A manufacturing method of a container includes mixing materials, coating and foaming. Mainly, a foamed layer (3) with a hollow portion (2) is formed by foaming on the outer surface of the basic material of the container, and patterns and characters are printed.
(57) Abstract(continued):

at least in the hollow portion (2). Hence the patterns and characters printed in the hollow portion (2) are outstandingly displayed and the high-low fall character of the foamed layer (3) is exerted to achieve a tridimensional effect.
ABSTRACT OF THE DISCLOSURE

A method of the present invention includes blending, coating, and foaming, processed for disposing a foam layer on an outer surface of a container. The foam layer defines a non-coated portion which is recessed and printed with figure. Thus, the figure is visually emphasized, and stereoscope effect is provided.
CONTAINER PRODUCING METHOD AND CONTAINER PRODUCED BY THE SAME

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates to a container producing method and the container produced by the same, in particular to the container which is formed with foam layer on the surface thereof.

Description of the Prior Art

Conventional disposable container, such as disposable paper or plastic cup, is widely used in our daily life. Especially, drinks retailer usually sells fresh drinks contained in such disposable cups. These cups are usually printed with patterns to show the contents and/or marketing information.

In practical, the cup should be provided with heat isolation function in containing hot drink, or user would be burned.

15 Therefore, there are containers coated with foam layer to mitigate the heat conductance, as disclosed in Taiwan patent applications whose application no. are 94143974 and 96102426. Containers revealed in the mentioned applications are provided with foam layers directly coated on surfaces thereof. Moreover, a United State patent US 5,952,068 provides another cup whose surface is coated with binder firstly, and is coated with heat isolated layer consisting hollowed particles additionally.

In the patent documents mentioned above, containers are provided with heat isolation function. Nevertheless, another issue is raised in difficulties of printing on
surface of the container. In Taiwan patent applications 94143974 and 96102426, material is blended with pigment before surface coating. Or, printing is processed after coating and foaming. However, quality and accuracy of printing would seriously diminished by roughened surface of foam layer. Boundary of the image would be vague and dulled. In addition, the image printed on the surface of the foam layer can build only planar image. On the other hand, United State patent US 5,952,068 also silences to how to make the patterns accurately print on a non-smooth surface, especially one with expandable layer. It is predictable that the printing problems would occur to the cup provided in US 5,952,068.

The present invention is, therefore, arisen to obviate or at least mitigate the above mentioned disadvantages.

SUMMARY OF THE INVENTION

The main object of the present invention is to provide a producing method for container which is full of stereoscopic effect.

To achieve the above and other objects, a container producing method of the present invention includes the following steps:

Material blending: preparing a coating material by mixing and blending a binder and a thermo-expandable powder consisting of a plurality of thermo-expandable microcapsules, each thermo-expandable microcapsule consisting of a thermoplastic polymer shell and a low-boiling-point solvent wrapped by the thermoplastic polymer shell, the binder being selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyurethane resin and a mixture thereof;

Coating: coating the coating material on a part of an outer surface of a substrate
of the container to form a coated layer, at least one non-coated portion being formed on the container, the non-coated portion being defined by the coated layer; and

Foaming: heating the coated substrate till the coated layer foaming so that the coated layer becomes a foam layer, the non-coated portion being thus defined by the foam layer instead;

wherein a figure is printed on the non-coated portion.

Thus, the figure can be printed fine since the figure can be directly printed on plastic or paper substrate of the container. In addition, the bulged foam layer can enhance stereoscopic effect of the figure so as to emphasize the figure.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a flow chart of a method of the present invention;

Fig. 2 is a schematic drawing showing coating material which is formed with non-coated portion of a first embodiment of the present invention;

Fig. 3 is a profile showing a non-coated portion and a figure printed on the non-coated portion of the present invention;

Fig. 4 is a profile showing a coated layer and a figure of the present invention, wherein the figure is printed before coating;

Fig. 5 is a profile showing a coated layer and a figure of the present invention, wherein the figure is printed after coating;

Fig. 6 is a perspective drawing showing a container of the present invention;

Main components:

2: non-coated portion;

3: foam layer;
4:main body.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Please refer to Fig. 1. A container producing method includes the following steps:

Material blending: preparing a coating material by mixing and blending a binder and a thermo-expandable powder consisting of a plurality of thermo-expandable microcapsules, each of which consists of a thermoplastic polymer shell and a low-boiling-point solvent wrapped by the thermoplastic polymer shell. The binder is selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyurethane resin and a mixture thereof, and the binder can be either water soluble resin or oleoresin.

Coating: coating the coating material on a part of an outer surface of a substrate of a container to form a coated layer, and at least one non-coated portion being formed on the substrate, in which the non-coated portion is defined by the coated layer. The container can be made of paper, plastic, Styrofoam or the like, and which is adapted to be manufactured into the container. Said container may be finished product, such as a cup, a bowl, a disc or the like, or may be semi-finished product such as a paper reel and can be subsequently cut and assembled into a paper cup. Further, the coating material can be coated on the substrate of the container in the manner of rolling, spraying, dipping, printing, air knife, extruding, scraper applying or the like.

Foaming: heating the coated substrate and the coated layer till the coated layer foams so that the coated layer becomes a foam layer. Temperature of the heating is
determined by material chosen. The thickness of the foam layer is at least twice than that of the coated layer. Higher expansion rate of the foam layer could induce greater the heat isolation function and more conspicuous stereoscopic vision.

A drying step can be further included in the present method, in which the drying step is to dry the coated layer at a temperature lower than a foaming point, where the foaming starts, of the thermo-expandable microcapsules so that the coated layer can adhere to the substrate and becomes a non-sticky coated layer. As such, the coated container can be stored for later use, facilitating the product stock controlling. More specifically, the drying step is between the coating step and the foaming step.

As shown in Fig. 2 and Fig. 3, the non-coated portion 2 is printed with figure, which may be image, pattern, characters, or the combination. The figure is not limited to be printed in only the non-coated portion. The foam layer 3 may have printing figure, also. In addition, figures of the non-coated portion 2 and the foam layer 3 may be continuous. The figures may be printed before the coating step, after the drying step and before the foaming step, or after the foaming step.

Please refer to Fig. 4. In the embodiment that printing is processed before coating, printing can be processed easily since the substrate of the container has smooth surface. In addition, the coating material may be chosen from transparent material. Thus, the figure appears partially hazily, and partially clearly. Figure in the non-coated portion is then further emphasized.

In the embodiment that printing is processed after drying and before foaming, the figure on the coated layer would slightly expand during foaming, and pigment of the figure would slightly permeate into the coating material. Thus, chromatic aberration
between the figure of the non-coated portion and the figure of the foam layer would be created, inducing emphasis and stereoscope effects of the figure of the non-coated portion. Attraction of the container is then increased.

Please refer to Fig. 5. In the embodiment that printing is processed after foaming, the figure printed on the foam layer is vague and dulled. Hazy effect is then provided, inducing emphasis and stereoscope effects of the figure of the non-coated portion, also.

To elaborate, the invention intents to emphasis the figure printed on the container by bulged foam layer and recessed non-coated portion which are distributed appropriately. The figure is mainly or at least printed on the non-coated portion. Preferably, appearance of the non-coated portion corresponds to appearance of the figure printed on the non-coated portion. Thus, visual emphasis and stereoscope effects of the figure are enhanced.

Additionally, the pigment of the figure may be selected from thermochromic materials. If figure is printed on only foam layer, transformation of color of the figure would be unremarkable. The present invention has non-coated portion formed on the container. The pigment of the figure printed on the non-coated portion can proceed as a remarkable color transformation since the pigment can be heated or cooled by head conduction of the container. Thus, color transformation and heat isolation functions are provided simultaneously. Burning caused by hot drink is effectively prevented.

Please refer to Fig. 6. The container, such as a cup, includes a main body 4 and a base plate. The main body 4 is constructed by a substrate. The base plate is disposed
at a bottom end of the main body 4. A foam layer 3 is disposed on an outer periphery of the main body 4. The foam layer 3 is formed with a portion hollowed out, which is a non-coated portion 2 of the foam layer 3. The non-coated portion 2 is printed with figure whose appearance corresponds to appearance of the non-coated portion 2.

Thus, the figure and the non-coated portion are visually emphasized.

To conclude, the container is provided with visually emphasized figure without additional cost. Visual emphasis and stereoscope effects are achieved. Thus, the container is worthy for pattern design and valuable for marketing.

The embodiments described above are taken for illustrations only.
WHAT IS CLAIMED IS:

1. A container producing method, comprising the following steps:
 material blending: preparing a coating material by mixing and blending a
 binder and a thermo-expandable powder consisting of a plurality of
 thermo-expandable microcapsules, each thermo-expandable microcapsule
 consisting of a thermoplastic polymer shell and a low-boiling-point solvent
 wrapped by the thermoplastic polymer shell;
 coating: coating the coating material on a part of an outer surface of a
 substrate of the container to form a coated layer, at least one non-coated
 portion being formed on the container, the non-coated portion being
 defined by the coated layer; and
 foaming: heating the coated substrate till the coated layer foaming so that
 the coated layer becomes a foam layer, the non-coated portion being thus
 defined by the foam layer instead;
 wherein a figure is printed on the non-coated portion;
 the foam layer has a printing figure, the figure of the non-coated portion
 and the figure of the foam layer are continuous.

2. The container producing method of claim 1, wherein the figure is printed
 on the container before the coating material is coated on the container.

3. The container producing method of claim 1, wherein the figure is printed
 on the container after the coating material is coated on the container.

4. The container producing method of claim 1, further comprising a step
 between the coating step and the foaming step:
drying: drying the coated layer at a temperature lower than a foaming point of the thermo-expandable microcapsules so that the coated layer adheres to the container and becomes a non-sticky coated layer.

5. The container producing method of claim 1, wherein the binder being selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyurethane resin and a mixture thereof.

6. The container producing method of claim 4, wherein the figure is printed on the container before the coating material is coated on the container.

7. The container producing method of claim 4, wherein the figure of the non-coated portion is printed to the non-coated portion after the drying step and before the foaming step.

8. The container producing method of claim 4, wherein the figure of the non-coated portion is printed together with the figure of the foam layer after the drying step before the foaming step.

9. The container producing method of one of the claims 1 to 8, wherein an appearance of the non-coated portion corresponds to an appearance of the figure printed on the non-coated portion.

10. A container, produced by the container producing method of one of the claims 1 to 9, the container comprising a main body and a base plate, the main body being constructed by a substrate, and the base plate being disposed at a bottom end of the main body.
Material blending → Coating
 ↓ ↓
Figure printing Drying Foaming
 ↑ ↓
 ↓ ↓
 ↓ ↓
 ↓ ↓
Product

FIG. 1
1 printing patterns and characters
2 mixing materials
3 coating
4 drying
5 foaming
6 finished product