayed will show alerts if there is
breaking lieWs that relates to it on a Breaking News Agent. For example, a user will be able
to create an Agen“c as: “All Documents Posted on Reuters today” or “All Events relating to
computer technology and holding in Seattle in the next 24 hours™ as Breakihg News Agents.
This feature functions in an individual way because each Breaking News Agent is personal
(“breaking” is subjective and depends on the user). For example, a user in Seattle perhaps
would want to be notified on events in Seattle in the next 24 hours, events on the West Coast
in the next week (during which time he or she can ﬁl;d a cheap flight), events in the United
States in the next 14 days (the advance notice for most U.S. air carriers to get a modestly
priced cross-continental flight), events in Europe in the next month (likely because he or she
needs\“that amount of time to get a hotel reservation), and events anywhere in the Wor%d in the
next six months.

Ina preferred émbodiment, the present invention automatically checiis the Semantic
Environment for breaking news by querying each Breaking News Agent or by querying the
“Breaking News” Context Template. It will do this for all objects displayed in the semantic
browser window. If a Breaking News Agent indicates that there is breaking news, the
Information Agent object Skin so indicates by flashing the window or by showing a user
interface that clearly indicates that there is an alert that relates to the object. When the user -
clicks on the breaking news icon, a breaking news paﬁe or a Context Palette for the

“Breaking News” Context Template is displayed allowing the user to see the breaking news,

select the Breaking News Agent (if there are multiple with breaking news), select predicates,

238

10

15

20

25

WO 2004/075466 PCT/US2004/004674

and select other options. An exemplar pane of a Breaking News Agent user interface is
shown in FIGURE 15. This sample user interface illustrates the popup menu in the context
Results Pane. The sample shows a similar context pane as a Smart Lens (Agent-Object)
popup context Results Pane (discussed below) except that the Agent is a Breaking News
Agent. | |

Default Agents. In an alternative embodiment, each Agency exposes a list of default
Ag‘eﬁf‘s.Default Agents are similar to the default page on a Web site; euthors of the Agency
determine which Agents they want users to always Sees. Alteme‘qvely, on the client, Default
Agents may be invoked when users click on the root of the Information Ageiit’s EnVIronment '
(which preferably corresponds to a “Home Agent,” for example, the equivalent of the “Home
Page” on Today’s Web browser). Combined Default Agents may also be configured by
users.

Default Special (or Context) Agents. In the preferred embodiment, the client or the
Agency support a Default Special or Context Agent that maps to each Context Template
(discussed below). These Agents preferably use the appropriate: Context Template without
any filter. For example, a Default Special Agent called “Today” returns all items on all
Agencies in the “recent” and “favorites” lists (or on a configured list of Agencies) that were
posted today. In yet another example, the Default Special Agent called “Vériety” shows
random sets of results for every Agency in the Semantic Environment corresponding to the
“variety” Context Template. -

Default Special Agents preferably function as a starting point for most users to
familiarize themselves with the Information Nervous System of the present invention. In
addition, Default Special Agents retain the same functionality as Smart Agents, such as use
of drag and drop, copy and past, Smart Lens, Deep Information, etc.

Horizontal Decision Agents. In the preferred embodiment, Agents utilized by the

client to assist with user interaction, including;

239

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

e Schedule Agent: The Schedule Agent intelligently ranks events based on the
probability that particular users would want to attend the event.

e Meeting Follow-up Agent: The Meeting Follow-up Agent intelligently notifies
users when the time has come to have a follow-up meeting to one that occurred in
the past. The Inference Engine (see below) monitors relevant semantic activity to
determine whether enough change has occurred to warrant a follow-up meeting.
Users preferably use the previous meeting object as an Information Object Pivot
to find the relevant knowledge changes (such as new documents, new people that
might want to attend, etc.)

e Task Follow-up Agent. The Task Follow-up Agent sends recommendations to
users in response to tasks users perform (such as reading a document, adding an
event to their calendar, etc.). The Agent ensures that users have constant follow-
up. The recommendations are based on users’ profile, and the Agent preferably
uses collaborative filtering to determine recommendations.

o Customer Follow-up Agent. The Customer Follow-up Agent sends notifications
to users based on customer activity. The Agent intelligently determines when the
user needs attention (based on email received from the user, new documents that

might aid user service, etc.)

Public versus Local Agents. Agents that are created by the Agency administrator are
“Public Agents.” Agents created and managed by 'users are “Local Agents.” Local: Agents
can refer to remote Agencies via SQML that includes references to Agency XML Web
Servi‘ce URLS, or can ;efer to local Agencies that run a local instance of thé ‘sKIS with a local
metadata store.

Saved Agents—Users’ My Agents List. In the preferred embodiment, users are able
to save a copy of an invoked Agent or a query result as a local Agent. For example, users
may drag and drop a document on their hard drive to an Agent folder to generate a semantic
relational ~ query. Users could save that result as an Agent named i
“Documents.Technology.Wireless.RelatedToMyDocument.” This will then allow the user to

navigate to that Agent to see a personalized semantic query. Users would then be able to use

that Agent to create new personal Agents, and so on. Personal Agents can also be

240

10

15

20

25

WO 2004/075466 PCT/US2004/004674

“published” to the Agency. Other users are preferably able to discover the Agent and to
subscribe to it. |

In the preferred embodiment, a local Agent is created by a “Save as Agent” button
that appears on the client anytime a semantic relational query result is displayed. This is
analdgous to users saving a new document. Once the Agent is saved, it is added to the users’
My Agents list. An Agent responds to a semantic query based on the semantic domain of the
Agency on which it is hosted. Essentially, a semantic query to an’ Agent is analcigous to
ask‘ing whether the Agent “understands the query.” The Agent régllaonds to a.query to the best
of its “understanding.” As a further illustration, an Agent that manages “People” responds to

a semantic query asking for experts for a document based on its own internal mapping of

- people in its semantic domain to the categories in that domain.

Alternatively, the system client may be configured to use non-semantic queries. In
this case, the Agency will use extracted keywords for the query. All Agents support
non-semantic queries. Preferably only Agents on Agencies that belong to a semantic domain
will support semantic queries. In other words, semantic searches degrade to searches.

Each Agent has an attribute that indicates whether it is “smart” or not. A Smart Agent
is preferably created on an Agency if that Agency belongs to a semantic domain. In addition,
a Smart Agent only returns objects it fully “understands.” In the preferred embodiment, when
an Agency is installed, there are several default Smart Agents that the Agency administrator
may optionally choose to install, including: |

e All.Understood.All
. Documents.Understood.All
¢ Email.Understood.All

For example, Email.Understood.All only returns email objects that the Agency can

semantically understand based on its semantic domain (or ontology).

241

5

10

15

20

25

WO 2004/075466 PCT/US2004/004674

+ The present invention preferably includes the capability for users to display all
objects and only those the Agency understands
Search Agents. A Search Agent is an Agent that is initialized with a search string. In
the preferred embodiment, on invocation, the client issues the search request. A Search Agent
is configurable so as to searchlany part of the Semantic Environment, including: |

e Frequently Used Agents

e Recently Used Agents

» Recently Created Agents

e Favorite

o All [Saved] Agents

e Deleted Agents

e Agents on the local area network

o Agents on the Global Agency Directory

¢ Agents on any user-customized Agency directories

e All Agents in the entire Semantic Environment
The client issues the search request based on the scope of the Search Agent. If users indicate
that they want the search to cover the entire Semantic Environment, the client issues the
request to all Agents in the Semantic Environment Manager (see below) and all Agents on
the ISEal area mnetwork, the Global Agency D,virectory and user-customized Agency
Directories. |

Servér—Side Fa-vorite Agents. In yet an alternative embodiment, the Agency supports
User States support Favorite Agents. In the analogous context of Today’s Web, a Web site
allows users to customize their favorite links, stocks, etc. When initially queried, an Agency
displays both its Default Agenfs and the Favorite Agents of the calling user (if there is a User
State).

Smart Agents. A Smart Agent is a standa]oné Agent that encapsulates structured, ‘
semantic queries that refer to an Agency via its XML Web Service. In the preferred

embodiment, user on the client are able to create and edit Smart Agents via a “Create Smart

242

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Agent” wizard that allows them to browse the Semantic Environment via the Open Agent

dialog, and add links from specified Agencies. Essentially, this corresponds to users creating

the SQML query from the user interface. In the preferred embodiment, the user interface only

allows users to add links from the same Agency resource. However, users can create Agents

_of the same categories across Agencies, in addition to Special Agents and Blenders (which

are also preferably cross-Agency). The user interface allows the user to add 1ini<s using
existing Smart Agents as Information Object Pivots provided that the Smart Agent refers to
the same Agency for the current query. FIGURE 16 illustrates a preferred embodiment
showing the Open Agent dialog with the user interface controls for selecting link (predicate)
templates, the links themselves, and the objects. FIGURES 17-19 illustrate the Tree View of
a sample Semantic Environment involving the Open Agent dialog. FIGURE 17 shows the
Open Agent dialog allowing users to browse the Semantic Environment and open an Agent.
FIGURE 18 illustrates a way of navigating Agencies in the Semantic Environment and the
“Open Agent” dialog with the “Small Preview” view. FIGURE 19 illustrates an “Open” tool
on the toolbar showing new options to open Agents form the Semantic Environment or to
import regular information (e.g., from the file system) to the Semantic Environment by
creating Dumb Agents. |

The link templates essentially allow the user to navigate predicate for the current
object type using predefined filters, thus allowing the user to avoid going through all the
predicates for the object type. Examples of link templates include:

o All

e Breaking News (links that refer to time-sensitivity, e.g., “posted in the last”)
o Categorization

e Definite (non-probabilistic links)

e Probable (probabilistic links)

' Annotations

243

10

15

20

25

WO 2004/075466 PCT/US2004/004674

In the preferred embodiment, the Open Agent dialog allows the user to select the
object to “link to” and, depending 6n the type of the object, allows the user to browse the
object (e.g., from a calendar control if it is a date/time, from a text box if it is text, from the
file system ifitisa ﬁie or folder path, etc.) The wizard user interface also allows the user to
preview the results of the query. A temporary SQML entry is created with the current

predicate list and that is loaded in a mini-browser window within the wizard dialog box. The

“user is able to add and remove predicates, and will also have the option of indicating whether

he or she wants a unién (an “OR”) or an intersection (an “AND”) of the predicates. The user
interface will also ‘ch‘eck for duplicate predicates.

Once the user finishes the wizard to create the Smart Agent, the Smart Agent is added
to the Semantic Environment and the SQML is also saved with the associated object entry. In
the preferred embodiment, the user can later browse the Smart Agent using the Agent
property inspector property sheet. This allows the user to view the simple Semantic
Environment properties (e.g., name, description, creation time, etc.) and also ’to view the
resource URL (the WSDL URL to the XML Web Service of the Agency being queried) and
the prédicate list. The user can edit the list from the property sheet.

Default Smart Agent. A Default Smart Agent is similar to a Default Special Agent
except that it is based on information object types and not on Context Templrétes. By way of
example, “Documents” would return all documents on all Agencies in the users’ Semantic
Environment; “Email” would return all email messages in user’s Semantic Environment, etc. -

Special Agent. A Speciél Agent is a Smart Agent created by users based on a Context

Template (see below). A Special Agent is preferably initialized with an Agent name, albeit

without a specific Agent reference. For example, a Special Agent '
“Email. Technology.Wireless.All” may be created even if there are no Agents of that name in
the Semantic Environment. Like a Search Agent, a Special Agent is scoped to search for any

Agent with its name on any part of the Semantic Environment. In the preferred embodiment,

244

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

when a Special Agent is invoked by users, the client searches for any Agents that bear its
name. If or when it finds any Agents with the name, the client invoke the Agent.
In the preferred embodiment, users enter parameters consistent with a Context

Template, indicating the category fillers (if required) and what Agency(ies) to query. These

~ can be manually entered using the Open Agent dialog, or users can indicate that they want to

query the “recent” Agencies, “favorite” Agencies, or both. In an alternative embodiment,

uséré’have the choice of selecting categories (if required) that are in the union or intersection
of the selected Agencies, or all categories known to the Global Agency Directory. In yet an
alternative embodiment, users are able to select the information type (vais opposed to a
Context Template) and keywords to search (as opposed to predicates or categories).

(Default Special Agents. In the preferred embodiment, the system client installs
Default Special Agents that map to all supported Context Templates. By way of éxample, in
the preferred embodiment, Default Special Agents including the following;:

Headlines
Breaking News
Conversations
Newsmakers

~ Upcoming Events
Discovery
History
All Bets
Best Bets
Expens
Favorites
Classics
Recommendations
Today
Variety
Timeline

Upcoming Events

245

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Guide

Custom Special Agents. In contrast to user-created Special Agents, Custom Special
Agents are Special Agents specially de\}eléped and signed in order to guarantee that the
Special Agents are 'sa'fe., secure, and of high-performance. The present invention provides for

a plug-in layer to allow organizations and developers to create their own custom blenders. An

“example of a custom blender is “All.CriticalPriority. Al that relates to my most recent

documents or email.” This Custom Blender may be implemented by an SQML file with a -
resource entry as follows:

<resource type= “nervana:url”

agent://all.criticalpriority.all@iocalhost>

<link predicate= “nervana:relevantto”
type= “nervana:localsemanticref”
recentdocuments >

</link>

<link operator=“or”
type= “nervana:localsemanticref”
recentemail>

</link>

</resource>
In the preferred embodiment, the Presenter (see below) resolves the “link” entry

locally and initiates XML Web Service requests to the target resource with XML arguments

corresponding to the newest documents or email messages. This allows the target Agent to

focus on responding to semantic queries purely with XML filters without knowing the
semantics related to ‘ﬁltér origination. In an alternative embodiment, a Custom Blender such
as the above example is a Defaulf Agent. |

Vertical Decision Agents. Vertical Decision Agents are Agents that provide
decision-support for vertical industry scenarios.

Agent Schema. Agents operate within specified parameters and exhibit

* predetermined characteristics that comprise the Agent schema. Agent schemas may vary

246

10

15

20

25

WO 2004/075466 PCT/US2004/004674

widely with being equally applicable within the technology of the present invention. By way
of example only, the Agent schema of the preferred embodiment of the present invention is
shown in FIGURE 20. The present invention specifically contemplates the addition of further
fields. For example, fields for category URL (or path) and Context Template name can be

added to the Agent schema to provide the client and server quick access to the category and

- Context Template the Agent represents (if applicable). This is helpful for the Semantic

Environment Manager to provide different views of Agents (by category, by context, etc.).

This corﬁplements the -existence of these fields in the SQML for the Agent (expressed via

_attributes and/or predicates). The AgentTypelDs included in the preferre'd ‘embodiment are

shown in FIGURE 21. The AgentQueryTypelDs included in the preferred embodiment are
shown in FIGURE 22. ' | »

In the preferred embodiment, SQL query formats are used. However, multiple query
formats, for example XQL, XQuery, etc., are contemplated within the scope of the present
invention.

The KIS 50 preferably hosts an Agents table (for server-side Agents) in its data store
corresponding to this schema. FIGURE 23 illustrates sample semantic queries that
correspond to Agent names showing how server-side Agents are preferably configured on the
KIS of the present invention.

As explained in greater detail below, Agents may optionally include their owﬁ Skins.
An Agent Skin is represented as an URL to an XSLT file 61‘ equivalent Flash MX or
ActionScfipt. If the Agent’s Skin URL is not specified, a default Skin for the Agent’s object

" type is presumed.

Agent Query Rules. Each server-side Agent query must be specified to return the

OBJECTID column. Each table has this column for it is what links the Objects table with the

tables for the derived object type. Objects and other tables are described in greater detail

“below.

247

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Because each Agent query can form the basis of a sub-query, cascaded query or a
join, it is preferable that each query follow this format. By way of example, the query for
News.All will be may appear as “SELECT OBJECTID FROM NEWS” (where “NEWS” is
the name of the table hosting metadata for news articles, with the “news” schema). As a
result, the server 10 can then use this query as part of a complex query. For example, if the
user drags and drops a document onto the Agent, the server might execute this query as:

SELECT OBJECTID FROM NEWS WHERE OBJECTID IN (SELECT
OBJECTID FROM SEMANTICLINKS WHERE SUBJECTID IN (50, 67,
89) AND LINKSCORE > 90)

This example assumes that the document is classified to belong to categories in the
CATEGORIES table with object identifiers 50, 67, and 89 and that a link probability of 0.9 is
the threshold to establish that a document belongs to a category. In this example, the
document is used as a filter for the News.All query and the query text is used as part of the
complex query.

Having a consistent standard for queries allows the semantic query processor to
merge queries until they finally have to be presented. For example, each call to the semantic
query processor must indicate what object type in which to return the results. The query
procéé’sor then returns XML information consistent with the schema for the requeste§i object
type. In other words, the query processor preferably returns schema-specific results fo;
presentation. Each query is stored at the semantic layer (to return an OBJ ECT]D) To use the
last example, when the user invokes the News.All Agent, the browser calls the query
processor on the Agency XML Web Service. The query processor will then invoke the query
and filter it with the ‘News Article’ object type, as such:

SELECT * FROM NEWS WHERE OBJECTID IN (SELECT OBJECTID
FROM NEWS) ‘

248

10

15

20

25

WO 2004/075466 PCT/US2004/004674

This returns all the fields for the News schema. The browser (via the Presenter) displays the
information using the XSLT (or a presentation tool such as Flash MX or ActionSéript) for
either the Agent Skin or for a user-specified Skin (which will override the Agent Skin).
Query Virtual Parameters. Agent queries preferably contain special Virtual
Parameter. A typical example may include: ‘% USERNAME%. In this example, the Semantic
Quéfo‘ Processor (SQP) resolves the Virtual Parameter to a real argument before invoking the
query.. An Agent People.MyTeam.All is configured with the SQL query:

SELECT * FROM USERS WHERE Division IN (SELECT Divisién FROM
USERS WHERE Name LIKE %USERNAME%)

In this example, the Agent name includes “MyTeam” even though the Agent can
apply to any user. The %USERNAME% variable is resolved to the actual calling user’s
name by the SQP. The SQL call is resolved to as follows:

SELECT * FROM USERS WHERE Division IN (SELECT Division FROM
USERS WHERE Name LIKE JohnDoe)

In this example, J g)hnDoe is assumed to be the user name of the caller.

Simple Agent Search. Each Agent Will support simple séarch functionality. In the
preferred embodiment, a user is able to right—clidk on a Smart Agent in the Information
Agent and hit “Search.” This will bring up a dialog box where the user enters search text.
This creates the appropriate SQML with the associated predicate, e.g., “nervana:contains”.
The present invention provides a simple, fast way for users to search Agents (and create
Smart Agents from there) without going through the “Create Smart Agent” wizard and
selecting the “contains text” predicate (which alternatively achieves the same result).

Agency Agent Views. An alternative embodiment of the present invention includes
Agency Agent Views. An Agency Agent View is a query that filters Agents based on
predefined criteria. For example, the Agent view “Documents” returns only Agents that

manﬁge,“objects of the document semantic class. The Agent view “Reuters News” retumns a

249

10

15

20

25

WO 2004/075466 PCT/US2004/004674

list of Agents that manage news objects with “Reuters” as the publisher. Agency Agent
Views are important in order to give users an easy way to navigate through Agents. The
Agency administrator is able to create and delete Agent views.

Agent Publishing and Sharing. The preferred embodiment makes it easy for Agents

to be published and shared. This is preferably implemented by serializing the Semantic

Environment into an XML document containing the recent and Favorite Agents, their
schema, theirSQML‘buffers, etc. and publishing the document to a publishing point. This
XML document may also be emailed to colleagues, friends, etc. in order to facilitate the
propagation and sharing of local (user-created) Agents. This is analogous to how Web pages
are published today and how web URLs and links are shared by sending links and

attachments via email.

2. KNOWLEDGE INTEGRATION SERVER

The Knowledge Integration Server (KIS) 50 is the heart of the server-side of the
system 10. The KIS semantically integrates data from multiple diverse sources into a
Semantic Network and hosts Agents that provide access to the network. The KIS also hosts
semantic XML Web Services to provide clients with access to the Semantic Network via
Agents. To usefs, a KIS installation may be viewed as an Agency. The KIS is preferably
initializod with the following properties:

e Agency Name. Name of the Agency (e.g., “ABC”) ‘

¢ Agency Friendly Name. Full name of the Agency (e.g., “ABC Corporation”)

e Agency Description. Description of the Agency

e Agency System User Name. User name of the Agency. Each Agency is
represented by a user on the directory of the enterprise (or Web site) on which it is
installed. The system user name is used to host the system inbox (through which
users will publish documents, email and annotations to the Agency). For
authentication, the Agency must be installed on a server that has access to the .
system user account. '

250

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

Agency Authentication Support Level. Indicates whether the Agency supports
or requires user authentication. An Agency can be configured to not support
authentication (in which case it is open to all users and does not have any User
State), to support but not require authentication, and to require authentication, in
which case it preferably indicates the authentication encryption type.

Agency User Directory Type. This indicates the type of user directory the
Agency authenticates users against and where the Agency gets its user
information from. For example, this could be an LDAP directory, a Microsoft
Exchange 2000 User Directory, or a Lotus Notes User Directory on the Windows
2000 Active Directory, etc. ’

Agency User Directory Name. This indicates the server name of the Agency
user directory (e.g., a Microsoft Exchange 2000 server name). !
Agencleser Domain Name. This indicates the name of the user domain for
authentication purposes. This field is optional and included only if the Agency
supports authentication.

Agency User Group Name. This indicates the name of the user group for
authentication purposes. For example, an Agency might be initialized with the
domain name “US Employees” and the group name “Marketing.” In such a case,
the Agency will first check the user name to ensure that the user is a member of
the user group, and then forward authentication requests to the user directory
authenticator indicated by the user directory type. If the calling user is not a
member of the user group, the authentication request is denied. This field is only
valid if the Agency supports authentication.

Data Store Connection Name. This indicates the name of the connection to a
database store. This could be represented as, say, an ODBC connection name on
Windows (or a JDBC name, etc.). The KIS will use the database referred to by the
connection name to store, update, and maintain its tables (see below).

Dynamic Properties Evaluation. The Agéncy XML Web Service preferably
exposes methods to return dynamic properties such as the list of semantic domain
paths the server currently supports or “understands.” This allows users to browse
Agencies on the client using their supported semantic domain paths or.
ontologies/taxonomies.

As illustrated with reference to FIGURE 24, the KIS 50 preferably includes the following

main components: a Semantic Network 52, a Semantic Data Gatherer 54, a Semantic

251

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Network Consistency Checker 56, an Inference Engine 58, a Semantic Query Processor 60, a
Naturall Language Parser 62, an Email Knowledge Agent 64 and a Knowledge Domain
Manager 66.
a. Semantic Network

The Semantic Network is the core data component of the KIS. The Semantic Network
links objects of the defined schemas of the present invention together in a semantic way via
database tables. The Semantic Network consists of schemas and the Semantic Metadata Store
(SMS). The Semantic Network is preferably compristed of two data schemas: Objects and
SemanticLinks. Additional data schemas may be included based on system requirements and
enterprise needs. The SMS is preferably a standard database (SQL Server, Oracle, DB2, etc.)
where all semantic data is stored and updéted via database tables‘. The YSMS breferably
includes tables for each primary object type (described t;eloW).

By way of example, a sample Semantic Network directed towards an enterprise
situation is shown with reference to FIGURE 25, which illustrates the relationiship between

business users of the present invention and the various sources of and results of knowledge

‘retrieval, management, delivery and presentation.

‘Objects. The Objects table contains every object in the Semantic Netwark. The
“Object” éan be thought of as the “base class” from whi(;,h every semantic object type will be
derived. Th‘e preferreci schema of the Object type is shown with referencéz to FIGURE 26.
The ObjectID is a unique identifier that tags the object in the Semantic Network. Every

object in the system will have a schema that is an extension of the Object schema.

Alternatively, semantic object types (e.g., document, email, event, etc.) will have only the

ObjectID field. When a query is invoked, the query processor can then aggregate information
from the Object table and the specific semantic table to form the final results. The former
approach (having each schema be an extension of the Object schema) results in better

runtime performance since joins are avoided. However, the latter approach, while

252

10

15

20

25

WO 2004/075466 PCT/US2004/004674

computationally more expensive, results in less wasted storage. The ObjectTypelD is
preferably a number that resolves to a string that describes the hierarchy of the object type,
e.g., “documents\documents”; “documents‘\analyst briefs”; and “events\meetings.”

The SourcelD refers to the identifier for the Semantic Data Adapter (SDA) from

which the object was gathered. The Semantic Data Gatherer (SDG) uses this information to

periodically check whether the object still exists by requesting status information from the
SDA from which the object was retrieved.

T - SemanticLinks. The SMS preferably includes a SemanticLinks schema (and
corresponding database table) that will ‘store semantic links. These links will ann%tate the
objects in the other data tables of the SMS and will preferab]y”;onstitute the data model for

the Semantic Network. Each semantic link will have a semantic link ID. The SemanticLinks

table preferably includes the field names and types as shown with reference to FIGURE 27.

" The SubjectID and SubjectTypelD are the object ID and object type ID of the object being

linked from. The ObjectID and ObjectTypelD are the object ID and object type ID of the
object being linked to. The LinkScore preferably ranges from 0 to 100, and represents the
semantic strength of the link as a probability. These fields are exemplary only; more
predicates are contemplated based on the particular object type as well as the user’s desire to
semantic links. The preferred embodiment of the pres‘ent invention provides the predicate
type IDs shown in FIGURE 28. The present invention contemplates the addition of further
predicate type IDs.

By way of example, the semantic link “Steve reports to Patrick” will be represented
in the table with a subject ID corresponding to Steve’s ID in the Users table, a predicate type
of PREDICATETYPEID_REPORTSTO (see table below), Patrick’s object ID in the Users
table, a link score of 100 (indicating that it is a “truth’™ and that the link is not probabilistic)

and a Reference Date that qualifies the link.

253

WO 2004/075466 PCT/US2004/004674

The KIS creates, updates, and maintains database tables for each object type (via the

SMS). The following illustrates preferred but nonexclusive list of primary and derived object

10

15

20

25

30

types:

Person .

o User

e Customer
Category

Document

o Analyst Brief

o Analyst Report

o (Case Study

e White Paper

e Company Profile

o E-Book

¢ E-Magazine

Email Message

¢ Email Annotation
o Email News Posting
Email Distribution List
Email Public Folder

¢ Email Public Folder Newsgroup .

News Art_icle

~ Event

e Meeting

~* Corporate Event

¢ Industry Event

e TV Event

* Radio Event

¢ Print Media Event

e Online Meeting

e Arts and Entertainment Event
Online Course

Media

e Book

254

10

15

20

25

WO 2004/075466 PCT/US2004/004674

e Magazine
e Multimedia

e Online Broadcast

¢ Online Conference
Object types are preferably expresses as hierarchical paths. The path can be extended,
e.g.’, “events\meetings” . can be extended with “qualified Meetings,”
e.g., "events\meetings\combany meetings.” This schema model is indefinitely extensible and
co"n‘ﬁgprable.

V!'rtual Information Object Types. Virtual Information Object Types are object
types that dp not map to distinct object types, yet are semantically of inter,esf to users. An
example is the “Customer Emai]” object type, which derives from the “Eméil” object type.
This object type is “virtual” in that it does not have a distinct schema and, asa CONSEqUENCE,
does not have a distinct table in the SMS on the KIS. Rather, it uses the “Email” table on the
SMS, since it derives from the “Email” object type. Even though it is not a distinct object
type, users will be interested in browsing and searching for “Customer Email” as though it
were indeed distinct.

In the preferred embodiment, Virtual Object Types are implemented by storing the
metadata in the appropriate table on the SMS (in this case, the “Email” table, since the object
type derives from “Email”). However, the resolution of queries for the object type is
accomplished differently from regular queries for distinct object types. When the server SQP
receives a semantic query request (via the XML Web Service) for a virtual information
object type (such as “Customer Email”), it resolves the request by joining the tables that
together form the object type. For instance, in the preferred embodiment, in the case of

“Customer Email,” the server will resolve in query with the SQL sub-query: _

SELECT OBJECTID FROM EMAIL WHERE OBJECTID IN (SELECT

V OBJECTID FROM CUSTOMERS WHERE EMAILADDRESS IN (SELECT
EMAILADDRESS FROM EMAIL)

255

10

15

20

25

WO 2004/075466 PCT/US2004/004674

This query corresponds to “Select all objects from the Email table that have an email address
value that is also in the Customers table.” This assumes that “Customer Email” refers to
email that is sent by or to a customer. Other definitions of the virtual object type are also
possible and the query resolution is preferably consistent with the definition. The SQP
preferably applies this sub-query to all queries for “Customer Email.” This sub-query
essentially filters the Email table for those email messages that are from customers. This
returns the desired result to the user with the illusion that there is a “Customer Email” table
when there really is not.

The preéent invention contemplates a variety of schemas assocliated with each object

type. Other schemas are in development that will have comparable applicability to the

- present invention. The “Document” schema, for example, may be extended with fields from

the Dublin Core schema (http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2413.html) and other
industry standard schemas. In yet another example, “News Article” schema may be an
extension of the NewsML schema (http://www.newsml.org). By way of example only,
preferred user object schema made in accordance with the present invention are shown with
reference to FIGURE 29. All schemas preferably have as an identical subset the fields of the
Object schema. MailingAddressTypelDs preferably associated with the User (person) object
schema includes those shown with reference to FIGURE 30.
By way of example only, the preferred cate'gory object schema made in accordance
with the present 1nvent10n is shown with reference to FIGURE 31
By way of example only, the preferred document object schema made in accordance
with the present invention is shown with reference to FIGURE 32. The “DocumentCategory”
field refers to a proprietary category that is tagged with the document (by the document data
source) and not to a semantic category managed by the KIS itself. The

“DocumentFormatTypelD” field refers to the type of document. The Print Media Type IDs

256

10

15

20

25

WO 2004/075466 PCT/US2004/004674

of the preferred embodiment are shown in FIGURE 33, and the preferred FORMATTYPEID
are shown in FIGURE 34.

By way of example only, the preferred email message list object schema made in
accordance with the present invention is shown with reference to FIGURE 35. Email
Priorities are preferably 0, 1, or 2, corresponding to low, medium, and high priority. The
EmailTypelD preferably -includes EMAILTYPEID EMAIL,
EMAILTYPEID NEWSPOSTING and EMAILTYPEID_EMAILANNOTATION

(values 1,2 and 3). Exemplar tables showing the email distribution list and email public

folder object schemas of a preferred embodiment of the present invention are shown in

FIGURES 36 and 37, respectively. In the preferred embodiment, the PublicFolderTypelD
includes those shown in FIGURE 38.

By way of example only, the preferred event object schema message list object

schema made in accordance with the present invention is shown with reference to

FIGURE 39. FIGURE 40 shows the events types of a preferred embodiment of the present
invention.

By way of example only, the preferred media object schema message list object
schema made in accordance with the present invention is shown with reference to V
FIGURE 41. FIGURE 42 shows the media types of a preferred embodiment of the present
invention.

By way of example, FIGURES 43-45 i]iustrate additional samples showing how
objects are categorized and utilized in the preferred embodiment of the present invention.
FIGURE 43 illustrates root object container types. FIGURE 44 illustrates a hierarchical
schema for qualified object types. FIGURE 45 illustrates samples of native container object

type predicates. All types except the Person and Customer types preferably inherit all

- predicates from the root type “All Information.” The present invention provides for native

257

10

15

20

25

WO 2004/075466 PCT/US2004/004674

container object type predicate templates, for example including for: All; Breaking News;
Categorization; Author; Annotations; Definite Links; Probabilistic Links; and Popular.
b. Semantic Data Gatherer

In the preferred embodiment, the Semantic Data Gatherer (SDG) is responsible for
adding, removing, and updating entries in the Semantic Network via the SMS. The SDG
consists of a list of XML Web Service references. These form an Information Source
Abstraction Layer (ISAL). Each of these references is initial'ized to gather data from via a
Data Source Adapter (DSA). A data source adapter is an XML Web Service that gathers
information from a local or remote semantic data source for a give object type. It then returns
the XML correspc;nding to obj ect entries at the data source. All DSAs preferably support the
same interface via which the SDG will gather XML data. This interface includes methods to:

e Retrieve the XML metadata for objects for a given start and end index (e.g.,
objects 0 through 49).

e Check whether there any objects have been added or deleted since a particular
date/time (on the DSA’s time clock).

o Fetch the XML metadata for objects added or deleted since a particular date/time
(on the DSA’s time clock)

o Check whether an object still exists in the semantic data source — by examining
the XML metadata for the object (passed as an argument)

If each call to the DSA XML Web Service will be stateless, the API should'include
information, preferably via a string with command parameters, which qualifies the request.
For example, a DSA for.an‘email inbox includes parameters such as the ﬁame of the user
whose inbox is to be gathered. A DSA for a Web site or documentxstore will have to include
information on the URL or directory path to be crawled. |

Each DSA is required to retrieve information in the schema for its object type.
Because 2 DSA must be implemented for a particular object type, the SDG will expect XML

for the schema for that object type when it invokes a gather call to the DSA.

258

10

15

20

25

WO 2004/075466 PCT/US2004/004674

The SDG is responsible for maintaining the integrity and consistency of all the
database tables in the SMS (the Semantic Ne{work). In this embodiment, the SDG is also
referred to as a Semantic Network Manager (SNM). The database tables preferably do not
contain redundant or stale entries. Because the SDG retrieves objects with well-known
schemas the semantics of each of the object types is understood, and the SDG maintains the
consistency of the tables accordingly. For example, the SDG preferably does not add
redundant Document XML metadata to the DOCUMENTS table. The SDG uses the
semantics of documents to check for re-dundzincy. In the preferred embodiment this is
aéc;.o..ihplished by con}paring the author name, creation date/time, file path, etc. The SDG also
performs this check for other tables (e.g., EVENTS, CUSTOMERS, NEWS, etc.). For
example, the SDG will perform redundancy checking for events by exémiiling the title, the
location, and the date/time. Other tables are maintained accordingly. The SDG will also
update objectsin the databasc tables that have been changed. |

The SDG is also preferably responsible for cleaning up the database tables. The SDG
periodically queries the DSA to determine whether all of the objects in each table managed
by the DSA still exists. For example, for a DSA that retrieves documents, the SDG will pass
the XML metadata to the DSA Web service and query whether the object still exists. The
DSA attempts to olpen the URL for the document. If the document does not exist anymore,
the DSA will indicate this to the SDG. Individual DSAs, and not the SDG, are responsible
for object validation to avoid security restrictions that are data source specific. For example,
there might be data source restrictions that prevent remote access to local resources. In such a
case, only the DSA XML Web Service (which is preferably running locally, relative to the
data source) will have access to the data source. Alternatively, some DSAs might run 611 the
Agency server, alongside the SDG and other server components, and retrieve their data

remotely.

259

10

15

20

25

30

WO 2004/075466

i

PCT/US2004/004674

Having the DSAs handle object validation also provides additional efficiency and

security in that the DSA prevents the SDG from knowing the details of‘how to open each

data source to check whether an object still exists. Since the DSA needs to know this (since it

retrieves the XML data from the data source and therefore has code specific to the data

source), it is more appropriate for the DSA to handle this task.

The SDG preferably maintains a gather list that will point to DSA XML Web Service

URLs. The KIS administrator is able to add, delete, and update DSA entries from the SDG

gather list. Each gather list entry is preferably configured with:

1. The name and XML Web Service reference of the DSA. This essentially will refer

to a combination of the data source, the object type, and a reference to the XML
Web Service that implements the DSA (e.g., via a WSDL web service URL).
Examples include:

a.

h.

Microsoft Exchange 2000 Email DSA. This DSA will gather email XML
metadata from a Microsoft Exchange 2000 Inbox or Public Folder
Microsoft Exchange 2000 Calendar DSA. This DSA will gather event
XML metadata from a Microsoft Exchange 2000 Calendar

Microsoft Exchange 2000 Users DSA. This DSA will gather
users/people XML metadata from a Microsoft Exchange 2000 Directory
Microsoft Exchange 2000 Email Distribution List DSA. This SDA will
gather email distribution list metadata from a Microsoft Exchange 2000
Directory

Lotus Notes Inbox. This DSA will gather email XML metadata from a
Lotus Notes Inbox or Public Folder A
Siebel CRM Database. This DSA will gather customer XML mietadata
from a Siebel CRM system B
Web site. This DSA will gather document XML metadata from a Web site
File Directory or Share. This DSA will gather document XML metadata

" from a file directory or share

Saba E-Learning LMS Repository. This DSA will gather. E-Learning
XML metadata from a Saba Learning ManAagement System (LMS)
repository

260

10

15

20

25

WO 2004/075466 PCT/US2004/004674

j. Microsoft Sharepoint Document DSA. This DSA will gather document
XML metadata from a Microsoft Sharépoint server workspace

k. Reuters News Repository. This DSA will gather News Article XML
metadata from a Reuters news article repository

2. The description of the DSA gather entry.
3. A string indicating initialization information for the DSA.

4. The gather schedule — this indicates how often the SDG should ‘craw!l’ the DSA
to gather XML metadata.

In a preferred embodiment, the Agency is initialized with a user directory domain and
grou;;'name. In this case, the SDG preferably autohatically enters a gather list entry for the
user directory DSA. For example, if the Agency is configured-with a Exchange 2000 User

Directory with Domain Name “Foo” and Address Book or group name “Everyone,” the SDG

* creates a gather list entry with the Exchange 2000 Users DSA (initialized with these

parameters). Alternatively, the Agency can be configured to obtain its user direc;tory from
any email application server (e.g., Microsoft Exchange or Lotus Notes). The SDG initializes
gather list entries with an Email Inbox and Calendar DSA for the system user (and Email
Knowledge Agent, described below). These three gather list entry DSAs (Users, Inbox, and
Calendar) are initialized by default. The Inbox is preferably used to store Agency email
postings and annotation and the Calendar DSA is used to store events posted to the Agency
by users. Other custom DSAs can be added by the Agency administrator.

The SDG also keeps track of the last time the SDA reported to it that objects have

been added or deleted to or from the data source. This date/time information is preferably

. based on the SDA’s clock. Each time the SDA reports that there is new or deleted data, the

SDG will update the date/time information in its entry for the SDA and gather all the new or
deleted information in the SDA. The SDG will then update the database tables.
The SDG preferably maps the XML information it receives from the SDAs to the

Semantic Network of the present invention. The SDG stores all the XML metadata in the

261

- 10

15

20

25

WO 2004/075466 PCT/US2004/004674

and, where necessary, maps semantic links to specific XML fields. The SDG adds or updates
semantic links in cases where the XML includes information that “links” objects together.
For example, the schema for an email object preferably includes fields including “From,”
“To,” “Ce,” “Bee,” and “Attachments.” In the case of the “From,” “To,” “Cc” and “Bcec”
columns, the fields in the XML refer to email addresses (separated by delimiters such as “;”
or “,” or a space). In the case of thg “Attachments” column, this field will refer to the ‘ﬁle
paths of the files that are attached to the email méssage (separated by delimiters such as “,”).
This raw XML is stored in the EMAIL database table, alc;ng with the other columns. In
addition, the SDG parses the fields of the email object and adds semantic links to other

objects that are identified by the contents of those fields. For example, if the “to” field

contains “john@foo.com” and the attachments field contains the string “c:\foo.doc,

“c:\bar.doc,” the SDG will process the email as follows:

1. Find any object in the USERS table with the email address “john@foo.com.”
Also, search for other USER objects with email addresses in the FROM, TO, CC,
and BCC fields.

2. If any-objects are found, add a semantic link entry to the SEMANTICLINKS
table with the email object id as the subject and the appropriate predicate type id.
In this case, the predicate PREDICATETYPEID_CREATOR refers to the
originator of the email message. The predicate PREDICATETYPEID_SENTTO
is used to link the email object and the USER objects referred to by the contents
of the “to” field in the email XML metadata. The predicate
PREDICATETYPEID_COPIEDTO and
PREDICATETYPEID BLINDCOPIEDTO are used to link objects in the “cc”
and “bee” fields in similar fashion.

In the case of attachments, the SDG extracts the XML metadata for the attached
documents. If an XML object with the file path already exists in the SMS (or, in other words,
the Semantic Network), the SDG will update the metadata. If the XML object does-not

already exist, the SDG creates a new document object with the XML metadata. The SDG

262

10

15

20

25

WO 2004/075466 PCT/US2004/004674

will adds an entry to the SEMANTICLINKS table with the email object ID as the subject, the
new document’s object 1D as the subject, and the predicate
PREDICATETYPEID_ATTACHEDTO. This allows the user to be able to navigate from an
email message to its attachments and then use the attachments as pivots to contillme to
browse the Semantic Network, for example using semantic tools like thé Smart Lens
(discussed beloW).

- The SDG does not create any objects in the event for which it does not find user
objécts that match the entries in the XML fields. Preferably, the SDG gathers information
from a Directory 'SDA when a user is manually added to the Agency. The Agency
administrator preferably adds users to the Agency via the user group on the Agency
propérties. | ’

The following illustrates an example of mapping raw email XML metadata to the
Semantic Network. -

<email from="john@foo.com*

to="nosa@nervana.net"

14

cc="steve@nervana.net*
bee="patrick@nervana.net”
subject="Meeting this Friday”
body="Let us meet on Friday at 2pm”
attachments="c:\foo.doc; c:\bar.htm” >

</email>
is converted to the object graph illustrated in FIGURE 46.

c. Semantic Network Consistency Checker’ ;

The Semantic Network Consistency Checker (CC) complements the consistency
checking that is performed by the SDG. As described above, the SDG maintains the integrity
of the database tables by precluding the addition of redundant entries into the Semantic
Network (from various data sources). The CC also ensures the consistency of the OBJECTS

and SEMANTICLINKS tables. The CC periodically checks the OBJECTS table to ensure

263

10

20

25

WO 2004/075466 PCT/US2004/004674

that each object exists in tile native table (preferably by checking the OBJECTID field
value). For example, a document object entry in the OBJECTS table preferably also exists in
the DOCUMENTS table (with the same object ID). The CC removes any object in the
OBJECTS table without a éorresponding object in the native table (DOCUMENTS,
EVENTS, EMAIL, etc.) and vice-versa.

The CC is also respgllsible for maintaining the consistency of the SEMANTICLINKS
table. The semantics of this table are preferably as follows: A semantic link cannot exist if
either its subject (“linked from”) or its object (“linked to”) do not exist. To illustrate this, if
object A links to object B with predicate P, and either A or B is deleted, the link should be
deleted. The CC periodically checks the SEMANTICLINKS table. If any of the subjects or
objects has been deleted, the CC deletes the semantic link entry.

Consistency checks may be implemented in code in the KIS itself or as stored
procedures or constraints at the database level.

d. Inference Engine

The Inference Engine is responsible for< adding semantic links to the Semantic
Network. The Inference Engine exﬁploys Inference Rules, which consist of a set of h%euristics
to add semantlc links based on ongomg semantic act1v1ty The Inference Engme is preferably
allowed to remove semantxc lmks Decmon Agents (described below) use the Inference
Engine to assist knowledge-workers m.makmg decisions.

The Inference Enginezoperatéyby mining the Semantic Network and adding new
semantic links that are based 6n probabilistic inferences. For example, the Inference Engine
preferably monitors the Semantic Network and observes patterns in how ;'email is sent, the
type of email sent and by whom. The Inference Engine infers from this information
background information, such as the expertise of the user, related to various subject matter
categories within the monitoring purview of the Inference Engine. For example, the Inference

Engine adds semantics links with the predicate PREDICATETYPEID_EXPERTON to

264

10

15

20

25

WO 2004/075466 PCT/US2004/004674

indicate that a user is an expert in a particular category. The subject in this case will be a user
object and the object will be a category object. To infer this, the Inference Engine is
preferably configured to observe semantic activity for at least a certain period of time (e.g.,
two weeks), or to-only infer links after users have sent at least a certain predetermined
number of messages or authored a certain number of documents. The Inference Engine infers
the new link by keeping statistics on the PREDICATETYPEID CREATOR and
PREDICATETYPEID CONTRIBUTOR links. :

By way of example the Inference Engine may infer that users are an expert on a
category 1f

e Of all categories of email messages they have written, this category is one of the
top N (configurable).

o They have written email messages on the same category an average of M times or
more per week (configurable).

o They have written at least O email messages (configurable) in the past P months

(configurable).

More sophisticated inference models with which to accurately infer this data are
contemplated. For example, probability distributions as well as statistical correlation models
may be employed. Preferably these models will be developed on a per-scenario basis over
time.

The Inference Engine is also responsible for removing links that it might have added.
For example, if an employee changes jobs, he or she might “cease” to be an expert on a
specific category (relative to other employees).'Once the Inference Engine detects this (e.g.,
by observing email patterns), it removes semantic links that indicate that the person is an
expert on the category.

Inferred semantic links are important for scenarios that involve probabilistic semantic
queries. For example, in one embodiment of the present invention, using the Information

Agent,' _users may drag and drop a document from their file-system onto an Agent (say,

265

10

15

20

25

WO 2004/075466 PCT/US2004/004674

People.Research.All). In this case, users will want to know the people in the Research
department that are experts on the document. The browser will then invoke an SQML query
with the Agent as resource (or subject), the predicate nervana:experton, and the document
path as the object. The Presenter will then retrieve the XML metadata for the document and
call the XML Web Service, residing on the Agency that hosts the Agent, with the
predicate ID and the document’s XML metadata as arguments. The server-side semantic
query processor on the Agency processes this XML Web Service call and translates the call
to a SQL query consistent with the data model of the Semantic Network. In this example, the
call is preferably resélved as follows: ‘

1. For all semantic domain entries in the KDM, call the corresponding KBS to
| categorize the document.

o

Map the retumed categories to category objects in the Semantic Nétwork (by
comparing URLs)
3. Invoke a query using the query of the People.Research.All Agent as a sub-query.

In this example, the final query appears as follows:

SELECT * FROM USERS WHERE DEPARTMENT LIKE “RESEARCH”
AND OBJECTID IN (SELECT OBJECTID FROM SEMANTICLINKS

- WHERE OBJECTTYPEID = 32 AND PREDICATETYPEID = 98 AND
SUBJECTID IN (SELECT OBJECTID AS SUBJECTID FROM:
CATEGORIES WHERE OBJECTID IN (34, 56, 78)) 'AND
LINKSCORE > 90) ;

This query assumes that the object type ID for the user object type is 32, the predicate type
ID value for PREDICATETYPEID_EXPERTON is 98, the document belonged to categories
with the object ID 34, 56, and 78 and that the semantic link score threshold is 90.
e. Server-Side Semantic Query Processor
The server-side Semantic Query Processor (SQP) responds to semantic queries from
clients of the KIS. The SQP is preferably the main entry point to the Semantic Network on

the KIS (or Agency). The SQP is exposed via the Agency’s XML Web Service. The SQP

266

10

15

20

25

WO 2004/075466 PCT/US2004/004674

processes direct Agent semantic queries and generic (client-generated) semantic queries with
semantic link filters (see below). For queries with server-side Agent filters, the Information
Agent passes the Agent name and object index arguments to the SQP to be invoked. For
example, the browser may ask for objects 0-24 on Agent
Documents.Technology. Wireless.All. In this example, the SQP looks up the Agent query in
the Agents table and invokes the query onto the database that hosts the Semantic Metadata
Store (SMS). The Agent query is prefe(rably stored as SQL or another well-known query
format like XQuery or XQL. The SQP may convert the query format to a format that the
database (that holds all the tables) understands. 4Because most commercial databases
understand SQL, it will preferably operate as the default Agent query format.

The Agent query preferably follows the query rules described above. Therefore, the
query returns the object ID rather than the schema fields for the Agent’s object typ;]e. In the

above-described example, Documents.Technology. Wireless.All invokes the Agent query

“SELECT OBJECTID FROM DOCUMENTS WHERE ..."’ The SQP is responsible for
issuing a query that is filtered with the Agent query, but which returns the actual metadata for
the object type (in this case, the “document” object type). In this example, the query appears
as follows:

SELECT * FROM DOCUMENTS WHERE OBJECTID IN (SELECT
OBJECTID FROM DOCUMENTS WHERE ...)

This query returns the data columns for the “document” schema for all the objects
with an object ID that matches those in the original Agent query. The SQP reviews the
metadata results of the database query and translates them to well-formed XML using the
appropriate schema for the object type of the Agent (in this case, “document”). In the event
that the database supports raw XML retrieval, the SQP optimizes the query by asking the

database to give it XML results. This results in better performance since the SQP does not

267

10

15

20

25

WO 2004/075466 PCT/US2004/004674

have to perfoﬁn the extra translation step. The SQP passes the XML back to the caller via the
Agency’s XML Web Service.

The SQP preferably handles more complex queries ’that are passed by the semantic
browser (or other client of the XML Web Service). By way of example such queries may

take the form of the following XML Web Service API:

String
InvokeSémanticQuery(
| Integer BeginIndex,

Integer EndIndex,
String AgentName,
Integer NumberOfLinks,
String OperatorNames[],
String LinkPredicateNames],
String LinkTypeNames[]
String LinkObjects[]);

In this example, the “[]” symbols refer to arrays. The API takes a zero-based begin index, a
zero-based end index, an optional Agent name, an integer indicating the number of semantic
links, an array of operator names, an array of link predicate names, an array of link type
names, and an array of strings that refer to the link objects. If the Agent name is NULL (**),
the SQP processes the query “as is”; without any preconceived Agent filter. This will be the
case with queries that are wholly generated form the client. The arrays are variable sized
because the “NumberOfLinks” parameter indicates the size of each array. The operator
names include valid predetermined operators, including logical operators, which can be used
to qualify queries in SQL or other query formats. Examp]es include term:or and term:and.
The ‘link predicate names may include one or more predefined prechcates (e.g.
term:relevantto, term:reportsto, term.sentto, term:annotates, tenn.annotatedby,
term:withcontext, etc.).. The link type names indicate the type of link objects. Common

examples include term:url and term:object. In the case of term:url, the link object string

268

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

refers to a well-formed URL comprising objects://... or Agent://.... In the case of
term:object, the argument will be a well-formed XML metadata instruction referring to a
object defined within the present invention. This object is preférably resolved from the client
or from another Agency. The API retufns a string that contains the XML results (in addition
to the return value for the XML Web Service method call itself).

By way of example, the SQML with the data:

<resource type="‘term:url” A
Agent://all.criticalpriority.all@abc.com/Agency.asp>
<link predicate="term:relevantto”
type="“term,:object”

object://4576 >
</link> A
<link operator="or”
predicate="term:intersects”
‘type="“term:url”
Agent://email.wireless.all@abc.com/Agency.asp>
<flink>
</resource> .

is resolved on the Agency located at the Web service on abc.com/Agency.asp to:

InvokeSemanticQuery(
0,
24,
“all.criticalpriority.all”,
2,
{ “term:and”, “term:or” },

2 &é

{ “term:relevantto”, “term:intersects” },

{ “term:object”, “term:url” },
{ “object://45767, “Agent://email. wireless.all@abc.com/Agency.asp” });
This is preferably resolved to a SQL query:

SELECT TOP 25 * OBJECTS WHERE OBJECTID IN (SELECT
OBJECTID FROM OBJECTS WHERE CREATIONDATETIME="02/26/02

269

10

15

20

25

WO 2004/075466 PCT/US2004/004674

AND (OBJECTID [RELATEDTO] [OBJECT WITH ID 4576]) AND
OBJECTID IN (SELECT OBJECTS FROM EMAIL WHERE CATEGORY
[IS] ‘WIRELESS’)

This SQL example uses shorthand to illustrate the type of query that will be generated by the
SQP. The SQP retrieves the XML and returns it to the caller. This XML is in the form of
SRML (or Semantic Results Markup Languége), Which is the XML meta-schema definition
fdf semantic query results in the preferred embodiment of the invention. Sample A shown in

the Appendix hereto is a sample SRML semantics results buffer or document. This is a

sample of the XML that an Agency returns in response to a semantic querS;; The client Skin
takes these results and generates preseﬁtation form them (using XSLT and/or script), based
on the properties of the Skin and the Agent (object Skin/Context Skin/Blender Skin), the
amount of display area available, disability considerations and other Skin attfibutes.
bA Natural Language Parser
The Natural Language Parser (NLP) preferably converts natural language text to
either an API call that the SQP understands or to raw SQL (or a similar query format) that
can be processed by the database. The Natural Language Parser is passed text directly from
the semantic browser or by email via the Email Knowledge Agent (see below).
g Email Knowledge Agent
. The KIS preferably includes one primary publishing component, referred to as the
Email Knowledge Agent (or Enterprise Information Agent (EIA)). This Agent functions, in
essence, as a digital employee, and preferably includes a unique email address (e.g., a custom
name selected by the Agency administrator). The Email Knowledge Agent complements
existing publishing tools such as Microsoft Office, SharePoint, etc. by adding a “Fire and
Forget” method of publishing information and sharing knbwledge. This is especially useful
in cases where the person publishing the information does not know who might be interested

in it:-

270

10

15

20

25

WO 2004/075466 PCT/US2004/004674

In a preferred embodiment of the present invention, users send email to the Email
Knowledge Agent to publish comments, annotations, documents, attachments, etc. The Email
Knowledge Agent extracts meaning from the email and properly adds it to the Semantic
Network. Other users are able to access published information via Agents of other platforrh
presentation tools such as drag and drop, the Smart Lens, etc. (discussed below).

The Email Knowledge Agent is a systén component that is created by the Agency
administrator. The system user name is indicated when the server is first installed. The
system user preferably corresponds to an‘email user in the enterprise email system (e.g.,
Microsoft Exchange, Lotus Notes, etc.) In this embodiment, the Email Agent has its own
mailbox, calendar, address book, etc. These in turn correspond to the objects on the Email
Server for the system user. When the server is installed, the KIS installs the appropriate DSA
for the system inbox (depénding on the email application). The KIS preferably automatically
adds a gatherer list entry in the SDG indicating that the system inbox should be periodically
crawled for email.

Because the Email Knowledge Agent is a first-class email address, it also serves as a
notiﬁqgtion source and a query source (for natural-language and instant messaging).
Notiﬁcﬁtions from an Agency are preferably sent by the Email Knowledge Agent (inéicating
that there »is new and r_elevant information the user might be interested in, etc.). The Email
Knowledge Agent may also receive email from users as natural language queries. These
messages are paréed by the SQP and processed. The XML results are preferably sent to the
user as an HTML file (with the appropriate default Skin) generated with XSLT processed
over the XML results of the natural-language query.

| Because the Email Knowledge Agent is a regular familiar component or “employee,”
the Agency adfninistrator preferably adds the address to distribution lists. This step allows
the SDG to semantically index all the email in these distribution lists, thereby populating the

Semantic Network by seamlessly integrating the Email Knowledge Agent into distribution

271

10

15

20

25

WO 2004/075466 PCT/US2004/004674

lists useful to users. This is a very seamless way of integrating the digital Information
Nervous System of the present invention with the way people already work in an
organization.

Annotations. The Email Knowledge Agent is preferably used to publish annotations.

‘In the present invention, annotations are preferably email messages. In the preferred

embodiment, the annotation object type is a subclass of the email object type. This allows

users to use email, typically the most common publishing tool, to annotate objects in the

These attachments are semantically indexed by the SDG on the KIS. This makes possible
scenarios where a user is able to navigate from, say, a document, to an anhotation, to its
document attachment, to an article on Reuters, to an industry event that starts next week.

The process described for semantically indexing email (by mapping the email XML
schema to the Semantic Network) also applied to annotations. However, in the case of
annotations in a preferred embodiment of the present invention, additionally processing is
desirable. Specifically, when the user clicks “Annotate” on an object in the Presenter window
in the semantic browser (described below), the browser loads the registered email client on
the local machine (e.g., Microsoft Outlook, Microsoft Outlook Express, etc.). The “to™ field
is populated with thé address of the system user for the Agency that hosts the object. The
subject field is populated with a spécia] string, for example, “annotation: object=[objectid]”.
When the email arrives in the Email Knowiedge Agent’s inbox, the DSA for the email inbox
will pick it up (e.g., via a server event). The SDG retrieves the new email XML metadata
from the DSA by receiving an event, or from the DSA the next time it asks the DSA for more
data. In a preferred embodiment, this polling process occurs frequently. The DSA returns the
XML metadata of the email object, oblivious to the fact that the email object refers to an
email object type or an annotation object type. The SDG processes the email XML metadata,

and examines the “subject” field. If the SDG “sees” the “annotation:” prefix, it knows that

272

10

15

20

25

WO 2004/075466 PCT/US2004/004674

the email is actually an annotation, and proceeds to extract the object ID argument from the
sub_]ect text. The SDG updates the Semantic Network for remaining email messages (adding
each message to the OBJECTS and EMAIL tables, adding semantic links for the “from,”

“to,” “cc,” “bec,” and “attachments” fields, where necessary, etc.). In the preferred

embodiment, the SDG perfofms an extra step. Specifically, it adds a semantic link entry that

links the email ~objec‘c with the object indicated by the object ID argument in the subject text
(Wit11 the PREDICATETYPEID ANNOTATES predicate).

With the present invent'ion, an annotation is treated as another semantic link with a
special predicate. As a result, all the semantic features apply to annotations, such as semantic
navigation via semantic links, semantic queries, etc. For example, a user can query for all
annotations written by every member of his of her team in the last six months. This can be
accomplished in the semantic browser by dragging, for example, the Agent Annotations.All
on top of the Agent People.MyTeam.All and then sorting the results, or by creating a Smart
Agent, which in turn invokes the “Create Smart Agent” wizard to create the query.

. Knowledge Domain Manager

The Knowledge Domain Manager is the coinponent on the KIS that is responsible for
adding and maintaining domain-specific intelligence on the Semantic Network. The KDM
essentially “annotates” the Semantic Network with domain-intelligence. The KDM is
initialized with URLs associated with one or more instances of the Knowledge Base Server
(KBS), which in turn effectively stores “knowledge” for one or more semantic domains. The
KBS has ontology and categories corresponding to taxonomy for each semantic domain that
it sﬁbﬁbrts. In addition, an Agent with a semantic domain (connected to a KBS) responds to
semantic queries. If an Agent does not belong to a semantic domain, it cannot correspond to
semantic queries (that require an ontology or taxonomy). Rather, it orﬂ§ responds to
keyword-based queries (albeit it will still provide context and time-sensitive retrieval

services, but the available contexts will be limited).

273

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Each entry in the KDM is a semantic domain entry. The semantic domain entry has
the URL to the KBS and a semantic domain name. The semantic domain name maps to a
specific ontolégy on the KBS. In the preferred embodiment of the present invention,
semantic domain names follow the convention:

<Top Level Domain Name>\<Secondary Level Domain Name>......
Examples of semantic domain names include: .

o Industries
¢ Industries\Pharmaceuticals\LifeSciences

e Industries\InformationTechnology
e General\Sports.Basketbal\NBA
- o General\Sports.Basketbal \CBA.

Alternatively, semantic domains names can be referred to as “domain patl{s” as long
as they are fully qualified. Full qualification is achieved by adding an Internet dom';ain name
prefix to the beginning of the path. This indicates the “owner” or “source” of the semantic
domain. For example, “Nervana.NET\Industries\Pharmaceuticals” refers to
“Industries\Pharmaceuticals” semantic domain according to the “NERVANA NET” Internet
domain name. In another example, “Reuters.com\Sports\Ba§ketba]l” refers to
“Sports\Basketball” on “Reuters.com.” Using this approach, domain \names and paths are
'maintained globally unique. '

The Knowledge Domaiﬁ Manager (KDM) periodically requests each KBS in its
domain entry list for the categories in the knowledge domain. The KDM is preferably
implemented as an XML Web Service on the KIS. The KDM includes configuration options
for each semantic domain entry. One of these options may include the schedule with which
the KDM will update the Semantic Network with domain-specific intelligence corresponding
to the semantic domain entry. For example, the Agency administrator may configure the

KDM (via the KIS) to crawl a semantic domain on a KBS every day at 1pm. The update

274

10

20

25

WO 2004/075466 PCT/US2004/004674

schedule should be. consistent with how often the administrator believes the ontology or
taxonomy on the KBS changes.

The KIS preferably invokes the KDM periodically and asks it to update the
CATEGORIES table. In the preferred embodiment, the KDM calls the KBS (via an XML
Web Service API dall) to obtain updated categories for the semantic domain name in the
semantic domain entry, which corresponds to a particular taxonomy. An example of an API

call follows: GetCategoriesForSemanticDomain (String SemanticDomainName). The KBS

. returns an XML-based list of all the categories in the semantic domain referred to by the

semantic domain name. This XML list is consistent with the CATEGORIES schema shown
above (category URL, name, descriptién, the KBS URL and the semantic domain name). The
KDM updates the CATEGORIES table with this information. For catégory entries that
already exist in the table, the KDM updates the name and description. For new entries, the
KDM requests a new object ID from the object manager and assigns that to the category
entry. Since, in the preferred embodiment, a category is an “object,” it inherits from the
Object type and therefore has an object ID.

The KDM synchronizes the CATEGORIES table to the CATEGORIES list on the
KBS (for a particular semantic domain) by deleting entries in the CATEGORIES table not
present in the new list after examining the URL of the category entries and obtaining the
re‘lé-va‘ht‘KBS URL and semantic domain name. If a semantic domain entry is deleted from
the KIS, the KDM deletes all category entries with a corréspon,ding semantic domain name .
and KBS URL. Essentially, this will be akin to ridding the Agency of existing‘l‘{nowledge.

The KDM periodically categorizes all “knowledge objects” in the Semantic Network
based on its semantic domain entries. When new objects are added to the Semantic Network
by the SDG, the SDG requests that the KDM categorize the objects. The KDM enumerate all

KBS instances in its semantic domain entries and invokes XML Web Service calls with the

275

10

15

20

25

WO 2004/075466 PCT/US2004/004674

XML of the object as the argument. In the preferred embodiment, the KBS returhs a result in
an XML buffer similar to:

<results>
<result categoryurl=“category://foo”
score="91" >
<result categoryurl="“category://bar”
score="93".>
<result categoryurl=“category://foobar”
score=“100" >

</results>

This information indicates the semantic categorizétion weights of the XML object for
the categories in the semantic domain on the KBS. In a preferred embodiment of the present
invention, the semantic domain entry is initialized with a threshold (0-100) indicating the
minimum weight that the KDM should request from the KBS. The KBS returns scores that
exceed the predetermined threshold. The KDM annotates the Semantic Network based on
fhese- categorization results. This is preferably accomplished by adding or updating a
semantic link with the predicate type ID of “belongs to category” with the object ID of the
category in the result. The KDM will update the SEMANTICLINKS table. ‘Assuming by way
of example that the object that is categorized has an object ID value of 56, the update query
appears as follows:

UPDATE SEMANTICLINKS SET LINKSCORE = 91 WHERE
OBJECTID=56 AND PREDICATETYPEID = 67 AND SUBJECTID IN
(SELECT OBJECTID AS SUBJECTID FROM CATEGORIES WHERE
URL LIKE “CATEGORY://FOO”)

The KDM periodically scans and categorizes all the “knowledge objects”
(documents, news articles, events, email, etc., preferably not including objects like people).
This process preferably occurs even if an object in the Semantic Network has previously

been categorized as the KBS might have become “smarter” and therefore provides superior

276

10

15

20

25

WO 2004/075466 PCT/US2004/004674

categorization. In such a case, the results could change even if the same categorization
request is repeated. This will occur, for example, if the ontology on the KBS has been
updated. Thus, in the preferred embodiment, categorization will be performed both when an

object is added to the Semantic Network by the Semantic Data Gatherer and periodically to

_ensure that the Semantic Network has the most up-to-date domain knowledge.

1. Other Components

The Favorite Agents Manager. On Agencies that support User States, a Favorite
Agents Manager manages a list of per-user favorite Agents. ﬁl the preferred‘embodiment, the
Favorites Agent Manager stores a mapping of ﬁser names to favorite Agents in a
UserFavoriteAgents table.

Compound Agent Manager. A Compound Agent Manager manages the creation,
deletion, and update of compound Agents. As described above, compound Agents are Agents
that are comprised of other Agents in the system, and are initialized to return the union or
intersection of the query results in the contained Agents. The Compound Agent Manager
manages all compound Agents in the system and maps compound Agents to the Agents they
contain via the CompoundAgentMap table.

The Compound Agent Manager exposes functions to create compound Agents, delete,
reriamé, add to and remove Agents from them, and indicate whether a union or an
intersection is desired. Compound Agents can be added to other compound Agents. On
invocation, the selznantic query processor asks the Compound Agent Manager for its
compound query. The Compound Agent Manager navigates through its Agent map graph and
returns a complex query of all the queries of all Agents that it contaiﬁs. If Agents are deleted,
compound Agents “pick up” the new state when they are invoked, ignoring the Agent query.
In other words, the compounding of queries is only done for Agents that still exist. If the
compoupd Agent observes that one of its Agents has been deleted, it will delete the entry

from its map.

277

10

20

25

WO 2004/075466 PCT/US2004/004674

User Profile Manager. The User Profile Manager - (UPM) preferably uses the
Inference Engine to infer the user’s profile on an ongoing basis. The UPM annotates the
Semantic Network based on feedback from users as to their explicit preferences. In the
preferred embodiment, this process involved use of the PREDICATEID_ISINTERESTEDIN
predicate. The UPM infers semantic links and annotate the Semantic Network with the
PREDICATEID_ISLIKELYTOBEINTERESTEDIN predicate. All query results to the user
will be qualified (out-of-band) with a query to the Semantic Network for the
PREDICATEID ISLIKELYTOBEINTERESTEDIN bredicate. Query results are based on
the user’s habits, as the Infere;nce Engine learns them over time.

Alternatively, the UPM may be configured with user profile information stored in the
User State Store (USS). This is information manually entered at the client indicating the
user’s preferences. This information is transferred and stored at the server that the user is
interacting with. These preferences are tied to different schema. For example, for documents,
the schema may be based on the preferred categories. For email messages, the schema may
be based on preferred categories, authors, or attachments. These are two of many possible
examples. The UPS annotates the Semantic Network baséd on the manually entered
informéﬁon in the USS. ’

Server Notification Manager. The Server Notification Manager (SNM) is
responsible 'for batching server-side notifications and forwarding them to users. In. the
preferred embodiment, users register for server-side notifications at the Agent level. Each
Agent is capable of firing notiﬁcationé of its query results. The Server Notification Manager
determines how to filter the query results and fofmat them for de!ivery via email, voice,
pager or any other notification mechanism, e.g., the Microsoft .NET Alerts notification ‘

services. The Server Notification Manager maintains information on the last time users

“read” the notification, This is preferably indicated from the client via a user interface. The

278

10

15

20

25

WO 2004/075466 PCT/US2004/004674

SNM preferably only notifies a user when there is new information on the Agent since the
last “read” time for the particular user.

Agent Discovery. Using multicast-based Agent discovery, each Agency sends
multicast announcements indicating its presence on the local multicast network. The Agency
administrator sets the multicast TTL. The present invention preferably uses either use the
Session Announcement Protocol (SAP) with a well-known port of 9875 and a TTL of 255, or
a proprietary announcement port with a customizable TTL. For details on SAP, see
http://sunsite.cnlab-switch.ch/ﬁp/doc/sta11d.ard/rfc/29xx)2974, which is incorporated by
reference.

The Information Agent preferably includes a listenef component that receives SAP
announcements. In the preferred embodiment, the announcements are sent as XML and will
include the following information |

o' Theserver ID (this is a unique identifier) - : 3
» The server URL (this is the HTTP URL to the Agency’s XML Web Service)

o The announcement period (T) — this indicates the ftime between each

{

announcement
o Whether there are any new Agents in the Agency since the last announcement and |

the last Agent creation time (on the Agency’s clock)

Each Agency sends the XML announcement and uses Forward Error Correction
(FEC) or Forward Erasure Correction to encode the packet. This makes the system robust to-
dropped packets. Alternatively, the Agency can be configured to send the XML
announcements several times in succession (per announcement).

The Information Agent multicast listener exposes directory-like semantics to the
Semantic Environment Manager. The listener aggregates all the XML announcements from
the Agencies from which it receives announcements. It will also cache the last time it
received an announcement from each Agency. The listener flags Agencies that .it thinks

might be dead or inactive. It does this when it has not heard from the Agency for a time

279

10

15

20

25

WO 2004/075466 PCT/US2004/004674

longer than the Agency’s announcement period. The listener might be configured to wait for
s_e;yeral periods before flagging the Agency as inactive. This will handle the case of dropped
annsuncements (due, perhaps, to traffic congcstioﬁ). The listener will update the Agency list
in the Semantic Environment Manager each time it receives amloﬁn%nmntg.

The Semantic Environment Manager periodically inquiriés of the listener whether
there are any new Agents. The Semantic Environment Manager checks the Agency list and
asks each Agent that is active whether it has new Agents. The Semantic Environment
Manager qualifies this request with the Agency’s last Agent creation time maintained locally
and the current time based on the Agency’s clock. The Agency responds and also sends the
new value of the IastAAg’ent creation time. The Semantic Environment Manager caches thié
value in the Agency entry. If there are new Agents, the browser inform the user via a dialog
box and asks the user whether he or she wants to view the new Agents.

The present invention_also supports Agency announcements using a peer-to-peer
Agent discovery. In this model, announcements are sent either to a directory server that all
clients check or directly to the clients via a standard peer-to-peer publishing protocol.

FIGURES 47-53 are exemplar screenshots showing aspects of Agent management by
the KIS. FIGURES 47-50 illustrate a sample KIS Agency administration manager showing
server-side Agent views and server-side Agents. FIGURE 51 further illus‘trates sample
administration user interface elements for managing SDG (crawl) tasks, system tasks (e.g.,
the Inference Engine), the system Agent Email (e.g., inbox), calendar and contacts DSA and
all the SMS data tables (objects, semantic links, éategories, etc.). FIGURE 52 illuétrates a
sample_of the “Server Properties” dialog of the present invention in the KIS Agency
administfation manager. The dialog illustrates how the server administrator can setgserver
properties such as the server name, the display name, the SMS‘HIHData Store properties, the
KDM properties (e.g., the knowledge domain path) and the user DSA properties. FIGURE 53

illustrates a sample of the “Server Statistics” dialog in the KIS Agency administration

280

10

15

20

25

WO 2004/075466 PCT/US2004/004674

manager of the preferred embodiment. The dialog illustrates the display of statistics such as
the total number of server-side Agents (Standard Agents and Blenders), the total number of
server-side Standard Agents, the total number of server-side Blenders, the total number of
server-side Agent-views, the total nﬁmber of server-side Agent subscriptions, the total
number of information objects stored on the server, the total number of semantic links, the
total number of users on the server (Agency) and the total number of user groups.

3. KNOWLEDGE BASE SERVER |

The Knowledge Base Server (KBS) is the servér that hosts knowledge for the KIS. In
most applications, many instances of the KIS will be deployed, but only few (or one) KBS

Will be deployed for any given organization. This is because KBS can be reused (they are

domain-specific but data-independent). For example, a pharmaceutical firm might deploy one

KBS initialized with a pharmaceuticals ontology, but have several KIS installations; perhaps
per exﬁployee division or per employee group. The KIS preferably includes the following
componehts:

1. One or more ontologies that correspond to one or more semantic (knowledge)
domains. A semantic domain is referred to using a semantic domain name. This is
a name that refers to a domain path within a semantic hierarchy. Examples are
Industries.Technology, Industries.Pharmaceuticals.LifeSciences, and
General.Sports.Basketball. These names or paths may also be globally and
uniquely qualified (e.g., with Internet domain names) as previously discussed.

2. One or more taxonomies that correspond to the supported semantic domains. -
These taxonomies contain a hierarchy of category names.

3. A categorization engine that take a piece of text or XML and the semantic domain
name-with which the categorization is to be performed, and returns the categories
in that domain that the text or XML belong to, along with the categorization
scores (on a scale of 0-10 or, preferably, 0-100). '

4. An XML Web Service that exposes APIs to add new supported semantic domains
(and corresponding ontologies and taxonomies), to enumerate the categories for a
given semantic domain, and to categorize a text or XML data blob.

281

10

15

20

25

30

WO 2004/075466 ‘ PCT/US2004/004674

5 An XML Web Service reference to another KBS from which the KBS gets its
knowledge. In this mode, the KBS acts as a proxy. The KBS can be initialized to
act as a proxy and to get its supported semantic domains, ontologies, and

taxonomies from another KBS.:

As explained above, the KIS (via the KDM) periodically sends XML objects to the

KBS to categorize them for a given semantic domain.

4. - INFORMATION AGENT (SEMANTIC BROWSER PLATFORM)
a. Overview
The system client, in‘the preferred embodiment the Information Agent of the present
invention, includes the semantic browser components and user interface that provide a
semantic user experiénce. In the preferred embodiment, the Information Agent provides the
following high-level services:

¢ Allow users the power of context and time-sensitive semantic information
retrieval via local and remote Information Agents.

o Allow users to discover information on local and remote Agencies that are
exposed via Agents through the XML Web Service of the present invention. This
information is preferably classified into well-known semantic classes such as
documents, email, email distribution lists, people, events, multimedia, and
customers.

e Allow users to browse a semantic view of information found via Agents of the
present invention.

o Allow users to publish informaticn to an Agency.

o Allow users to dynamically link information on their hard—drive, local network or
a specific Agency with information found on Agents from another Agency. This

facilitates dynamic e-linking and user-controlled browsing.

An advantage of the Information Agent of the present invention is that users open up
Agents similar how users open up documents from their file-system namespace. The
Information Agent will have its own environment that opens up semantic “worlds” of
information. For example, ABC company may have an internal KIS Agency that has Agents

for internal documents, email, etc. In addition, third-parties may host Agencies on the

282

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Internet to hold information on industry reports, industry events, etc. In a preferred
embodiment of the present invention, ABC company employees open Agents to discover
information on the Internet that relates to their work as well as to semantically relate
information that is internal to ABC company to information that is external but relevant to
ABC company.
b. ' Client Configuration

In the preferred embodiment, the system client is able to semantically link
information found locally as well as on remote Agencies. This is preferably accomplished
through the use of an exposed Semantic Environment comprised of Agencies from a Global
Agency Directory, Agencies on the local area network (published via multicast or a peer-to-
peer publishing system) and Agencies from a custom Ageﬁcy Directory using Agent
Discovery. The preferred client conﬁgﬁration is based on a framework having Agents and
local Agencies, and includes a Semantic Environment Manager, which manages locally
saved Agents and Favorite Agents, essentially integrating the history and favorites
metaphors. The Semantic Environment Manager uzes Semantic Query Documents within the
Semantic Environment to present knowledge to users via the Semantic Environment

Browser. The client configuration will also include the Agent Discovery information (e.g.,

‘Agency lists, Agency directory information, etc.).

c. Client Framework Specification
the Information Agent user interface, and defines basic services and interfaces, includes core
user interface cbmponcnts, and provides an extensible, configurable environment for the
main building blocks of the user' interface of the Information Agent. This section described
the client framework specification according to a preferred embodiment of the present
invention. The Framework Core defines base services, configuration, preferences and

security mechanisms. The Core User Interface Components define the user interface services

283

10

15

20

25

WO 2004/075466 PCT/US2004/004674

and modules that support server and Agént configuration, control and invocation, and some
configuration for the Semantic Browser Framework. The Core User Interface Components
are implemented as a Windows Shell extension and associated user interface (described
below). The Semantic Browser Framework prov(ides base query and results management
services, and the framework for results presentation. The specifics of the user interface
related to semantic object presentation are preferably configurable and extensible; even
default presentation support is provided as a pre-installed “extension.” The Semantic
Browser Framework is preferably implemented as a set of behavior extensions to existing
i)l‘é't'forms used in Today’s Web (e.g., Internet Explorer), and leverages the supported XML,
XSLT, HTML/CSS and DOM functionality. ;"
Context. The.client framework builds upon semanticwservices‘co'rn‘ponents of the
present inventiqn including semantic query support, context and time-sensitive semantic
processing and linking of information, etc. The client framework is preferably built as a shell
extension and platform (e.g., Internet Explorer) extensions, which provides functionality to
users in the context of their existing tools and environment. For example, the Information

Agent may be implemented as a Shell Extension (which extends the Windows Shell and

. employs the standard Explorer view and user interface models). In an alternative

embodiment, the present invention is equally applicable in a standalone semantic browser
application. |

Requirements. The preferred requirements for the client framework relate to
flexibility and extensibility. This ensures that the user interface can be easily and quickly
adapted as there are more information object types, user profiles, etc. Included are the
following:

¢ Provide support for Skins to manage the entire set of query results.

» Allow for a wide range of approaches, include lists, tables, timed slides, etc.
e Provide a screen-saver (or equivalent) mode. |

* Provide support for Skins that can be associated with an object class.

284

10

15

20

25

WO 2004/075466 PCT/US2004/004674

e Ensure that there is a default Skin that can handle all classes.

e Skins should be as simple as XSLT, but should allow script support, and
possibly even code (with appropriate security restrictions).

e Provide support for browsing the Semantic Environment in the results view
(to complement the Agent Tree View), including Agents (Smart, Dumb, and
Special), Agencies, and Blenders. l

e Provide well-defined interfaces between components, and ensure that all
: co'mmunic:ation must occur via the framework.

e Provide a solid security model throughout the framework
Framework Core

Semantic Environment Manager (SEM). The SEM manages the creation, deletion,
updatiﬁg and browsing of Agents, Blenders, and Agencies on users’ local machines. In
addition, fhe SEM is responsible for listening to Agency multicast announcements, browsing
Agencies on the enterprise difectory (e.g.,AvAia LDAP), browsing Agencies on a custom
directory, and browsing Agencies on the Global Agency Directory.

The SEM includes a storage layer that stores tﬁe metadata of every Agent on the
system, including all the Agent attributes (such as the Agent name, description, creation time,
last usage time, the Agent type (Smart, Dumb, Special, etc.), the information object type the
Agent represents (for Agents created based on information type), the context type the Agent
represents (for Special Agents or Agents created based on a Context Template), the atiributes
of the Agent, a reference to the XSLT or other script file that represents the Agent’s Skin
(including filter/sort preferences and other presentation schemes), the notification
information and method (if requested for the Agent), and the buffer or file-path/URL to the
Agent’s SQML query. The Information Agent (semantic browser) may store this Agent
metadéta in a local database, a store like the Windows registry, or in an XML file store on the

local file-system.

285

10

15

20

25

WO 2004/075466 PCT/US2004/004674

The SEM also uses the Agent attribute to indicate whether an Agent is a Favorite
Agent. In addition, the SEM automatically deletes Agents that are not favorites and which are
older than a configurable age limit (e.g., two weeks).

The Information Agent’s Shell Extension and other components (such as the toolbar
and the Open Agent dialog) employ the SEM to provide Agent creation, deletion, browsing,
updating, and management of Agents via its user interface.

Preferences Manager. This component manages all client-side preferences,
providing services to persist the prefeFences, communicates with servers as needed to share
preferences or support roaming, and supports setting and obtaining preference values from
other components. ‘This component has associated user interfaée as well as some more
specific preferences user interface components. The preferences are divided into
sub-components, and may abstract the preferences for associated client classes. These
include:

e Core Preferences. This includes basic configuration such as user profile and
~ persona information,
o . Skin Preferences. This also associates preferred Skins with object classes, as.
well as the preferred list Skin and screen saver Skins. There may be additional
Skin-related preferences settings.

This component also manages the set of locally available Skins. Downloadable Skins are
preferably managed through this component.

Notification Manager. Notifications provide a means to indicate to users that there is
new information available on a given Smart Agent. Users optionally configure a specific :
Smart Agent to support or provide notifications (it will be OFF by default for most Smart
Agents), and will also configure how to present notifications to users. These notifications are

presented by the Notification user interface component.

286

10

15

20

WO 2004/075466 PCT/US2004/004674

The Notification Manager is responsible for managing background, polling queries
for the appropriate set of Smart Agenis. The Live Information Manager is a parallel

component that provides similar services to the Results Browser.

The Notification Manager gathers the list of Smart Agents marked for notification,

and periodically polls the associated servers for new information. “New” is defined as “since

the last poll [or query].” Each time the poll responds, it includes a timestamp indicator that
the Notification Manager must persist, associated with the Agent. '

The user interface associated with configuring the Notification Manager is preferably
implemented in coordination with the Agent Tree View. This enables notifications .
(e.g., 2 “Notify” popup menu option of each Smart Agent). The Notification Manager may
also support alternatives for notifying the user when there are new results available.vS(r)me
options include a display style (e.g. bold, colored, etc.) for the Agent in the Agent Tree View,
a reminder dialog, audio notification, or more exotic actions like email, IM or SMS
notification. |

Client-Side Security. Client-side security issues relate to extension code and Skins.
The Skins are preferably XSLT, but may also support script. In addition, the generated
HTML may include references to ActiveX components and behaviors. The presentation
sandbox may include security restrictions that prevent Skins from running potentially
malicious code via scxiipt. For example, the implementation may completely disallow any
unsigned code (including ActiveX and DHTML behaviors).

All client-server communication with Agencies are preferably hidden from the
published interfaces (for Skins), which third parties will customize to provide custom Skins.
By isolating the functionality outside of the primary client runtime, the risk of security

compromise can be reduced.

287

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Core User Interface Components
Agent Tree View. This is a Shell Extension Tree View that supports much of the

core user interface for controlling and invoking Agents.

Semantic Environment Browsing User Interface. This provides user interface to
allow users to browse the Semantic Environment. An example of this is the “Open Agent
Dialog.” This complements the Agent Tree Vi‘ew, which also displays a hierarchical view of
the namespace (see screenshots). |

Agent Inspector. This provides user interface to view the properties or edit (in the
case of user-created Smart Agents) an individual .Agent, Blender or Agency.

Browser Host. This is preferably a “wrapper” on the semantic browser core (e.g., the
Internet Explorer browser runtime), which allows the presentation of a custom view of the
Agents, Agencies,‘ and Blenders in the Agent Tree View. It preferably does not have any user
interface itself, but is a bridge component between the Shell Extension and the Browser
Framework. This component is also preferably responsiblle for coordinating certain browser
functionality with the Windows Shell user Interface, including in particular the navigation
(“back/forward”) mechanism, in order to provide a seamless “back/forward” user experience
(wherein the user only has to deal with one “back/forward” history list).

Core Preferences Ul This provides a user interface for preferences related to
Semantic Environment, server, persona and Agent management, as well as any other
miseej‘laneous preference settings. This preferably includes primitive property sheet dialog,
possibl‘y divided up into separate s;heets by functional area. In the preferred embodiment, this
should be‘a tabbed dialog user interface. .,

Skih Preferences Ul. This provides a user interface for preferences related to Skin
management. This is preferably a property sheet dialog. The list of available Skins should be
presented as a list, for selection. This user interface allows users to set the current Skins, as

distinct from the default Skins. It preferably allows users to make the current Skin be the

288

10

15

20

25

WO 2004/075466 PCT/US2004/004674

default. For per-Agent Skin preferences, this preferably allows users to select a Skin for the
currently selected or opened Agent.

Notification UL The user interface associated with configuring the Notification
Manager is preferably implemented in coordination with the Agent Tree View. The
Notification Manager may also support alt'ematives for notifying users when there are new
fesults available. Some options include a display style (e.g. bold, colored, etc.) for the Agent
in the Agent Tree View, a remir‘lderrdialog, audio notification, or more exotic actions like
email, IM or SMS notification. In the preferred embodiment, the user interface should
include a tabbed dialog (or equivalent) to allow users to select out of the aforementioned
notification schemes (and the like). |

. Sereen Saver. The user interface preferably provides a special modality to the
Resulté Browser that function like a screen saver, filling the screen in a theater—modéy display.
Skins could emphasize a dynamic display that can leverage a larger screen area, but could
also use larger fonts and more widely spaced layout.

Browser Framework

Results Browser; The Results Browser is responsible for displaying the results of
queries, and the information on any local resources opened. The Results Browser preferably.
obtains one or more XML files from the Query Manager and merges these into a single XML
file that represents a list of objects. The list itself may be filiered or sorted as an initial step.
The list as a structure is tlransformed by a special class of Skin (an XSLT transform sheet,
possibly including some script) that handles lists. The list-Skin creates the primary DHTML
(or the like) structure, e.g., a list, a table or perhaps a timed sequence. Object Skins manage
the individual DHTML items that preseﬁt the information for each object instance. List-Skins
may handle the dispatch of individual object Skins (mapping object class to Skin), but the

Results Brower preferably provides default mappings of class'to Skin for simplicity.

289

10

20

25

WO 2004/075466 PCT/US2004/004674

Users may prefer a given form of presentation, and may choose default S}(ins (both
for the list as well as for object classes). The original query (i.e. the SQML) may alLéo include
parémeters that indicate which Skins should be used (especiaﬂly which list-Skin). These will
be passed to the Results Browser along with the results. The Results Brower uses the

facilities of the Skin Manager to select the right Skin to apply. Different rules may be

 employed for how user preferences and Agent (author) preferences are combined and

pfioritized.

When query results are composed of multiple distinct XML files, the Results Browser
must merge these into‘ a single XML document to provide a seamless user experience. The
preferred embodiment provides for handling additional results dynamically. This ‘dynamic
update mode is preferably implemented by using a different template or perhaps a script
method within the XSLT template. Alternatively, the list Skins may require a behavior (or
local runtime component) to manage the logic of adding to the document without disturbing
user context. |

Query Manager (or Client-Side Semantic Query Processor). The Query Manager
is responsible for handling the communication with the server(s), executing the requests for
information and gathering the XML results. The resulting XML is passed to the Results
Browser for presentation to users.

The Query Manager preferably provides the services to support the Smart Lens
functionality. When a Smart Lens request is made, the results are returned as XML and are

passéd"to the Results Browser, preferably marked to indicate that they are Smart Lens results

that provide individual services to fulfill the query requests.

e SQML Interpreter. This component must decompose passed SQML into a set of
requests, possibly with linked resources. Each request or resource link resolves to
a resource with an associated protocol (e.g. HTTP, or one of a number of local
pseudo-protocols like outlook: or document:), and is dispatched to the associated

290

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

protocol handler. A given SQML file may include a mix of network and local
resource types.

« Resource Handler Manager. This is preferably a central registration mechanism
for resource handlers. It is a minimal layer that associates protocols and pseudo-
protocols with handlers, and simplifies the dispatch of resource requests.

¢ Resource Handlers. These are components that encapsulaté the specifics of
accessing the resources from a given “server.” A resource handler does not
resolve any linked resources. This is preferably the responsibility of the SQML
Interpreter (i.e. the SQML Interpreter will have already resolved linked resources
and provided the associated meta data as part of the resource request to this
handler). When the resource is Semantic Web service, the component preferably
bundles up the request and issues it via http. When the resource is a local resource
(e.g. a document: or Outlook: resource), the resource handler handles the resource
directly. For documents, the resource handler passes the document (a file: URL)
to the semantic meaning extraction, summarization, and categorization engine to
extract meté—data. For email, the resource handler extracts messages from the
exchange server, or local .PST files. Note that when there are links on a local
resource, the local resource handler must perform the processing that filters
results for semantic relatedness. This may be custom to the handler for efficiency,
but a central, generic Relatedness Engine will provide services for most cases.

o Relatedness Engine. This provides a place to gather the logic for comparing

| objects for relatedness. The comparisoﬁ is preferably dependent on the mix of
. schemas involved, but is otherwise a simple operation—given two objects,

provide a measure of relatedness.

Filter/Sort Manager. The Filter/Sort Manager supports the application of filters and
sorts to the listé of results provided to the Results Browser. The Filter/Sort Manager
leverages the services of the Filter/Sort Preferences component to obtain user preferences for
current séttings. The main function of this component is to resolve general preferences,
per-Agent preferences, and any settings defined in the actual results (this may or may not be
supported). This component is notified by the Filter/Sort Preferences component when users

change the currently applied filters and sorts. Because the associated user interface is part of

291

10

15

20

25

WO 2004/075466 PCT/US2004/004674

.a tool bar associated with the Shell Extension (i.e. its right-pane View), but the application of
the functions happens in the Results Browser space, the control is typically indirect.

Lens Mode. When a Smart Lens is invoked, the Results Browser must generate Lens
requests (queries) for objects that users choose. The queries are asynchronous so that users
can select Smart Lens queries for various objects and view the results as they are returned.
A suggested user interface for this is to reserve some real-estate for a Smart Lens icon. When
i Smart Lens mode and the user clicks (or hovers) over the Smart Lens icon, a query is
1ssued and the icon changes to indicate that the query is'in progress When r;sults are
retumed they are handled by the Results Browser and dedlcated Smart Lens templates in the
Skins, and the Smart Lens icon for an object changes to indicate that results are available.
Clicking or hovering over the icon again will display the Smart Lens results in a Skin specific
manner (see sample Smart Lens pane user interface). If the query is returned quickly enough,
then the whole function preferably feels like a popup activated by a hover or single click.

Deep Info View. If Deep Information is not available in the original results, this
component generates the associated query. The query is preferably asynchronous. When .
results are returned to the Results Browser, they are‘processed through the appropriate Skin
(using a special Deep Information template for each Skin), and the resulting HTML is
incorporated into the results document under the associated object. The primary Skin for the
schema inserts a Deep Information element in the HTML for the object so that the Results
Browser knows where to incorporate the results. When Deep Information is available
(whether as part of the original results or in response to a Deep Information query), the Skin
either displays it directly or will indicate that it is preéent, and.some Skin-defined user
interface will allow users to enable the displa_y (e.g. as a popup window).

Context Info Manager. For objects currently displayed in the Results Browser,
certain notifications are preferably provided by default. Two classes of new or additional info

will be provided to users:

292

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

1. Additional results that were added to the server since the user made the original
request. This is especially useful for things such as headlines or active email
threads. The results are handled by the Results Browser, by inserting the new
objects into the view. '

2. Context Templates and related information that would be of interest to the user.
This is generated by additional queries to a specific Agent (Smart Agent, Special
Agent, Blender or Agency), using a particular object as context. The results are
handled similarly to the way that Deep Information View and Smart Lens Mode
results are handled, by processing the XML returned from the query, and inserting
the resulting HTML into the existing HTML for the object. The Skin controls the
display mechanisms and UL An example of related information is “Breaking
News” associated with the object.

Skin Mahager. Maintain user preferences for list Skins, object Skins, and
dependencies betweén list and object Skins (certain object Skins may only make sense for a
given list-Skin). The Skin Manager also maintains parameters for each Skin that indicate
constraints for the Skin, e.g. how much screen real-éstate it requirés, or modalities it best
applies to. Considerable intelligence is preferably built in that assists the Results Browser to
choose Skins for a range of screen and window size constraints, as well as for modalities,
accessibility, language and other constraints. Initial versions will likely be much simpler.

: Skin Templates. This describes the structure of a Skin and how it is applied from
within fhe Results Browser. A Skin is preferably XSLT templates that convert thearesults
XML to XﬁTML (and/or other languages like SVG) or proprietary presentation platforms
like Flash Mk and ActionScript. The templates can also insert styling information, e.g. for
CSS styling. The resulting presentation code (e.g., XHTML) can restrict the inclusion of
code, for security reasons. Framework code in the Results Browser invokes the Skins. The. |

preferred embodiment includes the following classes of Skins:
e List Skins (or layout Skins). A list Skin is used to transform a list of objects
returned from a query into some overall presentation structure. This may be a
simple list, a table, or a timed sequence of slides. List Skins are not schema or

object specific, although they may only support certain Skins, which can work

293

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

within the constraints that the associated presentation form defines. E.g., a list
Skin that defines a table layout may require, or prefer, object Skins that can

produce information in a small rectangular format,

e Object Skins. Object Skins are schema specific, and generate the presentation for
an individual object of a given information object type (of information class). It is
possible to define a Skin for the generic super-class (or any other super-class) that
can serve as a default Skin for a range of derived classes or subclasses
(presumably by omitting some details). |

e Context Skins. Context Skins are tied to a particular Context Template, and
generate the presentation that will most effectively convey the context indicated
by the template.

¢ Blender Skins. Blender Skins are designed to present the results from Blenders.
These Skins should allow the user to view the results via the Agents contained in
the Blénder, via information object type, or via a merged view that displays all the
results as though they came from one source. A

. Skins preferably model constraints such as modality and presentation display area by
handliﬁg tllle constraints (passed as parameters either statically or dynamically by events
within thc;, browser core itself). This is preferably supported by imposing a restriction that list
Skins must specify only acceptable object Skins. In an alternative approach, object Skins
may be designed‘ fora given list Skin, and the Results Browser/Skin Manager chooses object
Skins for the current list Skin.

List Skin Details. Users may choose a single list Skin for the current view and make
it the default. List Skins may also be associated with individual Agents, in which case the
generic default is overridden. The Results Browser invokes the ligt Skin to process the list of |
results, although the list Skin preferably does not actually handle the individual objects. It
creates some per-object instance in the framework presentation (e.g., a timed entry in a
sequence, or a cell in a table, or an item in a list), and then the object Skins will fill in the
details.

Object Skin Details. The object Skins convert a p'artic:\ilar schema to XHTML.

Support for asynchronous query results for things like Deep Information and Context

294

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

Template information are provided by invoking associated templates from the Results
Browser (through the DOM) on the query results' XML, and then inserting the resulting
XHTML into the results document through DOM interfaces. There are preferably several

indiviaual templates within an object Skin, including' i

. Primary schema template. This is the main plece that generates XHTML, for
default display. This must create the wrappers for Deep Informatlon Smart Lens
information, Context Template information content, and any script that provides
user control over the associated display:.

* Deep Information template. This template handles the meta-information for
Deep Information. It may be called for inline deep info provided with original
results, or it may be called to handle asynchronously requested Deep Information.
Either way, it preferably generates XHTML in some form, which is inserted under
the wrapper element for Deep Information. The insertion probably happens in .
XSLT for inline deep info, and is effected through DOM insertion for Deep
Information query results. '

* Context information template. This template handles the results-information for
context information query results. It generates XHTML in some form, which is
inserted under the wrapper element for live info. The insertion is effected through
DOM insertion for Deep Information query results.

o Smart Lens information template. This template handles the results-information
for Smart Lens query results. It generates XHTML in some form, which is
inserted under the wrapper element for live info. The insertion is effected through
DOM insertion for Deep Information query results.

In the preferred embodiment, the template cannot modify the othef contents of the
XHTML (even for the same object), so it will be up to the Results Browser to coordinate the
user interface chang'es that indicate when Deep Information, live information or Smart Lens
results are available. The framework requires certain icons to be used (also for consistency),
and for-these to have regular names or element types, which will allow the Results Browser
to ﬁnd and modify them as needed. In addition, the Results Browser can create and raise
events to indicate the state changes. The template-generated script can respond to these

events, and display the associated information as desired.

)

295

10

15

20

25

WO 2004/075466 PCT/US2004/004674

Default Skins. In the preferred embodiment, a set of default Skins is provided. This

preferably includes Skins for the basic object classes and a small set of list-Skins that allow a

variety of views of query results. Preferable list-Skins include:

A detailed list display (like the Windows Explorer details view)
A tabular Icon view (again, like the Windows Explorer Icon view, but somewhat
richer) |

A timed presentation view.

e. Client Framework

In the preferred embodiment, the system client includes Shell Exténsions, a Presenter,

and Skins used by the Presenter to display information with context and meaning.

Shell Extension. An Explorer Shell Extension is a Microsoft Windows software

component that extends the Windows Shell with custom code. Shell Extensions allow

applications to use the Shell as a custom client, and also provide services such as clean

integration with the desktop, the file-system, Internet Explorer, etc. Examples of default shell

extensions include “My Documents,” “My Computer,” “My Network Places,” “Recycle

Bin,” and “Internet Explorer.”

The use of a Shell Extension in the preferred embodiment of the present invention has

several advantages:

1.

It providés a very clean way to provide a user experience that seamlessly‘
integrates with how knowledge-workers currently browse for information. In turn,

this obviates the need to develop a proprietary client and allows for non-standard

integration with Microsoft’s Internet Explorer, “My Documents,” etc.

It embraces Today’s Web and provides a migration path for the transfer of contént '
in Today’s Web to the Information Nervous System of the present invention. For

example, users preferable drag and drop documents from, their hard drive (via

- Microsoft Explorer) or from the Internet (via Internet Explorer) into remote

Agents on the Shell Extension of the present invention. This is difficult and
non-intuitive with a proprietary client. Nevertheless, the present invention

contemplates portability to a proprietary client or to the equivalent of Shell

296

5

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

Extension on non-Windows operating system and operating systems for

non-personal computer devices.

The Shell Extensions of the present invention provide a view of users’ Semantic

Environment (e.g., history, favorites and other views). In the preferred embodiment, the Shell

Extension provides for the following:

1.

Allows users to open an Agent, a document, a folder, or an address on the
semantic browser’s Semantic Environment. For an Agent, the client displays a
custom “Open Agent” dialog box that allows users to browse the semantic
browser’s Semantic Environment. This preferably includes Agents in users’ My
Ageﬁts list, Agencies on the Global Agency Directory, Agencies on the local area
network (announcing via multicast), ‘and Agencies on any custom Agency

‘ Directory that users have configured. [INSERT RELEVANT SCREEN' SHOTS

ON UI] Opening an Agent results in the client displaying the results of the query
of that Agent. Opening a document opens the XML metadata for that document,
consistent with the schema for the document object type. Opening a folder opens
the XML metadata for a file-system folder., Users are able to open the immediate
or deep contents of the folder via the folder itself. Opening an address allows
users to enter any address to be opened by the client framework. This includes
URLs (which open the XML metadata for the document), documents on the file-
system, Agents, or objects (see “URL Naming Conventions” below). In the case
of Agents, the Agent URL is preferably entered as follows: Agent://<Agent
name>@<Agency name>,<domain name>. This is analogous to the http://<URL>
naming convention for HTTP URLs. The Agent:// prefix is required in this case
because the Open Address option can open any address. In the case of the “Open
Agent” option, users preferably do not need to add the prefix; the client
framework automatically canonicalizes the URL to include the prefix. This is
similar to how users are able to enter “www.foo.com” into Today’s browser
without the qualifying htip:/ prefix. -

It is anticipated that the client allows users the ability to open other objects, for
example, Microsoft Outlook .PST files.

Allows users to browse, subscribe, and unsubscnbe to or from Agents on a given
Agency that supports User State.

t

297

10

15

20

25

30

35

WO 2004/075466 PCT/US2004/004674

. .
Allows users to save invoked Agents or semantic query results into the
My Agents list.

.- Allows users to create Blenders and to add and remove Agents to and from

Blenders (including via drag and drop).

. Notifies users when there are new Agencies on any of the Agency directories (for

example, the Global Agency Directory, the Local Area Multicast Network or any
custom Agency Directories) since the last time they checked

. Notifies users when there are any new Agents on any particular Agency since the

last time they checked :

Provides drag and drop access to relational semantic queries for objects in the
Semantic Environment. The Shell Extension allows users to drag and drop a
document from the Semantic Environment (either on a local drive, the network
neighborhood, the Intranet, or the Internet) to a shell folder representing an Agent.
This triggers a remote procedure call to the XML Web Service for the given
Agency with the document metadata as the afgument.

Provides “paste” access to objects copied to the system clipboard. The present
invention uses the system clipboard to allow users to copy any object for later
access. In addition, the clipboard allows users to copy objects from other
applications, for example, Microsoft Office applications (e.g., email items from
Outlook), from multimedia applications, and to copy data from any application.
Allows users to select an Agent as a Smart Lens. A Smart Lens allows users to
view objects in the results view based on context from an Agent or any object that
can be copied to the system clipboard. For example, ordinarily, if a document
object is in the results view and users hover over the link representing the object,
the object metadata is displayed. If, however, a Smart Lens is selected (for
example by pasting it onto the results sheet), and users hover over the object,
information that relates the object in the Smart Lens and the object undemeath the

-cursor is displayed. For example, if users copy “People.Research.All” to the

clipboard and paste it as a Smart Lens, then hover over a document, metadata may
be displayed in a balloon popup as follows: “Found 15 p\eop]e in
People.Research.All that are experts on this document.” Other examples are
“Found 3 people that might have written this document” and “Found 78 email
méssages relating to this object posted by people in People.Research.All”. Users
decide whether to invoke any of the links in the metadata in the balloon popup. In
an alternative embodiment, the popup may be displayed in a sidebar and does not

298

10 .

15

25

30

WO 2004/075466 PCT/US2004/004674

require a balloon. When a Smart Lens is pasted onto the clipboard, the Shell
Extension preferably communicates wiﬂm the system ,and changes the mouse
cursor to reflect the name of the selected Agent. The Smart Lens preferably has
global scope because it is copied from the clipboard. In other words, for example,
all instances of Windows Explorer and Internet Explorer “see” the Smart Lens
and respond to its actions. In the preferred embodiment there is a Smart Lens tool
in the Information Agent toolbar that applies to the current object on the clipboard
(e.g., Agent or other object). By default the Smart Lens tool will be deselected
once a link is clicked in the system. Users are preferable able to “pin™ the Smart
Lens. When the Smart Lens is pinned, the Smart Lens remains active until users
explicitly deselect'it. In the preferred embodiment, to pin a Smart Lens, users
select the “Paste as Smart Lens and Pin” tool on the toolbar.

10. Allows users to “tear-off” the results of an Ageﬁt from the Shell Extension and
display it in docked view on the desktop. In this view, the Agent results browser
window acts as a semantic ticker. This feature allows users to contmuously
display the semantic information while continuing t6 do other work.

11. AlloWs users to enable an Agent to be used as; a screen-saver. o

12. Allows users to browse and invoke available Skins on the Global Agency
Directory. ‘

Presenter, The Presenter is a set of local components (é.g., browser plug-ins) that

take semantic queries from scripts (or other plug-ins) and paésl th\em off to a KIS Agency
XML Web Service. The present invention translates the results of semantic queries and
passes XML to other behaviors or scripts for eventual pfesentation to users.

In the preferred embodiment, the Presenter is invoked by the Shell Extension with an
SQML file. The éysterh preferably communicates with the XML Web Service directly. The
system resolves the SQML file and invokes calls to open XML infom}ation sourced locally
or remotely (via XML Wel‘)' Sérvices on Agencies referred to in the SQML file).
Alternatively, if an Agent URL is passed to the system, the Presenter directly opens the URL
by invoking it via a call to the XML Web Service of the Agency on which the Agent is
hosted. In the preferred embodiment, the system calls the appropriate method with the

appropriate semantic object type. Examples of default semantic object types are

299

10

15

20

25

WO 2004/075466 PCT/US2004/004674

SEMANTICOBJECTYPEID_EVENT, SEMANTICOBJECTTYPEID _EMAILMESSAGE,
etc, which are defined in the header file (semanticruntime.h). The preferred embodiment
allows registration of new semantic object types via the RegisterSemanticObjectType API.

This semantic query processor on the Agency returns the appropriate XML results using the

~ semantic object type as a filter.

. In the preferred embodiment, a Skin accofding to the present invention (see below)

‘uses XSLT (and/or script) to transform the XML returned from the framework (en-route

from the XML Web Service) into DHTML. The Shell Extension allows usefs to select a new

Skin for the current query.

Skins are preferably object-type'speciﬁc, Context Template specific (for Special
Agents) of Blender specific (for Blen’ders).‘Skin; can also be customized based on the
semantic domain name/pvath or ontology of the Agent, and based on other attributes such as
the user’s persona, condition, location, etc. Each Agent is configured on an Agency with a
default Skin. The present invention further contemplates custom Skins that may be published
onto the root Agency (e.g., on the Global Agency Directory). The client preferably
downloads the Skin either from the Agency for the declared Agent or from a central server
(e.g., the Global Agency Directory), and applies it to the current presentati\on. The client
optionally includes user preferences to ignore Agent Skins or to coﬁﬁne them to a porﬁon of
the user interface. }

Aside from the Skin type:(e.g., object Skin, list/layout Skin, Context Skin, Blender
Skin, etc.), in the preferred embodiment, Skins are categorized as follows:

.o Design template Skins
e Color template Skins
e Animation template Skins

Semantic Skins are preferably required to be interactive, except when they are

displéy‘ed as part of a tear-off (see above) or screensaver. Each Skin allows users to seck to a

300

10

15

20

25

WO 2004/075466 PCT/US2004/004674

particular point in the “semantic presentation.” For example, if the Skin initially displays

only the first 25 items, the Skin must have a seek-bar (or other user interface mechanism) to

allow the user to seek to the next 25 items, to fast-forward, to rewind, etc. Some Skins have a
“Real-Time Mode” option. In this mode, the Skin continuously fetches new objects from the
XML Web Servif;e (via pull). Skins are responsible for polling the XML Web Service for
new information based on the schema of the desired objeéts; In the preferred embodiment
there are no notifications to the client since the Agency does not maintain any client-specific
state for scalability reasons.

Skins optionaliy include a real-time mode. These Skins are required to be intelligent
in that they must cycle through (i.e., presént; o‘rder or highli ght) objects based on priority. For
example, if the Presenter relays informatioﬁ indicating that a new object is posted on the
Agency, the Skin immediately displays/reorders/highlights this and continues the
presentation of the remaining objects. The Presenter determines the ordering and the Skin
deals with dynamism given various sort and filter settings. This creates the perception that
the semantic presentation is occurring in real-time. In the preferred embodiment, this occurs
when there is new data that users are allowed to access using Skins. If the list is time-sorted,
the reél-time presentation may confuse users due to jumping the user interface into an
interactivé mode. A user preference option in some' modes(e.g., screen saver mode)
automaticaliy resets tll;e Skin to display the new data (e.g. scrolling to the t<.>p‘ of a sorted list
when new data is inserted at the top of the list).

In an alternative cmbodiinent, Skins are designed to customize their presentation
based on the amount of available presentai.ion window. For example, a Skin may éhange
from static mode to dynamic mode by displaying information using fade-in and fade-out if,
for example, the presentation window is relatively small. Skins are preferably modal A

depending upon the expected level of user interaction. For example, a screen saver works

_ differently from a browser; a docked view is similarly different (not only because it is

301

10

15

25

WO 2004/075466 PCT/US2004/004674

smaller, but because it is assuﬁwd to be a kind of background view rather than a focus of user
interaction). When a view is minimized or hidden, an aiternate mode méy be used (especially
to indicate new information). Examples are audio notification, reminder-like alerts, start-bar
show and blink (like outlook reminders). Agents may be used to send email, telephony or
Instant Messenger (IM) notifications. In an alternative embbdiment, the present invention
contemplates an Agent that posts to a Web site (e-g., automatic HTML content generation for
e'\'lént“calendars). |

Alternatively, Skins may generate audio-visugl information. For example, a
text-to-speech Skin may read out an email 6bject. This featﬁre has greét potential value for
disabled ﬁsérs and for users of auto-PCs, etc., as well as other uses.

In the preferred embodiment, the Skins framework exposes the following services:

1. Methods to open an SQML-based semantic query. This can be a local SQML
document, an Agent, etc. :
Methods to open an Agent URL directly.

3. Methods to browse the Information Agent Semantic Environment.
Methods to interface with the system clipboard using customizable clipboard
formats. :

5. Methods to persist the current Skin for a given query or for a given semantic class
ID.

Skins. As ‘introduced above, Skins are presentation templates that are used to
customize users experience on a per—Agen\t basis. In the preferred embodiment, Skins are
XSLT templates and/or scripts that are hosted on a centra}ized server. Skins according to the
present invention preferably generate XHTMLATIME code (e.g., for Presenter display, text-
to-speech, Structured Vector Graphics (SVG) via a plug-in, etc.) and access various system
services. In the preferred embodiment, Skins support thé following features:

1. Display some or all of the fields corresponding to the XML schema of the
object(s) being displayed. The Skin optionally provides users a way to uniquely

302

10

15

25

30

35

WO 2004/075466 PCT/US2004/004674

distinguish objects in a returned set or provides users with any conventional

access means, for example, filename, URL or personal name (for people).

. Display a user interface indicating whether the object is understood by the host
“Agency. Each object preferably includes an understood” field that mdlcates this

information.

. ‘For the semantic object type SEMANTICOBJECTTYPE OBJECT the Skin

optionally displays the raw object metadata or displays the metadata for the XML

schema for the class-specific objects that the raw objects represent. For Skins that

dlsplay class-specific XML schema for queries that refer to raw objects, the Skins
must be “smart” to dlsplay the class-specific information in different panes.

Preferred ways of accomplishing this uses frames, tabbed boxes, or other user

interface techniques. Since‘every semantic query points to raw objects, the Skin

preferably either loads the' query with the filter

SEMANTICOBJECTTYPE_OBIECT (which simply returns raw objects) or the

required object type ID. In the preferred embodiment, in order to prepare the

presentation of an object list with raw objects of many classes, the Skin should -
first:

e Get the object query

o For each semantic object type, determine how many objects exist in the Agent
resource for the given object type. This is preferably obtained by calling the
Agency XML Web Service method GetNumObjectsOfClassInAgent with the
Agent URL and the object type ID name (email, document, event, etc.) as
argument. The XML Web Service returns the number of objects in the Agent,
satisfying the object type ID filter.

» Depending on how many object types there are in the Agent query, the Skin
displays frames or other user interface that are appropriate for the number of
object types. In the preferred embodiment, when the Skin is ready to load the
object type-specific metadata, it calls the Agency’s XML Web Service
method ExecuteSemanticQuery with the Agent URL and the semantic object
type as the arguments ‘

4. When users hover over an object, more metadata for the object is displayable.

If a Smart Agent Smart Lens is selected, the Information Agent-of the present
invention displays contextual metadata that maps the object in the Smart Lens
with the object underneath the mouse. In one embodiment, the Smart Lens applies

to objects displayed within the Presenter. In alternative embodiment, the present

303

10

15

25

30

WO 2004/075466 PCT/US2004/004674

invention allows the Smart Lens to be invoked in other applications (e.g.,
Microsoft Office applications, the desktop, etc.). This involve installing system
hooks to track the mouse and invoke a Smart Lens application when the mouse
moves anywhere iri the system. The “hook” is called on all mouse events and the
hook will also capture the mouse. The Smart Lens may alternatively be invoked
asynchronously. In this embodiment, anytime the Presenter displays new results,
it checks the clipboard to see if there is any semantic Smart Lens information
present. In the asynchronous embodiment, the Presenter automatically caches all
the Smart Lens results for all objects in its view. It displays an icon beside each
object it presents indicating that there is context-specific related information
therein. In a preferred embodiment, users are able to invoke a Smart Lens for any
object in the view.

.. Breaking Information. Each object preferably displays a user interface

indicating whether there is “breaking information” relating to the object. This is
the semantic equivalent of “breaking news.” The user interface is preferébly
presented to indicate the criticality of the information, yet must not be too
intrusive in case users do not want to see the information. For example, the user
interface may be shown as an icon that slowly blinks at a corner of the object
display window. When users hover over the icon, metadata on the “breaking
information” is displayed. In the preferred embodiment, “breaking information” is
implemented by an implicit Special Agent that invokes calls to all Agents using
the Breaking News Context Template.

Each object is preferably dxsplayable with a user interface 1ndlcat1ng whether the
object has any Annotations. This information is included as a field i in all query
results for all objects. '

Preferably, each object is displayable with a user interface indicating whether
there is related information on any predefined Context Template or Special Agent
on the client. This preferably includes Special Agents created by users, as well as
default Special Agents (e.g., installed by the client). In the preferred embodiment,
Context Palettes for the Context Templates are di§played with the user having the
option of displaying one or more of the Context Palettes, hiding them, scrolling
them (in order to navigate the Context Palettes), etc. Context Templates and
Context Palettes are discussed in further detail below. In an alternative
embodiment, Agency priorities preferably include the following:

304

10

15

20

25

30

WO 2004/075466 PCT/US2004/004674

o Critical priority. This is the highest priority. For example, for a given
document, this flag will be TRUE (on the Agency) if a related email message
was just posted (in this example with a few minutes) or if there is an
upcoming event that is imminent. ‘ d

e High Priority. This is the next highest priority. The user i‘nterface feedback’
preferably makes it clear that the priority is high enough fo warrant users’
attention, albeit the feedback must not be very intrusive. The priority is
optionally different for different Users, e.g., if there is an evént that is local to
users the priority might be higher than if the event is remote (particularly if
there is no way for the remote user to participate in the event).

e Medium Priority. This may merely indicate that there is information that
users should look at if they have the time. The user interface feedback must
make this clear.

e Low Priority. This may indicate that there is related information that is
germane but not recent. 7

The four priority virtual Blenders are preferably installed by default on the client.
These Blenders aufomatically aggregate information from corresponding priority
Agents on each Agency in the My Agencies list. There is preferably default
priority Agents on every Agency. In the preferred embodiment, relational
semantic queries take the context and the user into consideration.

In the preferred embodiment for each Context Template (or the currently selected
Context Template), the Presenter enumerates the Agencies that users add to their
My Favorite Agencies list or the recent Agencies, and queries appropriate
Agencies using dynamically generated SQML to find out if there are any objects
that relate to the current object based on the Context Template. If any of the
Agencies in the favorites or recent lists are not accessible, the user interface

preferably transparently handles this by ignoring the Agency. In the preferred

. embodiment, by default, the dynamically generated SQML is created by indexing

the SQML of the currently selected object’s SRML and inserting the resource in

.the SQML as a link filter in the SQML of the Context Template (preferably using

the default predicate “relevant to™). This intelligenﬂy handles the mapping of the
object type of the currently selected object to the semantics of the displayed
Context Palette. For example, if the currently selected object is a document, the
Headlines Context Palette uses the SQML based on a derivation of the SQML for

305

	Abstract
	Bibliographic
	Description

