Office de la Propriete Canadian CA 2257309 C 2002/06/11

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 257 309
Un organisme An agency of

d'Industrie Canada Industry Canada 12 BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de dépot PCT/PCT Filing Date: 1997/06/06 (51) Cl.Int.%/Int.CI.° GOBF 17/30
(87) Date publication PCT/PCT Publication Date: 199//12/11| (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2002/06/11 RAQ, Chung-Hwa Herman, US
(85) Entrée phase nationale/National Entry: 1998/12/04 (73) z_rl%‘fl_"gtgg‘;/?gge"
(86) N° demande PCT/PCT Application No.: US 1997/009295 i
o o (74) Agent: KIRBY EADES GALE BAKER
(87) N° publication PCT/PCT Publication No.: 1997/046956
(30) Priorite/Priority: 1996/06/07 (60/019,303) US

(54) Titre : SYSTEME DE FICHIER INTERNET
(54) Title: INTERNET FILE SYSTEM

12 I
— B ¥
I MEMORY' |
APPLICATION | 15
L | (8
11 17a fi itp I S 189 20
PROCESSOR SHARED | | ACCESS 17b | hllp INTERNET REMOTE MENORY
| LBRARY {1 SERVER oo SERVER
e NTT

SERVER

—

LKERNEL 14— CACHE | l

COMPUTING SYSTEM

10

(57) Abrége/Abstract:

A method and a system In which a computing system transparently accesses resources connected to the Internet. A memory of
the computing system contains an operating system, a cache associated with the operating system, a shared library and an
access server. The shared library Is responsive to a system call for a file by determining whether a path name for the file Is
located under a personal name space In the memory and by Iissuing a request for retrieving the file from an Internet resource
based on the path name located under the personal name space when the file Is not stored in the cache and has a path name
located under the personal name space. An access server, In response to the request from the shared library, selects an
appropriate access protocol for retrieving the file from the Internet resource and retrieves the file from the Internet resource. The
shared library then issues the system call to the operating system when the access server retrieves the file. The access server
restores the file to the Internet resource when the application closes the file.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02257309 1998-12-04

PCY WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
- — -

(51) International Patent Classification © : (11) International Publication Number: WO 97/46956
GOGF 17/30 Al | o

(43) International Publication Date: 11 December 1997 (11.12.97)

(21) International Application Number: PCT/US97/09295 | (81) Designated States: CA, JP, MX, European patent (AT, BE,
CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, |

(22) International Filing Date: 6 June 1997 (06.06.97) PT, SE).
| (30) Priority Data: Published |
60/019,303 7 June 1996 (07.06.96) US With international search reporzi.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

(71) Applicant: AT & T CORP. [US/US}; 32 Avenue of the amendments.
Americas, New York, NY 10013-2412 (US).

(72) Inventor: RAO, Chung-Hwa, Herman; 4304 Springbrook
Drive, Edison, NJ 08820 (US).

| (74) Agents: DWORETSKY, Samuel, H. et al.; AT & T Corp., P.O.
Box 4110, Middletown, NJ 07748 (US).

(84) Title: INTERNET FILE SYSTEM

COMPUTING SYSTEM

10
l (87) Abstract

A method and a system in which a computing system transparently accesses resources connected to the Internet. A memory of the
computing system contains an operating system, a cache associated with the operating system, a shared library and an access server. The
shared library is responsive to a system call for a file by determining whether a path name for the file is located under a personal name
space in the memory and by issuing a request for retrieving the file from an Internet resource based on the path name located under the
personal name space when the file is not stored in the cache and has a path name located under the personal name space. An access server,

in response to the request from the shared library, selects an appropriate access protocol for retrieving the file from the Internet resource
and retrieves the file from the Internet resource. The shared library then issues the system call to the operating system when the access

server retrieves the file. The access server restores the file to the Intermnet resource when the application closes the file.

TP P T Sy S 1V PR IRAMNIA LA prf et LMANA P, - d A Somrian cabie A1 AIVE— s b s rrou o e S P A A A P AMAR IR TR I Y SN v bt 1B A7 Ay s B 4 o e A, M“WW'H"“”' B L e L T T T B e e B T T LETT YL TR P GurC U TR AUV I - e e e AL ST aty et e AL | e e OGRS e el s A e oar . :

10

15

CA 02257309 2001-07-05

INTERNET FILE SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of computing. More

particularly, the present invention relates to a method and a system for

accessing resources that are available over the Internet.

2. Description of the Related Art

As more resources become available over the Internet, it is
becoming increasingly difficult to locate, manage and integrate resources such

as Web pages, Gopher information, Network News, released documents and

technical reports, public domain software, and collaborative sources and drafts.

Resources connected to the Internet are accessed using a naming scheme that
1s defined by the Uniform Resource Locator (URL) protocol, which has
become a de facto standard. Internet resources are also accessed using other
standard access protocols, such as the File Transfer Protocol (FTP) for file

servers, the Hypertext Transport Protocol (HTTP) for web servers, the gopher

10

15

20

CA 02257309 2001-07-05

protocol (GOPHER) for gopher servers, the Network News Transfer Protocol
(NNTP) for news servers, and the Remote Shell (RSH) for file servers. Each of
these particular access protocols define access mechanisms for retrieving
resources from servers that are connected to the Internet. Internet browsers,
such as Mosaic® and Netscape®, have been introduced for conveniently
searching networks and retrieving information, but while perfectly adequate

for searching and retrieving resources, such conventional browsers are limited
and do not lend themselves for integration into larger toolsets.

Several systems have been developed for making access to files
over the Internet easier and more efficient. For example, the Andrew File
System® provides a wide area file service by extending the scope of file
systems from a Local Area Network (LAN) to the Internet. However, the
Andrew File System® uses its own protocol, not the standard Internet protocols
previously mentioned and, consequently, requires an Andrew file server.

Another system that has been developed for accessing files over
the Internet is the Bell Laboratory Plan 9® which permits mounting of Internet
file servers to local name spaces by introducing a new operating system. Plan 9
supports a per-process name space and a message-oriented file system protocol
so that a file system-like interface is implemented. While different access
protocols are accommodated, the Plan 9 operating system is not transparent to
existing application tools and kernels and the applications running on the

kernels require modification for use with Plan 9.

CA 02257309 2001-07-05

The Alex File System® provides transparent read access to
Internet resources by being built on top of the existing Network File System
(NFS), with an Alex® server being added as a Virtual File System (VFS)
interface. Hosts on a LAN use the NFS protocol for sending calls to the Alex®
5 server. The calls pass through an NFS client on a kernel that is local to the
NFS server kernel on which the Alex server is running. The calls are then
upcalled from the NFS server kernel to the Alex® server. Nevertheless, the
NFS protocol causes the Alex® system to be limited because, while the NFS
protocol implements file services, no information has been provided regarding
10 a process Initiating a request, which is important for implementing an
authenticated access. Consequently, the Alex® system only supports limited
file-oriented file access, such as an anonymous FTP access.
The Jade File System® provides a uniform way for naming and
accessing files in an Internet environment using a new personal name server
15 that integrates a heterogeneous collection of underlying existing file systems
that may not be modified because of autonomy. A private name space can be
defined by each user that supports two features: multiple file systems are
allowed to be mounted under one directory, and one logical name space is
permitted for mounting other logical name spaces. However the Jade File
20 System® does not use URL naming. Instead, a separate name server is provided

for a path name. Further, individual access servers must be mounted and the

THAMI S LTI U TS R TUMNAPE MBI G4 Tl A B] 140545 4 1 B0 d 0 e g (bt et Bed Rbnt F M lubadadning =h cims om o mees e W s B B Reussems®el s wuisss simasms B ws s ayew b P . .- A e L L L AL sy a e 45 e LA O

10

15

20

CA 02257309 2001-07-05

program running on the host must be recompiled before a user can access a file
system.

The Multiple Dimensional File System® (n-DFS) is a logical
file system that allows new services to be added to underlying file systems
without requiring applications or the operating system kernel to be modified.
The n-DFS is layered on top of existing physical file systems, but does not
provide convenient Internet access using existing protocols.

What is needed is an Internet file system that transparently uses
existing protocols in connection with existing operating system kernels,

applications and file servers for accessing Internet resources.

SUMMARY OF THE INVENTION

The present invention provides an Internet file system that
transparently uses existing protocols in connection with existing operating
system kernels, applications and file servers for accessing Internet resources.
Consequently, an application programmer can use the same system calls to
handle files, whether stored locally or at Internet resources. The advantages of
the present invention are provided by a method and a system in which a
computing system having a processor and a memory transparently accesses
resources connected to the Internet. The memory of the computing system
contains an operating system, a cache associated with the operating system, a

shared library and an access server. The shared library is responsive to a

10

15

20

CA 02257309 2001-07-05

system call for a file by determining whether a path name for the file is located
under a personal name space in the memory and by issuing a request for
retrieving the file from an Internet resource based on the path name located
under the personal name space when the file is not stored in the cache and has
a path name located under the personal name space. In response to the request
from the shared library, the access server selects an appropriate access protocol
for retrieving the file from the Internet resource and retrieves the file from the
Internet resource. The shared library then issues the system call to the
operating system when the access server retrieves the file. The access server
restores the file to the Internet resource when the application closes the file.

In accordance with one aspect of the present invention there is provided
a computing system comprising: a processor; and memory coupled to the
processor, the memory including, an application, an operating system; a cache
associated with the operating system; and a logical layer between the
application and the operating system, the logical layer including an access
server and a shared library which has an integrated personal name space, the
integrated personal name space having a personal path name prefix; the shared
library (a) intercepting a system call from the application to the operating
system for a file, (b) determining whether a path name for the file is located
under a personal name space in the memory based on a presence of the
personal path name prefix in the path name, and (c) issuing a request for

retrieving the file from an Internet resource when the path name is located

10

15

20

CA 02257309 2001-07-05

under the personal name space and when the file is not stored in the cache; the
access server, responsive to the request from the shared library, retrieving the

file from the Internet resource and mounting the retrieved file in the cache
under the personal path name prefix; and the shared library issuing the system

call to the operating system when the access server retrieves the file from the

Internet resource.

In accordance with another aspect of the present invention there is
provided a method for accessing resources connected to the Internet, the
method comprising the steps of: receiving a system call for a file at a shared
library; determining whether the file is cached locally; determining whether a
path name for the file is located under a personal name space based on a
presence of the personal path name prefix in the path name, the personal name
space being integrated into the shared library; retrieving the file from an
Internet resource based on the path name located under the personal name
space when the file 1s not stored in the cache and has a path name located
under the personal name space; issuing the system call to an operating system
of a computing system when the file is retrieved from the Internet resource:
and mounting the retrieved file in the cache under the personal path name

prefix.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not

limitation in the accompanying figures in which like reference numerals

~-5q-

CA 02257309 2001-07-05

indicate similar elements and in which:
Figure 1 is a block diagram of the architecture of a system according to
the present invention;
Figure 2 is a block diagram of a system having an architecture that
S supports coherent sharing for different applications according to the present
invention;
Figure 3 illustrates the concept of a personal name space (PNS)
according to the present invention;
Figure 4 shows a diagram illustrating the mounting of remote file
10 systems according to the present invention;
Figure 5 shows a flow diagram of a validation process according to the

present invention; and

-5b-

e T L T T

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

Figure 6 shows a flow diagram of the details of a step of the

validation process of Figure 5.

DETAILED DESCRIPTION

The present invention relates to an Internet File System (IFS) that
allows users to manage Internet files in a Personal Name Space (PNS) by
transparently integrating existing protocols, while requiring no modification of
software or change in management of remote servers. The present invention
introduces a logical layer between an operating system and applications running
on the operating system that presents the applications with exactly the same
system call interface th;at the underlying operating system provides. The logical
layer of the present invention runs in the same address space as the application
without requiring operating system modifications.

According to the invention, each user selects Internet files for
access by organizing the files within a PNS and thereby avoids the complexity
of maintaining a system-wide global name space. According to the present
invention, a PNS is private and remains undefined to all other users. Only the
owner the PNS has access to the PNS. A PNS can be "mounted” or attached to
a shared name space or to another name space that supports URL naming.
Internet files can be accessed directly using the URL names of the files as
pathnames. For example, a home page identified by

http://www _.att.com/research.html 1s named

~ /IFS/http:/www.att.com/research.html, where ~/IFS 1s the mount point on a

-6 -
SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

local file system for a PNS. Additionally, a PNS supports mount operations
that attach name spaces of Internet file servers to nodes of the PNS using access
protocols, such as File Transport Protocol (FTP). Thus, a PNS allows a file
system to name and access files, and to perform mounting operations that
support location-independent naming.

Figure 1 is a block diagram of the architecture of a system
according to the present invention. System 10 includes a processor 11 coupled
to a memory 12. Memory 12 includes memory space for storing an operating
system kernel 13, a cache 14 for kernel 13, at least one application 15, such as
a browser, a shared library 16 and an access server 17. Processor 11 and

memory 12 can be physically located within a single device or can be
configured as a plurality of processors and memory devices that are distributed

using well-known LAN techniques. A plurality of applications can also be run
by system 10 using well-known techniques.

When application 15 sends a request or system call to kernel 13
for opening, reading, writing, closing, etc., a file, for example, the request 1s
received by a logical layer 22 that includes shared library 16 and access server

17. Preferably, shared library 15 presents applications with a complete POSIX

system interface. Shared library 16 is linked by application 15 and runs in the
address space of application 15. All of the necessary functionality for handling
system calls is provided by shared library 16. According to the invention,

shared library 16 includes a capability for handling a PNS, that 1s, shared

library 16 is capable of determining whether the pathname for a file specified in

-7 -

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

a system call is located under a PNS for a user of the applicaton. The
determination is made by examining the mount point (the iroot). If the
specified file is located under a PNS, shared library 16 determines whether the
requested file is an Intemet file or is stored locally. If the file is an Internet
file, shared library 16 communicates the request from the application 15 to

access server 17 through an interprocess communication (IPC) in a well-known

manner. For computing systems that provide dynamic shared Libraries,
application 15 may invoke shared library 16 by simply redefining a library
search path to include shared library 16. For computing systems without
dynamic shared libraries, applications must be relinked with shared library 16.
Access server 17 selects the appropriate access protocol for the
specified file, connects to remote server 19 via the Internet 18, and obtains the
specified file which is stored in memory 20 from remote server 19. Access
server 17 is capable of performing an authenticated access of an Internet server
"on behalf of" a user who is running application 15. That 1s, access server 17
can access remote file servers using the user’s password information. To do
this, shared library 16 is capable of authenticating 1itself to access server 17.
Once the specified file is obtained, access server 17 caches the
file locally in cache 14. Access server 17 contains a plurality of agents, with
each agent implementing a particular access protocol. Figure 1 shows
exemplary agents 17a, 17b and 17c. Agents may contact remote servers
directly or through proxy servers, such as proxy server 21. Access server 17

performs three basic functions of mounting a remote file system on a local

-8 -

SUBSTITUTE SHEET (RULE 26)

10

15

20

CA 02257309 2001-07-05

name space, retrieving a remote file and restoring a file to its primary server.
The functions of retrieving and restoring are mapped to corresponding
commands supported by specific protocols, while the function of mounting is a
local operation.

Access server 17 maintains a mounting database for each PNS defined
within system 10. Information required for accessing an Internet file, such as
the access protocol, the host, authentication information, remote path
information, etc., are stored in the database. Each entry for a PNS also includes
the mount point for the PNS. Access server 17 refers to the mounting
information in the mounting database for locating, retrieving and storing the
file in cache 14 of the operating system kernel 13. Access server 17 sends an
IPC message to shared library 16 when the specified file has been cached.
Shared library 16 then retrieves the specified file from cache 14. When the file
18 closed by application 15, access server 17 restores the file back to remote
server 19. When the specified file is a local file, that is, stored locally
elsewhere within system 10, shared library 16 directly accesses the file.

Preferably, an Internet file is cached in its entirety on the local file
system when 1t 1s opened because remote file servers are contacted only for
system file "opens" and "closes" and not for individual reads and writes. In this
manner, the total network overhead incurred by transmitting a file is lower
when the entire file 1s retrieved rather than as a series of system requests and
responses for individual pages. Since accesses to files over the Internet are

expensive 1n terms of overall system resource consumption, when a cached

0.

10

15

20

CA 02257309 2001-07-05

copy of a file is accessed, the present invention determines whether the data of
the cached copy are consistent with master copy data stored in the remote
Server.

While a single access server 17 is shown in layer 22 in Figure 1, a
plurality of access servers can be used. For example, a basic configuration of
the present invention can include an access server 17 for each system user and
a system wide name server for locating each user's access server. Alternatively,
groups of users can share a particular access server 17. The present invention
also allows file servers located on the Internet to be mounted as user-level
implementations, as shown in Figure 2, rather than as a kernel implementation
as in conventional systems. In Figure 2, each shared library 16 that is
associated with a process 23 directly accesses access server 17, rather than the
application being processed through an associated kernel, the NFS protocol
(not shown) and an access server (not shown), as is presently done in the prior
art.

Figure 3 illustrates the concept of a PNS within a local file system 30.
A first PNS 31 is shown mounted to local file system 30 at /home/bob/IFS and
owned by the user Bob. A second PNS 32 is shown mounted at
/home/stephanie/tmp/IFS and owned by the user Stephanie. A PNS is defined
by the directory pair (MountPoint, CacheDirectory), where MountPoint is a
local pathname in the file system to which PNS is mounted or attached, and

CacheDirectory is a local directory in which remote files and directories are
cached. Essentially, MountPoint indicates where the mount is pointing. In

Figure 3, the mount point for PNS 31 is /home/bob/IFS and the

-10-

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

mount point for PNS 32 is /home/stephanie/IFS. Cachedirectory 1s needed in a
file system structure as a place to put a cache file. To simplify the task of
maintaining multiple PNSs, the present invention uses a single directory called
an IRoot for a MountPoint and a CacheDirectory. An IRoot is a2 mount point

J for a PNS and a physical directory on the local file system where remote files
and directories are cached. That is, an IRoot includes the mount point and the
cache directory. A user defines a PNS by specifying the IRoot using the
command 1root:

$ root pathname

10 As shown in Figure 3, the IRoot for PNS 31 is defined to be
/home/bob/IFS, whi]e.the IRoot for PNS 32 is defined to be
/home/stephanie/tmp/IFS. PNSs 31 and 32 are each mounted on local name
space 30. Files and directories located under PNS 31 (/home/bob/IFS) are
accessible only to the particular user defining PNS 31. To other users, such as
15 the user who defined PNS 12, the files and directones under /home/bob/IFS are
undefined.

The Universal Resource Locator (URL) naming scheme is
embedded within the system of the present invention. The URL naming
scheme has the form:

20 protocol://user: password@host: port/path
where "protocol” is the access protocol, "user” is an optional user name,
"password" is an optional password, "host" is the fully qualified domain name

of a network host or its IP address, "port” is an optional port number to which

- 11 -

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

to connect to, and "path” is the path used by the remote server for accessing
the desired resource. The access protocol not only provides the key to
accessing Internet resources located on remote servers, but also hides the
heterogeneity of a system on which the accessed server is located. That is,
once an access protocol becomes available, it 1s possible to access resources
provided by a server using the protocol without regard to the machine type or
the operating system of the server. Consequently, the present invention
supports a heterogeneous collection of access protocols.

Table I shows exemplary pathnames and corresponding URL

names with " ~IFS" designating the IRoot that includes the mount point and

cache directory.

- 12 -

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

TABLE I

s

10 ~ /TFS/http/192.127.159.32:8000/1FS. html http://192.127.159.32:8000/IFS.html

The following exemplary pseudo code opens a home page using
the system call open(), reads a file located at a URL name using the system call
read(), processes the contents of the file as raw data, and closes the file using

15 the system éall close():

fd = open(“ ~ /IFS/http:/research.att.com/books.html”,

0 RDONLY);
while ((num = read(fd, buf, nbyte)) > 0)
{
20 /* process data in buf */
}
close(fd)

- 13 -

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

The present invention also provides that an Internet resource can
be located, managed and interacted with using existing commands and tools.
For example, the command line

$ Is ~/IFS/nntp:/ulysses/comp.os.research/*
lists articles in the news group “comp.os.research” that are stored on the News
server “ulysses.” Additionally, the command line

$ grep thread ~ /IFS/nntp:/ulysses/comp.os.research/*
searches for the keyword “thread” in the News group “comp.os.research™.

Mounting allows shortcuts to be created when naming files by
providing indirect naming and also maintains authentication information for
contacting remote servers. Additionally, mounting allows a proxy server to be
specified through which the present invention accesses a desired file server.
Both PNSs and mount points within a PNS are defined on a per-user basis.
According to the invention, a mount operation allows a user to attach a name
space, such as PNS, to another name space. The mount operation can attache a

PNS on top of a global name space, and can attach a remote file system to a

PNS.

A mount point is specified by the command mount:

$ mount URLName MountPoint [ProxyServer:Port]
[ValidPeriod]
where "URLName" is the URL name of a file/directory accessible over the

Internet, "MountPoint" is the defined mountpoint in a PNS (for example, IFS 1n

- 14 -

SUBSTITUTE SHEET (RULE 26)

WO 97/46956

10

15

20

CA 02257309 1998-12-04

PCT/US97/09295

Figure 3), "ProxyServer" is an optional proxy Server parameter, and "Port" 1s
an optional parameter specifying the tcp port of the proxy server.

When the ProxyServer and Port parameters are specified, the
present invention accesses the specified remote server through the specified
proxy server. The parameter ValidPeriod (in seconds) specifies a time period
during which cached files under the mount point are considered to be valid.
Specifically, when a file is accessed, the cached file can be used when its age 1s
still within the specified ValidPeriod. If ValidPeriod time has expired, the file
must be obtained from the network. The URL.LName may contain a user name
and a password, and when present, the present invention authenticates access to
the remote server on behalf of the user using the password. If the value of
password is "-", the mount command preferably requires the user to enter the
password at the next prompt.

Figure 4 illustrates how remote file systems are mounted
according to the present invention. In Figure 4, remote file systems that use
different protocols are mounted to the IRoot /home/bob/IFS (PNS 31 in Figure
3). File server 40 at gryphon.att.com is mounted to /home/bob/IFS as follows:

$ mount ftp://bob:-@gryphon.att.com.home/bob
/home/bob/IFS/research

Password: **¥¥*x*

This command mounts the directory bob, located in the file server 40 on
gryphon.att.com, on PNS 31 at the node ~ /home/bob/IFS/research using the

ftp protocol. In this example, the command mount prompts Bob to enter a

- 15 -

SUBSTITUTE SHEET (RULE 26)

& Snate SRt e AN LR AN SN PR + 1 == = — A A . iy i L abado o daadl

10

15

20

CA 02257309 2001-07-05

password because "-" has been specified in the password field. Whenever the
user Bob access files under /home/bob/IFS/research, the present invention
retrieves the corresponding files from gryphon.att.com on behalf of Bob, using
Bob's entered log-in and password. Another example of the mount command
1S:

$ mount rsh://king/home/rao/project/home/bob/IFS/project
For this example, the directory project, located in the file server 41 at king, on
PNS 31 at the node ~ /home/bob/IFS/project via the rsh protocol, which
provides authenticated accesses. Users specify user names and passwords
inside URLName. The system takes authentication information from the
rhosts file in the user's home directory. This avoids passing password
information through the network.

In the following example of the mounting command, a mount point is
created using an anonymous ftp access:

$ mount ftp://tsx-11.mit.edu/pub/linux/home/bob/IFS/src/linux
radish:8000
where the proxy server on radish on the port 8000 is used for accessing
tsx-11.mit.edu. The remote directory linux in the file server 42 on
tsx-11.mit.edu for this example is mounted on the node linux in PNS 31.

The present invention provides two methods for controlling cache
validation processes. First, an attribute ValidPeriod, assigned using mount
commands, is associated with each directory. Each directory inherits

ValidPeriod from its parent directory. A cached copy of a file under a created

-16-

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

directory is treated as valid, without checking its pnmary copies, if the copy
was retrieved during ValidPeriod. For example, if ValidPeriod for a cached
file 1s set to be 7200 seconds, the cached copy is considered as vahd for 7200
seconds. When ValidPeriod is "-1", the cached copy is always considered
valid. When ValidPeriod is "0", the cached copy is always invahd.
ValidPeriod can be changed dynamically like many other attributes associated
with directories.

For the second validation control method, a per-process mask,
referred to as ValidMask, is provided for overwriting the ValidPeniod of a
directory. A child process inherits ValidMask from its parent process and a
built-in shell command vmask is used for defining and updating the process
ValidMask. The per-process ValidMask has higher priorities than the per-
directory ValidPeriod. That is, when dealing with a particular type of file, the
valid time is determined according to the mounting, 1.e., the file desired to be
accessed. When considering the purpose for using the file, the valid time 1s the
time of the process according to the applicatibn, 1.e., the time the application
uses the file. Thus, with ValidPeriod, cache validation processes can be
controlled according to types of Internet files, such as co-authored papers

versus Network News, whereas, ValidMask allows overwriting ValidPenod on

the process level in special circumstances, such as refreshing cache 14.
Figure 5 shows a flow diagram for a validation process 50

according to the present invention. At step 51, it is determined whether the

requested information is in the cache. If the requested information is in the

- 17 -

SUBSTITUTE SHEET (RULE 26)

_— - A)
i Al A B e M b - i A O iy M AT s wh ¢ RVl vy WO vt PO s b A W w8 AL Y T Pl % A ity o oy A A

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

15

20

cache, flow continues to step 52 where it is determined whether the cache is
valid under ValidPeriod or ValidMask. If so, flow continues to step 53 where
the information in the cache is retrieved for the system call. If the information
is not in the cache (step 51) or the cache is not valid (step 52), flow continues
to step 54 where a message is sent from the shared hibrary to the access server.
Flow continues to step 55, where the Internet is accessed, the information is
retrieved and then is stored in the cache.

Figure 6 shows a flow diagram 60 of the details of step 52 of
process 50 shown in Figure 5. At step 52A, it 1s determined when the cache
was last updated. Then, at step 52B, the last update time 1s compared with
ValidPeriod or ValidMask for determining whether the cached copy 1s valid.

The present invention identifies itself to a server for
authenticating the user. Consequently, shared library 16 and access server 17
are preferably configured inside system 10 as a separate entity. In this way,
shared library 16 is aware of the identity of a user. Access server 17 obtains
information from shared library 16 for informing servers connected to the
Internet because access server 17 is not configured for determining the identity
of the user making a system call request. Consequently, shared library 16
identifies itself to access server 17 before the access server can perform user
authentication.

The present invention also supports both anonymous and

authenticated accesses to Internet servers directly or via proxy servers.

According to the invention, users can authenticate themselves to remote servers

- 18 -

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

10

using a proper login name and password information for accessing files. An
authenticated access includes a handshaking process in which shared library 16
first communicates with access server 17 that a request 1s to be authenticated.
Access server 17 then communicates to shared library 16 that a file 1s to be
created for obtaining a time stamp. Shared library 16 identifies the file to
access server 17 once the file has been created. Access server 17 then accesses
the file created by shared library 16 for confirming the information.

While the present invention has been described in connection
with the illustrated embodiments, it will be appreciated and understood that
modifications may be made without departing from the true spirit and scope of

the invention.

- 19 -

SUBSTITUTE SHEET (RULE 26)

10

15

20

CA 02257309 2001-07-05

Claims:

1. A computing system comprising;:
a processor; and
memory coupled to the processor, the memory including,
an application;
an operating system;
a cache associated with the operating system; and
a logical layer between the application and the operating
system, the logical layer including an access server and a shared library which
has an integrated personal name space, the integrated personal name space
having a personal path name prefix;
the shared library (a) intercepting a system call from the
application to the operating system for a file, (b) determining whether a path
name for the file 1s located under a personal name space in the memory based
on a presence of the personal path name prefix in the path name, and (¢)
issuing a request for retrieving the file from an Internet resource when the path
name 1s located under the personal name space and when the file is not stored
in the cache;
the access server, responsive to the request from the
shared library, retrieving the file from the Internet resource and mounting the

retrieved file in the cache under the personal path name prefix; and

220-

10

15

CA 02257309 2001-07-05

the shared library issuing the system call to the

operating system when the access server retrieves the file from the Internet

resource.

2. The computing system according to claim 1, wherein the access
server includes a plurality of agents, each agent implementing a predetermined
Internet access protocol, and

wherein the access server selects an appropriate access protocol

for retrieving the file from the Internet resource.

3. The computing system according to claim 2, wherein the shared
library and the access server operate transparently in response to the system

call.

4, The computing system according to claim 3, wherein the shared

library receives the system call from an application running in the memory.

5. The computing system according to claim 4, wherein the access

server restores the file to the Internet resource when the application closes the

file.

21-

10

15

CA 02257309 2001-07-05

6. The computing system according to claim 4, wherein the access

server access the file from the Internet resource using a user's password

information.

7. The computing system according to claim 6, wherein the shared
library authenticates itself to the access server when the access server
accesses the file from the Internet resource using the user's password

information.

8. The computing system according to claim 2, wherein the access
server retrieves the file from the Internet resource by directly contacting a

remote server assoclated the Internet resource.

9. The computing system according to claim 2, wherein the access
server retrieves the file from the Internet resource by contacting a remote

server associated with the Internet resource through a proxy server.

10. A method for accessing resources connected to the Internet, the
method comprising the steps of:
rece1ving a system call for a file at a shared library;
determining whether the file is cached locally;

determining whether a path name for the file is located under a

09

10

15

CA 02257309 2001-07-05

personal name space based on a presence of the personal path name prefix in
the path name, the personal name space being integrated into the shared
library;

retrieving the file from an Internet resource based on the path
name located under the personal name space when the file is not stored in the
cache and has a path name located under the personal name space;

1ssuing the system call to an operating system of a computing

system when the file is retrieved from the Internet resource; and

mounting the retrieved file in the cache under the personal path

name prefix.

1. The method according to claim 10, further comprising the step

of restoring the file to the Internet resource when the file is closed.

12. The method according to claim 11, wherein the step of
retrieving the file from the Internet resource includes the step of accessing the

file from the Internet resource using a user's password information.

13. The method according to claim 10, further comprising the step
of determining whether the file is valid when the file is cached locally based

on a last time that the file was cached and a valid file cache time.

23-

02257309 1998-12-04

CA

PCT/US97/09295

WO 97/46956

/4

0¢

HOVD |11 TINYIN
T Y
cl
12 o -
YINY3S
YINGTS AMOUg — YIS | | Ayvaen
10K q/i SSI0V || a3UVHS
! .
] gl L4 }~ou R]
GI —{ NOILYOTddY
O ..
. q
| TOId

il

01

N3L1SAS INLINAOJ

405533044

1

SUBSTITUTE SHEET (RULE 26)

A C-HAATE I P AALY b e ST A sV MV A Y UL

PP AT T T e L ATT Y P I T AN RN T N YT TTTIOYTYYRTTIIUoOTY ™™ -

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

2/4
FIG. 2 /

PROCESS PROCESS PROCESS

'I SHARED SHARED SHARED

I LIBRARY . LIBRARY LIBRARY
KERNEL KERNEL KERNEL

e NETWORK GET

13

FIG. 3
/ LOCAL FILE SYSTEM)
HOME
BOB STEPHANIE
/T\ /r\
IFS TMP
T
//r\ T
BOB‘S PNS STEPHANIE'S PNS

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295

3/4

31 | BOB
BOB'S PNS | /IFTS\ |
— T LOCAL FILE SYSTEM 10
PROECT SRC RESEARCH |——— S
T
101 ~LINUX FREEBSD
277/
/l\

HOME

T~
- -
/ /I\
|| sRC PAPER
PUB FILE SERVER ON
PROJECT | LINUX/[\ | GRYPHON.ATT.COM
FILE SERVER P
ON KING
FILE SERVER ON ;A

TSX-LLMIT.EDU

SUBSTITUTE SHEET (RULE 26)

CA 02257309 1998-12-04

WO 97/46956 PCT/US97/09295
4/4
FIG. 5
o0 54 95
Ny

51 IS INFORMATION \\NO SEND MESSAGE TO ACCESS INTERNET TO
IN CACHE? ACCESS SAVER OBTAIN INFORMATION

32 IS CACHE VALID?

YES

OBTAIN
33 INFORMATION
FROM CACHE

FIG. 6

60 FROM STEP 5!
\

DETERMINING
SZA WHEN CACHE WAS

LAST UPDAIED

IS UPDATE TIME NO
328 . SAME AS A
VALID TIME?

YES

SUBSTITUTE SHEET (RULE 26)

e e ety ot AN AT R I R D 0 1L I A A R AR U I L L LAttt ST A M AT IIIRAAEAF A 1A+ wad GV AL AR R A DA A CMRCTIARAAL PGS . 4093 L TIAARS Lt AW Teh] ML 1 A e e A KL, M AT A A, TS AR (P BRI Ll LT e T et e AT AR v e KR 4 ol i b v LM B e s s o . e Ve et L 0l A B PP S 11 | P LA s i bl ot Ak ik .

et due Pr——

PROCESSOR

10

COMPUTING SYSTEM

PR S ——

12
Bt

I [APPLICATION]~ 15

MEMORYI

I7a w{ itp]

suaReD | | Access 17b tip
LIBRARY [| SERVER L I“
17c Nn]
[rKERNEL 14— CACHE I

PROXY

SERVER

21

I8

INTERNET

19 "
) 3
REMOTE
SERVER i | MEMOR |

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

