PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 : (11) International Publication Number: WO 92/02989
HO3M 7/42, 7/30, 7/48 A1} (43) International Publication Date: 20 February 1992 (20.02.92)
(21) International Application Number: PCT/US91/05659 | (81) Designated States: AT (European patent), BE (European
patent), CH (European patent), DE (European patent),
(22) International Filing Date: 8 August 1991 (08.08.91) DK (European patent), ES (European patent), FR (Eu-
ropean patent), GB (European patent), GR (European
patent), IT (European patent), LU (European patent),

(30) Priority data: NL (European patent), SE (European patent).

565,155 9 August 1990 (09.08.90) US

(71) Applicant: TELCOR SYSTEMS CORPORATION [US/
US]; 4 Strathmore Road, Natick, MA 01760 (US).

(72) Inventors: BACON, Francis, L. ; 166 Pelham Island Road,
Wayland, MA 01778 (US). PRICE, Ernest, R. ; 30 Soren
Street, Randolph, MA 02368 (US).

(74) Agents: SUNSTEIN, Bruce, D. et al.; Bromberg & Sun-
stein, 10 West Street, Boston, MA 02111 (US).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: COMPOUNDS ADAPTIVE DATA COMPRESSION SYSTEM

/"1

—————————— s — - w— —
[ENCODER 4 56 ;']
| E| wooew oot [|
PC IN BUFFER [—e e Gt T
I L3
. - - - . T -———_ Jd
ENCODER SOFTWARE
DECODER SOFTWARE
R
__________ — —— e ——
[DECODER 10 9 B_I
| o¢ OUT BUFFER |l 2 wooew w7 l
il v BUFFER]
i "
.\ - —_—__—_—— T _!

(57) Abstract

17
FIRST PHASE
19
N
Y —
/18
SECOND PHASE

A system for the dynamic encoding of a character stream has a single character encoder that includes a plurality of fonts, a
string encoder that includes a history buffer, and an output selector that compares encodings from the single character encoder
and the string encoder and selects the least cost encoding for output. The single character encoder generates and stores hash
codes used for font access and the string encoder retrieves these same hash codes and uses them for history buffer access.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria

AU Australia

B8 Barbados

BE Belgium

BF Burkina Faso
BG Bulgarid

BJ Benin

BR Brazil

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

Cl Cate d'Ivoire
cM Camcroon

cs Czechoslovakia
DE Germany

DK Denmark

Spain

Finland

France

Gabon

United Kingdom
Guinea

Greece

Hungary

Italy

Japan

Dy ic Pcople’s Republic
of Korea
Republic of Korea
Licchtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Sencgal
Soviet Union
Chad

Togo’
United States of America

+ It is not yet known for which States of the former Soviet Union any designation of the

Soviet Union has effect.

N
ot

WO 92/02989 -1- PCT/US91/05659

10

15

20

25

30

35

COMPOUND ADAPTIVE DATA COMPRESSION SYSTEM

DESCRIPTION
Technical Field
The invention relates to the field of data compression
systems and particularly to apparatus and methods for
compressing data signals and reconstituting the data
signals.

Backaground Art
Data Compression System Requirements

Data compression systems are known in the prior art
that encode a stream of digital data signals into compressed
digital signals and decode the compressed digital data
signals back into the original data signals. Data
compression refers to any process that converts data in one
format into another format having fewer bits than the
original. The objective of data compression systems is to
reduce the amount of storage required to hold a given body
of digital information or to increase the speed of data
transmission by permitting an effective data transmission
rate that is greater than the rated capacity of a given data
communication link. Compression effectiveness is
characterized by the compression ratio of the systemn.
Compression ratio is herein defined as the ratio of the
number of bits in the input data to the number of bits in
the encoded output data. The larger the compression ratio,
the greater will be the reduction in storage space or
transmission time.

In order for data to be compressible, the data must
contain redundancy. Compression effectiveness is determined
by how effectively the compression procedure matches the
forms of redundancy in the input data. 1In typical computer
stored data, e.g. English text, computer programs, arrays of
integers and the like, redundancy occurs both in the
nonuniform usage of individual symbols, e.g. characters,
bytes, or digits, and in frequent recurrence of symbol
sequences, such as common words, blank record fields, and

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

the like. An effective data compression system should
respond to both types of redundancy. A typical data stream
contains both types of redundancy in varying portions
resulting in varying statistics. An example of a data
stream of varying statistics is a data stream wherein
"normal" English text is immediately followed by a computer
program, for example source code in the "C" programming
language.

To be of practical and general utility, a digital data
compression system must possess the property of
reversibility, i.e. it must be possible to reexpand or
decompress the compressed data back into its original form
without any alteration or loss of information. The
decompressed and the original information must be identical
and indistinguishable with respect to each other. 1In
addition, it should satisfy several performance criteria.

First, the compression effectiveness should be high,
and therefore the compression ratio should be large.

Second, the system should provide high data rate
performance with respect to the data rates provided by and
accepted by the equipment with which the data compression
and decompression systems are interfacing. For real time,
switched network, data communications applications,
preferably the rate at which data should be compressed
should match the output data rate from the compression
system. Because it should match the output (compressed)
rate, it should be higher in proportion to the compression
effectiveness, typically 6:1. The higher the compression
effectiveness, the faster the input data must be processed
to provide sufficient output data to fully utilize the
capacity of the output channel. Thus high data rate
performance of data compression processing is necessary to
match the line speed of today's communication systems and
the compression effectiveness of modern data compression
methods. The data rate performance of data compression and
decompression systems is typically limited by the time
required to perform the processing steps associated with

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

encoding each incoming character, which in turn is limited
by serial processing and the speed of the compression
processor. High performance for a given compression
processor is achieved by a compression method that uses
fewer processing steps, on average, to encode each incoming
character. The fewer processing steps, the higher the
performance. However, complex methods are needed to
achieve high compression effectiveness for data streams of
varying statistics. Such methods tend to increase the
number of processing steps and therefore tend to reduce data
compression processing performance.

Third, the system should be adaptable, that is, capable
of achieving high compression effectiveness and high
performance on data having a variety of statistical
characteristics. Many prior art data compression procedures
require prior knowledge of the statistics of the data being
compressed. Some prior art procedures adapt to the
statistics of the data as it is received. Adaptability in
the prior art processes has either been limited to a narrow
range of variation e.g. character-by-character encoding or
has required a high degree of complexity with resultant
severe penalty in data rate performance. The requirement
for data compression systems suitable for use in modems in
high speed data communication links is to accommodate a wide
range of data characteristics without prior knowledge of
data statistics and achieve both high compression ratios and
high data rate performance. Data compression and
decompression systems and modems currently available are
either not adaptable over a wide range of data
characteristics or are severely limited in compression
efficiency or data-rate performance and so are not suitable
for general purpose usage.

Finally, the system should be responsively adaptable,
that is, capable of reestablishing a high compression ratio
quickly after the beginning of a new data file from a stream
of data files, wherein each file has different statistical
properties from the data in the immediately proceeding file.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

Prior Art Systems _
U.S. Patent 4,612,532 to Bacon et al., which is hereby

incorporated herein by referencé, discloses a system for
adaptive compression and decompression of a data stream
designed to compress redundancy resulting from non-uniform
usage of individual symbology. The Bacon invention uses an
adaptive character-by-character compression technique
wherein dynamically updated "followset" tables'having
Huffman codes are used to encode characters, using, on
average, far fewer bits per character than is required by
ASCII or EBCDIC encoding. Each incoming character is
encoded using information from the three preceding
characters (character type, character type, character
identity), i.e. (two bits, two bits, seven bits). Thus, for
each incoming character, information from the three
preceding characters is used to select the appropriate
followset table. The Bacon invention has a high compression
efficiency on a character-by-character basis and achieves
high performance by using fewer processing steps, on
average, to encode each character than other character-by-
character encoding techniques.

U.S. Patent 4,558,302 to Welsh discloses a string
search system designed to compress redundancy resulting from
frequent recurrence of symbol sequences. The Welsh
invention includes a compressor which compresses a stream of
data character signals into a compressed stream of code
signals. The compressor stores strings of data character
signals parsed from the input data stream and searches the
stream of data character signals by comparing the stream to
the stored strings to determine the longest match. Having
found the longest match, the compressor stores an extended
string comprising the longest match plus the next data
character signal following the longest match and assigns a
code signal thereto. A compressed stream of code signals is
provided from the code signals corresponding to the stored

longest matches.
U.S. Patent 4,464,650 to Eastman et al. discloses an

&)

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

-5 -

adaptive string search system designed to compress
redundancy resulting from frequent recurrence of symbol
sequences. The Eastman invention uses the Lempel-Ziv
algorithm to encode strings of characters without constraint
on the length of the input or output word. However, the
Eastman invention suffers the disadvantage of requiring
numerous RAM cycles per input character and utilizing time
consuming and complex mathematical procedures such as
multiplication and division to effect compression and
decompression. These disadvantages tend to render the
Eastman invention unsuitable for on-line data communications
applications.

U.S. Patent 4,730,348 to McCrisken discloses a system
for adaptive compression and decompression of a data stream
using a combination of techniques to compress redundancy
from non-uniform usage of individual symbols and frequent
recurrence of symbol sequences. The McCrisken
implementation uses an adaptive character-by-character
compression technique described as "bigram encoding" based
on "pruned tree" Huffman and "running bigrams" to compress
redundancy resulting from non-uniform usage of individual
symbology. As part of his adaptive character-by-character
compression technique, McCrisken uses a plurality of
encoding tables, on-line analysis of compression efficiency,
an on-line table builder, a table changer and a table change
code to permit rapid adaptation to changes when compressing
data streams having varying statistics. McCrisken also uses
a history buffer and a string substitution technique which
identifies and further compresses matching strings of up to
eighteen characters to compress redundancy resulting from
frequent recurrence of symbol sequences. Both techniques
are adaptive and therefore do not need prior knowledge of
data statistics. In a preferred embodiment, some of the
data stream is encoded on a character-by-character basis and
some of the data stream is encoded with a string
substitution code. McCrisken also uses protocol emulation
and packet size control to improve performance. The

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

McCrisken character-by-character compression technique has a
low compression efficiency and a poor data rate performance
compared to the Bacon method. This is partly because the
encoding tables of McCrisken's character-by-character
compression technique are updated on the basis of on-line
explicit analysis of compression efficiency and this
technique is very inefficient compared with the
transposition heuristic used by Bacon to update his
followset tables. McCrisken's use of a string substitution
technique compensates to a large extent for the low
compression efficiency and poor performance of the adaptive
updating of the McCrisken encoding tables. However, the
processing required to perform the search for the longest
list in the McCrisken is time-consuming and the search is
limited, in McCrisken's preferred embodiment, to the first
twenty items in the list. Also, because of the McCrisken
string substitution code, the longest matching string that
can be encoded as such is eighteen characters long (column
14, lines 13-18). Because of these disadvantages, McCrisken
does not achieve as good a compression ratio as the Eastman
implementation of the Lempel-Ziv algorithm which uses no
character-by~-character encoding of any kihd. Furthermore,
because of its complexity the McCrisken implementation is
inherently slow.

James A. Storer, in his book Data Compression: Methods
and Theory, Computer Systems Press, 1988, which is hereby
incorporated herein by reference, discusses methods and
theories pertaining to lossless data compression over a

noiseless channel with serial I/O.

Storer describes a family of character-by-character
techniques (p.20) and notes (p.21) that (i) the performance
of Huffman codes has been well studied and can serve as a
useful benchmark on which to judge the effectiveness of more
complex methods and (ii) for several applications it will be
useful to combine more sophisticated techniques with Huffman
codes. A dynamic Huffman codes method is discussed (p.40)
in which "tries" (special tree structures - see p.1l5) are

)

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

built dynamically and maintained based on characters
appearing in the data stream. Storer describes the "unseen
leaf" (the equivalent of "new character" in the Bacon
patent) but does not describe the floating position
characteristic of Bacon's "new character." Higher order
Huffman codes are described (p.44) along with the
"transposition" heuristic (p.45), correctly attributed to
Bacon (p.52).

Storer discusses in detail three on-line textual
substitution methods (p.54), all of which use dynamically
updated local dictionaries. The three methods are the
sliding dictionary method, the improved sliding dictionary
method and the dynamic dictionary method. The local
dictionary of strings is stored in a "trie" structure (p.15)
which is a tree where the edges are labeled by elements of
the alphabet in such a way that children of a given parent
are connected via edges that have distinct labels, all leaf
nodes are labelled as "marked", and all internal nodes are
labeled as either "marked" or "unmarked". The set of
strings represented by a trie are those that correspond to
all root to marked node paths. The sliding dictionary
method (p.64) contains within its local dictionary all
strings contained within a portion of the source string
defined by a "sliding window" technique well known (but used
for other purposes) in data communications systems. This
method is similar to the method using a history buffer
described by McCrisken except for the method of storing
pointers to strings. It is a practical realization of the
first of two universal data compression algorithms proposed
by Lempel and Ziv designated by Storer (p.67) as LZl. The
LZ1 algorithm works as follows. At each stage, the longest
prefix of the (unread portion of the) input stream that
matches a substring of the input already seen is identified
as the current match. Then a triple (d, 1, c) is
transmitted where d is the displacement back to a previous
occurrence of this match, 1 is the length of the match, and
c is the next input character following the current match

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

(the transmission of c is pointer guaranteed progress). The
input is then advanced past the current match and the
character following the current match. The sliding
dictionary method can be viewed as a practical
implementation of LZ1 that uses fixed size pointers; instead
of remembering the entire input stream the system remembers
only a fixed number of characters back, and instead of
pointer guaranteed progress, the system uses dictionary
guaranteed progress by reserving codes for the characters of
the alphabet. The improved sliding dictionary method (p.67)
contains a heuristic that eliminates duplicate strings. It
too requires that the alphabet be added initially in the
local dictionary. Storer also suggests using Huffman coding
of output pointers. The dynamic dicfionary method (p.69)
uses update and deletion heuristics that maintain a
collection of strings that do not, in géneral, form a
contiguous portion of the input stream. Various update and
delete heuristics (i.e. mechanisms which provide learning
capability) are described which are used to implement the

methods. Both the improved sliding dictionary method and

the dynamic dictionary method create and maintain a
dictionaryrthat is different from the history buffer of
McCrisken. Apart from the heuristic for locating the
longest match (Storer!s "greedy match heuristic") most of
the heuristics described by Storer are directed to the
maintenance of'pointer sets for the special dictionaries.
Difficulties encountered by the use of heuristics such as
"pruning" to remove "dead strings" relate also to the
special nature of these dictionaries. Storer's experimental
data shows that sliding dictionary methods provide
significantly better compression ratios than Huffman coding
methods especially on spread-sheet data; the improved
sliding dictionary method provides a higher compression
ratio by 1% to 2% over the sliding dictionary method; and
the best performance of the dynamic dictionary methods is
better than the best performance of the sliding dictionary
and the improved sliding dictionary methods. Storer textual

&

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

-9 -

substitution methods provide compression ratios of
typically between 3-to-1 and 2-to-1 on English text and
between 5-to-1 and 2.5-to-1 on programming language text.

U.S. Patent No. 4,876,541 to Storer discloses and
claims the AP (all-prefixes) heuristic, modifications of the
LRU (least recently used) strategy, limited look ahead, and
the use of the MaxChildren parameter.

Textual substitution methods achieve higher compression
ratios with large files and dictionaries. However, as the
files and dictionaries grow, so too does the time taken to
access and update them. Storer, in his patent, describes a
string search data compression system that uses a sliding
dictionary that is stored as a tree ("trie") structure.

This approach provides fast access to dictionary entries but
updating the tree structure loads the processor heavily so
Storer uses sophisticated update heuristics. McCrisken
describes a string search data compression system that uses
a history buffer. The McCrisken approach provides fast
updating of the history buffer but, in this case, string
matching loads the processor heavily. McCrisken resolves
this with arbitrary cut-off of his search process.
Practical on-line, prior art, textual substitution
techniques are thus limited by the trade-off between the
size of the files and dictionaries on the one hand and the
speed of the access algorithms and update heuristics on the
other. To the extent that access and update processing can
be done more efficiently, i.e. faster, then larger files and
dictionaries can be maintained with a corresponding
improvement in compression ratios for a given data rate.
Disclosure of Invention

The invention provides a system for the dynamic
encoding of a character stream. A preferred embodiment of
the system comprises a single character encoder which
includes a plurality of fonts, a string encoder which
includes a history buffer, and an output selector which
compares encodings from the single character encoder and the
string encoder and selects the least cost encoding for

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 10 -

output. The single character encoder generates and stores
hash codes which it uses for font access. The string
encoder retrieves these same hash codes and uses them for
history buffer access. The hash codes are generated by
applying a CRC algorithm to a character pair and are given
the name "CRC hash". The single character encoder maintains
a position in a font for all characters not otherwise listed
in the font, such characters herein called "new character",
and four tables are maintained for the encoding of such
characters. The single character encoder also maintains a
position in a font for a symbol representing a string, which
position directly follows the position of new character in
the font. Three or more consecutive like characters are
represented in the history buffer by'three characters only.
A pair encoder is provided that encodes character pairs
using the font number. The pair encoder may be active at
the same time as the string encoder. Two string encoding
modes are provided. A switch controls activation and
deactivation of string search processes based on a
comparison of the average bit cost of new character encoding
with a predetermined value. A hash-link/hash-test table is
provided in the étring search encoder having entries
corresponding to every second character position in the
history buffer. This table uses properties of the CRC hash
to access matching strings in the history buffer. String
match testing starts "n" characters beyond the current
character where "n" is the length of the longest match found
so far. Accordingly, the string search encoder, in addition
to searching forward, also searches back. The string search
encoder discards a string match that has less than a
predetermined number of characters. Linked lists of
pointers to candidate strings are maintained and the end of
the linked list is determined using a property of the CRC
hash.

Brief Description of the Drawings

Fig. 1A is a block diagram and overview of the main
buffers, tables and processes of the preferred embodiment of

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 11 -

the present invention. »

Fig. 1B shows the two phases of the encoding process of
Fig. 1A.

Fig. 2A illustrates the loading of the data stream into
the CC buffer.

Fig. 2B illustrates the relationships among the
encoding buffers, tables and processes of the preferred
embodiment of the present invention.

Fig. 3 illustrates the fonts used in the font encoder.

Fig. 4A shows the global (Huffman) font encoding
tables.

Fig. 4B shows the Huffman Tables used for encoding New
Character and for encoding String Length in Mode A.

Fig. 4C shows the Huffman Tables used for encoding
String Length in Mode B.

Fig. 4D shows the Huffman Tables used for encoding Zone
Code in Mode A and Mode B.

Fig. 5 illustrates the font access tables used in the
font encoding process.

Fig. 6 illustrates the generation and use of the CRC
hash.

Fig. 7A illustrates the new character encoding process.

Fig. 7B illustrates the Pair Encoding, Mode A process.

Fig. 7C illustrates the String Encoding, Mode A
process.

Fig. 8A illustrates the use of the history buffer
access tables for mode A string encoding.

Fig. 8B illustrates the use of the history buffer
access tables for mode B string encoding.

Fig. 9 shows the start points for string searches.

Figs. 10A and 10B show the decoding logic.

Fig. 11 shows the dual processor configuration.

Fig. 12 shows the prior art processor configuration.

Fig. 13 shows a conventional two-processor
configuration.

Detailed Description of Specific Embodiments

The present invention in a preferred embodiment

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 12 -

combines a novel adaptive font encoding single-character
compression technique with a repeat character compression
technique and several novel string encoding compression
techniques. It includes an adaptive font encoding process
that is an improved version of the efficient, high
performance font encoding process disclosed by Bacon et al.
in U.S. Patent 4,612,532. It includes several novel string
encoding processes. It further includes a novel data
compressibility trending function which is used to select
the most effective encoding process according to the
compressibility of the data. The font encoding process and
the string encoding process of a preferred embodiment share
memory and processes associated with the generation of a
novel "CRC hash" using a CRC algorithm, a portion of the CRC
hash being used as a hash code for font and dictionary
addressing and another portion being used for
identification. The present invention achieves superior
compression ratios and superior performance over the prior

art described above.
A copy of the source.code of the preferred embodiment

"of the present invention, expressed in the assembly language

of the Rockwell C-19 processor, is attached hereto as
Appendix 1. A guide to the source code listing is given in
Appendix 2.

A general overview of a preferred embodiment of the
system is shown in Fig. 1A. The system provides full duplex
operation and it is generally divided into an encoder 1 and
a decoder 2 such that each contains its own set of buffers
(encoder: PC In Buffer 4, Process Buffer 5, History Buffer
6, and Modem Out Buffer 7; decoder: Modem In Buffer 8,
History Buffer 9, and PC Out Buffer 10), character fonts 11 »
and 12 and access tables 13 and 14. Both the encoder and
the decoder are operated by control software 3 that runs on
a single, shared Rockwell C-19 processor. Fig. 1A shows the
main tasks performed'by the encoder software (Load Process
Buffers, Do Font Encoding, Update Fonts, Do String Encoding,
Select Least-Code Encoding, Update History Buffers, and

A

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 13 -

Format and Output) 15 and the decoder software (Receive Bit
Stream, Interpret Escape Codes, Decode Single Characters and
Strings, Load PC Out Buffer, Update History Buffer, and
Update Fonts) 16. Fig. 1B shows the two phases of encoding.
Phase 1 processes (steps 1-10) 17, including Loading Process
Buffer, Doing Font Encoding and Repeat Character Encoding
and Updating Font, are performed once for each character of
input. Phase 2 processes (steps 11-20) 18 including String
Encoding, Selecting Least-Cost Encoding, Formatting For
Output, and Updating Buffers are performed, typically, when
the process buffer is full. Test 19 following Phase 1 is
"Process Buffer Full or Flush". Test 20 following Phase 2
is "Flush and Process Buffer not Empty". String encoding
includes string encoding mode A, or string encoding mode B
which combines string encoding with pair encoding. The
decoder performs corresponding decoding processes.

The character stream 20 enters the CC buffer as shown
in Fig. 2A. The CC buffer consists of ECChar 21 which
contains 256 bytes representing the most recent characters
from the data stream and ECCharCopy 22 which contains an
identical copy of the content of ECChar. ECCharCopy is
provided to remove the necessity for boundary checking in
the string matching process. Fig. 2A shows string
continuation for searching 23 extending into ECCharcCopy.
ECCharCopy is contiguous with ECChar in memory. Fig. 2A
also shows the next store location in ECChar 24 and in
ECCharCopy 25, and old data 26.

The ECChar and ECCharCopy buffers are two of nine
process buffers, shown in Fig. 2B, which operate in parallel
and share input and output pointers. These buffers are used
by the font encoding and string encoding processes.

Fonts 31 are shown in Fig. 3. Fig. 3 shows a table of
fonts 31 having 1024 font numbers 32, an FTLink field 33, an
FIMatch field 34, an FINC field (NewCharPosition) 35, an
FTSize field 36, and Font Character fields (6 per Font max)
37. Huffman encoding tables are shown in Figs. 4A-4D. Fig.
4A shows global (Huffman) font encoding tables including an

WO 92/02989 _ PCT/US91/05659

10

15

20

25

30

35

- 14 -

Access Table 41 having an index 42, a Font Code table 43 and
a Font Bits table 44. Fig. 4B shows the Huffman Global Code
(Frequency) Tables, used for encoding New Character and for
encoding String Length in Mode A. The tables have 256 Table
Entries, a Code Length of 4-13 bits and are referenced as
"Global Code High; Global Code Low" in the source code.
Fig. 4C shows the Huffman Tables used for encoding String
Length in Mode B. These tables have 10 table entries, a
code length of 1-6 bits, and are referenced as "LengthBCode"
in the source code. Fig. 4D shows the Huffman tables used
for encoding Zone Code in Mode A and Mode B. These tables
have 32 table entries, a Code Length of 2-7 bits and are
referenced as "ZoneCode" in the source code. Font access
tables 51 along with a font table 31 and an input data
stream 52 are shown in Fig. 5. The font access table
include a CRC Hash Table 53 having CRC Hash 54, a MatchVal
data 55 and RoughAdr data 56. The font access tables also
include an FTRough Table 59 having an index 57 and FTRough
data 58. CRC(~AvV)=2963, CRC(in)=05D6 and CRC(~d)=7DD6
provide entry points 501, 502 and 503 respectively to the
CRC Hash Table from the input data stream. The history
buffer and history buffer access tables used for string
search are shown in Figs. 8A and 8B.

The entire compound encoding process includes:

1. Repeat character encoding;

2. Font (single-character) encoding;

3. Monitoring compressibility of data stream;

4. Selecting encoding processes dynamically (mode A
or mode B);

5. String encoding (longest match, Mode A);
6. String encoding (longest match, Mode B);

7. Pair encoding;
8. Anti-expansion process (mode B only):
9. Selecting and concatenating encodings having

fewest bits.
These processes will now be described in detail

starting with font encoding.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 15 -

Font Encoding '
In a preferred embodiment of the present invention,

font encoding uses a set of fonts having character symbols
stored in approximate order of the fregquency of occurrence
of such character after the occurrence of a pair of
characters with which the font is associated. For example,
if the input data stream contained the words "this" and
"those", then a font would exist associated with the pair of
characters "th" and the font would contain the letter "i"
and the letter "o". A single font consists of pointers,
links, characters, etc. whose selection (font number) is
based on the prior two characters in the input stream and
which contains a list of historically occurring candidate
characters to be matched with Encoder Current Character.
Fig. 3 shows an array of fonts. A single font is
illustrated by a single row. "New Character", i.e., any
character that is not otherwise listed in the table, is also
assigned a position in the table in approximate order of
such characters local frequency of occurrence after the
occurrence of a pair of characters with which the table is
associated. "New Character", is hereinbelow referred to as
"NewChar" and sometimes abbreviated as "NC". Just as the
occurrence of a particular character in the data stream is a
font encoding event, so the occurrence of NewChar is a font
encoding event. NewChar is a font encoding event wherein
either the Encoder Current Character is not found in the
selected font or the selected font does not exist. The
value of NewChar Position is a dynamic value in the range of
0 through n (where n is the maximum number of characters per
font) meaning "Character Not in Table". NewChar does not
occupy a character position in the font: it is assigned a
"yirtual position". Fig. 3 shows how the position of
NewChar is stored in field FTNC in the font. In mode A,
each font includes a virtual position for a string directly
following the NewChar position. In mode B, each font
includes a virtual position for a "pair encoding" directly
following the NewChar and includes another virtual position

WO 92/02989 : PCT/US91/05659

10

15

20

25

30

35

- 16 -

for string encoding following the pair encoding.
Font Encoding, CRC Hash and Font Access

Font access tables are shown in Fig. 5. Fig. 6 shows
how the hash pointer (RoughAdr) and the match value
(Matchval) are derived from the CRC hash.

Font encoding includes the following steps:

1. Computing a CRC hash using a CRC algorithm applied

to the prior two characters:;

2. Using a portion of the CRC hash (RoughAdr) as a
rough selector for a linked list of fine entries
and using the remaining portion of the CRC hash
(Matchval) to identify a font;

3. Determining and storing the position of the
current character in the selected font;

4. Selecting a global Huffman table according to the
current size of the font. FTSize from Fig. 5 is
used to enter the Access Table of Fig. 4A.

The Font Encoding process occurs once for each
character of input data. Fig. 6 shows the data stream 61
including the current character to be encoded "N" and its
two predecessors "P" and "S". Encoder Current Character "N"
is the most recent character from the input stream which is
being processed by the font encoder. At the end of each
encoder cycle "Encoder Current Character" becomes CharlPrior
and the fetch and encoding process continues with the next
character from the input stream as the new Encoder Current
Character. In the example of Fig. 6, in the input data
stream, 61, Encoder Current Character is "N", CharlPrior
(character immediately prior to Encoder Current Character)
is "P" and Char2Prior is "s".

After the initial value of the CRC hash is seeded to
zero, the CRC hash for the two prior characters ("S" and
"p") is created as follows. A CRC function (CCITT
polynomial x16 + x12 + x5 +1) is performed on the character
S and then on P yielding 65 a sixteen~bit CRC result (64 see
Fig. 6) (herein below referred to as "the CRC hash"
indicative of its function in the present invention).

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 17 =

The CRC hash is used as follows: ,

a) The ten least significant bits of the CRC hash are
extracted and stored as RoughAdr (62 see Fig. 6)
for use as a hash pointer.

b) The six most significant bits of the CRC hash are
extracted and stored as Matchval (63 see Fig. 6)
to be used as a match value with the selected
font.

c) The CRC hash is also stored for later use in
constructing hashes for string encoding.

The CRC hash has two very important properties:

i) Its ten least significant bits provide a hash code
having excellent statistical properties for use in
hashing.

ii) The sixteen-bit result produced by every possible
two-byte combination is unique. No two-byte
combination shares a sixteen-bit result with
another two-byte combination so the sixteen-bit
result may be used to provide one-to-one mapping
with the original two bytes.

Accordingly, the ten least significant bits may be used
as a hash code to access a table and the remaining six bits
may be used to test if this is the specific font assigned to
that exact character pair. The CRC hash is used in font
encoding and for history buffer access in string encoding
mode A and string encoding mode B. It provides significant
benefit in reducing the average amount of processor time
consumed in accessing the fonts and history buffer, thereby
enabling a given processor to handle higher encoding
throughput rates. The use of the CRC hash, as described
herein below, by virtue of the throughput rate benefits,
also provides a practical realization of trigram font
encoding. The combination of the CRC hash and MatchVal will
always identify uniquely the font associated with the prior
two characters.

We found experimentally that the use of all sixteen
bits of the prior two characters to identify a font gives an

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

-18-

8%-12% improvement in font encoding compression efficiency
on "normal" English text when compared with the
Type/Type/Prior Character method described in U.S. Patent
4,612,532 to Bacon et al. We also found experimentally that
use of ten bits from the CRC hash, in the manner described
hereinabove, produces less synonyms and therefore reduces
execution time. This benefit is achieved because less time
is spent linking through the fonts via the FTLink fields
(see Fig. 5).
Huffman Encoding Tables

Fig. 4A shows a set of global Huffman tables and the
associated access table. The Access Table 41 is indexed by
Font Size 42 and contains pointers to the several Huffman
tables for Font Code 43 and Font Bits 44 (the bit cost of
the encoding). The Access Table is "Encoding Table" in the
source code. Index 0, and the corresponding Font Code (1,0)
and Font Bits (1,1) are not used. ECFontIndex is computed
and stored during font encoding. Later, during string
encoding, FontBits is retrieved and, during the output
process, FontCode is retrieved. Figs. 4B, 4C and 4D each
show a single Huffman table. Eig. 4B shows the table used
for new character encoding, for string length encoding and
for repeats encoding. Fig. 4C shows the tables used for
string length, mode B encoding. Fig. 4D shows the table
used for the zone portion of string address encoding, mode A

and mode B.

Font Encoding, Example 1, Finding the Current Character in

the Current Font

Referring now td“Fig. 5, let us consider the encoding
of the following string:

WAVeni,~vidi,AVinci.~A”rdo"

In this string the caret character "~" has been
substituted for the space character " " to reduce ambiguity.
Fig. 5 shows the static state of the Font Encoding and
Access Tables directly after processing the string.
Beginning at an initial state having empty fonts, the
process of encoding the first character proceeds as follows.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 19 -

1. Initialization and Assignment of the first Font.

As described above, each new character to be encoded is
associated with a CRC hash. The ten least significant bits
of the CRC hash 56 are used as a pointer to the
ECFTRoughTable 59 (Encoder Font Rough Table). Since all
fonts are empty at the outset, the ECFTRoughTable is
initially null indicating the need for new font creation. A
font number is assigned and stored in the ECFTRoughTable in
the position pointed to by the hash ("000" in the example
given in Fig. 5). This font number is either the next
available not-in-use font or an old font selected as
described later.

The newly created font is initialized as follows:

FTLink = NULL

FTMatch = Matchval from CRC calculation
FTNC = 0 (Most frequent)

FTSize =1

First Font Character = Encoder Current Character

Other Font Characters = N/A
Following table reset, the first character to be

processed is the "~". The prior two characters and the CRC
are assumed to be 0. Thus a MatchVal and ten-bit RoughAdr
of 0 are used. This points to FTRoughTable entry number 0
(which was initially null) and font number 1 was assigned.
Font number 1 was initialized as specified above and has not
changed since, as indicated by Fig. 5.

2. Finding the Current Font and the Current Character

in the Font
a. The current font is accessed as follows. When "e"
becomes the current character, a CRC hash is performed on
"t and "V". The result is hexadecimal 2963 (third row of

the hash table in Fig. 5) giving a Matchval of 28 and a
RoughAdr of 163.

b. The RoughAdr of 163 is used to enter the FTRough
Table and yield the font number 0003, the font to be tested
to determine if it is the font "Av",

c. To test if the selected font is the font "Aymw,

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 20 -

MatchVal is compared with the FTMatch from the sglected
font. If these are equal, the font is searched for the
occurrence of Encoder Current Character.

3. Storing the Current Character
a. If the current character is found, its position,

the size of the font and other pertinent data are stored in
the process buffers for later use by the encoding selection
process. The character matching Encoder Current Character
is promoted towards the top of the table (higher frequency)
by exchange with the next higher frequency entity (character
or NC). 7

b. If the current character is not found, it is added
to the table in the next available position (overwriting the
last character when the table is fuli) and the table size is
incremented (if not full). The NC value is promoted one
position towards the top of the table unless already at the

top (highest frequency).

Font Encoding, Example 2, Finding the Current Font Using the

Link Table
If FTMatch does not equal Matchval, FTLink is examined.

If FTLink is null, then the Ftlink field is assigned the
next font number and the flow joins step 1 above for the
creation of a new font. If FTLink is not null, control
proceeds to FTMatch comparison in step 2 with the FTLink
field as the new font number. Linking and match comparison
repeat until either the desired font is found or a new one
is created.

The last line of the input data stream in Fig. 5
details the "o" character from the sequence "A*do". The
calculated CRC hash for "~d" is 7DD6é which yields a
Matchvalue of 7C and a RoughAdr of 1D6. Note that the
sequence "in", seven characters earlier, produced a CRC hash
of 05D6, MatchValue of 04 and RoughAdr of 1D6é. Access to
entry 1D6 in the ECFTHashRough Table yields a pointer to
font number 000C but comparison of the FTMatch field in font
000C does not equal the desired value of 7C. At that point
in time, the FTLink field of font number 000C was set to

b

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 21 -

NULL. Consequently, font number 0013 was assigned, set to
initial state and the character "o" was added to it. A
future occurrence of the sequence "~d" can link to font
number 0013 via font number 000C and search for or add
characters as required.

Font Encoding, Example 3, New Character

When a character is encountered in the data stream that
does not appear in the font defined by its prior two
characters, it is encoded using one of four frequency
encoding tables. '

Fig. 7A shows the encoding of character "w" which
follows, in the character stream 701, "No". As shown in
Fig. 7A, looking at Font (No) 702, "w" does not appear, and
NC 703 = 2, indicating that "New Character" has a virtual
position between the position of "v" and the position of "n"
in the font. Also Font (No) contains four characters so SZ
704 = 4. The two Global Font encoding Tables shown in Fig.
7A 710 are two of the tables from Fig. 4A, corresponding to
font size SZ = 4 (from Font (No)) + 2 (for NC and ST in mode
A) 713 or SZ = 4 + 3 (for NC, PE and ST in mode B) 714.

Mode A font size = (SZ) + 2. Mode B font size = (SZ) + 3.
Position "2" 715 in these tables yields 709 the bit string
"000" in the Global Font Encoding Tables 710 for either Mode
A 711 or Mode B 712. String "000" will be transmitted by
the encoder and will be recognized by the decoder as the
"new character escape". This will indicate to the decoder
that the next bits to be received are the encoding of a new
character. 1In a preferred embodiment, there are four NC to
Frequency Encoding tables 705, identified as 00, 01, 10 and
11. Bits 5 and 6 706 from the prior character (in this
example "o", and "o" = 6F in hexadecimal) are used to select
one of these four NC to frequency tables (in this example NC
to FreqTable 11 707). The binary value of "w" (77 in
hexadecimal, 708 in Fig. 7A) is used to enter the selected
NC to Frequency table, yielding a position (or frequency) of
15, which defines an entry into the Global Code High/Low
Table 716. This table in turn, yields the Huffman code

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 22 -

01111, the font encoding of new character "w" following
"No". The output bit stream sequence 717 is therefore 000
(font) followed by 01111 (frequency). The use of four
tables, instead of the one table described in U.S. Patent
4,612,532 to Bacon et al, is found to improve compression
efficiency. Of course, more or less than four tables could

be used.
Process Buffers

The process buffers, shown in Fig. 2B, consist of nine
"First In/First Out" buffers 201-209, each having 256
locations, which operate in parallel and share input and
output pointers. These buffers are used by the font
encoding and string encoding processes. Fig. 2B shows the
flow of font encoding data among the process buffers and
various tables. The contents and significance of the
several buffers are as follows:

The ECChar buffer 203 contains the most recent 256
characters from the input stream to be encoded. Characters
are received singly from the input stream, placed in
rotation in ECChar, font .encoded, and later string encoded.
Least-cost selection and output formatting follow. The
value range of ECChar is 0 - 255.

The ECCharCopy 202 buffer contains an exact copy of the
ECChar buffer. It is contiguous with ECChar to facilitate
string searching. The value range of ECCharCopy is 0 - 255.

ECType 209 is a steering value which is set by the font
encoding and/or the string encoding process. ECType is used
by the output format process to control the output bit
stream. ECType may have any one of the following values:

0 - String or pair continuation (the second or

subsequent character of a mode A string or a mode
B string or the second character of a pair
encoding).

2 - Font encoding. The encoding is the relative

offset of the character in the selected Font.

4 - New character.

6 - First character of a pair encoding.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 23 -

8 - First character of a string encoding. ‘

ECFontIndex 207 is the zero relative index into the
FontCode or FontBits tables for this character. By using
the value of ECFontIndex as an index, either the encoding
size in bits or the actual encoding bit pattern can be
accessed quickly. The value range of ECFontIndex is 2 - 43
as shown in Fig. 4A.

ECFrequency 208 is the frequency value of the
character. It is obtained by using the character as an
index into the NC to FreqTables (Fig. 7A). The value range
of ECFrequency is 0 - 255.

ECHashRaw0 2040 contains the eight least significant
bits of the CRC hash computed from the prior two characters
in the input stream. The value range of ECHashRaw0 is 0 -
255. Data is shown in hexadecimal in Fig. 2B.

ECHashRawl 2041 contains the eight most significant
bits of the CRC hash computed from the prior two characters
in the input stream. The value range of ECHashRawl is 0 -
255,

ECHashX20 2050 contains the eight least significant
bits of zero relative font number multiplied by two. This
value is maintained for quick access to the ECFTHashNext
table. The value range of ECHashX20 is 0 - 254, even
numbers. Data is shown in hexadecimal in Fig. 2B.

ECHashX21 2051 contains the eight most significant bits
of zero relative font number multiplied by two. This value
is maintained for quick access to the ECFTHashNext table.
The value range of ECHashX21 is
0 - ((MaxFontTable-1)*2)/256).

ECNewIndex 206 is the zero relative index into FontCode
or FontBits representing the New Character position in this
Font. The value of ECNewIndex is derived from Font Size and
font-relative new character position. (During font
encoding, ECNewIndex is computed and stored. Later, during
string encoding, FontBits is retrieved and, during the
output process, FontCode is retrieved. See Fig. 4A.)
Similarly for pair encoding and/or string escapes, the value

WO 92/02989 ' PCT/US91/05659

10

15

20

25

30

35

- 24 -

of ECNewIndex is incremented by 1 or 2 and the bit cost or
pattern quickly determined. The value range of ECNewIndex
is 2 - 41.

ECRepeats 201 is the count of repeats of this character
beyond two. That is, the two prior characters are the same
as this one. The buffer pointer will not advance as long as
subsequent input characters remain the same and ECRepeats is
less than or equal to 255. The value range of ECRepeats is
0 - 255.

Font Encoding Process Flow
Font encoding process flow is shown in Fig. 1B, first

phase, steps 1 through 10. Font encoding and font update
processing are performed in steps 1 through 10. This series
of steps occurs once for each character of input. 1In this
process, known as "refill", a character is added to the
process buffer and the current input pointer is advanced by
one. The steps (shown in Fig. 2B as 81, 82, 83, etc.
corresponding to step 1, step 2 step 3, etc.) are as

follows: ,
1. A character from the input stream is fetched and

stored in the current input ECChar field 210.

2. The same character is stored in the current
ECCharCopy field 211. (The relationship of ECChar
and ECCharCopy is shown in Fig. 23).

3. The current character is compared with the two
prior characters in the input stream. If equal,x
the ECRepeats field is incremented (e.g. 212 in
Fig. 2B) and, if the ECRepeats field is less than
or equal to 255, flow proceeds to step 1 above.
This loop insures that no more than three
consecutive like characters are stored in the
history buffer (except when the number of
consecutive like characters exceeds 258).

4, The CRC hash is computed on the two prior
characters in the input stream (as described under
"Font Encoding, CRC Hash and Font Access"
hereinabove) and the result is stored in the low

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 25 =

and high bytes of EChashRaw 213 for later use.

The appropriate font 214 is accessed or created
(as described hereinabove). If the font exists,
the font number from FT Rough Table 215 is stored
in the ECHashX2 table high and low bytes (217 and
216) and the character fetched in step 1 above is
looked up in the font 31. If the font is created
(new font), ECHashX2 is set to NULL.

Using SZ (the number of characters in the font)
from the accessed font, the Access Table of Fig.
4A 41 is accessed for a pointer 218 to be used as
an index value. Neither the FontCode or the
FontBits tables are used at this time.

The index value fetched in step 6 is added to the
NC (NewChar position) 219 from the font accessed
in step 5. The result 220 is stored in the
ECNewIndex for later use as a NewChar or String
Escape. If the current character (from step 1)
was not found in the accessed font, the ECType
field is set to 4 denoting a NewChar encoding.

If the current character (from step 1) was found
in the accessed font, the raw position 221 of that
character in the font is added to the index value
222 fetched in step 6 and the result 223 stored in
the current ECFontIndex field. 1If the character
position is greater than or equal to the NC
(NewChar) value from the font, the ECFontIndex
field is incremented by two if in Mode A and 3 if
in Mode B allowing for the virtual positions of
the NewChar, Pair Encoding and/or String Escapes.
The ECType field is set to 2 224 denoting that the
character was found in the font, a "Font
Encoding".

If in Mode B or if the current character (from
step 1) was not found in the font, the appropriate
one of four ECNCFrequency tables 225 (selected
from bits 5 and 6 of the immediately prior

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 26 -

character) is selected (Fig. 73). The frequency
value 226 corresponding to the current character
is fetched from the selected table and stored in
the current input position of the ECFrequency
field 227. This is for later use as a new
character encoding or for 8-bit output in
antiexpansion mode.

10. The current input pointer 228 into the process
buffer is incremented by one. If the number of
characters in the process buffer array is now 256
or, the Font Trending Switch changed from Mode A
to B (or vice versa), or a timer-initiated flush
odcurs, flow proceeds to step 11 below for string
processing and output. Otherwise flow proceeds to
step 1 above.

Steps 11 through 20, including string search, least
cost encoding selection and output are described hereinbelow
under "Second Phase Processing".

Font Reallocation:

As input context changes, old fonts go out of use and
new ones are created. Since there is a limit to the number
of practical (actual) fonts in a preferred embodiment (e.g.
1024), a method for reassigning fonts is required. 1In the
preferred embodiment this is a circular (low to high then
back to low) replacement heuristic. An alternative
embodiment may also include a "less recently used"
heuristic. The next three paragraphs describe the
combination. (The source listing of Appendix 1 details the
circular heuristic only).

Since the fonts are linked in chains starting at
FTRoughTable and forward-only linked via FTLink, the
circular reallocation process points into the FTRoughTable
advancing from 0 through 1023 and back to 0. The selected
font, and subsequently linked fonts (if any) as indicated by
FTLink are examined for potential reuse.

Each time a font is accessed by the previously
described Font Encoding Process, an unused bit of the

]

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 27 -

FTHashNext field is set to 1 indicating activity. As the
reallocation process traverse the fonts, it will reset the
activity bit if it is set and link to the next candidate
font. If the activity bit is reset, the font will be
reallocated as a new font. By the use of the single
activity bit, any given font has the opportunity to survive
permanently provided that it is used at least once per pass
of the reallocation search process.

For example, referring to Fig. 5, assume that the main
reallocation pointer is pointing to the FTRoughTable at
hexadecimal 1D6. The FTLink field of font 000C will be
examined for the activity bit. Assuming it to be reset, _
font 000C will be the next assigned for a new font. This is
done by copying the contents of the FTLink field (in this
case 0013) into the FTRoughTable at 1D6 thus freeing font
000C. The reallocation pointer is moved to 0013 for use in
the next allocation cycle.

String Encoding

The string encoder of the present invention uses a
circular history buffer to store a sliding dictionary. The
history buffer is a dictionary of all the strings it
contains. String encoding may operate in one of two modes,
mode A (using the tables in Fig. 8A) for use on relatively
compressible text or mode B (using the tables in Fig. 8B)
for use on less compressible text. In both modes, string
encoding is designed to achieve near-optimum compression
efficiency under the time constraints of on-line operation.
The history buffer is tagged at regular intervals and, in a
preferred embodiment, is tagged every second character
position. The string encoder of the present invention also
uses a novel dictionary access structure having a set of
tables for accessing the history buffer. Updating the
history buffer involves very little processing because it
involves no more than accepting the next character and
incrementing a pointer. However, updating the dictionary
access structure is as challenging a problem as updating the
sliding dictionary in string encoding systems which store

WO 92/02989 PCT/US91/05659

10

15

25

30

35

- 28 -

the sliding dictionary as a tree structure. The present
invention addresses this problem by the use of a novel
history buffer access method. The method is based on the

 structure of the history buffer access tables as shown in

Figs. 8A and 8B and it retrieves and uses the same CRC hash
codes created and used in the font update process during
font encoding. Accordingly, by use of this method, updating
of the dictionary access structure is faster and requires
less processing than updating a tree structure would
require.

The use of a tagged history buffer provides additional
benefit for accessing and matching strings. String encoding
mode A, using a tagged history buffer, locates longer
strings in a shorter time than earlier methods. While the
process searches the same number of candidates, the process
encounters shorter linked lists in the access buffers than
would otherwise occur. Processing time spent building and
searching access tables is beneficially reduced.

' The history buffer/dictionary access structure, in a
preferred embodiment, includes a history buffer and access
tables. The history buffer and the access tables shown in
Figs. 8A and 8B are used by the string encoding process of
mode A and the string encoding process of mode B
respectively. Both Figs. 8A and 8B show an ECRR (History)
Buffer (1 byte wide) 81 with a Next Available Buffer
Position 82 and an ECRR Suffix (256 positions) 83. Both
Figs. show an ECRR Hash Head Buffer (2 bytes wide) 84. Both
Figs. show an ECRR Hash Buffer containing an ECRR Hash Link
portion (2 bytes wide) 85 and an ECRR Hash Test Portion (2
bytes wi&e) 86. Both Figs. show the derivation 87 and 88 of
the CRC hash used as entry to the ECRR Hash Head Buffer 84.

Both string encoding mode A and string encoding mode B
use the CRC hash created earlier during font encoding and
stored in the ECHashRaw table (see Fig. 2B). However, each
of these processes uses the CRC hash in a slightly different
way. String encoding mode B uses the CRC hash (a hash based
on two consecutive characters) directly. String encoding

[}

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 20 -

mode A uses a novel algorithm (which includes the CRC hash)
to create a hash based on two consecutive pairs of
characters (four consecutive characters) as illustrated by
the following example for the four characters "THEY":

"TH" [CRC hash] yields XXXX (16 bits)

"EY" [CRC hash] yields YYYY (16 bits)

XXXX @ (0-YYYY) yields ZZ2Z (16 bits)

where @ is exclusive OR, 0-YYYY is zero minus YYYY and

272ZZ is the resultant hash.

String Encoding, Mode A

Every second character position in the history buffer
is tagged and the tags are used to index the string search

process.

Each tagged position has corresponding Hash Link

and Hash Test field. String encoding for mode A includes
the following steps:

1.

Set LookAhead = 3 (Fig. 9 shows a Data Stream 91,
a History Buffer ECRR 92 with a Next Available
Buffer Position 93, A CC Buffer 94 with a Current
Character 95, and a Pointer "p" 96. The pointer
96 is shown for Mode A to have a First Start Point
for String Search 901 displaced 3 characters from
the poéition of the current character and a Second
Start Point for String Search 902 dispaced 2
characters from the position of the current
character.) Set pointer p to CCBuffer pointer
(ECNextChar pointer in Fig. 2) plus a number of
characters equal to LookAhead.

Create the hash for the string of four characters
starting at the "p"th character as described
hereinabove.

Use the least significant eleven bits of the hash
(22zZ in the example above) as a pointer (e.q.
1811 in Fig. 8A) to enter ECRR Hash Head Table of
Fig. 8A. Set pointer "h" to the first potential
match by using the contents of ECRR Hash Head
field (e.g. 7300 in Fig. 8A) to point to the most
recent four-character string in the history

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

buffer, starting at a tagged location, that hashes

to that same hash. :

Find the longest match:

a) Set n =3

b) Setx=0

c) Compare (one character at a time) the
character at (p + n - x) in the CC buffer
with the character at (h + n - x) in the
history buffer, incrementing x by 1 until
X = n or no match. The "fast reject step" is

when x = 0.

d) Increment n by 1 and compare the character at
(p + n) in the cC buffer with the character
at (h + n) in the history buffer until no
match.

Continue to search for the longest match as

follows. Use pointer "h" to enter the

ECRRHashLink table (at 7300 in Fig. 8A). Reset

pointer "h" from the content of the ECRRHashLink

table so that pointer "h" points to the next most
recent four-character string in the history buffer

(7284 in Fig. 8A). In each search, using steps b

through d above, begin comparing characters for

match starting at character n, where n is the
length of the current longest match. Continue
until the end of the linked list, as indicated by

a non-match of the hash with the corresponding

entry in the ECRR Hash Test field or, to prevent

looping, until MaximumASearches (eight in the
preferred embodiment) have been performed.

Store length and location of longest match if n

(length of longest match) > 3.

Backmatch, as follows, to maximize the length of

the string:

a) First time through (LookAhead = 3), check
until no match: character preceding 1st
character, the character preceding that and

»

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 31 -

then the character preceding that (the
current character).

b) Within repeat steps (from step 6, LookAhead =
2) check until no match: character preceding
first character and then the character
preceding that (the current character).

6. Repeat steps 1-5 with LookAhead = 2.

7. Select from the outputs of steps 5a and 5b the

string which:

a) is the longest;

b) if the strings are equal, the one that is
most recently stored.

The following advantages follow from the structure and
method of string encoding mode A:

a) History buffer update processing time is reduced
when the history buffer is accessed at fewer entry points
than every character. 1In the preferred embodiment, the
history buffer update processing time is reduced by a factor
of two because the history buffer access table update takes
place every second character instead of every character.

b) String search processing time is reduced when the
history buffer is accessed at fewer entry points than every
character. In the preferred embodiment, the linked list to
be searched is, on average, only one-half the size it would
otherwise be (the list is drawn from a population of
candidates only one-half the size it would otherwise be).

c) Less memory is required for the ECRR Hash-
Link/Hash-Test Table because, in the preferred embodiment,
it is only one-half the size it would otherwise be.

da) The end of the linked list is determined
dynamically by comparing the current hash code with the
content of the ECRR Hash Test field. Thus the need to
maintain end of list pointers or link length pointers or the
like is eliminated. Because the end of the linked list is
determined dynamically, no maintenance is required for the
overwritten string.

e) Non-matches are eliminated faster and with fewer

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 32 =

processing steps because each search starts at p + n. This
"fast reject" technique ensures that the candidate string is
rejected immediately if it cannot be at least one character
longer than the previous longest match.

String Encoding, Mode B

Every second character position in the history buffer
is tagged and the tags are used to index the string search

process.

Each tagged position has corresponding Hash Link

and Hash Test fields. String encoding for mode B includes

the following steps:

1.

Set pointer p to CCBuffer pointer + 1 (Fig. 9
shows a Data Stream 91, a History Buffer ECRR 92
with a Next Available Buffer Position 93, a CC
Buffer 94 with a Current Character 95, and a
Pointer "p" 96. The pointer 96 is shown for Mode
B to have a First Start Point for String Search
903 displaced 1 character from the position of the
current character and a Second Start Point for
String Search 904 coincident with the position of

-the current character).

Retrieve the CRC hash from ECHashRaw (Fig. 2B) for
the string of two characters starting at the "p"th
character. '
Use the least significant eleven bits of the (16
bit) CRC hash as a pointer (2048 positions) to
enter ECRR Hash Head Table (0012 in Fig. 8B). Set
pointer "h" to the start of the first potential
match by using the coﬁtents of ECRR Hash Head

field (0006 in Fig. 8B) to point to the most

- recent two-character string in the history buffer,

starting at a tagged location that hashes to a CRC

hash that has the same least significant eleven

bits (2Q in Fig. 8B).

Find the longest match having three or more

characters:

a) Compare the character at (p -1) in the cC
buffer with the character at (h - 1) in the

"

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 33 -

history buffer and terminate if no match.
This is the "fast reject step".
b) Set n =0
c) Compare (one character at a time) the
character at (p + n) in the CC buffer with
the character at (h + n) in the history
buffer, incrementing n by 1 until no match.
Continue to search for the longest match as
follows. Use pointer "h" to enter the
ECRRHashLink table (at 0006 in Fig. 8B). Reset
pointer "h" from the content of the ECRRHashLink
table so that pointer "h" points to the next most
recent two-character string in the history buffer

(3750 in Fig. 8B). 1In each search, use steps 4a
through 4c above (or steps 5a through step 5c
below). Continue until the end of the linked

list, as indicated by a non-match of the hash with

the corresponding entry in the ECRR Hash Test

field or, to prevent looping, until

MaximumBSearches (sixteen in the preferred

embodiment) have been performed.

Store length and location of longest match if n

(length of longest match) > 2.

Set p to CCBuffer pointer (the current character)

and repeat steps 2 through 4, using the following

steps a, b and c instead of steps 4a, 4b and 4c to
find the longest match:

a) Compare the character at (p + 2) in the CC
buffer with the character at (h + 2) in the
history buffer and terminate if no match.
This is the "fast reject step".

b) Setn=0

c) Compare (one character at a time) the
character at (p + n) in the CC buffer with
the character at (h + n) in the history
buffer, incrementing n by 1 until no match.

Select from the outputs of step 4 and step 5 the

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 34 -

string which:

a) is the longest;

b) if the strings are equal, the one that is
most recently stored.

String Length Encoding
String lengths are encoded differently for mode A string

encoding and mode B string encoding.

In mode A, string lengths are encoded using the
GlobalHigh/Low table. Further, the encoding is slightly
different depending upon the method of string escape. i)

If the escape follows creation of a font, MinimumAString
(which is 6) is subtracted from the actual length of the
string and the result is used to index the GlobalHigh/Low
table. ii) If the escape follows an old (existing) font,
MinimumAString (which is 6) is subtracted from the actual
length of the string, four is added, and the result is used
to index the GlobalHigh/Low table. This latter operation is
because the bit pattern 11, which begins the first four
entries in the GlobalHigh/Low table is reserved to signify a
Pair Encoding. The selected Huffman pattern from the
GlobalHigh/Low table is placed into the output stream.
String length encoding, mode A, old font, is illustrated as
the second operation in Fig. 7C.

In mode B, string lengths are encoded by subtracting
MinimumBString (which is 3) from the actual length of the
string. If the result is less than 9, the LengthBCode table
is used to encode the string length. If the result is
greater than or equal to nine, the further escape 0010 is
output, an additional nine is subtracted from the result
above, and the new result is used to index the .
GlobalHigh/Low table. The selected Huffman pattern from the
GlobalHigh/Low or LengthBCode table is placed into the
output stream.

String Pointer Encoding
String pointer encoding for both mode A and mode B

proceeds as follows: _
The history buffer location of the first string

£

WO 92/02989 PCT/US91/05659

10

15

20

25

30

- 35 -

character is subtracted from the Next Buffer Store location.
Buffer wraparound, if any, is corrected such that the result
is the displacement from the found string to the Next Buffer
Store location and is in the range 0 through BufferSize-1.
Note that strings closest in recent history (newer) have
lesser displacements than do older strings.

Example 1. (using 8192 character buffer)

Decimal Hexadecimal
Next Store location 3152 0C50
Found string location 1511- 05E7~-
1641 0669
Example 2. (using 8192 character buffer)

Next Store location 0052 0034
Found string location 8157~ 1FDD-
8105~ 1FA9~
Correction 8192+ 2000+

String Displacement 87 57

With the BufferSize in the preferred embodiment
selected as 8192, the calculated displacement can be
expressed in thirteen bits.

The displacement is further broken into two components.
A) A zone portion from the most significant five bits. B)
An offset portion from the least significant eight bits. 1In
the proper string encoding context (i.e. after appropriate
string encoding escapes) the five bit zone is Huffman coded
using the ZoneCode table and the eight bit offset is
inserted directly into the output stream. Thus the Zone may
be encoded using from 2 to 7 bits depending upon zone value
with the strings closest in recent history getting favorably

shorter encodings.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

Example. Hexadecimal Binary

String Disp 0057 0000 0000 0101 0111

0000 0000 = Offset

57

'Z 2ZZZ = Zone = 0

String offset encoding is also illustrated as the third
and fourth operations in Fig. 7C.

Fig. 7C illustrates string encoding, mode A, and shows
a Character Stream 751 with a character string beginning
with "w" 752, Font (No) 742 and Global Font Encoding Table
743 yielding, for a font size value SZ =4, at entry point 3
(3 = String Escape = NC + 1) 744, a Font String code 001
724. Fig. 7C shows a History Buffer.753 having a character
string beginning with "w" at location 933 (hexadecimal) 754.
Fig. 7C shows that a string of nine characters 752 in the
character stream match the nine characters in the history
buffer beginning at location 933 754. The "Global Code" or
Global Frequency Encoding Table 745 is entered at entry
point 7 (9 - 6 + 4 = 7) 755 to create a Length Code of 1011
756. The string location 933 (hexadecimal) 754 is
subtracted from the location of the Next History Buffer
Location 1201 (hexadecimal) 757 to yield 8CE (hexadecimal)
whose 13 least significant bits 758 comprise the
displacement which is broken into two components: i) a zone
portion from the most significant five bits 759 and ii) an
offset portion from the least significant eight bits 760.
The five bit zone portion is Huffman coded using the Zone
Code table 761 and the eight bit offset is inserted directly
in the output stream. The Output Bit Stream Sequence 752
includes 1st: Font (001), 2nd: Length (1011), 3rd: Zone
(01001) and 4th: Offset (11001110).
Minimum String Length and Search Advance

In both mode A and mode B string encoding, the string
search process discards matches having less than a
predetermined number of characters, the predetermined number
being greater than the hash length. Thus, we define a

{uy

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 37 -

minimum string length. The minimum string length can be
greater than the hash length and it is advantageous to make
it so. In mode A the hash length is 4 and the predetermined
number is 6. In mode B the hash length is 2 and the
predetermined number is 3. Setting a lower limit on the
length of the string reduces the bit-cost of encoding longer
strings because the top (shortest code) entry into the
Huffman table is used to represent a string of the minimum
length.

On completion of a string search, if no match is found,
a predetermined number of characters (3 if mode A and 1 if
mode B) are released (in font encoded or pair encoded form)
and the search pointer is advanced by a corresponding number
of positions before the next search.

Pair Encoding

Pair Encoding is a novel method for encoding character
pairs. Up to 1024 fonts, those associated with recently
encountered character pairs, are maintained in memory
principally for the purpose of font encoding. Pair encoding
takes advantage of the unambiguous one-to-one mapping .
between the input character pairs and the fonts effected
using the CRC hash and the Matchval. Since there are 1024
fonts maximum, ten bits (2% = 1024) may be used to encode
any of the character pairs that these fonts represent.

Thus, other than escape bit sequences, ten bits is all that
is required to encode many character pairs. Assuming an
average escape sequence of three bits, the resulting
thirteen bit encoding compares quite favorably with the
sixteen bits for two uncompressed characters especially in
computer binary codes files (eg .COM and .EXE).

In addition to the fonts and access structure
maintained by the encoder, the decoder maintains a table of
the actual two characters which are associated with each
font. Thus it can do a direct lookup when directed by the
encoded bit stream.

Example. Refer to Fig. 7B which shows an input
character stream 731 with a character pair "wA" 732, Font

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 38 =

(No) 722 (font address hex 195) and a Global Font Encoding
Table 723 yielding, at entry point 3 725, a Font String Code
001 724. Assume that the character pair "wA" (lower case W
and caret) has occurred previously in the input character
stream and has font number 215 (hexadecimal) assigned to it
by the font encoding process. The sequence "wA" 732 has
occurred again following "No" in the input stream and is
next to be processed for output by the encoder. After
determining that the pair "wA" exists, and that Pair
Encoding is the least cost, the encoder, entering the Global
Font Encoding Table 723 of Font Size 6 (Font Size = SZ + 2
for Mode A) at NC+1 (String Escape 724), emits the String
Escape "001" from font "No" 735, followed by the Pair
Encoding Escape "11", 736 and the ten bit value "1000010101"
(from binary of hex 215, the font number of "w*") 737
creating output bit stream 738.

Font Escapes
A font escape is a bit encoded sequence which serves as

a signal from the encoder that the subsequent item is to be
treated differently from that normally expected. A font
encoded sequence that signifies that a NewChar follows in
the data stream is an escape. It is used as an Escape to
signal GlobalNC encoding. Another escape is String Escape.
This is a bit sequence specifically to condition the decoder
for reception of a string. When used in the context of a
Font encoding/decoding, String Escape has a value equal to
NewChar Escape + 1 when String "A" mode is active.

In string mode B the font has 3 escapes:

1) New character. Value Font NC.

2)M‘ Pair encoding. Value = Font NC + 1.

3) String mode B. Value = Font NC + 2

Other escapes are described under Detail of Specific

Encodings hereinbelow.

Second Phase Processing
Second Phase Processing, steps 11 through 20, includes

string search, least cost encoding selection, formatting and
output. Throughout these steps, the pointer into the

WO 92/02989 PCT/US91/05659

- 39 -

process buffer is the current output pointer which is from 1
to 256 characters behind (older than) the current input
pointer.
11. According to the state of the mode switch, the
5 correct string search routine is invoked, String
Search Mode A or String Search Mode B.
12. If a less than a minimum length string (3 if mode
B and 6 if Mode A) is found in step 11, proceed to
step 15. Otherwise, the bit cost of the string is

10 computed by summing the costs of String Escape,

String Length, Zone Code and the String Offset of

8, as follows:

a. Fetch the ECNewIndex value corresponding to
the first character of the string and add 1

15 if Mode A or 2 if Mode B. Use the result to
access the FontBits section of the Global
Font Encoding Table of Fig. 4A. The
retrieved value from FontBits is the bit cost
for the String Escape.

20 b. If Mode A is active, subtract 6 and add 4 to
the string length and use this result to
access the GlobalBits table. If Mode B is
active, subtract 3 from the string length and
use this result to access the LengthBBits

25 table. This is the bit cost for the string
length.
c. Subtract the position of the first character

of the string from the next history buffer
store location and divide the result by 256
30 giving the zone. Using the computed zone,
access the ZoneBits table. This is the bit
cost for the Zone encoding.
d. The bit cost of the String Offset is 8.
e. Add items a through d. This sum is the total
35 bit cost of the string.
13. Compute the bit cost of equivalent font encoding
for each position corresponding to a character in

WO 92/02989

10

15

20

25

30

35

14.

15.

PCT/US91/05659

- 40 -

the string using step a or b below. Subtract this

bit cost from the total from step 12. If

underflow (the result goes negative) at any point,
exit step 13 since the string encoding wins over
the font encoding. If all corresponding positions
are examined without underflow occurring, font
encoding has a lesser or equal bit cost and will

be used so proceed to step 15.

a. If the ECType field is 4, use the ECNewindex
field to access the FontBits table for the
bit cost of NewChar Escape. Use the
ECFrequency field to access the GlobalBits
table for the bit cost of the NewChar.

b. If the ECType field is 2, use the ECFontIndex
field to access the FontBits table for the
bit cost of a font encoding.

If string encoding wins as indicated in step 13,

change the ECType field corresponding to the first

character of the string to an 8 (denoting String

Encoding) and then change the ECType field

correspondiné to all remaining characters of the

string to a 0 (denoting string continuation). Set

UpdateLength to string length. Proceed to step

19. :

Examine the ECHashX2 field corresponding to the

character at the current output position + 2. 1If

NULL (the font exists in the encoder but does not

yet exist in the decoder) proceed to step 18,

otherwise compute the cost of a Pair Encoding as

follows:

a. Fetch the ECNewIndex value corresponding to
the current output position and add 1. The
result is used to index the FontBits table.
This is the bit cost for the Pair Encoding
Escape.

b. Add 10 to the result of step a. This is the
total Pair Encoding cost.

WO 92/02989

10

15

20

25

30

35

1s.

17.

18.

19.

PCT/US91/05659

- 41 -

Compute the bit cost of equivalent font encoding
for each of the two characters in the pair
(current output position and current output
position +1) using step a or step b below.
Subtract this bit cost from the total in step 15.
If underflow (the result goes negative) at any
point, exit step 16 since the pair encoding wins
over the font encoding. If the two positions are
examined without underflow occurring, font
encoding has a lesser or equal bit cost and will
be used so proceed to step 18.

a. If the ECType field is 4, use the ECNewindex
field to access the FontBits table for the
bit cost of NewChar Escape. Use the
ECFrequency field to access the GlobalBits
table for the bit cost of the NewChar.

b. If the ECType field is 2, use the ECFontIndex
field to access the FontBits table for the
bit cost of a font encoding.

If pair encoding wins as indicated in step 16,

change the ECType field corresponding to the first

character of the string to a 6 (denoting Pair

Encoding) and then change the ECType field

corresponding to the next character of the pair to

a 0 (denoting string/pair continuation). Set

Updatelength to 2. Proceed to step 19.

Set Updatelength to 1. This is to be a font or

NewChar encoding.

Access the ECType field at current output

position, format and output the bit sequences

illustrated in Figs. 10A through 10D. Access the

ECRepeats field at current output position, if

greater than 0, output the repeat count using the

GlobalCode (High and Low) table. Add each output

character to the history buffer and associated

access tables. Increment current output position,
decrement UpdatelLength. Repeat step 19 while

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 42 -

UpdateLength is greater than 0. _

20. If a Flush or Mode change operation is in process,
repeat steps 11 through 19 until the process
buffer is empty (current output position equals
current input position). Otherwise proceed‘to
step 1. _

Compressibility and Encoding Process Switching

The following process is found to provide a useful
measure of data compressibility. Every forty-eight new
characters (i.e. characters not found in the font associated
with the previous two characters), the cumulative bit-cost
of encoding the previous ninety-six such characters is
compared with a preset value. It is of no consequence to
this process that such character might later be encoded as
part of a string.

Every forty-eight NewChars (which may be more than
forty-eight input characters), the current sum in NCBitsNew
is added to the previous forty-eight character sum from
NCBitsPrior and the result compared to the constant 96 * 7.5
(representing 96 characters at 7.5 bits per character). If
there are less than 96 * 7.5 bits in the result, the
Compressibility Trending Switch is turned OFF (or remains
OFF). If the result is 96 * 7.5 or greater, the
Compressibility Trending Switch is turned ON (or remains
ON). After the calculation, the current NCBitsNew is stored
in NCBitsPrior in preparation for the next cycle forty-eight
NewChars later.

If the compressibility trending switch is on, the
following are in effect:

1. Font encoding is active.

2. String mode B is active.

3. Pair encoding is active.

4. Anti-expansion mode is active.

If the compressibility trending switch is off, the
following are in effect:

1. Font encoding is active.

2. String mode A is active.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

- 43 -
3. Pair encoding is active.
4. Anti-expansion mode is inactive.

Detail of Specific Encodings

The several encodings produced by the present
invention, in addition to font encoding (NewChar, Pair and
String) are shown in Tables 1A through 1D below. Table 2
provides the key to the data in these tables.

Preconditions Font Position
0ld Font, Mode A EEE
01ld Font, Mode B FFF

Table 1A - Font Encodings

Preconditions Escapes Freguency
0ld Font, Mode A NES NNN

New Font, Mode A 00 e PPP

New Font, Mode A 10 or 11 PPP

0ld Font, Mode B NES ffff ffff
New Font, Mode B 10 hhh hhhh

New Font, Mode B 0 iii iiii

Mode B, Antiexpansion ffff ffff

Table 1B ~ New Character Encodings

Preconditions Escapes 10 Bit Font Number
0ld Font, Mode A SEA 11 bb bbbb bbbb
New Font, Mode A 01 0 bb bbbb bbbb
0ld Font, Mode B PEB bb bbbb bbbb
New Font, Mode B 11 0 bb bbbb bbbb

Table 1C - Pair Encodings

WO 92/02989

10

15

20

25

30

35

Preconditions

0ld Font,
New Font,
0ld Font,
New Font,
0ld Font,
New Font,

Mode
Mode
Mode
Mode
Mode
Mode

bb bbbb bbbb

f£ff £ffff

hhh hhhh

iii iiii

0000 0000

EEE

FFF

PCT/US91/05659

_44-

Escapes Length Buffer Position
A SEA SsS ZZ27Z 0000 0000
A 01 1 GGG Z2Z 0000 0000
B SEB LLL ZZZ 0000 0000
B 11 1 LLL 227 0000 0000
B SEB 0010 GGG 222 0000 0000
B 11 1 0010 GGG 222 0000 0000

Table 1D - String Encodings

Key td Tables 1A through 1D
A ten bit number representing the font number

with which the encoded pair is associated.

A single bit emitted to comprise the second
of two bits which serﬁe as a prefix to the
PPP encoding.

Eight bits representing a character frequency
in the range 0 - 255.

Seven bits representing a character frequency
in the range 128 - 255.

Seven bits representing a character frequency
in the range 0 - 127.

The eight least significant bits of the
buffer (relative to the Next Buffer Store
Location) displacement of the first character
of a string. Used with a ZZZ encoding to
identify a string position.

A Huffman pattern from the FontCode table
from one to four bits in length encoding a
value not equal to the Font NewChar or Font
NewChar plus one and representing the font
relative position of the encoded character in
the Font.

A Huffman pattern from the FontCode table
from one to five bits in length encoding a
value not equal to the Font NewChar, Font
NewChar plus one, or Font NewChar plus two
and representing the font relative position

WO 92/02989 PCT/US91/05659

- 45 -

of the encoded character in the Font.

GGG A Huffman pattern from the GlobalHigh/
GlobalLow table from four to thirteen bits in
length, in mode A, encoding a value from 0 to

5 249 and representing a string length of 6 -
255 characters; in mode B, encoding a value
from 0 to 243 and representing a string
length of 12 - 255 characters.

LLL A Huffman pattern from the LengthBBits table,

10 from one to six bits in length, encoding a
value from 0 to 8 and representing a string
length from three to eleven characters.

NES A Huffman pattern from the FontCode table
from one to four bits in length encoding a
15 value equal to the Font NewChar and
representing a NewChar Escape.
NNN A Huffman pattern from the GlobalHigh/

GlobalLow table from four to thirteen bits in
length, encoding a value from 0 to 255 and
20 representing a character frequency.

PEB A Huffman pattern from the FontCode table
from two to four bits in length encoding a
value equal to the Font NewChar plus one and
representing a Pair Encoding Escape, Mode B.

25 PPP The remainder of a Huffman pattern from the
GlobalHigh/GlobalLow table, excepting the
first two bits which are emitted separately,
from two to eleven bits in length, encoding a
value (in consideration of the prior two

30 bits) from 0 to 255 and representing a
character frequency.
SEA A Huffman pattern from the FontCode table

from two to four bits in length encoding a
value equal to the Font NewChar plus one and
35 representing a String Escape, Mode A.
SEB A Huffman pattern from the FontCode table
from three to five bits in length encoding a

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 46 -

value equal to the Font NewChar plus two and
representing a String Escape, Mode B.

SSs A Huffman pattern from the GlobalHigh/
GloballLow table, excepting the first four
entries (those beginning with 11), from four
to thirteen bits in length, encoding a value
from 4 to 255 and representing a string
length of 6 - 253 characters.

2722 A Huffman pattern from the ZoneCode table,
from four to thirteen bits in length,
encoding a value from 0 to 31 and
representing the five most significant bits
of the string displacement. Used with the
0000 oooo, described above to identify a
string position in the history buffer.

Table 2 - Key to Encodings of Tables 1A through 1D

Selecting and Assembling Encodings

The least-cost encoding is built by selecting the
encoding that has the fewest bits. If the bit cost of the
two encodings are the same, font encoding is chosen.

If string encoding is selected, there may be up to
three prefix characters not included in the string (e.g.,
the current character to the character immediately prior to
the beginning of the string). Any such prefix characters
are font encoded or pair encoded and their code is
transmitted ahead of the string encoding.

Anti-expansion

Whereas it is poééiblelfcr certain data streams to
exhibit very little patterning, data expansion is a possible
outcome of font encoding and string encoding systems. To
counter this possibility, a running computation of the
output bit count for Mode B minus 8 (bits per character) is
maintained, i.e., for each equivalent character output,

SUM = SUM + BitCost - 8. Thus a positive result indicates
poor compression and a negative result indicates good
compression. A switch is maintained which controls the

i

WO 92/02989 , PCT/US91/05659

10

15

20

25

30

35

- 47 -

output stream such that, when the switch is on, the eight-
bit frequency is output instead of the normal font, string,
or pair encoding for mode B. A command (frequency OFEh
followed by a single 1 bit) is used to signal the decoder to

change state.
Table 3 indicates the action taken for each character

output.
Switch On (Transparent Mode) Switch Off (Mode B Encoding)
SUM >= 0 No Change SUM < 0 No Change

SUM -1 to =19 No Change SUM 0 to 19 No Change

|
1
|
!
|
1
|
|
SUM < =19 Set Switch Off | SUM >19 Set Switch On
Table 3 - Anti-expansion Actions

Decoder Process
Figs. 10A and 10B provide a flowchart of the decoding

process. Table 4 provides the key to the flowchart of Figs.
10A and 10B.

F<n> Fetch the next <n> bits from the input stream
(where n is an integer).
DG Decode Global. Decode a Huffman pattern

which was selected and encoded from the
GlobalCode encoding table.

DF Decode Font. Decode a Huffman pattern which
was selected and encoded from the appropriate
Font Encoding tables (Fig. 4A).

D s Decode Short. Decode a Huffman pattern which
was selected and encoded from the GlobalCode
encoding table.. Same as the DG (Decode
Global) except that two bits have already
been fetched (F2) and are in DCCode. Used
for length of 'A' type strings.

DL Decode Length. Decode a Huffman pattern
which was selected and encoded from the

WO 92/02989 PCT/US91/05659

10

10

15

20

- 48 -

LengthBCode encoding table. Used for length
of 'B' type strings.

D Z Decode Zone. Decode a Huffman pattern which
was selected and encoded from the lowest 64
entries in the GlobalCode encoding table.
Used for length of 'B' type strings.

Table 4 - Key to Decoder Flow

In the decoder flow, there are only four possible
endpoints to a single decoder (and implicitly encoder)
cycle. These four different endpoints are shown in Figs.
10A and 10B by an integer inside a triangle. They
correspond to the four methods of encoding, shown in Tables
1A through 1C hereinabove: Font, NéwChar, Pair and String.

Dual Processor Configuration

As discussed under Background Art hereinabove, the
combination of higher data rates in data transmission
systems, the achievement of high data compression
efficiencies and the use of complex process-intensive
algorithms for data compression increases the processing
throughput required to perform modem control and data
compression/decompression tasks. In a preferred embodiment,
referring to Fig. 11, the system uses two processors
connected in series between the computer (the DTE interface,
111) and the telephone line (the DCE interface, 112), each
processor having its own memory. One processor, the DCE
Interface Processor 113, a Zilog 7280180, performs DCE
interface processes (modem control and data flow
management). The other processor, the
Compression/Decompression and DTE Interface Processor 114, a
Rockwell C19, performs data compression, data decompression
and DTE interface processes (data interchange with the PC).
This configuration is shown for duplex operation in Fig. 11.
Fig. 11 shows a data rate of 11,500 characters/second at the
DTE Interface and a data rate of 1,500 characters/second at
the DCE Interface. The conventional (prior art) approach
using a single processor 121 to perform all functions (DTE

‘o

2]

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 49 -

interface, DCE interface and Compression/Decompression) is
shown in Fig. 12. The single processor approach involves
using a more powerful, albeit more expensive, processor.

The general problem of sharing tasks among multiple
processors is known to be a difficult problem in computer
science. A conventional solution that might be applied to
data compression modem applications is shown in Fig. 13.
Fig. 13 shows a conventional two-processor configuration
having a DTE/DCE Interface Processor 131 and a
Compression/Decompression Processor 132. The present
invention achieves the sharing of tasks by a simple but,
nonetheless, unexpectedly effective configuration.

The preferred embodiment, shown in Fig. 11, achieves
efficient control over all processes occurring in the
system. This configuration utilizes the insight that
compression and decompression and interface with the
terminal all occur at a high error-free data rate, whereas
modem control and the data line interface processes operate
at a lower data rate and involves error detection and repeat
transmission to cope with transmission errors. Accordingly,
a first relatively high speed processor is used for both
control of the terminal interface and for data compression
and decompression; and a second processor is used for the
processes involved in control of the data line interface
including error detection and retransmission. Thus loading
peaks occurring in either processor cannot interfere with
the other.

Glossary

Encoder Current Character
The most recent character from the input
stream which is being processed by the
encoder font system. At the end of each
encoder cycle, encoder current
character, "ECChar", becomes CharlPrior
and the fetch and encode process
continues with the next character from
the input stream as encoder current

WO 92/02989

Escape

Font
10

15

Huffman Codes

20

NewChar
25

30
NewChar Symbol

35

PCT/US91/05659

- 50 -

character. _
A bit encoded sequence which serves as a

signal from the encoder that the
subsequent item is to be treated
differently from that normally expected.
Example: a font encoded sequence that
signifies that a NewChar follows in the
data stream.

One record of an array of records, each
record consisting of pointers, links,
characters, etc., each record having an
address based on the prior two
characters in the input stream, each
record containing a list of historically
occurring candidate characters to be
matched with characters from the input
stream.

As used in this document, this term
refers to any variable length bit
representation having fewer bits
corresponding to higher frequency of
occurrence, including but not limited to
codes created by a tree algorithm.

The occurrence of "NewChar" is a font
encoding event wherein either the
encoder current character, "ECChar", is
not found in the selected font or there
is no font in existence (and it thus
contains 0 characters based on the font
selection scheme).

A dynamic value in the range of 0
through n (where n is the maximum number
of characters per font) which represents
the current virtual position in the font
which represents "character not in
table". It is used as an escape to
signal GlobalNC encoding.

‘0

PCT/US91/05659

WO 92/02989
- 51 -
NewChar Escape Specifically an encoding representing
the NewChar Symbol.
String Escape An escape sequence specifically to
condition the decoder for reception of a
5 string. When used in the context of a

font encoding or a font decoding, a
value equal to NewChar Escape + 1.

PCT/US91/05659

WO 92/02989
- 52 =
APPENDIX 1
SQURCE CODE
; StringA, StringB with full separation in StringTime calls
H From TCO90F2K2.MAC
5 7
IF2
.printx /C19 Encoder and Decoder/
ENDIF
.xlist
10 .C18 ; assembler, please do C18
intructions
lodreé equ 1 ; 6.144mhz clock
.sfcond
include ITEc19
15 include TCAfm001
printstat macro a,b,c,d
if2
.printx /a b c 4/
20 endif
endm
.list
pagealign macro
if (tblofs and 255) ne 0
25 fred defl (0-tblofs) and 255
printstat <Page Align Waste =>,%fred
tblofs defl tblofs + fred
endif
endm
30 ;

35

.
14
.
’
.
[

AHashX?2

jhkkkkkkkkkkk A S SEMBUILY ODPTTIONS wekkkkkkkkks

OPTIONS WHICH CHANGE COMPRESSION/SPEED

EQU o0 ;J (0) 0 -no; 1 - yes

MaximumASearches EQU 8 7 / (8) maximum A hashes

WO 92/02989 PCT/US91/05659

- 53 =
APPENDIX 1
searched
MaximumBSearches EQU 16 ; J (16) maximum B hashes
searched
NC8BitcCycle EQU 64 ; J/ (64) controls
5 A-String/B-String
TwoBytes EQU 1 ; Y (1) 0 - one-byte font controls
H 1 - two-byte font controls
ZoneTestA EQU 1 ; J (1) 0 - HIGH; 1 - HIGH &
LOW
10 ZoneTestB EQU 1 ; 4 (1) 0 - HIGH; 1 - HIGH &
LOW

.
7
sk k k k k Kk k k k k Kk k k Kk k k k k k k * % *k k *k *k % % % *
i

15 ; OPTIONS WHICH PROBABLY ARE NOT GOING TO CHANGE

.
4

FontSize EQU 8 ; only 8,16 are supported; this
; keeps fonts on page boundaries
FontTables EQU 1024 ; may be 512-1024 provided
20 that _
; (FontTables*FontSize) MOD 256 =
0
IF FontSize EQ 16
CharsPerFont EQU 13 ; otherwise need 17,18-index
25 tables
ELSE
CharsPerFont EQU FontSize-TwoBytes-1
ENDIF
SetLength EQU 128 ; refill to SetLength*2 bytes
30 after A
; Setlength(+) bytes have been
encoded
AntiEx EQU 1 i1 0-o0ff; 1 - on
BufferSize EQU 8192 ; size of Round Robin buffer
35 BufferHashes EQU 2048 ; # of Round Robin 4-byte

hashes

WO 92/02989 PCT/US91/05659

- 54 -
APPENDIX 1
Buffersuffix EQU 1 1 0 - nulls; 1 - maintained
Failsafe EQU 0 ; 0 - no failsafe; 1 - output
failsafe
IF Failsafe

5 FailSafeSets EQU 4 ; output every (n * 256)

encodings)
ENDIF

FTHashes EQU 2048 ; # of Round Robin 2-byte hashes
MinimumAString EQU 6 ; minimum length A string

10 MinimumAUpdate EQU 3 ; bytes advanced if no A
string found
MinimumBString EQU ; minimum length B string
MinimumBUpdate EQU ; bytes advanced if no B
string found

15 NCFregSets EQU 4 ;7 uses 256%2*%2*Sets bytes
NCFregSetsHigh EQU O ; if used, 0 gives best
result 22?2?27
NCFreqgSetsReset EQU 1 : 0 - no; 1 - reset on B
to A change ' »

20 Repeats EQU 1 : 0 - no repeat logic; 1 -

repeat logic

IF FontTables GT 512

MatchMask EQU OFCOOH
25 NextMask EQU 7FEH ; after ASL A
ELSE
MatchMask EQU OFEOOH
NextMask EQU 3FEH ; after ASL A
ENDIF
30 ;
sk k k Kk Kk k k k k Kk k Kk k k k k k Kk k % k % %k *k k % %x % %
H DEBUG AND TEST OPTIONS
35 Debug EQU 1 ; set to 0 to skip statistics

DbgDum EQU Debug XOR 1

WO 92/02989

10

15

20

25

30

35

EOFControl
file by file
Macros
macros
Prodder
prods

ProdCycle
characters

Test
code
phkkkkkkhkdkk
Load8250 EQU
1Load8250
DecBankSelect
SMB
ENDM
EncBankSelect
RMB
ENDM

.
4

PCT/US91/05659

- 55 =

APPENDIX 1
EQU 1 | + 0 - endless data-flow;l -
EQU 1 ;i 0 - use subroutines; 1 - use
EQU 0 7 0 - no prods; 1 - force

IF Prodder
EQU 67 ; prod every ProdCycle

ENDIF
EQU 0 7 0 - no test code; 1 - test

OS EQUATES and ASSEMBLY OPTIONS &&kkkkkkkkkx

0 7 serial loader/debugger
EQU 1 i parallel loader/debugger
MACRO
2,PortB
MACRO
2,PortB

jhikkkkkkkk H OST INTERTFACE MADP skkkkhkdkis

.
’

H HOST INTERFACE MAP definition (16450 mode)

.
14

w8250 _RXD equ 00020h
w8250_TXD equ 00021h
w8250_LCR equ 00023h
w8250_MCR equ 00024h
1n_stat equ 00030h
mdm _stat equ 00031h
HostContrl equ 00032h

~e

WO 92/02989
- 56 -

APPENDIX 1

PCT/US91/05659

pkkkkkkk* F ONT TABLE STRUCTTURE kkkikkx

.
[

ENCODER / DECODER STRUCTURE MAPS

-

5 ; Map of 1 FONT entry
tblbgn
IF TwoBytes
tbyte NCIndex

10 tbyte Characters
ELSE ; Bits 7-4 = Characters
tbyte CharsNCIndex ; Bits 3-0 = NCIndex
ENDIF
tstor CharTable,CharsPerFont
15 tblend TestFontSize ; size of a font
table
if TestFontSize NE FontSize
db 256,Font size not 16
20 else
printstat ,%FontSize
printstat <Chars per font =>,%CharsPerFont
endif
25 ;************ PAGE 1 VARIABLES *kkkkkkkkkkkk
; ENCODER / DECODER RAM PAGE 1 VARIABLES
H (48H through 07fH inclusive)
! N
30 ; Miscellaneous Variables)
tblbgn RamPtrl B
IF EOFControl ; 111! must be in 48h
tbyte HostLCR ; BBS,BBR
35 ENDIF

tbyte FetchPtr

A\

WO 92/02989 PCT/US91/05659

- 57 -
APPENDIX 1
tbyte StorePtr
tbyte DCBytel
tbyte DCByte2
. tbyte DCByte3
5 tword DCWordl
tword DCWord2
tword DCWord3
tbyte ECBytel
tbyte ECByte2
10 tbyte ECByte3
tbyte ECByte4
tword ECWordl
tword ECWord2
tword ECWord3
15 tword ECWord4

IF EOFControl
tstor BytesIn,3
tstor Bytesout, 3
20 tbyte, DCStack
tbyte ECStack
tbyte OutFetch
tbyte Outstore

ENDIF
25 ;

IF Prodder

tbyte ProdCounter

ENDIF
: 30 if tblofs gt 80h

db 256 ,Ram Window Error

' else

MemoryOne equ tblofs - RamPtri
printstat <Page 1 Window Free =>,%080h-tblofs

35 endif

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 58 -

APPENDIX 1

jhkkkkkkkkkk* PAGE O VARTIABILES *kkkkkdikkddd

ENCODER / DECODER RAM PAGE 0 VARIABLES
(83h through 0ffh inclusive)

-e -e

-,

tblbgn RamPtro

-e

; Decoder Variables

-e

tbyte DCABStatus
tbyte DCBuffer
tbyte DCCharacters
tbyte DCCharCount
tbyte DCCharlPrior
tbyte DCChar2Prior
tbyte DCCommand
tbyte DCCurrentChar
tbyte DCCurrentFreq
tword DCCurrentHash

IF FailSafe
tword DCFailSafe

ENDIF

tword DCFontBase
tbyte DCFontIndex
tword DCFTLastHash
tword DCFTNextRough
tword DCFTParent
tword DCFTChild
tword DCNCBitsNew
tword DCNCBitsPrior
tbhyte DCNCCounter
tbyte DCNCIndex
tword DCRRPtr

: Encoder Variables

-
7

WO 92/02989

10

15

20

25

30

35

~e

- 59 -
APPENDIX 1
tbyte ECABStatus
tbyte ECBuffer
tbyte ECCharacters
tbyte ECChar2Prior
tbyte ECCharlPrior

IF Repeats
tbyte ECCharSave
ENDIF

tbyte ECCommand

tbyte ECCurrentChar
tbyte ECCurrentFreq
tword ECCurrentHash

IF FailSafe
tword ECFailSafe
ENDIF

tbyte ECFlush
tword ECFontBase
tword ECFTChild
tword ECFTLastHash
tword ECFTNextRough
tﬁord ECFTParent
tword ECNCBitsNew
tword ECNCBitsPrior
tbyte ECNCCounter
tbyte ECNCIndex

IF Repeats
tbyte ECRepeatCount
ENDIF

tbyte ECPriorHashO
tbyte ECPriorHashl
tword ECRRPtr
tbyte ECABChange
IF AntiEx

tbyte ECAntiEStatus
ENDIF

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

~e

PCT/US91/05659

_60..
APPENDIX 1
tbyte ECAvailable
tbyte ECExcessBits
tbyte ECFindHash
tword ECFound
tbyte ECMaxLength
tbyte ECNextChar
thyte ECNextout
tbyte ECNextOutSave
tbyte ECNextoOutstart
tbyte ECStringLength
tbyte ECStringOrigin
tbyte ECZone
if tblofs gt 100h
db 256,Page 0 Ram Error
else
MemoryZero equ tblofs - RamPtr0
printstat <Page 0 Ram Free

=>,%0100h-tblofs

~e ~e ~e e

-e

-

256

256

256

256

ke ddedkk

endif

0800-4000h MEMORY

ENCODER / DECODER TABLES

tblbgn
tstor

tstor

0800h

ECChar, 256

ECCharCopy, 256

IF Repeats

tstor

tstor

ECRepeats, 256

ECRepeatSW, 256

BLOCK

kdkkdk

-.

~a

~e

~e

WO 92/02989 PCT/US91/05659

-61-
APPENDIX 1
ENDIF
tstor ECType, 256 H
256 -
tstor FTHashMatch, FontTables#*2 H
5 2048
tstor ECRRHashHead, BufferHashes*2
; 4096
tstor InBuffer, 256 H
256
10 IF EOFControl;{
tstor OoutBuffer, 256 H
256
ENDIF)
tstor DCGlobalHigh, 4 H
15 4
tstor ECGlobalHigh, 4 ;
4
;7 7944
20 IF Test ;{
tstor FSEntries, 3
tstor FSNoHash, 3
tstor FSSearches, 3
tstor FSSkips, 3
25 tword AStringsOn

tword BStringsOn
tword SwitchToa
tword SwitchToB
tword AHashX2s

30 tword BHashX2s
tword AStringsFound
tword BStringsFound
tword AStringsUsed
tword BStringsUsed

35 tword AntiExXOff
tword AntiExOn

WO 92/02989

5
H
10 kEkk

15

20

25

30

35

.
1

.
1

PCT/US91/05659

62
APPENDIX 1
ENDIF)
IF tblofs GT 4000h
DB 256 ,Addr 800h - 4000h Block Error
ELSE
fred defl 4000h-tblofs

printstat <800h-4000h Block Free =>,%fred
ENDIF

4000-C000h ENCODER BLOGCEK *¥xx

This block, from 4000h to Obfffh inclusive, is the 32

kbyte page
; area. Access to this block or its alter-ego is controlled
by the
; setting of PB2.
; Must be page aligned
; Encoder Font Tables:

tblbgn 4000h
; MAX

tstor ECRRHashLink,BufferSize/2#*2
7 8192

tstor ECFontTables,FontTables*FontSize
; 8192

IF FontTables GT 512;{

tstor ECFTHashRough,1024%2
7 2048

ELSE {3}

tstor ECFTHashRough, 512%2

ENDIF i}

tstor ECFTHashNext,FontTables#*2
; 2048

tstor ECRRBuffer,BufferSize

WO 92/02989

10

15

20

25

30

35

;7 8192

256

256

256

sets

256

-e

256

-

256

256

256

256

256

.
L4

3 hkkk

.
14

PCT/US91/05659

~e

~e

-

~e

~e

~e

~e

~e

-e

- 63 -
APPENDIX 1
tstor ECRRSuffix, 256
tstor ECNCChar, 256
tstor ECNCFreq, 256
tstor ECNCCandF, (NCFreqSets~-1) *512
;7 1536
tstor ECFontIndex, 256
tstor ECFrequency, 256
tstor ECHashRaw0, 256
tstor ECHashRawl, 256
tstor ECHashX20, 256
tstor ECHashX21, 256
tstor ECNewIndex, 256
132768

IF tblofs GT 0C000h

DB 256 ,Addr 4000h-C000h Block Error
ELSE ,

fred defl 0CO0Oh-tblofs

printstat <Encoder Main Ram Free =>,%fred
ENDIF

; Decoder Font Tables:

.
I

tblbgn

4000h

4 000-C00O0ND DECODER BLOCK

%k k%

WO 92/02989 ' PCT/US91/05659

10

15

20

25

30

35

- 64 -
APPENDIX 1
H MAX
tstor ECRRHashTest,BufferSize/2%2
; 8192
tstor DCFontTables, FontTables*FontSize
; 8192 _
IF FontTables GT 512;{
tstor DCFTHashRough, 1024%2
7 2048
ELSE ()
tstor DCFTHashRough, 512%2
ENDIF ‘ i}
tstor - DCFTHashNext, FontTables*2
7 2048
tstor DCFTHashChars, FontTables*2
;7 2048
_ tstor DCRRBuffer,BufferSize
; 8192 -
) tstor DCNCChar,256 ;
256 ’
tstor . . DCNCFreq, 256 7
256 - |
tstor DCNCCandF, (NCFregSets-1) #512 ;4
sets ¢ 1536
132768
IF tblofs GT 0C000h
DB 256,Addr 4000h-C000h Block Error
ELSE _ .
fred defl 0C000h-tblofs
printstat <Decoder Main Ram Free =>,%fred
ENDIF

H
shkkkkkkkkkkxkk%* B A S E OF PROGRAM *hkkkkhdkhkdkhdx

-e

H BASE OF PROGRAM

~e

cb : equ $

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 65 -
APPENDIX 1

.
14

j*¥*%%** ENC /DEGC INTERFACE SUBS *dkdkkdkk

.
!

IF EOFControl XOR 1;{ all code in this Section

is
H active only in modem operation
;******************************
H READ FROM PC VIA INTERRUPT
H
HostInt:
H
RTI
pk ok k ko k k k Kk ok k k k k k Kk k k k k k k k k k k *k *k Kk ¥ *
H ENCODER SENDS PROD/COMMAND TO REMOTE
7
SendProdCommand:
H STI #0AOh,ECCommand : Prod is 10
H STI #0C8h,ECCommand ; Command is 1lnn
JSR ECProdCommand
H etc.
H
;******************************
H DECODER PROCESSES COMMAND FROM REMOTE
ProcessCommand:

i process command and then

.
14

WO 92/02989 PCT/US91/05659

- 66 -

APPENDIX 1

: return to DCFontParams

-e

STI #000h,DCCommand
JMP DCFontParams

H
k %k % % k * % % k k Kk *k *k *k * % * k¥ & k k * k ¥ & k ¥ * % *

; DO WHATEVER IS REQUIRED WHEN DECODER FAILS

FailSafeFailed:
10 ;
H
;
;******************************

-
1

15 ; ENCODER READ FROM PC
ECReadCharacter:
7
20 RTS
r
sk k Kk Kk k Kk k k Kk k Kk Kk k k k k k k k *k k k k k k *k k ¥ % ¥
H
H ENCODER WRITE TO PC
25
ECWriteCharacter:
H
RTS
30 ;

sk % K k & Kk Kk k k k k k k k k k k k k k k k k k k K k k * %
H
H DECODER READ FROM PC

35 DCReadCharacter:

.
r

WO 92/02989

10

15

20

25

30

35

~e

RTS

PCT/US91/05659

- 67 -

APPENDIX 1

gk ok ok ok k ok k Kk k k k %k k k k k k *k k k Kk Kk %k *k % Kk %k %k % %

; DECODER WRITE TO PC

DCWriteCharacter:

H
RTS

3
14

Rk Rk k k k k ko k ko k k %k k k k k %k k % % % * * % % % % %

’

.
14

ENDIF

routines

~e

shkkkkkkkkhkk

INITIALIZE

i Initialize Working Storage

Initialize:
LDX
LDA

ClearMemoryo0:
STA
DEX
BNE
LDX
DEX

ClearMemoryl:
STA
DEX
BNE

~e

#MemoryZero
#0

RamPtro-1,X

ClearMemory0
#MemoryOne

RanmPtrl, X

ClearMemoryl

; CLEAR 800h-3FFFh

i} end of modem enc/dec

’

MEMORY hkkdkkkhkhdkksk

leave HostLCR unreset

WO 92/02989 PCT/US91/05659

- 68 -

APPENDIX 1

~e

STI #008h,DCWordl+l

IDY #038h
JSR BlockReset

; CLEAR 4000h-BFFFh - DECODER

-.

DecBankSelect

-e

10 STI $#040h,DCWordl+l
LDY #080h
JSR BlockReset

~e

STI #HIGH(DCNCChar),DCWordl+l
15 JSR NCCharFregReset

~a

IF Failsafe
STI #000h, DCFailsafe+0
STI #FailSafeSets, DCFailSafe+1l
20 ENDIF
STI #001h, DCABStatus
STI #HIGH(DCFontTables), ‘DCFontBase+1
IF FontSize EQ 8
STI #008h, DCFontBase+0

25 ELSE
STI #010h, DCFontBase+0
ENDIF
LDA #HIGH(DCFTHashRough)
STA DCFTNextRough+1
30 STA DCFTParent+1
. LDA #HIGH(DCFTHashNext)
STA DCFTHashRough+1
STA DCFTLastHash+1
LDA #002h
35 STA DCFTHashRough+0
STA DCCurrentHash+0

~e

4

WO 92/02989

10

15

20

25

30

35

~e

~e

~e

~s

~e

~e

-

STA
LDA
STA
STA
STA
STI
STI
STI
STI

PCT/US91/05659

- 69 -
APPENDIX 1

DCFTLastHash+0
#080h

DCFontIndex

DCCurrentHash+1

DCBuffer
#HIGH (DCRRBuffer), DCRRPtr+l
#HIGH (NC8BitCycle#*8), DCNCBitsPrior+l
#LOW (NC8BitCycle*8), DCNCBitsPrior+0
#NC8BitCycle, DCNCCounter

CLEAR 4000h-BFFFh - ENCODER

EncBa

STI
LDY
JSR

STI
JSR

IF
STI
ENDIF

IF
STI
STI

ENDIF

STI

nkSelect

#040h, DCWordl+1
#080h
BlockReset

#HIGH (ECNCChar) ,DCWordil+1
NCCharFreqReset

Prodder
#ProdCycle, ProdCounter

FailSafe
#000h, ECFailsafe+0

$FailSafeSets, ECFailSafe+1l

$001h, ECABStatus

IF AntiEx

STI
ENDIF
Lpa
STa
STA
STI

#001h, ECAntiEStatus

#HIGH (ECFTHashRough)
ECFTNextRough+1
ECFTParent+1

#HIGH (ECFTHashNext), ECFTLastHash+1

WO 92/02989

10

15

20

25

30

35

~e

.
[

STI
LDA
STA
LDA
STA
STA
STA
LDA
STA
STA
STI
STI
STI
STI
STI

RTS

BlockReset:

BRLoop:

BRExit:

-

’

STI
LDA

STA
INC
BNE
DEY
BEQ
INC

PCT/US91/05659

- '70—

APPENDIX 1

#002h, ECFTLastHash+0
#HIGH (ECFTHashNext)
ECFTHashRough+1l
#002h
ECFTHashRough+0
ECCurrentHash+0
ECHashX20+255
#080h
ECCurrentHash+1l
ECHashX21+255
#001h, ECBuffer
#HIGH (ECRRBuffer), ECRRPtr+1
#HIGH (NC8BitCycle*8), ECNCBitsPrior+l
#LOW (NC8BitCycle*8), ECNCBitsPrior+0
#NC8BitCycle, ECNCCounter

#000h ,DCWord1+0
#000

(DCWordl)
DCWord1+0
BRLoop

BRExit
DCWordl+1

!JMP BRLoop

RTS

NCCharFregReset:

LDA

#NCFregSets

STA DCBytel

STI

#000h, DCWord1+0

WO 92/02989

10

15

20

25

30

35

NCCFRLoopO:
LDX
NCCFRLoopl:
LDA
STA
INC
INX
BPL
NCCFRLoop2:
TXA
STA
INC
INX
BMI
LDA
ADD
STA
STI
LDY
NCCFRLoop3:
LDA
TAX
TYA
STA
INC
INY
BNE
DEC
BEQ
INC
INC
| JMP
NCCFRExit:
RTS

.
14

g Jodede e de e de ok de ke ok

- 71 -

APPENDIX 1

#000h

Bestl128,X
(DCWordl)
DCWordl+0

NCCFRLoop1

(DCWordl)
DCWordl+0

NCCFRLoop2
DCWordl+1l
#001h
DCWord2+1
#000h, DCWord2+0
#000h

(DCWordl)

(DCWord2) ,X
DCWord1+0

NCCFRLoop3
DCBytel
NCCFRExit
DCWordl+1l
DCWordl+l
NCCFRLoop0

MAIN DATA FLOW

PCT/US91/05659

de e de o ode e e e e e ke de e ok

WO 92/02989

10

15

20

25

30

35

[
14

StrtUp:
LDX
TXS

PCT/US91/05659

- 72 -

APPENDIX 1

#0FFh ; set stack pointer

mask_gen <bcr_fast_ es2,bcr_fast_esl>

STI
execution

#mask,bcr ; set C18/C19 to fast

mask_gen <cir_fast_es3>

STI
STI
interrupts
STI
ResetMemory:
BBS
JSR
ResetHostLCR:
STI
LCRLoop: |
STI
STI
BBR

{JMP

SetBreak:
DA
STA
BBR
BBS
BBR
STI
Load
SetBreakCont:
BBS
JSR
memory

#mask,clint

#007h,HostContrl - ; enable 16450 mode +

#05Fh,1n_stat 7 8250.THRE = 1

4 ,HostLCR,ResetHostLCR
Initialize

#080h,HostLCR ; set bit 7

#000h, FetchPtr
#000h,StorePtr

7 ,HostLCR,SetBreak ;
LCRLoop

reset if host wrote LCR

w8250_LCR ; save host command info

HostLCR

5,HostLCR, SetBreakCont
6 ,HostLCR, SetBreakCont
2,HostLCR, SetBreakCont

#0F6h,HostContrl ; no ints during Memory

4 ,HostLCR, SetBreakNoReset

Initialize ; HostLCR(4) - 0 reset

SetBreakNoReset:

BBS

6,1n_stat,SetBreakTSRE

WO 92/02989 PCT/US91/05659

73
APPENDIX 1
STI #02Fh,1n_stat ; set 4, leave 6 at 0
!JMP WhichProcess
SetBreakTSRE:
STI #06Fh,1ln_stat ; set 4, leave 6 at 1

5 WhichProcess:
BBS 6,HostLCR,LoopBack
BBS 5,HostLCR,DumpLoadMemory
BBR 2,HostLCR,ECStart ; HostLCR(2) - 0 Encoder
DCStart: ; - 1 Decoder
10 DecBankSelect
JMP DCFontParanms
ECStart:
EncBankSelect
JMP ECRefill
15 DCOrECEOF:
LDX #O0FFh reset primary stack
TXS
BBS 6,1ln_stat,EOFTSRE
STI #02Fh,1ln_stat

~e

set 4, leave 6 at 0

~e

20 !JMP EOFStats
EOFTSRE:
STI #06Fh,1ln_stat ; set 4, leave 6 at 1
EOFStats:
BBS 3,HostLCR,EOFAcked ; set if host set ILCR bit
25 3
!JMP EOFStats
EOFAcked:

LDA BytesIn+0
JSR SubWriteToPC

30 LDA BytesIn+l
JSR SubWriteToPC
LDA BytesIn+2
JSR SubWriteToPC
LDA #000h

35 JSR SubWriteToPC
LDA BytesoOut+0

WO 92/02989

10

15

20

25

30

35

DumpMemory:

PCT/US91/05659

- 74 -

APPENDIX 1

JSR
LDA
JSR
Lpa
JSR
LDA
JSR
LDA
STA
STA
STA
STA
STA
STA
JMP

BytesOut+1
BytesOut+2
#000h

#000h
BytesIn+to0
BytesIntl
BytesIn+2
BytesOut+0
BytesOut+l
BytesOut+2
ResetMemory
7

skkkkkkkkkkk P C

H
“IF EOFControl
is
H
operation

.
’

SubWriteToPC

SubWriteToPC

SubWriteToPC-

SubWriteToPC

LOOPBACK

CODE khkkkkkkdkkkkt

;{ all code in this Section

active only in loopback

sk %k %k k %k % %k k k k % % k % % *k %k * % %k k % % * * * % % % *

’

DumpLoadMemory:

BBS 2,HostLCR,LoadMemory

JSR MemoryDump
!JMP DCOrECEOF

LoadMemory:
JSR MemoryLoad
{JMP DCOrECEOF

.
14

LoopBack:

BBR 5,HostLCR, LoopBackNoDump

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 75 -

APPENDIX 1

JSR MemoryDump

BBS 6,1n_stat,LoopBackTSRE

STI #02Fh,1ln_stat ; set 4, leave 6 at 0

!JMP LoopBackWait
LoopBackTSRE:

STI #06Fh,ln_stat ; set 4, leave 6 at 1
LoopBackWait:

BBS 3,HostLCR,LoopBackAcked ; set if host set
LCR bit 3

!JMP LoopBackWait
LoopBackAcked:

ILDA HostLCR

AND #0F7h

STA HostLCR
LoopBackNoDump:

LDX #07Fh

TXS

LDA #HIGH(ECRefill)

PHA

LDA #LOW(ECRefill)

PHA

PSH

TSX

STX ECStack

LDX #0FFh

TXS

DecBankSelect

JMP DCFontParams
;**********'********************

.
!

SwitchToDecode:
PSH
TSX
STX ECStack
LDX DCStack

WO 92/02989 PCT/US91/05659

- 76 -

APPENDIX 1

TXS
DecBankSelect
PUL
RTS

5 ;

SwitchToEncode:

PSH
TSX
STX DCStack

10 LDX ECStack
TXS
EncBankSelect
PUL
RTS

15 ;
;******************************

.
’

MISC READ FROM PC; USED ONLY FOR MEMORY LOAD; INTS ARE

~e

OFF
20 ;
SubReadFromPC:
LDA Hostcontrl
BPL SubReadFromPC
LDA w8250_TXD
25 STI #076h,HostContrl
STI #01Fh,ln_stat
RTS
;**************ﬂr*::irc**************
30 ;
H MISC WRITE TO PC
SubWriteToPC:
- BBS 0,ln_stat,SubWriteToPC
35 BBS 0,1ln_stat,SubWriteToPC ; twice for SPERRY

et al

WO 92/02989 PCT/US91/05659

- 77 -

APPENDIX 1

STA w8250_RXD
BBS 6,1n_stat,SubWritePCTSRE
STI #03Eh,1ln_stat ;7 set 0, leave 6 at 0
!JMP SubWritePCCont
5 SubWritePCTSRE:
STI #07Eh,1ln_stat ; set 0, leave 6 at 1
SubWritePCCont:
RTS
10;******************************

-
14

MemoryDump:
LDX #000h
LDY #((RamPtrl+1)-000h)
15 MDLoOOplFF:
TXA
JSR SubWriteToPC
INX
DEY
20 BNE MDLoOplFF
LDY #(080h~(RamPtrl+l)) ; X = #RamPtri+l
MDLoopl:
LDA Porta,X
JSR SubWriteToPC
25 INX
DEY
BNE MDLoopl
LDY #(RamPtr0-080h)
MDLoop2FF:
30 TXA
JSR SubWriteToPC
INX
DEY
BNE MDLoop2FF
35 LDY #(100h-RamPtro0) 7 X = #RamPtro
MDLoop2:

WO 92/02989

10

15

20

25

30

35

MDLoop3:

- 78 =

APPENDIX 1

LDA Porta,X

JSR SubWriteToPC
INX

DEY

BNE MDLoop2

LDA ECWordil+o0

STA MDSave+0

LDA ECWordl+l

STA MDSave+l

STI #008h,ECWordl+l
STI #000h,ECWordl+0

LDA (ECWordl)
JSR SubWriteToPC
INC ECWordl+0
ifEQ

INC ECWordl+l
LDA ECWordl+l
CMP #040h

BEQ MDLoop3Exit
fi

{JMP MDLoop3

MDLoop3Exit:

MDLoop4:

EncBankSelect
STI #040h,ECWordl+l
STI #000h,ECWordl+o0

LDA (ECWordl)
JSR SubWriteToPC
INC ECWordl+0
ifEQ
INC ECWordl+l
LDA ECWordl+l
CMP #0COh
BEQ MDLoop4Exit
fi

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

MDLoop5:

- 79 -

APPENDIX 1

!{JMP MDLoop4
MDLoop4Exit:
DecBankSelect

STI
STI

Lba
JSR
INC
ifEQ
INC
LDA
CMP
BEQ
fi
!JMP

MDLoop5Exit:

.
r

LDA
STA
LDA
STA
RTS

MemoryLoad:

MLIoOplFF:

MLLoopl:

LDX
LDY

JSR
INX
DEY
BNE
LDY

JSR
STA
INX

#040h, ECWordl+1
#000h, ECWordil+0

(ECWordl)
SubWriteToPC
ECWordl+0

ECWordi+l
ECWordl+l
#0COh
MDLoop5Exit

MDLoop5
MDSsave+0
ECWordl+o0

MDSave+1
ECWordl+1

#000h
((RamPtr1+1)-000h)

SubReadFromPC

MLLooplFF

#(080h- (RamPtrl+l))

SubReadFromPC
Porta,X

.
’

PCT/US91/05659

X = #RamPtril+1

WO 92/02989 PCT/US91/05659

- 80 -
APPENDIX 1
DEY

BNE MLLoopl
LDY # (RamPtr0-080h)

MLLoop2FF:
5 JSR SubReadFromPC
INX
DEY
BNE MLLoOOp2FF
LDY # (100h-RamPtro0) ; X = #RamPtr0

10 MLLoop2:
JSR SubReadFromPC

STA PortaA,X
INX
DEY
15 BNE MLLoop2
LDA ECWordl+0
STA MDSave+0
IDA ECWordl+l
STA MDSave+1l
20 STI #008h, ECWordl+1l
STI #000h, ECWord1+0
MLLoop3:
JSR SubReadFromPC
STA (ECWordl)
25 INC ECWordl+0
ifEQ
INC ECWordl+l
LDA ECWordl+l
CMP #040h
30 BEQ MLLoop3Exit
fi
{JMP MLLoop3
MLLoop3Exit:
EncBankSelect
35 STI #040h,ECWordl+l
STI #000h, ECWordl+0

WO 92/02989

MLLoop4 :

10

- 81 -

APPENDIX 1

JSR SubReadFromPC
STA (ECWordl)

INC ECWordl+0
ifEQ

INC ECWordl+l

LDA ECWordl+l

CMP #0COh

BEQ MLLoOp4Exit
fi

{JMP MLLoop4

MLLoop4Exit:

15
MLLoop5:

20

25

DecBankSelect
STI #040h,ECWordl+l
STI #000h, ECWord1+0

JSR SubReadFromPC
STA (ECWordl)

INC ECWordl+0
ifEQ

INC ECWordl+l

LDA ECWordl+l

CMP #0COh

BEQ MLLoop5Exit
fi

!JMP MLLoop5

MLLoop5Exit:

30

[
’

35 MDSave:

Lba MDSave+0

STA ECWordl+0

DA MDSave+l

STA ECWordl+l

STI #0F7h,HostContrl
RTS

ORG §$+2

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

-
1

PCT/US91/05659

- 82 -

APPENDIX 1

ek %k Kk k Kk Kk Kk *k Kk kK k k *k k Kk %k k % k %k * k % % *k % % & * *

14
-
7
.

14

’

READ FROM PC VIA INTERRUPT

HostInt:

PSH
LDA Hostcontrl

ifMI

LDX StorePtr

LDA w8250_TXD

STA InBuffer,X

INX

STX StorePtr

INX

CPX FetchPtr

ifNE

STI #01fh,1ln_stat

£i

fi
BBR 5,Hostcontrl,HostIntl
LDA w8250_LCR ; save host command info

STA HostLCR

HostIntl:

L3
’
.
4
.
14
.
’

.
14

STI #007h,HostContrl
PUL
RTI

% % %k * % %k % % %k * k¥ % % % %k k *k ¥ % % %k % % %k * % % % % *

ENCODER READ FROM PC

ECReadCharacter:

IF Test i {
LDA BytesIn+0
CMP #050h

WO 92/02989

10

15

20

25

30

35

- 83 -

APPENDIX 1

BNE ECReadChar
LDA BytesIn+l
CMP #002h

BNE ECReadChar
LDA BytesIn+2
CMP #000h

BNE ECReadChar

PCT/US91/05659

NOP ; set breakpoint here

ENDIF i}
ECReadChar:
IDX FetchPtr
CPX StorePtr
ifEQ
BBR 1,HostLCR, ECReadChar
interrupt
SMB 7,HostLCR
!JMP ECReadCharExit
and ptrs =
fi
BBS 5,1n_stat,ECReadCharlLs
STI #01fh,1ln_stat
ECReadCharlLs:
INC FetchPtr
INC BytesIn+0

.
1

.

HostICR is read in

bit 1 set when EOF

ifEQ
INC BytesIn+1l
ifEQ
INC BytesIn+2
fi
fi
BBR 6,HostLCR,ECReadCharNLB
LDA ECCommand ; flush input when Decoder
BMI ECReadChar ; has FailedSafe
(LoopBack) V
ECReadCharNLB:

ILDA TInBuffer,X :

A

char from PC

WO 92/02989 PCT/US91/05659

...84_

- APPENDIX 1

ECReadCharExit:
RTS
H
;******************************
5 3
7 ENCODER WRITE TO PC

.
[

ECWriteCharacter:
PSH

10 IF Test i {
LDA BytesOut+0
CMP #06Bh
BNE ECWriteSearched
LDA BytesOut+l

15 CMP #001h
BNE ECWriteSearched
LDA BytesOut+2

CMP #000h
BNE ECWriteSearched
20 NOP ; set breakpoint here
ECWriteSearched:
ENDIF i)

BBR 6,HostLCR,ECWriteChar
IDX OutStore
25 IDA ECBuffer
STA OutBuffer,X
INX
_STX OutStore
INX
30 CPX OutFetch
- 1fEQ
JSR SwitchToDecode
fi
!JMP ECWriteCont -
35 ECWriteChar:
BBS 0,HostLCR,ECWriteCont

WO 92/02989 PCT/US91/05659

- 85 -

APPENDIX 1

BBS 0,1ln_stat,ECWriteChar
BBS 0,1ln_stat,ECWriteChar ; twice for SPERRY
et al
LDA ECBuffer
5 STA w8250 _RXD
BBS 6,1n_stat,ECWriteTSRE
STI #03Eh,ln_stat ;i set 0, leave 6 at 0
!JMP ECWriteCont
ECWriteTSRE:
10 STI #07Eh,ln_stat ; set 0, leave 6 at 1
ECWriteCont:
PUL
STI #001h,ECBuffer
INC BytesOut+0
15 ifEQ
INC BytesOut+1
ifEQ
INC Bytesout+2
fi
20 fi
RTS
PR ok R ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok %k k k k Kk k k k % &
H
25 ; DECODER READ FROM PC

.
’

DCReadCharacter:
PSH
IF Test i{
30 LDA BytesIn+0
CMP #0AOh
BNE DCReadChar
LDA BytesIn+l
CMP #005h
35 BNE DCReadChar
LDA BytesIn+2

WO 92/02989 PCT/US91/05659

86
APPENDIX 1
CMP #002h
BNE DCReadChar
NOP ; set breakpoint here
ENDIF i)

5 DCReadChar:
BBR 6,HostLCR,DCReadCharNLB
LDX OutFetch
CPX OutStore
ifEQ
10 JSR SwitchToEncode
{JMP DCReadChar
fi
INC OutFetch
LDA OutBuffer,X : A = char from Encoder
15 STA DCBuffer
!JMP DCReadCharExit
DCReadCharNLB:
LDX FetchPtr
CPX StorePtr

20 ifEQ
BBR 1,HostLCR,DCReadChar ; HostICR is read in
interrupt
SMB 7,HostLCR ; NOTE: not a normal EOF
{JMP DCReadCharExit ; bit 1 set when EOF

25 and ptrs =
fi
BBS 5,1n_stat,DCReadCharLS
STI #01fh,1n_stat

DCReadCharLsS:
30 INC FetchPtr
INC BytesIn+0
ifEQ
INC BytesIn+l
ifEQ
35 - INC BytesIn+t2

£i

WO 92/02989

10

15

20

25

30

35

fi
LDA
BMI
LDA
STA

DCReadCharExit:
PUL
RTS

H

phk ok ok k% Kk %

.
’

PCT/US91/05659

- 87 -
APPENDIX 1
ECCommand ¢ flush input when Decoder
DCReadChar ; has FailedSafe
InBuffer,X 7 A = char from PC

DCBuffer

* k % k *k k k k k k k Kk *k *k k k k * * % % % *

H DECODER WRITE TO PC

.
I

DCWriteCharacter:

IF
PHA
DA
CMP
BNE
LDA
cMp
BNE
LDA
CMP
BNE
NOP

Test HE

BytesOut+0
#027h
DCWriteSearched
BytesOut+1
#017h
DCWriteSearched
BytesOut+2
#000h
DCWriteSearched
; set breakpoint here

DCWriteSearched:

PLA

ENDIF i)

DCWriteChar:
BBS
BBS
BBS
et al
STA
BBS

0,HostLCR,DCWriteCont
0,1n_stat,DCWriteChar
0,1n_stat,DCWriteChar ; twice for SPERRY

w8250_RXD
6,1n_stat,DCWriteTSRE

WO 92/02989

5

10

15

20

25

30

35

STI
{JMP
DCWriteTSRE:
STI
DCWriteCont:
STI
BBS
INC
ifEQ
INC

ifEQ
INC

£i
£i

DCWriteCharNLB:

RTS

.
’

-
1

ENDIF

routines
H
M kkkkkkkkkkkkk

.
14

Writel?7
IF

- 88 =

APPENDIX 1

#03Eh, 1n_stat
DCWriteCont

#07Eh,1n_stat

#001h,ECBuffer

PCT/US91/05659

; set 0, leave 6 at 0

; set 0, leave 6 at 1

6,HostLCR, DCWriteCharNLB

BytesoOut+0
BytesOut+l

Bytesout+2

ENCODER

MACRO
Macros

MSWritel7

ELSE

JSR MSWritel7
ENDIF

ENDM

-
’

Writes
IF

MACRO
Macros

MSWrite8

ELSE

;******************************

:} end of loopback enc/dec

MACROS

kkkkkkkkkkkkkk

WO 92/02989 PCT/US91/05659

- 89 -

APPENDIX 1

JSR MSWrites
ENDIF
ENDM

.
14

5 Write817 MACRO
IF Macros
MSWrite817
ELSE
JSR MSWrite8l7
10 ENDIF
ENDM
;******************************
15 ; WRITE 1-7 BITS PER GUARD BIT POSITION
i
IF Macros
MSWritel? MACRO
LOCAL Writel7Loop,Writel7Exit
20 ELSE
MSWritel7:
ENDIF
Writel7Loop:
ASL A
25 BEQ Writel7Exit
ROL ECBuffer
BCC Writel7Loop
JSR ECWriteCharacter
!JMP Writel7Loop
30 Writel7Exit:
IF Macros
ENDM
ELSE
RTS
35 ENDIF

~e

WO 92/02989 PCT/US91/05659

APPENDIX 1

;******************************

; WRITE ONE BYTE OF BITS
5 IF Macros
MSWrite8 MACRO
LOCAL Write8Loop,Write8Skip,Write8Exit
ELSE
MSWrite8:
10 ENDIF
ASL, A
ORA #001h
IJMP Write8Skip
Write8Loop:
15 ASL A
BEQ Write8Exit
Write8Skip:
ROL ECBuffer
BCC Write8Loop
20 JSR ECWriteCharacter
!JMP Write8Loop
Write8Exit:
IF Macros
ENDM
25 ELSE
RTS
ENDIF
;****************************-**
30 ;
H WRITE ONE+ BYTE(S) OF BITS
IF Macros
MSWrite817 MACRO
35 LOCAL
Write817Loopl,Write817Skip,Write817Exitl,Write817Loop2,Write

WO 92/02989 PCT/US91/05659

- 91 -

APPENDIX 1

817Exit2
ELSE
MSWrite817:
ENDIF
5 ASL A
ORA #001h
1JMP Write817Skip
Write817Loopl:
ASL A
10 BEQ Write817Exitl
Write817Skip:
ROL ECBuffer
BCC Write8l7Loopl
JSR ECWriteCharacter
15 !JMP Write817Loopl
Write817Exitl:
TXA
Write817Loop2:
ASL A
20 BEQ Write817Exit2
ROL ECBuffer
BCC Write817Loop2
JSR ECWriteCharacter
!{JMP Write817Loop2
25 Write817Exit2:
IF Macros
ENDM
ELSE
RTS
30 ENDIF
7k ok ok k ok ok Kk k Kk Kk Kk ok k Kk Kk Kk k k Kk k k % * %k % %k * ok % %
H SET POINTER TO NCChar,NCFreq TABLES
35 ;
SetCharFreq MACRO ED,BW ; NCFregSets =

WO 92/02989

10

15

20

25

30

35

NCChar)

NCFreq)

NCChar)

NCFreq)

.
14

PCT/US91/05659

-92_

APPENDIX 1

LDA ED&CharlPrior

cLc

AND #060h

ROL A

ROL A

ROL A

ROL A

IF II&BW“ EQ "WB"

STA ED&Byte3 ; 0-3
ASL A ' HIGH((0-3)*512)
ADD #HIGH (ED&NCChar)

STA ED&Wordl+l ; Wordl+l

~e

HIGH (base of

ADD #001h
STA ED&Word2+1 : Word2+1l

HIGH (base of

STI #000h,ED&Wordl+0
STI #000h,ED&Word2+0

ENDIF e

IF ' II&VBWIIV EQ ' llwlu

ASL A ; HIGH((0-3)*512)

ADD #HIGH (ED&NCChar)

STA ED&Wordl+l ; Wordl+l = HIGH(base of
ENDIF
IF "gBW" EQ "W2"

ASL A B ; HIGH((0-n)*512)

ADD #(HIGH(ED&NCChar)+1)

STA ED&Word2+1l 3 Word2+1l = HIGH(base of
ENDIF

ENDM

shkkkkkkkkk FONT UPDATE MACRO khkkkkkkkdkk

.
’

WO 92/02989

10

15

20

25

30

35

- 93 -

APPENDIX 1

7 FONT UPDATE MACRO

H IF EC, Y = ECNextChar

FontUpdate MACRO XX,YY
LOCAL

PCT/US91/05659

FontlstUse, FontActive, ECNC8Bit, ECNCGlobal, ECNCCoded
HIGH of prior hash

LDA XX&CurrentHash+1
IF "&XX" EQ "DC" ;{
BPL FontActive

JMP DCNewCharacter
ELSE i{)

STA ECFontBase+1l

LDA ECCurrentHash+0
ASL A

ROL ECFontBase+1l

ASL A

ROL ECFontBase+1

IF FontSize EQ 16

ASL A

ROL ECFontBase+1
ENDIF

STA ECFontBase+0

.
I

~e

TAX ! Save

LDA ECCurrentHash+1
BPL FontActive
FontlstUse: i

IF "&YY" EQ "FU" H
LDA ECFontBase+l
ADD #HIGH(ECFontTables)
STA ECFontBase+l
LDA #000h
STA ECCharacters
STA ECNCIndex

ENDIF i}
LDA #000h

(stored as * 2)

.
14

now

now

LOW of prior hash

for PHX

.
’

HIGH of prior hash

WO 92/02989
- 94 =
APPENDIX 1
STA ECNewIndex,Y :
IF n &YY" EQ IIF‘U" H {
JMP ECNewCharacter H
ELSE i{}
5 JMP ECNewCharCommand
ENDIF Y
ENDIF i}
FontActive:
IF 11 &XX" EQ IIDcll : {
10 LDA DCFontIndex
ifPL i{
LDA DCFontIndex
STI #080h, DCFontIndex
CMP DCNCIndex
15 BCC DCKCharILTNCIndex
BEQ DCKCharEQNCIndex
DCKCharGTNCIndex:
!JMP DCCharsSwap
DCKCharEQNCIndex:
20 INC DCNCIndex 7
JMP DCFontUpdated
DCKCharLTNCIndex:
AND #0FFh
BNE DCCharSwap
25 JMP DCFontUpdated
els ;{}
LDA DCFontBase+1
LDX DCFontBase+0
PHA 7
30 stack
PHX H
PLI
LAN ;
IF TwoBytes ;{
35 LAN ;

ENDIF)

PCT/US91/05659

zero when new font

Characters = 0

bump NCIndex

push address back on

and pull to I

NCIndex or CharsNCIndex

Characters

WO 92/02989

10

15

20

25

35

0)

offset

base ptr

- 95 -
APPENDIX 1
£fi ;)
ELSE 7{}
LDA ECFontBase+l
ADD #HIGH (ECFontTables)
STA ECFontBase+l
PHA ; push address back on stack
PHX ; and pull to I
PLI
LAN ; NCIndex or CharsNCIndex
IF TwoBytes ;{
STA XX&NCIndex
IAN i Characters
STA XX&Characters
ELSE i{}
TAW ;i W = CharsNCIndex
AND #00Fh
STA XX&NCIndex ; NCIndex in bits
TWA
ASR A
ASR A
ASR A
ASR A
AND #00Fh
STA XX&Characters ; Characters in bits
ENDIF 7}
ADD ECABStatus ; +1 if 8-bit active
TAX i X = # of font indices (base
LDA EncodingTable,X i A = FontCode(Bits)
STA ECBytel ; Bytel = EncodingTable
ADD ECNCIndex ; Bytel + NCIndex

STA ECNewIndex,Y

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

- Qf =

APPENDIX 1

ENDIF !
IF ngyy" EQ "“FU" i{

XX&FontSearch:
font character

ILDX XX&Characters H
match
XX&FontSearchlLoop:

LAN

CMP XX&CurrentChar

BEQ XX&CharFound

DEX 7

BNE XX&FontSearchLoop
XX&CharNotFound:

JMP XX&NewCharacter
XX&CharFound:

TXA

NEG A

ADD XX&Characters

IF ugxXX" EQ "“EC"

PCT/US91/05659

; I = ptr to 1st

X = # of characters to

: W= A = character

TAW ; table index, base 0

EﬁDIF
CMP XX&NCIndex H
index ,
' BCC XX&CharLTNCIndex H
BEQ XX&CharEQNCIndex
XX&CharGTNCIndex:
IF ngXx" EQ "EC"
ADD XX&ABStatus H
ADD #002h ;
index
ADD XX&Bytel
STA ECFontIndex,Y H

~e

index
TWA
ENDIF
!JMP XX&CharSwap

~e

(='character encoding

if < NCIndex)

Oor 1l
A = character encoding

+ character table index

W = A = character table

for table swap

AN

WO 92/02989

5

10

15

20

25

30

35

- 97 =

APPENDIX 1

XX&CharEQNCIndex:
IF HgXX" EQ "ECM
ADD XX&ABStatus
ADD #002h

index

PCT/US91/05659

O0or 1
A = character encoding

ADD XX&Bytel i + character table index

STA ECFontIndex,Y

ENDIF

INC XX&NCIndex

!JMP XX&FontEncoding
XX&CharLTNCIndex:

IF "exXX" EQ "ECY

ADD XX&Bytel ;i A=
STA ECFontIndex,Y
index
TWA P W=
ELSE
AND #OFFh
ENDIF
BEQ XX&FontEncoding
index 0
XX&CharSwap:
base 0
ADD #(CharTable-1)
character
TAX
LDA (XX&FontBase) ,X
INX
STA (XX&FontBase),X
LDA XX&CurrentChar
DEX
STA (XX&FontBase),X
XX&FontEncoding:
IF "&XX" EQ "Dcll
JMP DCFontUpdated

ELSE

.
7

.
’

.
!

bump NCIndex

character encoding index
+ character table

character table index

no swap if already

A = character index,

ptr to previous

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 98 -

APPENDIX 1

LDA #002h
STA ECType,Y ; Type 2 - normal font
encoding _
BBS 0,ECABStatus,ECFontSaveEight
JMP ECFontUpdated
ECFontSaveEight:
SetCharFreq XX,W2 ; output is NC

frequency value
LDA ECCurrentChar ; save for consistent
'strings
STA ECWord2+0 ; off' ouput write code
LDA (ECWord2)
STA ECFrequency,Y
JMP ECFontUpdated
ENDIF
XX&NewCharacter:
LDA XX&NCIndex
ifNE
DEC XX&NCIndex
fi
SetcCharFreq XX,WB
LDX XX&CurrentChar
LDA (XX&Word2) ,X ; frequency of current
character '
STA XX&CurrentFreq
BEQ XX&NewCharOK
ILDX XX&Byte3 ; 0-n wheren =0, 3, 7 or 15
LDA XX&GlobalHigh,X
CMP XX&CurrentFreq
BCS XX&NewCharSwap ; CurrentFreq <=
GlobalHigh
XX&NewCharExchange:
INC XX&GlobalHigh,X
TAX - i X
LDA (XX&Wordl) ,X
TAW T W

high frequency

high character

WO 92/02989

10

15

20

25

30

35

LDA
STA
char
TXA
DX
STA
LDX
TWA
STA
char
TAX
LDA
STA
freq
!JMP
XX&NewCharSwap:
LDX
DEX
LDA
TAW
LbAa
STA
char
TXA
LDX
STA
LDX

STA
char

TAX

LDA

STA
freq
XX&NewCharoOK:

LDA

- 99 -

APPENDIX 1

XX&CurrentChar
(XX&Wordl) ,X

XX&CurrentChar
(XX&Word2) ,X
XX&CurrentFreq
(XX&Word1l) , X
XX&CurrentFreq
(XX&Word2) ,X
XX&NewCharoK
XX&CurrentFreq
(XX&Wordl) , X
XX&CurrentChar

(XX&Wordl) ,X

XX&CurrentChar
(XX&Word2) ,X
XX&CurrentFreq
(XX&Wordl) , X

XX&CurrentFreq
(XX&Word2) ,X

XX&Characters

-.

-e

PCT/US91/05659

i current char > high

high freq > char freq

~e

; high char > current

i current freq > high

lower freq

lower char

; current char > lower

; lower freq > char freq

; lower char > current

i current freq > lower

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 100 -

 APPENDIX 1

#CharsPerFont
BEQ

full
INC XX&Characters
count
ADD #001H
XX&NewCharoverflow:
ADD #(CharTable-1)
TAX
LDA XX&CurrentChar
font
STA
LDX
LDA
ADD
STA

XX&CurrentFreq
GlobalBits,X
XX&NCBitsNew+0
XX&NCBitsNew+0
total

ifcs

INC XX&NCBitsNew+1

fi

ELSE i{}

ECNewCharCommand:

LDX #O0FFh

command

(XX&FontBase) ,X

XX&NewCharOverflow

check for font table

~e

if not, add to char

~e

store current char in

~e

X = ECCurrentFreq

-e

update NC trending

~e

: X = ECCurrentFreq for

ENDIF
IF

7}
ll&Xx" EQ llEclI

BBR 0,ECABStatus,ECNCGlobal

ECNC8Bit:

TXA

STA ECFrequency,Y
'strings

{TMP ECNCCoded
ECNCGlobal:

TXA

STA ECFontIndex,Y

ECNCCoded:

14

~e

output is NC frequency value
; save for consistent

; off' ouput write code
global index for write

; prod/commands do not

]

WO 92/02989

10

15

20

25

30

35

- 101 -

APPENDIX 1

affect
LDA #004h H
totals,
STA ECType,Y ;
ENDIF
IF "&YY" EQ IIF'UI! :{
XX&NCTrending:
DEC
BNE
STI
LDY
LDX
NCBitsNew
TXA
ADD
STA
STX
STY
LDX
TXA
ifcs
ADD
fi
ADD
STA
STX
STY
BBR

XX&NCCounter
XX&FontUpdated

#000h H
XX&NCBitsNew+0 H

XX&NCBitsPrior+0 ;
XX&Wordl+0 H
XX&NCBitsPrior+0
XX&NCBitsNew+0 :
XX&NCBitsNew+1

#001h H

XX&NCBitsPrior+1
XX&Wordl+l
XX&NCBitsPrior+1l
XX&NCBitsNew+1
0,XX&ABStatus, XX&NCOfE
XX&NCOn:
LDA
CMP
BCC
BNE
LDA

#HIGH (NC8BitCycle*15)
XX&Wordl+1
XX&FontUpdated H
XX&TurnNCoOff ;
#LOW (NC8BitCycle*15)
XX&Word1+0

BCC XX&FontUpdated

PCT/US91/05659

any of the trending

tables or hashes

#NC8BitCycle, XX&NCCounter

Wordl =
NCBitsPrior +

NCBitsPrior set to

NCBitsNew

NCBitsNew set to 0

if low order carry

HIGH(Wordl) > A
HIGH(Wordl) < A

WO 92/02989 PCT/US91/05659

- 102 -

APPENDIX 1

XX&TurnNCOff:
STI #000h,XX&ABStatus

IF ngXx" EQ "EC"
STI #001h,ECABChange
5 IF Test
INC SwitchToA+0
ifEQ
INC SwitchToA+1
fi
10 ENDIF
ENDIF
1JMP XX&FontUpdated
XX&NCOff:
LDA #HIGH(NC8BitCycle#*15)
15 CMP XX&Wordl+l
BCC XX&TurnNCOn HIGH (Wordl) > A
BNE XX&FontUpdated ; HIGH(Wordl) < A
ILDA #LOW(NC8BitCycle#*15)
CMP XX&Wordl+0
20 BCS XX&FontUpdated
XX&TurnNCOn: .
IF ngXx" EQ "EC"
STI #001h,ECABStatus
STI #001h,ECABChange
25 IF Test
INC SwitchToB+0
ifEQ .
INC SwitchToB+1
fi
30 ENDIF
ELSE
STI #001h,DCABStatus
ENDIF '
IF NCFregSetsReset
35 LDA #NCFregSetsHigh
1DX #NCFregSets

-e

WO 92/02989

10

15

20

25

30

35

- 103 -~

APPENDIX 1

XX&ResetGlobalHigh:
STA XX&GlobalHigh-1,X

XX&FontUpdated:

~e

of

DEX

BNE XX&ResetGlobalHigh

ENDIF

IF
LDA
STA
LDX
LDA
STA

ELSE
LDa
ASL
ASL
ASL
ASL
ORA
STA

TwoBytes
XX&NCIndex
(XX&FontBase)
#001h
XX&Characters
(XX&FontBase) , X

XX&Characters
A

A

A

A

XX&NCIndex
(XX&FontBase)

ENDIF
XX&PlusHash:

LDY
STY
LDX
Lpa
STA

- NEG

EOR
TAY
TXA
EOR
TAW
IF
LDX

XX&CharlPrior
XX&Char2Prior
CRC_TH, Y
XX&CurrentChar
XX&CharlPrior
A

CRC_TL, Y

CRC_TL, Y

N&XX" EQ "EC"
ECNextChar

.
’

PCT/US91/05659

extra NEG over 1st try ???°?

w

.
’

LOW(rough hash)

ECHashRaw is bits 15-0

?

WO 92/02989 PCT/US91/05659

- 104 -

APPENDIX 1

STA ECHashRaw0,X ; the CRC

ENDIF

ILDA CRC_TH,Y ; A = HIGH(rough hash)

IF “&XX" EQ llEcll
5 STA ECHashRawl,X

ENDIF

STA XX&Wordl+l

AND #HIGH(MatchMask)

STA XX&Bytel ; Bytel = match bits
10 TWA

ASL A

ROL XX&Wordl+l

STA XX&Wordl+o0

LDA XX&Wordl+l

15 AND #HIGH (NextMask)
ADD #HIGH (XX&FTHashRough) ; Wordl = ptr to
STA XX&Wordl+l H FTHashRough
LDX #001h : X = 1 for all of
PlusHash
20 XX&PlusFineLoop:
LDA (XX&Wordl),X ; direct ptr, can't be 0
BEQ Xx&PlusNewHash)
TAY ; Wordl may be either Rough
LDA (XX&Wordl) ; or Next; is always the
25 AND #O0OFEh ; predecessor to new
hash
STA XX&Wordl+0
TYA
ADD #(HIGH(FTHashMatch)-HIGH (XX&FTHashNext))
30 STA XX&Wordl+l ; Wordl = ptr to
IF "EXX" EQ “EC" H FTHashMatch
1LDA (ECWordl) ,X
ELSE ; HashMatch values are inter-
LDA (DCWordl) ; mixed Decoder/Encoder
35 "ENDIF

CMP XX&Bytel

WO 92/02989 PCT/US91/05659

- 105 -

APPENDIX 1

BEQ XX&PlusFineFound

STY XX&Wordil+l ¢ Wordl = ptr to
!JMP XX&PlusFineLoop H FTHashNext
XX&PlusFineFound:
5 TYA

STA XX&Wordl+l
ADD #(0-HIGH(XX&FTHashNext))
STA XX&CurrentHash+1
IF "&XX" EQ "EC"
10 LDY ECNextChar
STA ECHashX21,Y
ENDIF
LDA XX&Wordl+o0
STA XX&CurrentHash+0
15 IF ngXX" EQ "ECY
STA ECHashX20,Y
ENDIF
JMP XX&PlusHashExit
XX&PlusNewHash: ; Bytel = match bits
20 LDY XX&FTLastHash+1 ; Wordl = rough hash

BEQ XX&PlusNewSearch
XX&PlusNewlstPass:
LDA XX&FTLastHash+0 ; LastHash
25 initialized to 2
ADD #002h H + HIGH(FTHashNext)
STA XX&FTLastHash+0
BNE XX&PlusNewlstCont
INY
30 CPY #(HIGH(XX&FTHashNext)+HIGH(FontTab1es*2))
ifEQ
STI #000h,XX&FTLastHash+1 ¢ 0 when wrapped to
force search
1JMP XX&PlusNewSearch
35 els
STY XX&FTLastHash+1

WO 92/02989

10

15

20

25

30

35

- 106 -

APPENDIX 1

fi

XX&PlusNewlstCont:

ECHashX2

chars

STA XX&Word2+0

IF nEXX" EQ "DC"
STA DCWord3+0

ENDIF

TYA H
STA (XX&Wordl),X

ADD
STA XX&Worda+l
IF II&XXII EQ llEclI

ADD #(0-HIGH (FTHashMatch))

ELSE

-e

~e

PCT/US91/05659

Word2 = ptr to new's
FTHashMatch

Word3 = ptr to new's
DCFTHashChars

(HIGH (FTHashMatch) -HIGH (XX&FTHashNext))

ADD #(HIGH(DCFTHashChars)-HIGH(FTHashMatch))

STA DCWord3+1

ADD #(0~HIGH(DCFTHashChars))

ENDIF

ORA #080h

STA XX&CurrentHash+1l
IF "&XX" EQ "EC"
LDY ECNextChar

STA ECHashX21,Y
ENDIF
LDA XX&FTLastHash+0
STA (XX&Wordl)
STA XX&CurrentHash+0
IF "&XX" EQ llECll
STA ECHashX20,Y
ELSE

LDA DCChar2Prior

STA (DCWord3) ;
LDA DCCharlPrior
STA (DCWord3),X
ENDIF

.
’

’

set bit 7 for new hash

store new hash in

or in DCCurrentHash

store prior/current

in DCFTHashChars

WO 92/02989

10

15

20

25

30

35

- 107 -

APPENDIX 1

LDA XX&Bytel

IF
STA
inter-
ELSE
STA
ENDIF

ll&xxll EQ "Ec"

(ECWord2) , X ;

~-e

(DCWord2)

JMP XX&PlusHashExit
XX&PlusNewSearch:

LDA
FTHashRough

(XX&FTParent) , X

BNE XX&PlusNewParent

XX&PlusNewRoughAdvance:
LDA XX&FTNextRough+0 H

FTHashRough
ADD

#002h

STA XX&FTNextRough+0

ifEQ

INC XX&FTNextRough+1 H

dependent
LDY
table must

#HIGH (XX&FTHashNext)

CPY XX&FTNextRough+1l H

FTHashNext
ifEQ
STI
fi
fi
LDA
BEQ
LDY
STY
LDY
STY

PCT/US91/05659

HashMatch values are

mixed Decoder/Encoder

; initialized to

initialized to

memory allocation

; 1i.e. FTHashRough

be right before

#HIGH(XX&FTHashRough),XX&FTNextRough+1

(XX&FTNextRough) , X
XX&PlusNewRoughAdvance
XX&FTNextRough+0
XX&FTParent+0
XX&FTNextRough+1
XX&FTParent+1

XX&PlusNewParent:

STA

XX&FTChild+1

WO 92/02989 PCT/US91/05659

- 108 -

APPENDIX 1

LDA (XX&FTParent)
STA XX&FTChild+0
TAY : Y = FTChild+0
!JMP XX&PlusNewNext2Found '
5 XX&PlusNewNextAdvance:
LDA XX&FTChild+l
STA XX&FTParent+l
LDA XX&FTChild+0
STA XX&FTParent+0
10 IJMP XX&PlusNewSearch
XX&PlusNewNext2Found:
CPY XX&Wordl+o0
ifEQ
LDA XX&FTChild+1l
15 CMP XX&Wordl+l
BEQ XX&PlusNewNextAdvance
fi
ILDA (XX&FTChild)
STA (XX&FTParent)

20 LDA (XX&FTChild),X
STA (XX&FTParent),X
STY XX&Word2+0 ; Word2 = ptr to new's

IF ngXX" EQ "DC" FTHashMatch
STY DCWord3+0
25 ENDIF
TYA
STA (XX&Wordl)
LDA XX&FTChild+1l
STA (XX&Wordl),X
30 ADD #(HIGH(FTHashMatch)-HIGH (XX&FTHashNext))
STA XX&Word2+l
IF ngXX" EQ "“ECY
ADD #(0-HIGH(FTHashMatch))
ELSE
35 ADD # (HIGH(DCFTHashChars)-HIGH(FTHashMatch))

STA DCWord3+1

e

Word3 = ptr to new's
DCFTHashChars

-e

-~

WO 92/02989 PCT/US91/05659

- 109 -

APPENDIX 1

ADD #(0-HIGH(DCFTHashChars))
ENDIF
ORA #080h ; set bit 7 for new hash
STA XX&CurrentHash+1
5 IF "&XX" EQ "EC"
LDY ECNextChar ; store new hash in
ECHashX2
STA ECHashX21,Y 7 or in DCCurrentHash
ENDIF
10 LDA XX&Word2+0
STA XX&CurrentHash+0
IF "EXX" EQ "ECY
STA ECHashX20,Y
ELSE
15 LDA DCChar2Prior ;i store prior/current
chars
STA (DCWord3) in DCFTHashChars
LDA DCCharlPrior
STA (DCWord3),X
20 ENDIF
LDA XX&Bytel
IF "&XX" EQ "EC"
STA (ECWord2),X ; HashMatch values are

~-e

inter-
25 ELSE ; mixed Decoder/Encoder
STA (DCWord2)
ENDIF
1LDA #000h
STA (XX&FTChild),X
30 STA (XX&FTChild)
XX&PlusHashExit:
IF "&XX" EQ "DCY;{
LDA DCCurrentHash+0 ¢ LOW of prior hash
STA DCFontBase+0
35 LDA DCCurrentHash+1l ; HIGH of prior hash
AND #07Fh

WO 92/02989 PCT/US91/05659
- 110 =~
APPENDIX 1
CLC
ROL DCFontBase+0
ROL A ; now = * 4
ROL DCFontBase+0
5 ROL A ; now = % 8
IF FontSize EQ 16;{
ROL DCFontBase+0
ROL A 7 now = * 16
ENDIF i}
10 ADD #HIGH(DCFontTables)
- STA DCFontBase+l
LDA DCCurrentHash+1 : ; HIGH of prior hash
ifMI
LDA #000h ; new font
15 STA DCCharacters
STA DCNCIndex
els
LDA (DCFontBase) ; old font
IF TwoBytes i {
20 STA DCNCIndex i NCIndex
LDX #001h
LDA (DCFontBase) ,X ; Characters
STA DCCharacters
. ELSE i{)
25 TAW ¢+ W = CharsNCIndex
AND #00Fh
STA DCNCIndex ; NCIndex in bits 3-0
TWA N
ASR A
30 ASR A
ASR A
ASR A
AND #00Fh
STA DCCharacters ; Characters in bits
35 7-4

ENDIF 1)

WO 92/02989 PCT/US91/05659

5

10

15

20

25

30

35

- 111 -
APPENDIX 1
fi
ENDIF i)
ENDIF i}
ENDM

H
jhhkkkkkkkkkkkkk%k E NCODEDR RETFTIILTIL *kkkkhkhkkkkdsk
H ENCODER REFILL

.
14

ECRefill:
' IF Prodder
DEC ProdCounter
ifEQ
STI #ProdCycle, ProdCounter
STI #0A0h, ECCommand
JMP ECProdCommand
fi
ENDIF
JSR ECReadCharacter : A = char from PC
IF EOFControl
BBR 7,HostLCR,ECRefillRepeats
STI #0C8h,ECCommand
JMP ECProdCommand
ENDIF
ECRefillRepeats:
IF Repeats i {
CMP ECChar2Prior
BNE ECRefillUpdate
CMP ECCharilPrior
BNE ECRefillUpdate
LDY ECRepeatCount ; 3 in a row are equal
BEQ ECRefilllstRepeat
INC ECRepeatCount
BEQ ECRefill256thRepeat ; ECRepeats = 100h
1JMP ECRefill
ECRefilllstRepeat:

WO 92/02989
- 112 -
APPENDIX 1
STI #001h,ECRepeatCount
{JMP "ECRefill
ECRefill256thRepeat:
STI #0FFh,ECRepeatCount
5 ENDIF i}
ECRefillUpdate:
LDY ECNextChar
IF Repeats
LDX ECRepeatCount
10 OFFh '
ifNE
STA ECCharSave
TXA
- STA ECRepeats, Y
15 LDA #008h
STA ECRepeatSW,Y
is ,
LDA ECCharlPrior
character
20 fi .
ENDIF
STA ECChar,Y 7 A=
STA ECCharCopy,Y
STA ECCurrentChar
25 IF Test
LDA ECABStatus
ifEQ
INC AStringsOn+0
ifEQ
30 INC AStringsOn+1l
fi
els
INC BStringsOn+0
ifEQ
35 INC BStringsOn+1

- fi

PCT/US91/05659

: ECRepeatCount = 0 to

new

; repeat character

; swapped with new

character

WO 92/02989 PCT/US91/05659

- 113 -
APPENDIX 1
fi
ENDIF
FontUpdate EC,FU
LDA ECABChange ; either condition
5 requires
ORA ECCommand ; flushing the ECChar buffer
ifEQ i{
INC ECAvailable
ifEQ ; 256 characters
10 available
LDY ECABStatus
ifEQ
JSR StringATime
els
15 JSR StringBTime
fi
fi
els
STA ECFlush
20 INC ECAvailable
LDA ECABChange
1fNE ; if ABStatus change,
this pass
EOR ECABStatus ; 1is cleaning up
25 remaining
ifEQ ¢ characters from prior
status
IF AntiEx
STI #000h, ECAntiEStatus
30 ENDIF
JSR StringATime
els
JSR StringBTime
fi
35 els

LDA ECABStatus

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 114 -~
APPENDIX 1

ifEQ

JSR StringATime
els

JSR StringBTime

fi
fi

STI #000h,ECABChange
STI #000h,ECFlush
LDA ECCommand

BEQ ECRefillReturn

RTS
fi 7}
ECRefillReturn: :
INC ECNextChar ; INC here to avoid
ECChar
IF Repeats : buffer advance on
LDA ECRepeatCount ; prods/commands
ifNE
STI #000h, ECRepeatCount
LDA ECCharSave ; use saved
character which
JMP ECRefillRepeats ; forced repeat
output
fi
ENDIF
JMP ECRefill
H
ECProdCommand:
LDA ECAvailable
ifNE

STI #0FFh,ECFlush
LDY ECABStatus

ifEQ

JSR StringATime
els

JSR StringBTime

WO 92/02989

10

15

20

25

30

35

- 115 -

APPENDIX 1

fi
STI #000h,ECFlush
fi
IF Repeats
LDY ECRepeatCount
ifNE
LDA ECCharlPrior
character
JSR ECRefillUpdate
STI #000h, ECRepeatCount
INC ECNextChar
fi
ENDIF
LDY ECNextChar
FontUpdate EC,PC
LDA ECABStatus
ifNE
JMP ECProdB
fi
ECProda:
LDX ECNewIndex,Y
ifEQ
JMP ECProdANCNF
fi
LDA FontCode,X
Writel?
ECProdANCOF:
LDA GlobalCodeHigh+255
LDX GlobalCodeLow+255
BEQ ECProdANCOFHigh
Write817
JMP ECProdshift
ECProdANCOFHigh:
Writel?
JMP ECProdshift
ECProdANCNF:

.
14

PCT/US91/05659

set up repeat

as new character

WO 92/02989 PCT/US91/05659

- 1ll6 -

APPENDIX 1

LDA GlobalCodeLow+255
STA ECByte4
LDA GlobalCodeHigh+255
ASR A)
5 ROR ECByte4
LDX ECByte4
Write8l7
!JMP ECProdshift
IF AntiEx
10 ECProdNoStrings:
LDA #O0FFh : plain OFFh
Write8
JMP ECProdshift
ECProdB:
15 LDA ECAntiEStatus
BMI ECProdNoSfrings
ELSE
ECProdB:
ENDIF
20 LDX ECNewIndex,Y
BEQ ECProdBNF
LDA FontCode,X
Writel7
LDA #O0FFh ; FFh
25 Write8
!JMP ECProdshift
ECProdBNF:
LDA #0BFh ; FFh
LDX #0COh
30 - Write817
+ ECProdshift:
LDA ECCommand
STI #000h,ECCommand
Writel?
35 ECProdShiftLoop:
LDA ECBuffer

11111111

101111111

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 117 -

APPENDIX 1

CMP #001h
ifEQ
JMP ECProdDone
fi
LDA #040h
Writel7
{JMP ECProdshiftLoop
ECProdDone:
IF EOFControl
BBR 7,HostLCR,ECToRefill
BBR 6,HostLCR,ECProdNLB
JSR SwitchToDecode
ECProdNLB:
JMP DCOrECEOF
ECToRefill:
JMP ECRefill
ELSE
RTS
ENDIF
7 % % % o ko ok % e ok A-STRING MACRDOS % % % d e ok % %k Kk ok %k %k
H A-STRING HASH HEAD AND SEARCH MACRO

’

FindAString MACRO ' ; A = 1st ECChar ptr
LOCAL ,
FindABackOK, FindAMoreLoop, FindAUpdate, FindASkip, FindABackMat
ch,FindABackLoop, FindAReturn
STA ECBytel
STI #003h,ECByte3

ADD #001h

TAX 1 Y = ECNextOut+ECFind4s+1
ADD #002h

TAY i Y = ECNextOut+ECFind4s+3

LDA ECHashRawo0,X
NEG A

WO 92/02989

10

15

20

25

30

35

FindaAskip:

EOR
STA
STA
LDA

PCT/US91/05659

- 118 -

APPENDIX 1

ECHashRaw0, Y

ECFindHash

ECWord3+0 ; Word3 = ptr to
ECHashRawl, X H RRHashHead

NEG A

EOR
AND
ASL

ECHashRawl, Y
#HIGH (BufferHashes-1)
ECWord3+0

ROL A

ADD
STA
LDX
LDA
ifNE
STA
ADD
STA
Lba
STA
STA
STI
{JMP
fi
IF
ifEQ
INC
ifE
IN
if
I
fi
fi
fi

#HIGH (ECRRHashHead)
ECWord3+1

#001h

(ECWord3) ,X

Word2 = ptr to 1st
RRBuffer location
: for this hash

~e

e

ECWord4+1

(HIGH (ECRRBuffer)-HIGH (ECRRHashLink))

ECWord2+1

(ECWords3) ; Word4 = ptr to 1lst

ECWord2+0 ; RRHashLink location

ECWord4+0 ; for this hash

#MaximumASearches, ECWordl+1
FindABackMatch

Test

FSNoHash+0
Q
C FSNoHash+1
EQ
NC FSNoHash+2

ENDIF

1JMP

FindAReturn

WO 92/02989 PCT/US91/05659

- 119 -
APPENDIX 1
DEC ECWordi+l
BEQ FindAReturn
LDX #001h
LDA (ECWord4) ; use RRHashLink to find
5 TAY ¢ next RRHashLink and
LDA (ECWord4) ,X ;7 next RRBuffer offset

BEQ FindAReturn
STY ECWord4+0
STA ECWord4+1l
10 DecBankSelect
LDA (ECWord4)
EncBankSelect
CMP ECFindHash
BNE FindAReturn
15 STY ECWord2+0
LDA ECWord4+l
ADD #(HIGH(ECRRBuffer)-HIGH(ECRRHashLink))
STA ECWord2+l
FindABackMatch:
20 ILDX ECByte3
FindABackLoop:
LDA (ECWord2),X ; check byte at longest
CMP (ECBytel),X ; string + 1 and work
IF Test ; backwards to origin
25 ifNE '
INC FSSkips+0
ifEQ
INC FSSKkips+1l
ifEQ
30 INC FSSkips+2
fi
fi
!OJMP FindASkip
fi
35 ELSE
BNE FindASkip

-e

WO 92/02989 PCT/US91/05659
- 120 -
APPENDIX 1
ENDIF
DEX
BNE FindABackLoop
LDA (ECWordz)
5 CMP (ECBytel)
IF Test
BEQ FindABackOK
INC FSSkips+0
ifEQ
10 INC FSSkips+1
ifEQ
INC FSSkips+2
fi
fi
15 | JMP FindASkip
ELSE
BNE FindASkip
ENDIF
FindABackOK:

20 IF Test : - 3 Wordl = RRHashCount (+0)
INC FSSearches+0 ; Word2 = RRBuffer offset
ifEQ ; Word3 = RRBuffer best

string ’
INC FSSearches+1 ; Word4 = 1st
25 RRHashLink
ifEQ ; Bytel = 1lst unmatched
ECChar L
INC FSSearches+2 ;7 Byte3 = best
string length

30 fi

fi
ENDIF
LDX ECByte3
FindAMoreLoop:
35 INX

ifNE

o

WO 92/02989

10

15

20

25

30

35

LDA
CMP
BEQ
els
DX
fi
FindAUpdate:
LDA
STA
Lpa
STA
CPX
ifcc
STX
length
!JMP
fi
LDA
maximum
STA
FindAReturn:
ENDM
phEkkkkkkkkhkdkdhk

.
14

SkipAStrings:
CMP
ifcs

JMP
fi
LDY
INC
DEC
JMP

StringATime:
LDY

- 121 -
APPENDIX 1
(ECWord2) ,X
(ECBytel) ,X

FindAMoreLoop

#0FFh

ECWord2+0

PCT/US91/05659

ECWord3+0 ; Word3 = RRBuffer offset of
best string

ECWord2+1 H
ECWord3+1
ECMaxLength
ECByte3
Findaskip

ECMaxLength

ECByte3

A-STRING

(MinimumAUpdate+1)
NoAFound

ECNextOut
ECNextOutsSave
ECAvailable

WriteAEncodings

ECNextOut

Byte3 = best string

string length at

S EARGCH t%kkdkkkdkkkddks

.
’

Y = ECNextoOut

WO 92/02989 PCT/US91/05659

- 122 -

APPENDIX 1

STY ECNextOutSave
{JMP StringASearchilst
StringASearch:
LDY ECNextOut
5 StringASearchlst:
LDA ECAvailable
ifEQ
LDA #0FFh
els
10 CMP #007h
BCC SkipAstrings
fi
ADD #(0-003h)
STA ECMaxLength ; 255 - 3 is MaxLength
15 STI #0FFh,ECStringOrigin
STI #HIGH(ECChar) ,hECByte2
IF Test
INC FSEntries+0
ifEQ
- 20 . INC FSEntries+1
ifEQ
INC FSEntries+2
fi
fi
25 ENDIF
FindA43:
LDA ECNextoOut
ADD #003h
FindAString
30 LDY ECByte3
CPY #004h
BCC Finda42
LDA ECNextOut
STA ECBytel
35 ILDX #002h
FindA43Loop:

~e
<
]

string length

ECOrigin - 1

>
i

WO 92/02989 PCT/US91/05659
' - 123 -

APPENDIX 1

LDA ECWord3+0
ADD #O0FFh
STA ECWord3+0
ifcc
5 LDA ECWord3+1
ADD #0FFh
CMP #HIGH(ECRRBuffer)
ifcc
ADD #HIGH (BuffersSize)
10 fi
STA ECWord3+1
fi
LDA (ECWord3)
CMP (ECBytel),X
15 BNE FindA43Adjust
INY
DEX
BPL FindA43Loop
!JMP FindA43Done
20 FindA43Adjust:
- INC ECWord3+0
ifEQ
INC ECWord3+1l
fi
25 Finda43Done:
STY ECStringLength
INX
STX ECStringOrigin
LDA ECWord3+0
30 STA ECFound+0
LDA ECWord3+l
STA ECFound+1l
SEC
IF ZoneTesta
35 LDA ECRRPtr+0
SBC ECWord3+0

WO 92/02989

10

15

20

25

30

35

Finda42:

-. -e e

-

- 124 -

APPENDIX 1

ENDIF
LDA
SBC
AND
STA

ECRRPtr+1
ECWord3+1

#HIGH (BufferSize-1)
ECZone

INC ECMaxLength

LDA ECNextoOut

ADD #002h

FindAString

LDY ECByte3 ;¥ =
CPY #004h

BCC FindA4Exit

TYA H
ADD #002h H
CMP ECUpdatelength ;
BCC FindA4Exit
LDA ECNextOut
STA ECBytel
LDX #001h

-e

FindA42Loop:

ECWord3+0
#0FFh
ECWord3+0

LDA

ADD

STA

ifcc
LDA ECWord3+1

ADD #0FFh

CMP #HIGH(ECRRBuffer)
ifcc
ADD
fi
STA ECWord3+1

fi

LDA (ECWord3)

CMP (ECBytel),X

BNE FindA42Adjust

#HIGH (BufferSize)

PCT/US91/05659

string length

gives a little more

compression if string

X = ECOrigin - 1

WO 92/02989 PCT/US91/05659

- 125 -

APPENDIX 1

INY
DEX
BPL FindA42Loop
!JMP FindA42Done
5 FindA42Adjust:
INC ECWord3+o
ifEQ
INC ECWord3+l
fi
10 FindA42Done:
INX
STX ECBytel ; ECOrigin
SEC
IF ZoneTestA
15 LDA ECRRPtr+0
SBC ECWord3+0
ENDIF
LDA ECRRPtr+1l
SBC ECWord3+1l
20 AND #HIGH(BufferSize-1)
TAX
LDA ECStringOrigin
ifPL ;¢
CPY ECStringLength
25 BCC FindA4Exit
ifEQ if{
CPX ECZone
BCS FindA4Exit
fi ;)
30 fi H
STY ECStringLength
STX ECZone
LDA ECBytel
STA ECStringOrigin
35 LDA ECWord3+0
STA ECFound+o0

WO 92/02989 PCT/US91/05659

- 126 -

APPENDIX 1

LDA ECWord3+1
STA ECFound+l
FindA4Exit: _
LDA ECStringOrigin
5 BMI NoAFound
LDA ECStringLength
CMP #MinimumAString
BCC NoAFound
StringAOverlap:
10 . ILDX ECRRPtr+l’
LDA ECStringOrigin
ADD ECRRPtr+o0
ifcs
INX
15 fi
SEC
SBC ECFound+0
STA ECWordl+o0 ; Wordl+0 = LOW(Diff)
TAW
20 TXA
SBC ECFound+1l
AND #HIGH(BufferSize-1)
STA ECWordl+l
ifEQ ;¢ ; Delta(ECWordl) < 256
25 LDA ECStringOrigin
ifNE 7 { _
ADD ECStringLength
STA ECByte4
TWA ; W = ECWordl+0 (saved

30 later)
' ifNE i{
CMP ECByte4 ; UL
StringlLength+StringOrigin
, BCC NoAFound
35 £i 1) |

it

WO 92/02989 PCT/US91/05659

- 127 -

APPENDIX 1

fi 7}
JMP ProcessAString
NoAFound:
IF AHashX2 XOR 1
5 LDA ECNextOut
ADD #MinimumAUpdate
STA ECNextOut
JMP ResetACharCounts
ELSE
10 LDA #MinimumAUpdate
NoAFoundHashX2:
STA ECByted
JSR HashAX2 i A=-1or =2
ADD ECByted
15 BMI NoAFoundHashX2Negative
BNE NoAFoundHashX2
NoAFoundHashX2Negative:
JMP ResetACharCounts
HashAX2:
20 LDY ECNextOut
INY
LDA ECHashX21,Y
BMI HashAX2Null
LDX ECNextoOut
25 STA ECWord2+1
ORA #080h
CMP ECHashX21,X
ifEQ
LDA ECHashX20,Y
30 CMP ECHashX20,X
BEQ HashAX2Null
els
LDA ECHashX20,Y
fi
35 STA ECWord2+0
HashAX2Bits:

Y = index to reach
ECNextOut+1 data items

-e

-e

WO 92/02989 PCT/US91/05659

- 128 -

APPENDIX 1

LDY ECNewIndex,X

ifNE
INY
LDA FontBits,Y
5 ADD #00Ch - ; 2(11 length) + 10
els
LDA #00Dh ; 3(001 length) + 10
fi
STI #002h,ECByte3
10 SEC
HashAX2SumBits:
LDY ECType,X
CPY #002h
ifEQ i { i Type 2
15 LDY ECFontIndex, X
SBC FontBits,Y
els ;{} ; Type 4
LDY ECNewIndex, X
ifNE HE
20 "~ SBC FontBits,Y

LDY ECFontIndex, X
SBC GlobalBits, Y

els 1 {}
LDY ECFontIndex, X
25 SBC GlobalBits, Y
TAW
LDA GlobalCodeHigh, Y
ifPL {
TWA
30 SBC #001h
els 1{}
TWA
fi 7}
£fi ;)
35 fi)

BMI HashAX20K

WO 92/02989

PCT/US91/05659

- 129 -

APPENDIX 1

INX
DEC ECByte3
BNE HashAX2SumBits
HashAX2Null:
5 INC ECNextoOut
LDA #(0-001h)
RTS
HashAX20K:
LDX ECNextout
10 DY ECNextoOut
INY
IF Test
INC AHashX2s+0
ifEQ
15 INC AHashX2s+1
fi
ENDIF
LDA #006h
STA ECType,X
20 LDA ECWord2+1
ASR A
ROR ECWord2+0
AND #003h
CLC
25 ROR A
ROR A
ROR A
ORA #020h
STA ECHashX21,Y
30 character =
LDA ECWord2+0
STA ECHashX20,Y
LDA ECNextoOut
ADD #002h
35 STA ECNextOut
LDA #(0-002h)

i Type 6

; ECHashX21 of 2nd

2 high-order hash bits

ECHashX20 of 2nd character =
H 8 low-order hash bits

WO 92/02989 PCT/US91/05659

- 130 -

APPENDIX 1

RTS
ENDIF
ProcessAString:
IF AHashX2 XOR 1
5 LDA ECNextoOut
ADD ECStringOrigin
STA ECNextoOut

ELSE
LDA ECStringOrigin
10 {JMP ProcessABestXlst
ProcessABestXLoop:

ADD ECStringOrigin
STA ECStringOrigin
ProcessABestX1lst:
15 CMP #002h
BCC ProcessABestX
JSR HashAX2 ; A= -10R -2
1JMP ProcessABestXLoop
ProcessABestX:
20 AND #0FFh
ifNE
INC ECNextOut
fi
ENDIF
25 IF Test
INC AStringsFound+0
ifEQ -
INC AstringsFound+1l
fi
30 ENDIF
DirectAString:
LDY ECNextOut
LDA ECStringLength
STA ECByte3 ; Byte3 = StringLength
35 IDX ECNewIndex,Y
ifNE

k1

¥

WO 92/02989 PCT/US91/05659

- 131 -

APPENDIX 1

IF AHashX2
ADD # (0= (MinimumAString-4))
ELSE
ADD # (0-MinimumAString)
5 ENDIF
STA ECByte4 ; Byte4

Global length
index
INX
LDA FontBits,X
10 els
ADD #(0-MinimumAString)
STA ECByte4

Byte4 Global length

~e

index
IF AHashX2
15 LDA #003h ;7 011
ELSE
LDA #002h ; 01
ENDIF
fi
20 CLC
' LDX ECByted
ADC GlobalBits,X
IDX ECWordil+il
ADC ZoneBits,X
25 ADD #008h
encoding bits
SEC
DirectASumBits:
1LDX ECType,Y
30 CPX #002h
ifEQ ;{ i Type 2
LDX ECFontIndex,Y
SBC FontBits,X
els ;{) : Type 4
35 LDX ECNewIndex,Y
ifNE i{

A = total string

~e

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 132 -
) APPENDIX 1
SBC FontBits, X
LDX ECFontIndex,Y ’
SBC GlobalBits,X
els ;{} ,)
LDX ECFontIndex,Y
SBC GlobalBits,X
TAW
LDA GlobalCodeHigh, X
ifPL i{
TWA
SBC #001h
els {}
TWA
fi 1)
fi ;)
fi 7}
BMI DirectAUse
INY

DEC ECByte3
BNE DirectASumBits
DirectAReject:
LDA ECNextoOut
ADD #MinimumAUpdate
STA ECNextoOut ; try HashX2's 2?2?2272
JMP ResetACharCounts
DirectAUse:
LDY ECNextoOut
IF Test
INC AStringsUsed+0
ifEQ
INC AStringsUsed+1
£i '
ENDIF
LDA #008h
STA ECType,Y
LDA ECByte4 : Global or LengthB index

‘o

Type 8

~e

WO 92/02989 PCT/US91/05659

- 133 -

APPENDIX 1

STA ECHashX20,Y 7 saved for ECWrite
INY
LDA ECWordl+0 ; save Zone codes for ECWrite
STA ECHashX20,Y ; in 2nd character's

5 ECHashX2
ILDA ECWordl+l
STA ECHashX21,Y
LDA ECStringlength
ADD ECNextoOut

10 STA ECNextoOut

ResetACharCounts:

ILDA ECAvailable
ADD ECNextOutSave
SEC

15 SBC ECNextoOut
STA ECAvailable
LDY ECNextOutSave

update ECAvailable

~s

interchange ECNextOut

-e

and
LDA ECNextoOut ECNextOutSave
20 STA ECNextOutSave

STY ECNextout 7 Y = ECNextOut

-

H
phkkkkkkkkkkk* A = STRING OUTUPUT hhkkkkkkkkhdks
25 ; ENCODER WRITE ROUTINE

.
14

WriteAEncodings: ; Y = ECNextOut
LDA ECType,Y
ORA ECRepeatSWw,Y ; bit 3 on if repeats
30 TAX
JMP (WriteAJumps),X
WriteAJumps:
IF AHashX2
DW WriteaANull ¢+ 0 - HashX2(2) - no
35 repeats

ELSE or repeats

~e

WO 92/02989
- 134 -
APPENDIX 1
DW O ; 0 -
ENDIF
DW WriteAOFont H
repeats
5 DW WriteAONewChar ;
repeats
IF AHashX2
DW WriteAHashX2 ;
repeats
10 ELSE
DW O 7 6 -
ENDIF ’
DW WriteaString ;
repeats
15 IF Repeats H
DW WriteAlFont ;
repeats
' DW WriteAlNewChar :
repeats
20 - IF AHashX2
DW WriteAHashX2 H
repeats
ELSE
DW O 7 14 -
25 ENDIF
ENDIF
H
IF AHashX2
WriteANull:
30 IF Repeats
LDA ECRepeats, Y
ifNE
JMP WriteAORepeats
els
35 JMP UpdateAOBuffer

fi

PCT/US91/05659

HashX2 inactive
2 - Font char - no

4 - New char - no
6 - HashX2(1l) - no

HashX2 inactive

8 - String(1l) - no
or repeats
10 - Font char -
12 - New char -
14 - HashX2(1l) -

HashX2 inactive

WO 92/02989

10

15

20

25

30

35

- 135 -

APPENDIX 1

ELSE

JMP UpdateAOBuffer

ENDIF
ENDIF
WriteAOFont:
LDX ECFontIndex,Y
font
LDA FontCode,X
Writel?7
JMP UpdateAOBuffer
IF Repeats
WriteAlFont:
LDX ECFontIndex,Y
font
LDA FontCode,X
Writel7
JMP WriteAORepeats
ENDIF
WriteAONewChar:
IDX ECNewlIndex,Y
BEQ WriteAONCNF
LDA FontCode,X
Writel7
WriteAONCOF:
ILDX ECFontIndex,Y
global
LDA GlobalCodeHigh,X
TAW
LDA GlobalCodelow, X
BEQ WriteAONCOFHigh
TAX
TWA
Write817
!JMP WriteAOCommand
WriteAONCOFHigh:
TWA

PCT/US91/05659

char encoding index -

char encoding index -

NC encoding index

char encoding index -

WO 92/02989 ' ' PCT/US91/05659

- 136 -

APPENDIX 1

Writel7
JMP WriteAOCommand
WriteAONCNF:
LDX ECFontIndex,Y ; char encoding index -
5 global
IDA GlobalCodeHigh,X
BMI WriteAONCNFHigh2
LDA #040h ; leading 0 bit
Writel7
10 LDA GlobalCodeHigh,X
TAW
LDA GlobalCodeLow,X
BEQ WriteAONCNFHighl
TAX
15 TWA
Write817
1JMP WriteAOCommand
WriteAONCNFHighl:
TWA
20 WriteAONCNFHigh2:
Writel7
WriteAOCommand:
LDA ECFontIndex,Y ; char encoding index -
global
25 CMP #OFEh
ifcc
JMP UpdateAOBuffer
fi)
LDA #040h 3
30 Writel7 '
JMP UpdateAOBuffer
IF Repeats
WriteAlNewChar:
LDX ECNewlIndex,Y ; NC encoding index
35 BEQ WriteAlNCNF
LDA FontCode,X

Ay

WO 92/02989
- 137 -
APPENDIX 1
Writel?7
WriteAlNCOF:
LDX ECFontIndex,Y
global
5 LDA GlobalCodeHigh,X
TAW
LDA GlobalCodeLow, X
BEQ WriteA1NCOFHigh
TAX
10 TWA
Write817
{JMP WriteAlCommand
WriteAlNCOFHigh:
TWA
15 Writel7
JMP WriteAlCommand
WriteA1NCNF:
LDX ECFontIndex,Y
global
20 LDA GlobalCodeHigh,X
BMI WriteAl1NCNFHigh2
LDA #040h
Writel7
LDA GlobalCodeHigh,X
25 TAW
LDA GlobalCodeLow,X
BEQ WriteA1NCNFHighl
TAX
TWA
30 Write8l7
!|JMP WriteAlCommand
WriteAlNCNFHighl:
TWA
WriteAlNCNFHigh2:
35 Writel?7

WriteAlCommand:

.
?

PCT/US91/05659

char encoding index -

char encoding index =~

leading 0 bit

WO 92/02989 PCT/US91/05659

- 138 =~
'APPENDIX 1
LDA ECFontIndex,Y ; char encoding index -
global
CMP #OFEh
ifcc .
5 JMP WriteAORepeats
fi
LDA #040h
Writel7
JMP WriteAORepeats
10 ENDIF
IF AHashX2
WriteAHashX2:

LDX ECNewIndex,Y
BEQ WriteAHNF
15 WriteAHOF:
INX
LDA FontCode,X
Writel7
, LDA #0EOh 7 11 length
20 Writel7
{JIMP WriteAHMain
WriteAHNF:
LDA #050h ; 010
Writel?
25 WriteAHMain:
INY
LDA ECHashX21,Y
Writel?
LDA ECHashX20,Y
30 Write8
~ LDA #000h
STA ECType,Y ; Type 0 (2nd byte)
STA ECRepeatSw,Y
DEY
35 IF Repeats
LDA ECRepeats, Y

WO 92/02989

ifNE
JMP
els
JMP
5 fi
ELSE
JMP
ENDIF
ENDIF
10 WriteAstring:

- 139 -

APPENDIX 1

WriteAORepeats

UpdateAOBuffer

UpdateAOBuffer

LDX ECNewlIndex,Y
BEQ WriteASNF

WriteASOF:
INX

15 LDA FontCode,X

Writel7

!JMP WriteASLength

WriteASNF:

IF AHashX2
20 LDA #070h

ELSE

LDA #060h

ENDIF
Writel7
25 WriteASLength:

LDX ECHashX20,Y
LDA GlobalCodeHigh,X

TAW

LDA GlobalCodeLow,X
30 BEQ WriteASIHigh

TAX
TWA
Write817

!JMP WriteASMain

35 WriteASIHigh:
TWA

011

0l

PCT/US91/05659

WO 92/02989 PCT/US91/05659

- 140 -
APPENDIX 1
Writel7
WriteASMain:
INY
LDX ECHashXZl,Y_
5 LDA ZoneCode,X
Writel7
1LDA ECHashX20,Y
Write8
DEY
10 IF Repeats
LDA ECRepeats,Y
ifNE
JMP WriteAlRepeats
els
15 JMP UpdateAlBuffer
fi
EILSE
JMP UpdateAlBuffer

ENDIF
20 ; ’
':****** A-STRING BUFFER UPDATE hikkk
IF Repeats
WriteAORepeats:
25 ILDA ECRepeats,Y
CMP #001h
BNE WriteAOAreRepeats
WriteAONoRepeats:
LDA #040h
30 Writel?
!JMP WriteAORClear
WriteAOAreRepeats:
LDA #0COh
Writel7
35 LDA ECRepeats,Y
ADD #0FEh

WO 92/02989 PCT/US91/05659

- 141 -

APPENDIX 1

TAX
LDA GlobalCodeHigh, X
TAW
LDA GlobalCodeLow, X
5 BEQ WriteAORHigh
TAX
TWA
Write817
IJMP WriteAORClear
10 WriteAORHigh:
TWA
Writel7
WriteAORClear:
LDA #000h
15 STA ECRepeats,Y
STA ECRepeatSw,Y
ENDIF

o
’

UpdateAOBuffer: i Y = ECNextOut
20 LDA EcCChar,Y
' STA (ECRRPtr)
IF BufferSuffix
LDX ECRRPtr+1
CPX #HIGH(ECRRBuffer)
25 ifEQ
STI
#(HIGH(ECRRBuffer)+HIGH(BufferSize)),ECRRPtr+1
' STA (ECRRPtY)
STI #HIGH (ECRRBuffer) ,ECRRPtr+1
30 fi
ENDIF
BBS 0,ECRRPtr+0,UpdateAOHead
JMP UpdateAOBufferPtr
UpdateAOHead:
35 LDX #001h
LDA ECRRPtr+0 ! Word3 = ptr to RRHashLink

WO 92/02989

10

15

20

25

30

35

- 142 -

APPENDIX 1

ADD #(0-003h)
STA ECWord3+0
ILDA ECRRPtr+l
ifcc

ADD #O0FFh

.
[4

CMP #HIGH(ECRRBuffer)

ifcc

PCT/US91/05659

at location RRPtr-3

LDA # (HIGH (ECRRBuffer)+HIGH (BufferSize)-1)

fi
fi

ADD #(HIGH(ECRRHashLink)-HIGH (ECRRBuffer))

STA ECWord3+1l
LDA ECHashRaw0,Y
EOR ECPriorHasho
STA ECWord4+0
DecBankSelect
STA (ECWords)
EncBankSelect
LDA ECHashRawl,Y
EOR ECPriorHashl

.
r

~e

.
’

AND #HIGH(BufferHashes-1)

ASL ECWord4+0
ROL A

ADD #HIGH(ECRRHashHead)

STA ECWord4+l
LDA ECHashRawo0,Y
NEG A

STA ECPriorHasho
LDA ECHashRawl,Y
NEG A

STA ECPriorHashl

UpdateAOLink:

LDA (ECWord4)
STA (ECWord3)
IDA (ECWord4),X
STA (ECWord3),X

14

Word4 = ptr to
RRHashHead

store LOW(Hash) in
- RRHashTest table

transfer RRHashHead to
RRHashLink table

WO 92/02989 PCT/US91/05659

- 143 -

APPENDIX 1

LDA ECWord3+0 i reset RRHashHead to new
STA (ECWord4) ; RRHashLink ptr
LDA ECWord3+l
STA (ECWord4),X
5 UpdateAOBufferPtr:
INC ECRRPtr+0
ifEQ
INC ECRRPtr+1
LDA ECRRPtr+1
10 CMP % (HIGH(ECRRBuffer)+HIGH (BufferSize))
ifEQ
STI #HIGH (ECRRBuffer) , ECRRPtr+1
fi
fi
15 IF Failsafe
DEC ECFailsafe+0
ifEQ
DEC ECFailSafe+1
ifEQ
20 " STI #$FailSafeSets,ECFailsafe+1
LDA #008h
Writel?
fi
fi
25 ENDIF

.
r

OutputAoControl:

INY
STY ECNextoOut

30 CPY ECNextoOutSave
ifNE
JMP WriteAEncodings 7 Y = ECNextout
fi
LDA ECFlush

35 - BNE OutputAOFlush
LDA #SetLength

WO 92/02989 PCT/US91/05659

- 144 -

APPENDIX 1

CMP ECAvailable
ifcs
RTS
fi '
5 JMP StringASearch
OutputAOFlush:
LDA ECAvailable
ifEQ
RTS
10 £i
JMP StringASearch

-e

IF Repeats
WriteAlRepeats:
15 CMP #001h
BNE WriteAlAreRepeats
WriteAlNoRepeats:
LDA #040h
Writel7
20 {IMP WriteAlRClear
WriteAlAreRepeats:
LDA #0COh
Writel7
LDA ECRepeats,Y
25 ADD #0FEh
TAX
LDA GlobalCodeHigh,X
TAW
LDA GlobalCodelow,X
30 BEQ WriteAlRHigh
TAX
TWA
Write817
_ {JMP WriteAlRClear
35 WriteAlRHigh:
TWA

WO 92/02989

= 145 -

APPENDIX 1

Writel?7
WriteAlRClear:
LDA #000h
STA ECRepeats,Y
5 STA ECRepeatSw,Y
ENDIF

’

UpdateAlBuffer:

LDA ECChar,Y

10 STA (ECRRPtr)
IF BuffersSuffix
DX ECRRPtr+1
CPX #HIGH(ECRRBuffer)
ifEQ

15 STI

PCT/US91/05659

; Y = ECNextOut

(HIGH (ECRRBuffer)+HIGH (BufferSize)) ,ECRRPtr+1

STA (ECRRPtr)

STI #HIGH (ECRRBuffer) , ECRRPtr+1

fi
20 ENDIF

BBS 0,ECRRPtr+0,UpdateAlHead

JMP UpdateAlBufferPtr

UpdateAlHead:
LDX #001h
25 LDA ECRRPtr+0 ¢ Word3 = ptr to RRHashLink
ADD #(0-003h) ; at location RRPtr-3

STA ECWord3+0
LDA ECRRPtr+1l
ifcc
30 ADD #0FFh
CMP #HIGH(ECRRBuffer)
ifcc

LDA # (HIGH (ECRRBuffer)+HIGH (BufferSize)-1)

fi
35 - fi

ADD #(HIGH(ECRRHashLink)-HIGH(ECRRBuffer))

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 146 -~

APPENDIX 1
STA ECWord3+1l
LDA ECHashRaw0,Y ; Word4 = ptr to
EOR ECPriorHasho : RRHashHead
STA ECWord4+o0
DecBankSelect
STA (ECWord3) ; store LOW(Hash) in
EncBankSelect : RRHashTest table

LDA ECHashRawl,Y

EOR ECPriorHashl 7
AND #HIGH(BufferHashes-1)
ASL ECWord4+0

ROL A

ADD #HIGH(ECRRHashHead)
STA ECWord4+l

LDA ECHashRaw0,Y

NEG A

'STA ECPriorHasho

LDA ECHashRawl,Y

NEG A
STA ECPriorHashl
UpdateAlLink:
1LDA (ECWord4) ; transfer RRHashHead to
- STA (ECWord3s) ; RRHashLink table

IDA (ECWord4),X
STA (ECWord3s) ,X
LDA ECWord3+o0 ; reset RRHashHead to new
STA (ECWord4) ; RRHashLink ptr
LDA ECWord3+l
STA (ECWord4),X
UpdateAlBufferPtr:
INC ECRRPtr+0
ifEQ '
INC ECRRPtr+1
LDA ECRRPtr+l
CMP # (HIGH(ECRRBuffer)+HIGH(BufferSize))
ifEQ :

WO 92/02989 PCT/US91/05659

- 147 -
APPENDIX 1
STI #HIGH (ECRRBuffer) , ECRRPtr+1
fi
fi
IF Failsafe _
5 DEC ECFailSafe+0
ifEQ
DEC ECFailsafe+l
ifEQ
STI $FailsafeSets,ECFailSafe+1
10 LDA #008h
Writel7
fi
fi
ENDIF
15 ;
OutputAlControl:
INY
STY ECNextout
CPY ECNextOutSave
20 ifNE
LDA ECRepeats,Y
ifEQ
JMP UpdateAlBuffer
fi
25 JMP WriteAlRepeats 7 ¥ = ECNextOut
fi
LDA ECFlush
BNE OutputAlFlush
LDA #SetLength
30 CMP ECAvailable
ifcs
RTS
fi

JMP StringASearch
35 OutputAlFlush:
LDA ECAvailable

WO 92/02989

10

15

20

25

30

.
14
.
I

.
’

ifEQ
RTS

fi

JMP

kkkkkkkkkkkk

7 B-STRING

.
[

FindB2String

location

location

STI
INX
DA
STA
STA
Lpa
AND

ASL

ROL
ADD
STA
LDX

LDA
ifNE

PCT/US91/05659

- 148 -

APPENDIX 1

StringASearch

B=-STRING MAGCRDOS ikkkkdkdkhkkk
SEARCH MACRO - BYTE 2

MACRO
#002h,ECByte3

: Word3 = ptr to
ECHashRaw0,X H FTHashHead
ECFindHash
ECWord3+o0
ECHashRawl, X ; Word2 = ptr to 1st
#HIGH (BufferHashes-1) ; (RRBuffer+1)

ECWord3+0 ; for this hash

R i

#HIGH (ECRRHashHead)

ECWord3+l ; Word4 = ptr to 1st
#001h ; (FTHashLink+1)

(ECWord3) ,X ; for this hash

STA ECWord4+l

LDA

(ECWord3)

STA ECWord4+0 2

TAY

STI

1IM
fi

#MaximumBSearches, ECWordl+1l
P FindB2Skiplst

1JMP FindB2Return
35 FindB2Skip:

DEC

ECWordl+l

WO 92/02989 PCT/US91/05659

- 149 -

APPENDIX 1

BEQ FindB2Return
LDX #001h
LDA (ECWord4) ; use FTHashLink to find
TAY ; next FTHashLink and
5 LDA (ECWord4) ,X ; next RRBuffer offset
BEQ FindB2Return
STY ECWord4+0
STA ECWord4+l
DecBankSelect
10 LDA (ECWord4)
EncBankSelect
CMP ECFindHash
BNE FindB2Return
FindB2Skiplst:
15 LDA ECWord4+l
ADD #(HIGH(ECRRBuffer)-HIGH(ECRRHashLink))
STA ECWord2+l
TYA ;7 Y = ECWord4+0
ADD #O0FFh
20 STA ECWord2+0
ifcc
LDA ECWord2+1
ADD #0FFh
CMP #HIGH (ECRRBuffer)
25 ifcc
ADD #HIGH (BufferSize)
fi ‘
STA ECWord2+1l
fi
30 LDA (ECWord2)
CMP (ECBytel)
IF Test
BEQ FindB2More
INC FSSkips+0
35 ifEQ
INC FSSkips+1

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 150 -~

APPENDIX 1

ifEQ
INC FSSkips+2
fi
fi
1JMP FindB2Skip
ELSE
BNE FindB2Skip
ENDIF
FindB2More:
' IF Test ; Wordl = emergency max hashes
INC FSSearches+0 ; Word2 = RRBuffer ptr
ifEQ ; Word3 = RRBuffer best
string
INC FSSearches+1 ; Word4 = FTHashLink
ptr
ifEQ ;7 Bytel = 1st unmatched
ECChar
- INC FSSearches+2 i Byte3 = best
string -length
fi
fi
ENDIF
LDX #000h
FindB2MoreLoop:
INX
ifNE
LDA (ECWord2) ,X
CMP (ECBytel),X
BEQ FindB2MoreLoop
els
LDX #0FFh
fi
FindB2Update:
CPX ECByte3
BCC FindB2Skip ; reset ECChar offset
used

WO 92/02989

10

15

20

25

30

35

- 151 -

APPENDIX 1

BEQ FindB2Skip
LDA ECWord2+0
STA ECWord3+0
LDA ECWord2+1l
STA ECWord3+l
CPX ECMaxLength
ifcc
STX ECByte3
length
1 TMP FindB2Skip
fi
LDA ECMaxLength
maximum
STA ECByte3
FindB2Return:
ENDM

[
’

.
’

.
’

PCT/US91/05659

in FindnnStart routine

Word3 = RRBuffer offset of

~-e

e

sk k ok ok ok ok k ko ko k k k k k k %k k %

H B-STRING SEARCH MACRO -~ BYTE 1

[
4

FindBiString MACRO
STI #002h,ECByte3
INX
LDA ECHashRawo0,X
STA ECFindHash
STA ECWord3+0
LDA ECHashRawl,X

[
4

best string

Byte3 = best string

string length at

* % k %k %k % % % %k %k * %

Word3 = ptr to

-
4

.
4

AND #HIGH(BufferHashes-1)

location
ASL ECWord3+0
ROL A

’

for

ADD #HIGH(ECRRHashHead)
Word4 = ptr to 1st

STA ECWord3+1
LDX #001h
location

.
’

.
’

FTHashHead

Word2 = ptr to 1st

¢ (RRBuffer+1)

this hash

(FTHashLink+1)

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 152 -

APPENDIX 1

-LDA (ECWord3l) ,X : for this hash
ifNE
STA ECWord4+1
LDA (ECWord3)
STA ECWord4+0
TAY
STI #MaximumBSearches,ECWordl+l
{JMP FindB1Skipilst
fi
{JMP FindBlReturn
FindB1Skip:
DEC ECWordl+l
BEQ FindBlReturn
LDX #001h
LDA (ECWord4) ; use FTHashLink to find
TAY ; next FTHashLink and
LDA (ECWord4),X : next RRBuffer offset
BEQ FindBiReturn
STY ECWord4+0
STA ECWord4+l
DecBankSelect
ILDA (ECWord4)
EncBankSelect
CMP ECFindHash
BNE FindBlReturn
FindB1Skiplst:
STY ECWord2+0 : ¥ = ECWord4+0
ILDA ECWord4+l
ADD #(HIGH(ECRRBuffer)-HIGH(ECRRHashLink))
STA ECWord2+1l
LDX #002h
IDA (ECWord2),X
CMP (ECBytel),X
IF Test
BEQ FindBlMore
INC FSSkips+0

WO 92/02989

10

15

20

25

30

35

- 153 -
APPENDIX 1

ifEQ
INC
ifEQ
INC
fi
fi
!|JMP
ELSE
BNE FindBl1Skip
ENDIF
FindBlMore:
IF Test H
INC FSSearches+0
ifEQ

FSSkips+1

FSSkips+2

FindB1Skip

string
INC FSSearches+1
ptr
ifEQ
ECChar
INC
string length
fi
fi
ENDIF
LDX #000h
{JMP FindBlMorelst
FindBlMoreLoop:
INX
ifNE
FindBlMorelst:
LDA (ECWord2),X
CMP (ECBytel),X
BEQ FindBlMoreLoop
els
LDX #OFFh
fi

FSSearches+2

PCT/US91/05659

Wordl = emergency max hashes

Word2 = RRBuffer ptr
Word3 = RRBuffer best

; Word4 = PTHashLink

; Bytel = 1st unmatched

: Byte3 = best

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 154 -

APPENDIX 1

FindBlUpdate:

used

length

maximum

FindBlReturn:

.
’

CPX ECByte3
BCC FindBiskip ; reset ECChar offset

BEQ FindBlSkip ' ; in FindnnStart routine
ILDA ECWord2+0
STA ECWord3+0 ; Word3 = RRBuffer offset of
LDA ECWord2+1l : best string
STA ECWord3+1l
CPX ECMaxLength
ifcc
STX ECByte3 ; Byte3 = best string

1|JMP FindB1Skip
fi

LDA ECMaxLength - " string length at

~e

STA -ECByte3

ENDM

shkkkkkkkkkk% B - S TRING S EARCH hkkkkkhkkdkdks

.
’

SkipBStrings:

CMP #(MinimumBUpdate+l)

ifcs

JMP NoBFound

fi

LDY ECNextout

INC ECNextOutSave

DEC ECAvailable

IF AntiEx

JMP TotalBBits

ELSE

JMP UpdateBBuffer 3 Y = ECNextoOut
ENDIF

WO 92/02989 PCT/US91/05659

- 155 =

APPENDIX 1

StringBTime:
LDY ECNextout
STY ECNextOutSave
IF AntiEx
5 STY ECNextOutStart
STI #000h,ECExcessBits
ENDIF
!JMP StringBSearchilst
StringBSearch:
10 LDY ECNextoOut
StringBSearchilst:
LDA ECAvailable
ifEQ
LDA #0FFh
15 els
CMP #003h
BCC SkipBStrings
fi
STA ECMaxLength ¢ 255 is MaxLength
20 STY ECBytel '
STI #HIGH(ECChar),ECByte2
STI #000h,ECStringLength

IF Test
INC FSEntries+o0
25 ifEQ
INC FSEntries+1
ifEQ
INC FSEntries+2
fi
30 fi
ENDIF
FindB2:
LDX ECNextoOut
INX
35 FindB2String

LDX ECByte3

WO 92/02989

10

15

20

25

30

35

FindB1l:

PCT/US91/05659

- 156 -

APPENDIX 1

CcPX #(MinimumBString+l)
BCC FindBl
SEC
IF ZoneTestB
LDA ECRRPtr+0
SBC ECWord3+0
ENDIF
LDA ECRRPtr+l
SBC ECWord3+l
AND #HIGH(BufferSize-1)
STA ECZone
STX ECStringLength

LDA ECWord3+0

STA ECFound+0
LDA ECWord3+l
STA ECFound+l
LDA ECWord3+0

LDX ECNextOut
FindBlString

LDX ECByte3

CPX #(MinimumBString+l)
BCC FindB1lExit

CPX ECStringlength

BCC StringBOverlap

ifEQ
SEC S
IF ZoneTestB
LDA ECRRPtr+0
SBC ECWord3+0
ENDIF

LDA ECRRPtr+l

SBC ECWord3+1l

AND #HIGH(BufferSize-1)
CMP ECZone

BCS StringBOverlap

WO 92/02989

10

15

20

25

30

35

fi
STX
LDA
STA
LDA
STA
!JMP

FindB1Exit:

StringBOverlap:

NoBFound:

HashBX2:

LDA
BEQ

Lba
SEC
SBC
STA

INY
LDA
BMI
LDX
STA
ORA
CMP
ifEQ
LDA

BEQ

- 157 -

PCT/US91/05659

APPENDIX 1

ECStringLength
ECWord3+0
ECFound+0
ECWord3+1
ECFound+1
StringBoverlap

ECStringLength
NoBFound

ECRRPtr+0

ECFound+0
ECWordl+0 H
ECRRPtr+1
ECFound+1

Wordl+0 = LOW(Diff)

#HIGH (BufferSize-1)

ECWordl+l
ProcessBString

HashBX2
ResetBCharCounts

ECNextoOut :

~e

ECHashX21,Y
HashBX2Null
ECNextOut
ECWorda+1
#080h
ECHashX21,X

ECHashX20,Y
ECHashX20,X
HashBX2Null

Y

= index to reach
ECNextOut+1l data items

WO 92/02989 PCT/US91/05659

- 158 -

APPENDIX 1

els
LDA ECHashX20,Y
fi
STA ECWord2+o0
5 HashBX2Bits:
LDY ECNewIndex,X ; NC encoding index
. ifNE
INY
LDA FontBits,Y
10 ADD #00Ah
els
LDA #00Dh
£i '
IF AntiEx
15 TAW
ENDIF
STI #002h,ECByte3
SEC
HashBX2SumBits:
20 LDY ECType,X
CPY #002h
ifEQ :{ : Type 2
ILDY ECFontIndex,X
SBC FontBits,Y

ST bits + Hash(=10)

~e

3(110 length) + 10

-e

25 els :{} : Type 4
LDY ECNewIndex,X ; NC encoding index
ifNE i
SBC FontBits,Y
SBC #008h
30 els :{}
LDY ECFrequency, X
ifPL i{
SBC #008h
els i{}
35 : SBC #009h

£fi ;)

WO 92/02989

10

15

20

25

30

35

- 159 -

APPENDIX 1

£fi ;)
fi i)
BMI HashBX20K
INX
DEC ECByte3
BNE HashBX2SumBits
HashBX2Null:
INC ECNextOut
RTS
HashBX20K:
LDX ECNextOut
LDY ECNextOut
INY
IF AntiEx
hash

PCT/US91/05659

; total bits for 2-byte

TWA ;7 less cost of 8-bit

frequency
STA ECHashX21,X
AntiEx
STI #002h,ECStringLength
position
ENDIF
IF Test
INC BHashX2s+0
ifEQ
INC BHashX2s+1
fi
ENDIF
LDA #006h
STA ECType,X
IF AntiEx XOR 1
LDA #000h
STA ECType,Y
ENDIF
LDA ECWord2+l
ASR A

save bit length for

: in 2nd character

Type 6

i Type 0 (skip)

WO 92/02989

10

15

20

25

30

35

ROR
AND
CLC
ROR
ROR
ROR
ORA
STA
character =
LDA
STA
LDA
ADD
STA
RTS

ProcessBString:

IF
INC

PCT/US91/05659

- 160 -

APPENDIX 1

ECWord2+0
#003h

A

A

A

#020h 7
ECHashX21,Y ; ECHashX21 of 2nd

ECWord2+0 ; 2 high-order hash bits
ECHashX20,Y

ECNextoOut ; ECHashX20 of 2nd character
#002h : 8 low-order hash bits
ECNextOut

Test
BStringsFound+0

ifEQ
INC BStringsFound+1

fi

ENDIF

DirectBsString:
LDY
LDA
STA
ADD
STA
CMP
ifcc

TAX
LDA
els
ADD
TAX
DA

ECNextOut

ECStringLength

ECByte3 ; Byte3
(0= (MinimumBString+1))
ECByte4 ; Byte4
#009h

StringLength

LengthB index

LengthBBits, X ; length bits from table

(0-009h)

GlobalBits,X

G2

WO 92/02989 PCT/US91/05659

- 161 -
APPENDIX 1
ADD #004h
fi
LDX ECNewIndex,Y
ifNE
5 INX
INX
CLC
ADC FontBits,X
els
10 ADD #003h
fi
LDX ECWordil+il
CLC
ADC ZoneBits,X
15 ADD #008h i A = total string
encoding bits
IF AntiEx
TAW
ENDIF
20 SEC
DirectBSumBits:
LDX ECType,Y
CPX #002h
ifEQ ; Type 2
25 LDX ECFontIndex,Y
SBC FontBits,X
els : Type 4
LDX ECNewIndex,Y ¢ NC encoding index
ifNE i{
30 SBC FontBits,X
SBC #008h
els ;{)
LDX ECFrequency, Y
ifPL i {
35 SBC #008h

els ()

WO 92/02989

- 162 -

APPENDIX 1

SBC #00%h

fi
5 BMI
INY
DEC ECByte3
BNE DirectBSumBits
DirectBReject:
10 JSR HashBX2
JMP ResetBCharCounts
DirectBUse:
LDY ECNextout
IF AntiEx
15 TWA
STA ECHashX21,Y ;

DirectBUse

AntiEx
ENDIF
IF Test
20 - INC BStringsUsed+0
ifEQ
INC BStringsUsed+1
fi
ENDIF _
25 LDA #008h
STA ECType,Y
ILDA ECByte4
STA ECHashX20,Y
INY
30 ILDA ECWordl+o0 ; save
STA ECHashX20,Y B

-

-

~e

ECHashX2
LDA ECWordl+l
STA ECHashX21,Y
35 . IF AntiEx XOR 1
LDX ECStringLength

PCT/US91/05659

save bit length for

Type 8

Global or LengthB index
saved for ECWrite

Zone codes for ECWrite
in 2nd character's

R

WO 92/02989

10

15 |

20

25

30

35

DEX
Lpa

UseBStringLoop:
STA ECType,Y

INY
DEX

BNE UseBStringLoop

ENDIF

LDA ECStringLength

ADD
STA

- 163 -

APPENDIX 1

#000h

ECNextOut
ECNextOut

ResetBCharCounts:

and

.
1

LDA
ADD
SEC
SBC
STA
LDy

LDA
STA
STY

¢ Jedodedede de sk kg e ok

.
!

.
’

L]
I

ECAvailable
ECNextOutsSave

ECNextoOut
ECAvailable
ECNextOutSave

ECNextoOut
ECNextOutSave
ECNextOut

B-STRING

.
’

.
14

.
I

-e

PCT/US91/05659

set Type to 0 in the
(ECStringLength-1) chars
which generate no output

; update ECAvailable

; interchange ECNextout

ECNextOutSave

Y = ECNextoOut

OUTPUT

TOTAL B BITS FOR AntiExpansion

IF

TotalBBits:

LDA
ADD
LDX

JMP (TotalBJumps),X

TotalBJumps:

DW
DW

AntiEx

ECExcessBits
#(0-008h)
ECType,Y

TotalBDone
TotalBFont

J e de e e e & ok K ek ok ok

;7 Y = ECNextOut

WO 92/02989
- 164 -
APPENDIX 1
DW TotalBNewChar
DW TotalBHashX2
DW TotalBString
TotalBFont:
5 CLC
LDX ECFontIndex,Y
font ,
ADC FontBits,X
1JMP TotalBDone
10 TotalBNewChar: '
CLC
LDX ECNewIndex,Y
BEQ TotalBNCMainNF
ADC FontBits,X
15 TotalBNCMainOF: '
ADD #008h
8-bit
!JMP TotalBDone
TotalBNCMainNF:
20 LDX ECFrequency, Y
8-bit
ifPL
ADD #008h
els
25 ADD #009h
fi
1JMP TotalBDone
TotalBHashX2:
TotalBString:
30 CLC
ADC ECHashX21,Y
IF AntiEx
STA ECExcessBits
JMP UpdateBlBuffer
35 ENDIF

TotalBDone:

~e

-e '

-e

~e

PCT/US91/05659

char encoding index -

NC encoding index

char encoding index -

char encoding index -

8

WO 92/02989 PCT/US91/05659

- 165 =~
APPENDIX 1
AND #O0FFh
ifPL i{
CMP $#040h
ifcs i {
5 LDA #040h
fi ;)
els ;{}
CMP #(0-040h)
ifcc i{
10 LDA # (0-040h)
fi ;)
£i ;)
STA ECExcessBits
ELSE
15 v JMP WriteBEncodings
ENDIF

H
FREddkk B-STRING BUFFER UPDATE *dkkkk
20 ; UPDATE BUFFER

o
4

UpdateBBuffer: ¢ Y = ECNextOut
LDA ECChar,Y
STA (ECRRPtr)
25 IF BuffersSuffix
LDX ECRRPtr+1
CPX #HIGH(ECRRBuffer)

ifEQ
STI
30 #(HIGH(ECRRBuffer)+HIGH(BufferSize)),ECRRPtr+1
STA (ECRRPtr)
STI #HIGH (ECRRBuffer) , ECRRPtr+1
fi
ENDIF
35 . BBS 0,ECRRPtr+0,UpdateBHead

JMP UpdateBBufferPtr

WO 92/02989

10

15

20

25

30

35

UpdateBHead:
B LDX
LDA
ADD
STA
LDA
ADD
STA
LDA
STA

PCT/US91/05659

- 166 -

APPENDIX 1

#001h

ECRRPtr+0 ; Word3 = ptr to RRHashLink
#(0-001h) ; at location RRPtr-1
ECWord3+0

ECRRPtr+l1

(HIGH (ECRRHashLink) -HIGH (ECRRBuffer))
ECWord3+1

ECHashRawo0, Y ; Word4 = ptr to
ECWord4+0 RRHashHead

~e

DecBankSelect

STA

(ECWord3) ; store LOW(Hash) in

EncBankSelect : RRHashTest table

LDA
AND
ASL
ROL
ADD
~ sTa
UpdateBLink:
LDA
STA
LDA
STA
LDA
STA
LDA
STA

ECHashRawl,Y

#HIGH (BufferHashes-1)
ECWord4+0

A

#HIGH (ECRRHashHead)
ECWord4+1

(ECWord4) ; transfer RRHashHead to
(ECWords3) RRHashLink table
(ECWord4) ,X

(ECWord3) ,X

ECWord3+0 ;s reset RRHashHead to new
(ECWord4) ; RRHashLink ptr
ECWord3+1

(ECWord4) ,X

e

UpdateBBufferPtr:

INC

ifEQ

ECRRPtr+0

INC ECRRPtr+l
LDA ECRRPtr+1
CMP # (HIGH(ECRRBuffer)+HIGH(BufferSize))
. ifEQ |
. sTI #HIGH (ECRRBuffer) , ECRRPtr+1

WO 92/02989 PCT/US91/05659

- 167 -
APPENDIX 1
fi
fi
H
OutputBControl:
5 INY

STY ECNextout
CPY ECNextOutSave

ifNE ¢ Y = ECNextOut
IF AntiEX
10 JMP TotalBBits
ELSE
JMP WriteBEncodings
ENDIF
fi
15 IF AntiEx XOR 1 ;{

LDA ECFlush

BNE ECOutputBFlush
LDA #SetLength
CMP ECAvailable

20 ifcs
RTS
fi
JMP StringBSearch
OutputBFlush:
25 LDA ECAvailable
ifEQ
RTS
fi
JMP StringBSearch
30 ELSE i)
LDA ECAntiEStatus ¢ saved at start of
StringTime
BMI OutputBSTOff
OutputBSTOn:
35 - LDY ECExcessBits

IF Macros

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 168 -
APPENDIX 1
ifMI
JMP OutputBCurrent ; if minus, write
current
fi
ELSE
BMI OoutputBCurrent ; if minus, write
current
ENDIF
CPY #014h
IF Macros
ifcc

JMP OutputBDefer
defer writing

if a bit plus,

-e

fi
ELSE
, BCC OutputBDefer ; if a bit plus,
* defer writing o o
ENDIF ,
ORA #080h
STA ECAntiEStatus ; if too plus, turn off
LDX ECNextoOutStart
LDY ECNewIndex,X : NC encoding index
ifNE i
DA FontCode, Y
Writel7
LDA #0FEh ; OFEh = 11111110
LDX ~ #0COh ;s + 1
Write8l7
els ;{}
LDA #0BFh ; OFEh = (10)111111
LDX #060h s + 01
Write817
fi ;)
IF Test é{
INC AntiExOn+0

. ifEQ i {

WO 92/02989 PCT/US91/05659

- 169 -

APPENDIX 1

INC AntiExoOn+1

fI ;)
ENDIF i}
{JMP OutputBCurrent

5 OutputBSTOff:
LDY ECExcessBits

BPL OutputBDefer ; if losing, no change
CPY #(0-013h) ; should be 9 ?????
BCS OutputBDefer ; if a bit minus, no
10 change
AND #07Fh
STA ECAntiEStatus i if too minus, turn on
LDA #0OFEh ; strings and write
current
15 LDX #0COh
Writesl7 i OFEh, 1 to turn on
IF Test ;{
INC AntiExOff+0
ifEQ H
20 INC AntiExOff+1
' £fI ;)
ENDIF i)
OutputBCurrent:
JSR OutputBWrite
25 LDA ECFlush
ifEQ i
RTS
els ;{}
LDA ECAvailable
30 ifEQ 7 {
RTS
£i ;)
fi ;)

JMP StringBSearch
35 OutputBDefer:
LDA ECAvailable

WO 92/02989

10

15

20

25

30

35

- 170 -

APPENDIX 1

BEQ OutputBWrite
LDY ECFlush
ifEQ i{
CMP #SetLength
BCC OutputBWrite
fi
JMP
OutputBWrite:
LDA
TAX
SEC
SBC
STA
LDY
STX
STI
ENDIF

i}
StringBSearch

ECNextOut

ECNextOutsStart

ECBytel

ECNextOutStart

ECNextOutsStart

#000h, ECExcessBits
i)

.
14

WriteBEncodings:
IF AntiEx
LDA EcCAantiEStatus
BPL WriteBStringsOn
WriteB8Bit:
LDA ECFrequency,Y :
Write8
LDA ECFrequency,Y
CMP #0FEh
ifcc
JMP
fi
LDA #040h
Writel7
JMP WriteBOTestRepeats

~e

WriteBStringsOn: H
LDA ECType,Y
ORA ECRepeatSw,Y ;

PCT/US91/05659

Y = ECNextOut

character frequency

WriteBOTestRepeats

¥ = ECNextoOut

bit 3 on if repeats

WO 92/02989
- 171 -
APPENDIX 1
TAX
ELSE
LDX ECType,Y
ENDIF
5 JMP (WriteBJumps),X
WriteBJumps:
repeats
DW WriteBNull
repeats)
10 DW WriteBOFont
repeats
DW WriteBONewChar
repeats
DW WriteBHashX2
15 repeats
DW WriteBString
repeats
IF AntiEkEx
IF Repeats
20 DW WriteBlFont
repeats
DW WriteBlNewChar
repeats
DW WriteBHashX2
25 repeats
ENDIF
ENDIF
WriteBNull:
30 IF Repeats
JMP WriteBOTestRepeats
ELSE
JMP WriteBODone
ENDIF
35 WriteBOFont:
LDX ECFontIndex,Y

-

-e

~e

~e

-

’

10

12

14

char

PCT/US91/05659

String(n) =-(no

HashX2(2) - or

Font char - no

New char - no

HashX2 (1) - no

String(l) - no

or repeats

Font char -

New char -

HashX2 (1) =~

encoding index -

WO 92/02989 PCT/US91/05659

- 172 -
APPENDIX 1
font
LDA FontCode,X
Writel7 -
IF AntiEx ‘
5 JMP WriteBODone
ELSE
IF Repeats
JMP WriteBOTestRepeats
ELSE
10 JMP WriteBODone
ENDIF
ENDIF
'IF AntiEx
IF Repeats
15 WriteBlFont:
) LDX ECFontIndex, Y : char encoding
index - font
LDA FontCode, X
Writel7
20 . LDA ECRepeats, Y
JMP WriteBORepeats
ENDIF '
ENDIF
WriteBONewChar:
25 LDX ECNewlIndex,Y : NC encoding index

BEQ WriteBONCMainNF -
LDA FontCode, X
Writel7
WriteBONCMainOF:
30 LDA ECFrequency,Y ; char encoding index -
8-bit
Writes
{JMP WriteBOCommand
WriteBONCMainNF:)
35 _ LDA ECFrequency,Y ; char encoding index -
8-bit

WO 92/02989 PCT/US91/05659

- 173 -

APPENDIX 1

ifPL
Writes
els -
STI #080h,ECByte4
5 ASR A
ROR ECByted
AND #0BFh
LDX ECByte4
Writesl?
10 fi
WriteBOCommand:
LDA ECFrequency,Y ; character frequency
CMP #0FEh
ifcc
15 WriteBOCommandX:
IF AntiEx
JMP WriteBODone
ELSE
IF Repeats
20 JMP WriteBOTestRepeats
ELSE
JMP WriteBODone
ENDIF
ENDIF
25 fi
LDA #040h
Writel7
BRA WriteBOCommandx
IF AntiEx
30 IF Repeats
' WriteBlNewChar:
LDX ECNewIndex,Y i NC encoding index
BEQ WriteB1NCMainNF
LDA FontCode, X
35 Writel7
WriteB1NCMainOF:

‘WO 92/02989 PCT/US91/05659

- 174 -
APPENDIX 1
LDA " ECFrequency, Y ; char encoding
index - 8-bit
Write8

1JMP WriteBlCommand
5 WriteB1NCMainNF:

LDA ECFrequency, Y ; char encoding
index - 8-bit
ifPL
Write8
10 - els
STI #080h, ECByte4
ASR A

ROR ECByte4
AND #0BFh

15 IDX = ECByte4
Write8l7
fi
WriteBlCommand:
LDA ECFrequency, Y : character
20 frequency = - ' ' o .
CMP #0FEh
ifcc
WriteBlCommandX:
LDA ECRepeats,Y
25 JMP WriteBORepeats
fi
LDA #040h
Writel7
BRA WriteBlCommandX
30 ENDIF
ENDIF
WriteBHashX2:
LDX ECNewIndex,Y ; NC encoding index

BEQ WriteBX2NF
35 WriteBX20F:
INX

WO 92/02989 PCT/US91/05659

- 175 -

APPENDIX 1

LDA FontCode,X
Writel7
!JMP WriteBX2Main
WriteBX2NF:
5 LDA #0DOh ¢ 110
Writel7
WriteBX2Main:
INY
LDA ECHashX21,Y
10 Writel7
LDA ECHashX20,Y
Writes
IF AntiEx
LDA #000h
15 STA ECType,Y
IF Repeats
STA ECRepeatsw, Y
ENDIF
ENDIF
20 DEY
IF Repeats
JMP WriteBOTestRepeats
ELSE
JMP WriteBODone
25 ENDIF
WriteBSXtralLength:
LDA LengthBCode+9
Writel7
LDA ECHashX20,Y ; length index
30 ADD #(0-009h)
TAX
LDA GlobalCodeHigh,X
TAW
LDA GlobalCodelLow, X
35 BEQ WriteBSXLHigh
TAX

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 176 -

APPENDIX 1

TWA
Write817
JMP WriteBSMain
WriteBSXIHigh:
TWA
Writel7
JMP WriteBSMain
WriteBString:
LDX ECNewIndex,Y ; NC encoding index
BEQ WriteBSNF
WriteBSOF:
INX
INX
LDA FontCode,X
Writel7
{JMP WriteBSLength
WriteBSNF:
LDA #0FCh
Writel?
WriteBSLength:
IF AntiEX
LDA ECHashX20,Y
TAX
ADD #(MinimumBString+1)
STA ECByte4
NEG A
ADD ECBytél
STA ECBytel -
ELSE
LDX ECHashX20,Y ; length index
ENDIF
CPX #00%h
ifcs .
JMP WriteBSXtraLength
fi
LDA LengthBCode,X

111

~e

length index

-

WO 92/02989 PCT/US91/05659

- 177 -
APPENDIX 1

Writel?
WriteBSMain:
INY
LDX ECHashX21,Y
5 LDA ZoneCode,X
Writel7
LDA ECHashX20,Y
Writes
DEY
10 IF AntiEX
IF Repeats
LDA ECRepeats, Y
ifEQ
JMP WriteBlDone
15 els
JMP WriteBlRepeats
fi
ELSE
JMP WriteBlDone
20 ENDIF
ELSE
JMP WriteBOTestRepeats
ENDIF

-e

25 IF Repeats
WriteBOAreRepeats:
LDA #0COh -
Writel7
LDA ECRepeats,Y
30 ADD #0OFEh
TAX
LDA GlobalCodeHigh,X
TAW
LDA GlobalCodeLow, X
35 . BEQ WriteBORHigh
TAX

WO 92/02989 PCT/US91/05659

- 178 -

APPENDIX 1

TWA
Write817
JMP WriteBORClear
WriteBORHigh:
5 TWA
Writel7
JMP WriteBORClear
WriteBOTestRepeats:
LDA ECRepeats,Y
10 BEQ WriteBODone
WriteBORepeats:
CMP #001h
BNE WriteBOAreRepeats
WriteBONoRepeats:
15 LDA #040h
Writel?7
WriteBORClear:
LDA #000h
' STA ECRepeats,Y
20 STA ECRepeatSWw,Y
' ENDIF
WriteBODone:
IF Failsafe
DEC ECFailSafe+0
25 ifEQ
DEC ECFailsafe+l
ifEQ
STI #FailSafeSets,ECFailSafe+l
LDA #008h

30 Writel7?
fi
fi
ENDIF
IF AntiEX
35 ~ DEC ECBytel

ifEQ

WO 92/02989 PCT/US91/05659

- 179 -
APPENDIX 1
RTS
fi
INY
JMP WriteBEncodings
5 ELSE
JMP UpdateBBuffer
ENDIF
IF AntiEX
10 IF Repeats
WriteBlAreRepeats:
LDA #0COh
Writel?
LDA ECRepeats, Y
15 ADD #O0FEh
TAX
LDA GlobalCodeHigh, X
TAW
LDA GlobalCodeLow, X
20 BEQ WriteB1RHigh
TAX
TWA
Writesl?
JMP WriteBlRClear
25 WriteBlRHigh:
TWA
Writel7
JMP WriteBlRClear
WriteBlRepeats:
30 CMP #001h
BNE WriteBlAreRepeats
WriteBlNoRepeats:
LDA #040h
Writel7

35 WriteBlRClear:
LDA #000h

WO 92/02989 PCT/US91/05659

- 180 -
APPENDIX 1
STA ECRepeats, Y
STA ECRepeatSw,Y
ENDIF
WriteBlDone:
5 IF Failsafe
DEC ECFailSafe+0
ifEQ
DEC ECFailsafe+1
ifEQ
10 STI #FailSafeSets,ECFailSafe+l
ILDA #008h
Writel7
fi
fi
15 ENDIF
DEC ECByte4
ifNE
INY
IF Repeats
20 . LDA ECRepeats,Y

BEQ WriteBlDone
JMP WriteBlRepeats

JMP WriteBlDone
25 ENDIF
fi
LDA ECBytel
ifEQ
RTS
30 fi
INY
JMP WriteBEncodings
ENDIF

-e

35 _ IF AntiEx .
UpdateBlBuffer: : Y = ECNextoOut

WO 92/02989

10

Lba
STA
IF

LDX
CPX

PCT/US91/05659

- 181 -

APPENDIX 1

ECChar, Y
(ECRRPtr)
Buffersuffix

ECRRPtr+1

#HIGH (ECRRBuffer)

ifEQ
STI
(HIGH (ECRRBuffer)+HIGH (BufferSize)) , ECRRPtr+1

STA
STI

fi

ENDIF
0,ECRRPtr+0,UpdateBlHead
UpdateBlBufferPtr

BBS
JMP

15 UpdateBlHead:

20

25

30

35

LDX
LDA
ADD
STA
-LDA
ADD
STA
Lba
STA

#001h
ECRRPtr+0
#(0-001h)
ECWord3+0
ECRRPtr+1

(ECRRPtr)
#HIGH (ECRRBuffer) ,ECRRPtr+1

.
14

.
1,

Word3 = ptr to RRHashLink
at location RRPtr-1

(HIGH (ECRRHashLink) -HIGH (ECRRBuffer))

ECWord3+1
ECHashRaw0, Y
ECWord4+0

DecBankSelect

STA

(ECWords3)

EncBankSelect
LDA ECHashRawl,Y
AND #HIGH(BufferHashes-1)
ASL ECWord4+0 '
ROL A

ADD #HIGH(ECRRHashHead)

STA
UpdateBlLink:

ECWord4+1

LDA (ECWord4)
STA (ECWord3)

we

°
7

1

7 Word4 = ptr to
RRHashHead

store LOW(Hash) in
+ RRHashTest table

transfer RRHashHead to
RRHashLink table

WO 92/02989 PCT/US91/05659
- 182 -
APPENDIX 1
LDA (ECWord4) ,X
STA (ECWord3),X
LDA ECWord3+0 : reset RRHashHead to new
STA (ECWord4) ; RRHashLink ptr
5 LDA ECWord3+l
STA (ECWord4),X
UpdateBlBufferPtr:
INC ECRRPtr+0
ifEQ
10 INC ECRRPtr+1
LDA ECRRPtr+1
CMP # (HIGH (ECRRBuffer)+HIGH (BufferSize))
ifEQ
STI #HIGH (ECRRBuffer) ,ECRRPtr+1
15 fi
fi
OutputBlControl:
DEC ECStringLength
20 ifNE
INY
LDA ECExcessBits
ADD #(0-008h)
ifPL i{
25 CMP #040h
ifcs i{
LDA #040h
fi Hy
els H
30 CMP # (0-040h)
' ifce i
. LDa #(0-040h)
fi 7}
fi 1}
35 STA ECExcessBits
JMP UpdateBlBuffer

WO 92/02989 PCT/US91/05659

- 183 -
APPENDIX 1
fi
JMP OutputBControl
ENDIF

5 jxkkkkkkikk*** DECODER MACRO S Tk e e e o ok e ok ok ok e e ok

r

DCGlobalShort MACRO

IF Macros
MSDCGlobalShort

10 ELSE
JSR MSDCGlobalShort
ENDIF
ENDM

I5 3% % % % % % k % % k k k k k Kk k Kk k k k % % k % *k k * % * &

.
’

; Enter: A = guard bit at proper shift point (i.e. 80h
for 1 bit) ’
;7 Exit: A = fetched bits (right justified)

20 Z flag properly set(reset) for [A]

.
’

DecodeNBits MACRO

LOCAL DecodeNB1
DecodeNB1:
25 ASL DCBuffer
ifEQ
JSR DCReadCharacter
SEC
ROL DCBuffer
30 fi
ROL A
BCC DecodeNB1
ENDM

.
1

35;******************************

3
’

WO 92/02989

10

15

20

25

30

35

- 184 -

APPENDIX 1

DCFreqToChar MACRO

LOCAL DCFToCExit

STA DCWordl+0

CMP #O0OFEh

ifcs

LDA #080h H
DecodeNBits

ifNE
STA

~e

-e

DCCommand
EOF '
{JMP DCFToCExit

fi

fi
SetCharFreq
in DCWordl+l
LDA

DCFToCExit:

ENDM

DC, W1

(DCWordl)

-
’

PCT/US91/05659

get 1 bit

set DCCommand = 1
NOTE: this is the valid

; sets HIGH(NCFreq)

;******************************

.
’

;+ Enter: A=
;7 Exit: A = font index (0-15)
DCReadFontFreq MACRO
LOCAL DCRNextBit
TAY 3
ILDX DCFontTblIndex,Y
DCRNextBit:
ASL, DCBuffer
ifEQ 7
JSR DCReadCharacter
SEC
ROL DCBuffer
fi

ifcs

of font table indices (2-16) - 2

€]

WO 92/02989 PCT/US91/05659

- 185 -

APPENDIX 1

INX
fi
LDA DCFontNext,X
ifNE
5 TXA
CLC
ADC DCFontNext,X
TAX
1JMP DCRNextBit
10 fi
LDA DCFontvValue, X
ENDM

A = font index

~e

.
r

;******************************

15 ;
DCGloballong MACRO
LDA #040h ; get 2 bits
DecodeNBits i DCGlobalShort expects
that
20 DCGlobalShort ! 1st 2 bits of the
Global
ENDM ;i code are in A and that
; i the 2 flag is based on [A]

PR ok Kk ok ok ok ok ok ok k ok ok ko ko k ko k k k ok k k Kk k k k k % % &
25 ;
IF Macros
MSDCGlobalShort MACRO
LOCAL
DGSOOZones,DGSOOOl,DGSOOOOl,DGSOOOOOl,DGSOOOOOO,DGSExit
30 ELSE

MSDCGlobalShort:
ENDIF
BEQ DGS00Zones ; 2 flag set for [A]
CMP 4002h
35 ifcc ! zone = 01

LDA #020h i get 3 bits

WO 92/02989

10

15

20

25

30

35

STI
els
ifNE
STI
els
STI
fi
DA
fi

- 186 -

APPENDIX 1

#008h,DCBytel H

~e

#000h, DCBytel
;7 Zone
#004h,DCBytel

-e

#040h

DecodeNBits
ADD DCBytel
1JMP DGSExit

DGS00Zones:
LDAa

#010h

-e

DecodeNBits

CMP
BCC
AND
ADD

#008h
DGS0001
#007h
#010h

-

- |JMP DGSExit

DGS0001:
CMP
BCC
ORA

#004h
DGS00001
#080h

LYY

DecodeNBits

AND
ADD
!JMP
DGS00001:
CMP
BCC
BEQ
ORA

#007h
#018h -
DGSExit -

-e

#001h
DGS000000
DGS000001
#010h

~-e

DecodeNBits

. AND
ADD

#01Fh
#020h

-e

PCT/US91/05659

DCBytel = base (DL)

11

zone

10

get 2 bits

get 4 bits

base 16

append 1 bit

base 24

append 4 bits

base 32

WO 92/02989 PCT/US91/05659

- 187 -

APPENDIX 1

!IJMP DGSExit
DGS000001.:
LDA #004h : get 6 bits
DecodeNBits
5 ADD #040h ; base 64
!JMP DGSExit
DGS000000:
LDA #002h ; get 7 bits
DecodeNBits
10 ADD #080h ; base 128
DGSExit:
IF Macros
ENDM
ELSE
15 RTS
ENDIF
H
7R ok ok ok ok ok ok k k ok ok ok ok ok k ok ok ok k k k k k k k %k k * % %

.
’

20 DCLengthlLong MACRO
‘ LOCAL DCLNextBit,DCLExit
LDX #000h
DCLNextBit:
ASL DCBuffer
25 ifEQ
JSR DCReadCharacter
SEC
ROL DCBuffer
fi
30 ifcs
INX
fi
LDA LengthBNext,X
ifNE
35 . TXA
CLC

WO 92/02989 PCT/US91/05659

- 188 -

APPENDIX 1

ADC LengthBNext,X
TAX
1JMP DCLNextBit
fi _
5 LDA LengthBValue,X
CMP #00%h
ifNE
JMP DCLExit
fi
10 STA DCByte2
DCGloball.ong
ADD DCByte2
DCLExit:
ENDM
15
sk ko k Kk k Kk k k k % k & k k k k k k *k k k k k k k k kX % % %
DCZonelong MACRO
LOCAL DCZNextBit
20 LDX #000h
DCZNextBit:
ASL DCBuffer
ifEQ
JSR DCReadCharacter
25 SEC
ROL DCBuffer
fi
ifcs
INX _ 2
30 fi
LDA ZoneNext,X
ifNE
TXA
CLC
35 . ADC ZoneNext, X
TAX

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 189 -

APPENDIX 1

1JMP DCZNextBit
fi
LDA ZoneValue,X
STA DCWordl+l
ENDM

;

phkkkkkkkkkkkx DE CODER

.
’

DCFontParams: ,

LDY DCABStatus

BPL DCFontsActive

LDA #00l1h

DecodeNBits

JMP DCNewAChar
DCFontsActive:

LDA DCCurrentHash+1

BPL DCOldFont

TYA

ifEQ

JMP DCNewAFont

fi

JMP DCNewBFont
DCOldFont:

LDA

ADD
H ADD

DCCharacters
DCABStatus
DCSTIndex
#0FFh

DCReadFontFreq

ILDY DCABStatus

ifNE

CMP DCNCIndex
ifEQ

LDA #001h

DecodeNBits

REFILL de e ok e e o e o ok ke ok ok ok ok

; get 8 bits

i Y = DCABStatus

; always 1 if strings on
: A is # of font indices

¢ [A] is returned as

7 get 8 bits

WO 92/02989 PCT/US91/05659

- 190 -

APPENDIX 1

JMP DCNewAChar
fi
BCC DCReadOldChar
ADD #0FFh
5 CMP DCNCIndex
ifEQ
JMP DC2ByteHash
fi
ADD #O0FFh
10 CMP DCNCIndex
ifEQ
JMP DCReadBString
£fi
ADD #OFFh
15 els
CMP DCNCIndex
BCC DCReadOldChar
ifEQ .
JMP DCNewACharlLong
20 £i '
ADD #O0FFh
CMP DCNCIndex
ifEQ
JMP DCReadAString
25 fi
ADD #0FFh
fi
DCReadOldChar:
_ STA DCFontIndex ; used in FontUpdate
30 ADD #(TwoBytes+1)
ADD DCFontBase+0
STA DCWordl+0
LDA DCFontBase+l
STA DCWordl+l
35 7 . LDA (DCWordl)
STA (DCRRPtr)

WO 92/02989 PCT/US91/05659

- 191 -

APPENDIX 1

STI #001h,DCCharCount
JMP DCResetFont
DCNewAFont: -
LDA #040h get 2 bits
5 DecodeNBits
CMP #001h
ifcc ;7 00
LDA #080h ; get 1 bit
DecodeNBits
10 1JMP DCNewACharsShort
fi
BNE DCNewACharShort ; 10,11
IF AHashX2 XOR 1 7 01
JMP DCReadAString
15 ELSE
LDA #080h : get 1 bit
DecodeNBits
ifEQ
JMP DC2ByteHash
20 fi
DCGloball.ong
ADD #MinimumAString
JMP DCDirectString
ENDIF
25 DCNewACharShort:
AND #0FFh ' 7 reset Z flag for [A)]
DCGlobalShort
JMP DCNewAChar
DCNewACharLong:
30 DCGlobalLong
' DCNewAChar:
DCFreqToChar ; [A] is input
LDY DCCommand
ifEQ
35 STA (DCRRPtr) ; character is output
STI #001h,DCCharCount

-e

WO 92/02989 PCT/US91/05659

- 192 -

APPENDIX 1

fi
JMP DCResetFont
DCNewBFont:
LDA #040h ; get 2 bits
5 DecodeNBits '
CMP #002h
ifcc + 00,01
ORA #004h ; append 6 bits
DecodeNBits
10 JMP DCNewAChar
els
ifEQ ;10
LDA #0030 ; append 7 bits to 1
DecodeNBits
15 JMP DCNewAChar
fi
fi 7 11
IDA #080h . ; get 1 bit
DecodeNBits
20 ifEQ
JMP DC2ByteHash
fi
DCReadBString:
DCLengthLong
25 ADD #(MinimumBString+1)
JMP DCDirectString
DCReadAString:
IF AHashX2
LDA #040h
30 DecodeNBits
CMP #003h
ifEQ
JMP DC2ByteHash
fi ,
35 - AND #OFFh ; reset Z flag for [A]
h DCGlobalShort

~-e

get 2 bits

WO 92/02989

10

15

20

25

30

35

ADD
ELSE

PCT/US91/05659

- 193 -
APPENDIX 1

(MinimumAString-4)

DCGloballong

ADD

ENDIF
DCDirectString:

STA

#MinimumAString

DCCharCount

DCZoneLong i DCWordl = offset from

RRPtr
LbA

#001h i get 8 bits

DecodeNBits

STA
LDA
STA
SEC
SBC
STA
offset
TAX
Lpa
STA
offset
SBC

ifcc
ADD

LDY
Left

BEQ
Right

DCBytel
DCRRPtr+0
DCWord2+0

DCBytel
DCWord3+0 i DCWord3 = source string

¢ X = save DCWord3+0 for LAN
DCRRPtr+1 i

‘DCWord2+1 + DCWord2 = object string

DCWordi+1
#HIGH (DCRRBuffer)

#HIGH (Buffersize) ; A = save DCWord3+l1l for

DCWord1l+1 ; DCWordl+l: 0 ~ Right to

DCDirectBackward : <> 0 = Left to

DCDirectForward:

LDY

DCCharCount

DCDirectForwardl:

CcMP

(HIGH (DCRRBuffer) +HIGH (BuffersSize)-1)

WO 92/02989 PCT/US91/05659

- 194 -

APPENDIX 1

BEQ DCDirectForward2
DCDirectForwardOK:
PHA
PHX
5 PLI
DCDirectFLoopl:
LAN
STA (DCWord2)
INC DCWord2+0
10 ifEQ
LDA DCWord2+1l
ADD #001h
CMP # (HICGH(DCRRBuffer)+HIGH(BufferSize))
ifEQ
15 ADD # (0-HIGH (Buffersize))
fi
STA DCWord2+1
fi
DEY
20 BNE DCDirectFLoopl
JMP DCResetFont
DCDirectForward2:
TAW
TYA ; A = Y = DCCharCount
25 ADD #(0-001h)
ADD DCWord3+0
TWA W
BCC DCDirectForwardOK
STA DCWord3+l
30 DCDirectFLoop2:
LDA (DCWord3)
STA (DCWord2)
INC DCWord3+o0
ifEQ
35 . LDA DCWord3+1l
ADD #001h

WO 92/02989

10

15

PCT/US91/05659

- 195 -

APPENDIX 1

CMP # (HIGH(DCRRBuffer)+HIGH(BufferSize))
ifEQ

ADD # (0-HIGH (BufferSize))

fi

STA DCWord3+l
fi
INC DCWord2+o
ifEQ

LDA DCWord2+1

ADD #001h

CMP #(HIGH(DCRRBuffer)+HIGH (BufferSize))
ifEQ

ADD # (0O-HIGH (Buffersize))
fi

STA DCWord2+1

fi

DEY

BNE DCDirectFLoop2
JMP DCResetFont

20 DCDirectBackward:

25

30

35

LDY DcCCharCount

CPY DCBytel

BCC DCDirectForwardl

BEQ DCDirectForwardl

STA DCWord3+1l

DEY

TYA

ADD DCWord3+o0

STA DCWord3+o0

ifcs
LDA DCWord3+1

ADD #001h
CMP # (HIGH(DCRRBuffer)+HIGH (BufferSize))
ifEQ
ADD # (0-HIGH (BufferSize))
fi

WO 92/02989

10

15

20

25

30

35

PCT/US91/05659

- 196 -

APPENDIX 1

STA DCWord3+1l
fi
TYA
ADD DCWord2+0
STA DCWord2+0
ifcs

LDA DCWord2+1l

ADD #001h

CMP # (HIGH(DCRRBuffer)+HIGH (BufferSize))
ifEQ |

ADD # (0-HIGH (BuffersSize))

fi

- STA DCWord2+1l

fi

INY
DCDhirectBLoop:

LDA (DCWord3)

STA (DCWord2)

LDA DCWord3+0

ADD #OFFh

STA DCWord3+0

ifcc

LDA DCWord3+1

CMP #HIGH(DCRRBuffer)

ifEQ

ADD #$HIGH (BuffersSize)
fi

ADD #O0FFh

STA DCWord3+1l

fi

LDA DCWord2+0
ADD #OFFh
STA DCWord2+0
ifcc

LDA DCWord2+1l
CMP #HIGH(DCRRBuffer)

(e

WO 92/02989 PCT/US91/05659

- 197 -
APPENDIX 1
ifEQ
ADD #HIGH (BufferSize)
fi
ADD #0FFh
5 STA DCWord2+1l
fi
DEY

BNE DCDirectBLoop
JMP DCResetFont
10 DC2ByteHash:
LDA #020h ; get 3 bits
DecodeNBits
ADD #HIGH (DCPTHashChars)
STA DCWordi+l

15 LDA #002h ; get 7 bits
DecodeNBits
ASL A
STA DCWordi+o
LDA DCRRPtr+0 ; DCWord2 = object string

20 offset
’ STA DCWord2+0
LDA DCRRPtr+1
STA DCWord2+1
LDA (DCWordl)
25 STA (DCWord2)
INC DCWord2+o0
ifEQ
LDA DCWord2+1l
ADD #001h
30 CMP # (HIGH(DCRRBuffer)+HIGH (BufferSize))
ifEQ
ADD # (0-HIGH (BuffersSize))
fi
STA DCWord2+1
35 fi
LDX #001h

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 198 -

APPENDIX 1

LDA (DCWordl),X

STA (DCWord2)

STI #002h,DCCharCount
JMP DCResetFont

DCProdCommand :
LDA #080h ; get 1 bit
DecodeNBits
BNE DCIsCommand ; 0 = prod, 1 = command
DCIsProd:
STI #080h,DCBuffer ' : Prod resets DCBuffer,
clears
STI #000h,DCCommand ; DCCommand and returns
to
JMP DCFontParams : DCFontParams
DCIsCommand:
LDA #040h ; get next 2 bits and
store as
DecodeNBits ; DCCommand (right
justified)
STA DCCommand ; ProcessCommand does as named
STI #080h,DCBuffer : and then JMP's back to
IF EOFControl ; DCFontParams
STI #000h,DCCommand
JMP DCOrECEOF
ELSE
JMP ProcessCommand
ENDIF
DCResetFont:
LDA DCCommand ; prod/command encountered
ifNE
IF AntiEX
LDA DCWord1l+0
CMP #0FFh
ifEQ

JMP DCProdCommand
fi

-

WO 92/02989 PCT/US91/05659

- 199 -
APPENDIX 1
LDA DCABStatus
ifPL
ORA #080h
els
5 AND #07Fh
fi
STA DCABStatus
STI #000h, DCCommand
JMP DCFontParams
10 ELSE
JMP DCProdCommand
ENDIF
fi
LDA (DCRRPtr)
15 STA DCCurrentChar
JSR DCWriteCharacter
IF Repeats
CMP DCChar2Prior
ifNE
20 © JMP DCUpdateFont
fi
CMP DCCharlPrior
ifNE
JMP DCUpdateFont
25 fi
LDA #080h ; get 1 bit
DecodeNBits
ifEQ
JMP DCUpdateFont
30 fi
DCGlobalLong
TAY
INY

LDA DCCurrentChar
35 DCWriteRepeatsLoop:
JSR DCWriteCharacter

WO 92/02989 PCT/US91/05659

- 200 -
APPENDIX 1
DEY
BNE DCWriteRepeatsLoop
ENDIF -
DCUpdateFont: ‘
5 FontUpdate DC,FU

IF Failsafe
DEC DCFailSafe+0

ifEQ :
DEC DCFailsafe+l
10 ifEQ
STI #FailSafeSets,DCFailSafe+l
LDA #010h ' ; get 4 bits
DecodeNBits
ifNE
15 IF EOFControl
FailSafeTrap:

STI #0FFh,ECCommand
BBR 6,HostLCR,FailsafeNLB
JSR ECReadCharacter
20 STI #000h,ECCommand
JMP DCOrECEOF
FailSafeNLB:
STI #0FFh,ECCommand
JSR DCReadCharacter
25 STI #000h,ECCommand
JMP DCOrECEOF

JMP FailSafeFailed
ENDIF
30 fi
' FailSafeOK:
fi
fi
ENDIF
35 . INC DCRRPtr+0
ifEQ

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 201 -
APPENDIX 1

LDA DCRRPtr+1
ADD #001h
CMP #(HIGH(DCRRBuffer)+HIGH(BufferSize)) -
ifEQ
ADD # (0-HIGH (BufferSize))
fi
STA DCRRPtr+1
fi
DEC DCCharCount
ifEQ
JMP DCFontParams
fi
JMP DCResetFont

-e

printstat Code,size,is,%$-cb

shkkkkdkdkkkkkdkkk I NCLUDE TABTILTES hkkkhkkhkhhhkdkks

-e

tb equ $

-e

include TCtab011
shkkkkkkkkkkkk* E N CODER TABLES e do ok e e e de e de ke ke ok ok Sk

’

.
’

EncodingTable:
plantl macro q,r
q&r:
endm

-e

IF FontSize EQ 8

sepno defl 0

irp Y,<e0,el,e2,e3,e4,e5,e6,e7,e8>
db y-FontCode

endm
ENDIF

-

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 202 -
APPENDIX 1
IF FontSize EQ 16
sepno defl O
irp
y,<e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,elo,ell,elz,el3,e14>
db y-FontCode °
endm
ENDIF
etbase macro
plantl e, ¥sepno
sepno defl sepno+l
endnm '
FontCode:
etbase P 2
db 11000000b,01000000b
etbase 73
db 11000000b,00100000b,01100000b
etbase - ; 4
db 11000000b,00100000b,01010000b,01110000b
etbase i 5
db
11000000b,00100000b,01010000b,01101000b,01111000b
etbase ;i 6
db
10100000b,11100000b,00010000b,00110000b,01010000b
db 01110000b
etbase 1 7
db
10100000b,11100000b,00010000b,00110000b,01010000b
db 01101000b,01111000b
etbase ;7 8
db

10100000b,11100000b,00010000b,00110000b,01001000b
db 01011000b,01101000b,01111000b
etbase

~e
O

£

WO 92/02989 PCT/US91/05659

- 203 -

APPENDIX 1

db
10100000b,11100000b,00010000b,00110000b,01001000b

db 01011000b,01101000b,01110100b,01111100b

etbase ; 10

5 db

10100000b,11100000b,00010000b,00110000b,01001000b

db
01011000b,01100100b,01101100b,01110100b,01111100b

IF FontSize EQ 16

10 etbase ;11
db
10100000b,11100000b,00010000b,00110000b,01001000b
db
01011000b,01100100b,01101100b,01110100b,01111010b
15 db 01111110b
etbase 7 12
db
lOlOOOOOb,11100000b,00010000b,00110000b,01001000b
db
20 01011000b,01100100b,01101100b,01110010b,01110110b
db 01111010b,01111110b
etbase ¢ 13 ERP
db
10100000b,lllOOOOOb,OOOlOOOOb,00101000b,00111000b
25 db
01001000b,01011000b,01100100b,01101100b,01110010b
db 01110110b,01111010b,01111110b
H etbase ; 13 FLB
; db
30 10100000b,11100000b,00010000b,00101000b,00111000b
H db
01001000b,01010100b,01011100b,01100100b,01101100b
H db 01110100b,01111010b,01111110b
etbase 7 14
35 db

10100000b,lllOOOOOb,00010000b,00101000b,OOllIOOOb

WO 92/02989 PCT/US91/05659

- 204 -

APPENDIX 1

db
01001000b,01010100b,01011100b,01100100b,01101100b
db 01110010b,01110110b,01111010b,01111110b
etbase ;7 15
5 db '
10100000b,11100000b,00010000b,00101000b,00111000b
db
01000100b,01001100b,01010100b,01011100b,01100100b
| db
10 01101100b,01110010b,01110110b,01111010b,01111110b
etbase 7 16
ab)
10100000b,11100000b,00010000b,00101000b,00111000b
db
15 01000100b,01001100b,01010100b,01011100b,01100100b
01101010b,01101110b,01110010b,01110110b,01111010b
-db 01111110b
ENDIF
20 o

~e

fontesz equ $-FontCode

~e

phkkkkkkkkhkkkdk DECODER TABLES **************
25 ;
DCFontTblIndex:
DB 000,002,006,012
DB 020,030,042,056
DB 072
30 IF FontSize EQ 16
DB 090,110,132
DB 156,182,210
ENDIF

’

35 DCFontNext: ,
' ~ DB 0,0

.
[M)

(Y

WO 92/02989 PCT/US91/05659

- 205 -

APPENDIX 1

DB 2, 0, 0,
DB 2,0,0,1, 0, 0

~e

~e

DB 2,0, 01,0, 1, 0, i 5
DB 4,1,0,0, 2, 3,0, ;6
5 DB 0, 0 '
DB 4,1,0,0,2,3,0,0 P 7
DB 0,1, 0, 0
DB 4,1, 0,0,2,3,0,0 ;8
DB 2, 3,0, 0,0,
10 DB 4, 1,0,0,2,3,0,0 ;9
DB 2,3,0,0,0,1, 0, 0
DB 4,1,0,0,2, 3,00 ;10
DB 2,3,0,0,2,3,0,0
DB 0, 0
15 IF FontSize EQ 16
DB 4,1, 0, 0, 2, 3, O, ;11
DB 2, 3,0, 0,2, 3,0,
DB 0,1, 0, 0
DB 4, 1, 0,0, 2,3, 0, ;12
20 DB 2,3,0,0 2,3,0,0
DB 2,3,0,0,0,0
DB 4,1,0,0,2,5 0,1 ; 13 ERP
DB 0, 0,2,3 0,0, 2,3
DB 0, 0,2, 3 0,0,0,0
25 ; DB 4,1, 0, 0,2, 3,0, 0 ; 13 FLB
; DB 4, 5,0,0,0,3, 4, 5
; DB 0, 0,0, 0, 0,1, 0, 0
DB 4,1, 0,0, 2, 3,0, 3 ;14
DB 4,5,0,0,0,3, 4,5
30 DB 0, 0, 0,0, 2,3,0,0
DB 0, 0
DB 4,1, 0,0, 2, 3, 0, ; 15
DB 4,5,0,0,4, 5, 6,
DB 0, 0,0, 0,00, 2,
35 DB 0, 0, O,
DB 4,1, 0,0, 2,3,0,3 ;16

PCT/US91/05659

WO 92/02989

- 206 -

APPENDIX 1

6, 7
4,

4, 5, 0, 0, 4, 5,

DB

o, 3, 5
0

0,

o, o, 0, 0, O,

DB
ENDIF

.
1

5

DCFontValue

N ™

(1N

1,
o, 0,

DB
DB
DB

LT

2

1,

<

(LS

0, 1, o, 2, 3

o,

(LN

0,0, 1, 0, 2, 0, 3, 4
0, 0, 0,1, 0, 0, 2, 3

DB
DB

10

on

DB
DB
DB
DB
DB

L1

4, 0, 5, 6

o,

L1

o, 0,1, o0, 0, 2, 3
7

o,

15

0, 4, 5, 6,

o,

*n

ol ol 0] 1, 0, O, 2, 3
0, 0, 4, 5, 6, o, 7, 8

DB
DB

10

0, 0, 1, 0, 0, 2, 3
0, 0, 4, 5, 0, 0, 6, 7

0,

DB

DB

20

DB

FontSize EQ 16

IF

11

0' ol o' 1] 0, 0, 2' 3

DB

o, 0, 4, 5, 0, 0, 6, 7

DB

9, A
0, 0, 1, 0,

DB 8, 0,
0,

DB
DB

25

12

0, 2, 3
7

o,

0,

5, 0, 6,

4,

o,

8, 9, A, B

0,
0, 0,0,1, 0,0, 2,0

DB 0,

DB

DB 3, 4,
7!

%,

13 ERP

0,5,6,0,0
0, 9, A, B, C

o,

30

0,

8,

DB

13 FLB

0
0
C
0
0

o, 0, 0, 1, 0, 0, 2,
o,

DB
DB

LI

o,

5,
9, A,
1' OI

3, 4,

0,

0,

o

B,

o,

6' 7' 8'
0,

DB

o

14

2,

0,

o,

0,

DB

35

0,

3, 4, 5, 0,

o,

0,

DB

WO 92/02989 PCT/US91/05659

- 207 -
APPENDIX 1
DB 6, 7,8,9, 0,0, 43 B
DB C, D
bB o0, 0,0,1,0,0 2,0 ;7 15
DB 0, 0, 3, 4, 0, 0,0, 0
5 DB 5,6, 7,8, 9, A, 0,
DB B, C, D, E
pB o, 0 0, 1, 0, 0, 2, : 16
DB o0, 0, 3, 4, 0, 0, O,
bB 5,6, 7,8, 9 0,0,
10 DB A, B, C, D, E, F
ENDIF
phkkkhkkikkdkhdn SHARED TABLES % ek ok ok ok 3k ok o ok ok ok ok
15 Bestl128:

DB
20h,30h,45h,65h,OAh,0Dh,31h,54h,74h,52h,32h,61h,49h,53h,41h,
4Fh

DB

20 72h,43h,4Eh,6Eh,4Ch,6Fh,69h,73h,09h,20h,44h,4Dh,35h,2Dh,33h,
64h

DB
46h,2Eh,68h,50h,60h,38h,34h,29h,28h,39h,63h,55h,2Fh,3Dh,48h,
36h

25 DB
75h,66h,6Dh,42h,37h,70h,47h,57h,67h,58h,56h,62h,59h,77h,22h,
7%h

DB

2Rh, 2Bh, 5Fh, 76h,27h, 4Bh, 25h, 3Eh, 21h, 3Bh, 5Ah, 3Ch, 24h, 40h, 3Ah,
30 6Bh
DB
42h,78h,26h,51h,5Bh, 5Dh, 23h, 71h, 7Ah, 1Ah, 6Ah, 19h, 3Fh, 5Ch, 00h,
01h
DB
35 02h,03h,04h,05h,06h,07h,08h,0Bh,0Ch, 0Eh, 0Fh, 10h,11h,12h, 13h,
14h

WO 92/02989 PCT/US91/05659

- 208 -

APPENDIX 1

DB
15h,16h,17h,18h,1Bh,1Ch,1Dh, 1Eh, 1Fh, 5Eh, 60h, 7Bh, 7Ch, 7Dh, 7Eh,

7Fh

!

5 FontBits:

~e
N

1,1
1,2,2
1,2,3,3
1,2,3,4,4
2,2,3,3,3,3
2,2,3,3,3,4,4
2,2,3,3,4,4,4,4
2,2,3,3,4,4,4,5,5
2,2,3,3,4,4,5,5,5,5
FontSize EQ 16
2,2,3,3,4,4,5,5,5,6,6 11
2,2,3,3,4,4,5,5,6,6,6,6 ;12
2,2,3,4,4,4,4,5,5,6,6,6,6 ; 13 ERP
2,2,3,4,4,4,5,5,5,5,5,6,6 : 13 FLB
2,2,3,4,4,4,5,5,5,5,6,6,6,6 ;14
2,2,3,4,4,5,5,5,5,5,5,6,6,6,6 ; 15
2,2,3,4,4,5,5,5,5,5,6,6,6,6,6,6 ; 16
ENDIF

-
w
~-e

-e

10

-e

0 N 6 O

~e

~e
O

10

~e

15

~e

~e

20

-e

seppppa BBEBBEEEE

25 GlobalBits:
DB
04,04,04,04,04,04,04,04,05,05,05,05,05,05,05,05
DB
06,06,06,06,06,06,06,06,07,07,07,07,07,07,07,07
30 DB
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
DB
10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10
DB
35 12,12,12,.12,12,12,12,12,12,12,12,12,12,12,12,12
DB

WO 92/02989 PCT/US91/05659

- 209 -

APPENDIX 1

12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12
DB
12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12
DB
5 12,12,12,12,12,12,12,12,12,12,12,12,12,12,12, 12
DB
13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13, 13
DB
13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13
10 DB
13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13
DB
13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13
DB
15 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13
DB
13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13, 13
DB |
13,13,13,13,13,13,13,13,13,13,13,13,13, 13,13, 13
20 DB
13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 13

.
r’

GlobalCodeHigh:
DB 11001000B,11011000B :; 0- 7
25 DB 11101000B,11111000B
DB 10001000B,10011000B
DB 10101000B,10111000B
DB 01000100B,01001100B ; 8~ 15
DB 01010100B,01011100B
30 DB 01100100B,01101100B
DB 01110100B,01111100B
DB 00100010B,00100110B ; 16- 23
DB 00101010B,00101110B
DB 00110010B,00110110B
35 DB 00111010B,00111110B
DB 00010001B,00010011B ; 24- 31

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB -

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

- 210 -

APPENDIX 1

00010101B,00010111B
00011001B,00011011B
00011101B,00011111B
000010008, 00001000B
000010008, 00001000B
00001001B,00001001B
00001001B,00001001B
000010108, 00001010B
000010108, 000010108
00001011B,00001011B
00001011B,00001011B
000011008, 000011008
000011008, 000011008
00001101B,00001101B
00001101B,00001101B
00001110B,00001110B
00001110B,00001110B
00001111B,00001111B
000011118, 000011118
000001008, 00000100B
000001008, 00000100B
000001008, 000001008
00000100B, 00000100B
000001008, 000001008
000001008, 000001008
000001008, 000001008
000001008, 000001008
00000101B,00000101B
00000101B,00000101B
00000101B,00000101B
000001018, 000001018
00000101B,00000101B
000001018, 00000101B
000001018, 00000101B

00000101B,00000101B

00000110B,00000110B

14

’

.
1]

32~ 47

48- 63

64~ 79

80- 95

96-111

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

- 211 -

APPENDIX 1

00000110B,00000110B
00000110B,00000110B
00000110B,00000110B
00000110B,00000110B
00000110B,00000110B
00000110B,00000110B
00000110B,00000110B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000111B,00000111B
00000000B, 00000000B
00000000B, 00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000000B, 00000000B
000000008, 000000008
00000000B, 00000000B
00000000B, 00000000B
00000000B,00000000B
00000000B,00000000B
00000000B,00000000B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B

.
’

-
14

r

112-127

128-143

144-159

160-175

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

- 212 -

APPENDIX 1

00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B

-00000001B,00000001B

00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000001B,00000001B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B, 000000108
00000010B,00000010B
00000010B, 000000108
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000010B,00000010B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B

’

1

.
1

14

’

176-191

192-207

208-223

224-239

240-255

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB

3
’

GlobalCodeLow:
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

- 213 -
APPENDIX 1

00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B
00000011B,00000011B

00000000B,00000000B
00000000B, 000000008
000000008, 00000000B
00000000B, 00000000B
00000000B,00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B, 00000000B
00000000B,00000000B
00000000B,00000000B
00000000B, 000000008
00000000B, 00000000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B

~e

~e

-e

-e

8=

16~

32-

48~

15

23

31

47

63

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

- 214 -

APPENDIX 1

10100000B,11100000B
00100000B,01100000B
10100000B,11100000B
00100000B,01100000B
10100000B8,11100000B
00001000B,00011000B
00101000B,00111000B
01001000B,01011000B
01101000B,01111000B
10001000B,10011000B

~ 10101000B,10111000B

11001000B,11011000B
11101000B,11111000B
00001000B,00011000B
00101000B,00111000B
01001000B,01011000B
01101000B,01111000B
10001000B,10011000B
10101000B,10111000B
11001000B,11011000B
11101000B,11111000B
00001000B,00011000B
00101000B,00111000B
01001000B,01011000B
01101000B,01111000B
10001000B,10011000B
10101000B,10111000B
11001000B,11011000B
11101000B,11111000B
00001000B,00011000B
00101000B,00111000B
01001000B,01011000B
01101000B,01111000B
10001000B,10011000B
10101000B,10111000B
11001000B,11011000B

1

’

1

.
14

64- 79

80~ 95

96-111

112-127

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

- 215 -

APPENDIX 1

11101000B,11111000B
00000100B,00001100B
00010100B,00011100B
00100100B,00101100B
00110100B,00111100B
01000100B,01001100B
01010100B,01011100B
01100100B,01101100B
01110100B,01111100B
10000100B,10001100B
10010100B,10011100B
10100100B,10101100B
10110100B,10111100B
11000100B,11001100B
11010100B,11011100B
11100100B,11101100B
11110100B,111111008B
00000100B,00001100B
00010100B,00011100B
00100100B,00101100B
00110100B,00111100B
01000100B,01001100B
01010100B,01011100B
01100100B,01101100B
01110100B,01111100B
10000100B,10001100B
10010100B,10011100B
10100100B,10101100B
10110100B,10111100B
11000100B,11001100B
11010100B,11011100B
11100100B,11101100B
11110100B,11111100B
000001008, 00001100B
00010100B,00011100B
00100100B,00101100B

.
’

’

.
’

.
r

[
14

128-143

144-159

160-175

176-191

192-207

PCT/US91/05659

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

IF
LengthABits:
DB

- 216 -

APPENDIX 1

00110100B,00111100B
01000100B,01001100B
01010100B,01011100B
01100100B,01101100B
01110100B,01111100B
10000100B,10001100B
10010100B,10011100B
10100100B,10101100B
10110100B,10111100B
11000100B,11001100B
11010100B,11011100B
11100100B,11101100B
11110100B,11111100B
00000100B,00001100B
00010100B,00011100B
00100100B, 001011008
00110100B,00111100B
01000100B,01001100B
01010100B,01011100B
01100100B,01101100B
01110100B,01111100B
10000100B,10001100B
10010100B,10011100B
10100100B,10101100B
10110100B,10111100B
11000100B,11001100B
11010100B,11011100B
11100100B,11101100B
11110100B,11111100B

1 EQO

.
7

14

1

208-223

224-239

240-255

PCT/US91/05659

02,03,03,03,04,04,04,05,05,06,06,07,07,07,07,08

DB

o0s,08,08,09,09,09,09,09,09,09,10,10,10,10,10,10

WO 92/02989

5

10

15

20

25

30

35

PCT/US91/05659

- 217 -
APPENDIX 1
DB
10,10,10,11,11,11,11,11,11,12,11,11,11,12,12,12
DB
12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,06
LengthACodeHigh:
DB 11100000B,101100003,100100005,01110000B
DB 01011000B,01001000B,001110003,00101100B
DB 00100100B,00011110B,00011010B,00010011B
DB 00010001B,00001111B,00001101B,00001011B
DB 0000101OB,00001001B,00001000B,00000111B
DB OOOOOlllB,OOOOOllDB,00000110B,00000101B
DB 000001013,00000100B,00000100B,00000100B
DB 000000118,000000113,000000113,000000113
DB 000000103,00000010B,00000010B,00000010B
DB 00000010B,000000013,000000013,000000013
DB 00000001B,00000001B,000000018,00000001B
DB 000000018,000000003,00000000B,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB 00000000B,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOlOlOOB
guard bit
H ;7 on index 63
LengthACodeLow:
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,OOOOOOOOB
DB OOOOOOOOB,OOOOOOOOB,OOOOOOOOB,IOGOOOOOB
DB 100000008,IOOOOOOOB,IOOOOOOOB,110000003
DB 01000000B,110000003,01000000B,110000003
DB 010000008,110000008,011000003,001000OOB
DB 11100000B,101000003,01100000B,OOlOOOOOB
DB 11100000B,101000003,011000008,00110000B
DB 000100005,11110000B,11010000B,101100008
DB 10010000B,011100003,010100003,001100003

no

»

WO 92/02989

10

15

20

25

30

35

DB
DB
DB
DB
DB

LengthANext:
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

-
’

LengthAValue:
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB

- 218 -

APPENDIX 1

PCT/US91/05659

00010000B,11111000B,11101000B,11011000B
11001000B,101110008,10101000B,10011000B
10001000B,01111000B,01101000B,01011000B
01001000B,00111000B8,00101000B,00011100B
00010100B,00001100B,00000100B,00000000B

0,
o,
8,

1,

2,

0,10,

0,
5,
o,

0,

0,63,12,11,
14,13,

0,

0,

22,21,
27,26,

0,

1,
o,

o,
o,

0,10,

o,

o,

O = - B P F O F O O O Fr O O +

© VW o O

0, 0,16,15,18,17
o, 0, 0, 0,20,19
0, 0,24,23, 0,25
0, 0, 0,0, 0,0
29,28,31,30, 0, 0,33,32

0,34,36,35, 0, 0, 0, O

o, 0,38,37,40,39, 0, O

WO 92/02989

10

15

20

25

35

DB
DB
DB
DB
DB

ENDIF

[
’

LengthBBits:
DB

.
1

LengthBCode:
DB

PCT/US91/05659

- 219 -

APPENDIX 1

42,41,44,43, 0, 0, 0, O
0, 0,46,45,48,47, 0, 0
50,49,52,51, 0, 0, 0, O ~
54,53,56,55, 0, 0,58,57
0, 0,60,59,62,61

01,03,03,04,05,05,05,06,06,04

11000000B,011100003,01010000B,00111000B,000111003

DB

OOOlOlOOB,000011003,000001103,000000103,00101000B

-
’

LengthBNext:
DB
DB

3
r

LengthBValue:
DB
DB

~e

IF
ZoneBits:
DB

2, 0, 4, 1, 0, 0, 4, 1,0, 0
4, 1, 0, 0, 2, 0, 0, O

0, 0,0,0,2,1, 0, 0,9, 3
0, 0,5, 4,0,6,8, 7

Buffersize EQ 8192

02,03,03,04,05,05,05,05,05,05,06,06,06,06,06,06

DB

06,06,06,06,07,07,07,07,07,07,07,07,07,07,07, 07

°
14

ZoneCode:
DB
DB
DB
DB

11100000B,10110000B,10010000B,01111000B
01101100B,01100100B,01011100B,01010100B
01001100B,01000100B,00111110B,00111010B
00110110B,00110010B,00101110B,00101010B

WO 92/02989

5

10

15

20

25

30

35

14

ZoneNext:

14

ZoneValue:

~e

ZoneBits:

DB
DB
DB
DB

DB
DB
DB
DB
DB
DB

DB .

DB

DB
DB
DB

DB

DB
DB
DB
DB

ELSE

DB

- 220 -

APPENDIX 1

PCT/US91/05659

00100110B,001000108B,00011110B,00011010B
00010111B,00010101B,00010011B,00010001B
00001111B,00001101B,00001011B,00001001B
00000111B,00000101B,00000011B,00000001B

o,
7,
0,

o,

0,
0,
6,

0,
0,
9,

o,
0,

o,
0,

0,16,

0,

0,

0,12,

1,
1,
0,

0,
3,
8,

0,
o,
o,

1,

4,

o,

0,11,10,13,12,
15,14,17,16, 0, O,
19,18, 0, 0,21,20,23,22

o, 0, 0, 0,25,24,27,26
0,29,28,31,30

O 0 o o o

I - L

02,02,03,04,04,05,05,05,05,05,06,06,06,06,06,06

.
’

ZoneCode:

-

DB
DB
DB
DB

11100000B,10100000B,01110000B,01011000B
01001000B,00111100B,00110100B,00101100B
00100100B,00011100B,00010110B,00010010B
00001110B,00001010B,00000110B,00000010B

WO 92/02989

10

15

20

25

30

35

ZoneNext:

.
I

ZoneValue:

.
14

.
14

CRC_TH:

DB
DB
DB
DB

DB
DB
DB
DB
ENDIF

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

PCT/US91/05659

- 221 -
APPENDIX 1
4, 1, 0, 0[6[1' 2'
ol ol 8' ll 4’ ’ 14
0l ol 6[14 2’ 14 0’
4' 1' OI OI OI

0,1, 0, 0, 0, 0, 2
3, 0,0,0,0,6, 5
8 7, 0, 0, 0, 9,11,10
0,13,12,15,14

-

000H, 011H, 023H, 032H, 046H, 057H, 065H, 074H
08CH, 09DH, OAFH, OBEH, OCAH, ODBH, OESH, OFSH
010H, 001H, 033H, 022H, 056H, 047H, 075H, 064H
09CH, 08DH, OBFH, OAEH, ODAH, 0CBH, OF9H, 0OESH
021H,030H, 002H, 013H, 067H, 076H, 044H, 055H
OADH, 0BCH, 08EH, 09FH, OEBH, OFAH, 0C8H, ODSH
031H,020H,012H, 003H, 077H, 066H, 054H, 045H
OBDH, 0ACH, 09EH, 08FH, OFBH, OEAH, OD8H, 0C9H
042H, 053H, 061H, 070H, 004H, 015H, 027H, 036H
OCEH, ODFH, OEDH, OFCH, 088H, 099H, 0ABH, 0BAH
052H, 043H, 071H, 060H, 014H, 005H, 037H, 026H
ODEH, OCFH, OFDH, OECH, 098H, 089H, 0BBH, 0AAH
063H, 072H, 040H, 051H, 025H, 034H, 006H, 017H
OEFH, OFEH, 0CCH, ODDH, 0ASH, 0B8H, 08AH, 09BH
073H, 062H, 050H, 041H, 035H, 024H, 016H, 007H
OFFH, OEEH, ODCH, OCDH, 0B9H, OA8H, 09AH, 08BH
084H, 095H, 0A7H, OB6H, 0C2H, OD3H, OE1H, OFOH
008H, 019H, 02BH, 03AH, 04EH, 05FH, 06DH, 07CH
094H, 085H, 0B7H, 0A6H, 0D2H, 0C3H, OF1H, 0OEOH
018H, 009H, 03BH, 02AH, 05EH, 04FH, 07DH, 06CH
OASH, 0B4H, 086H, 097H, OE3H, OF2H, 0COH, OD1H

;000
;008
7010
;018
1020
;028
;7030
1038
;040
7048
71050
;058
1060
1068
1070
71078
;080
;088
;090
71098
70A0

WO 92/02989

10

15

20

25

30

35

CRC_TL:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB

DB

PCT/US91/05659

- 222 -

APPENDIX 1

029H, 038H, 00AH, 01BH, 06FH, 07EH, 04CH, 05DH
OBSH, 0A4H, 096H, 087H, OF3H, 0E2H, 0DOH, 0C1H
039H, 028H, 01AH, 00BH, 07FH, 06EH, 05CH, 04DH
0C6H, OD7H, OESH, OF4H, 080H, 091H, 0A3H, 0B2H
04AH, 05BH, 069H, 078H, 00CH, 01DH, 02FH, 03EH
0D6H, 0C7H, OF5H, OE4H, 090H, 081H, 0B3H, 0A2H
0SAH, 04BH, 079H, 068H, 01CH, 00DH, 03FH, 02EH
OE7H, OF6H, 0C4H, ODSH, 0A1H, 0BOH, 082H, 093H
06BH, 07AH, 048H, 059H, 02DH, 03CH, 00EH, 01FH
OF7H, OE6H, OD4H, 0C5H, 0B1H, 0AOH, 092H, 083H
07BH, 06AH, 058H, 049H, 03DH, 02CH, 01EH, 00FH

000H, 089H, 012H, 09BH, 024H, 0ADH, 036H, OBFH
048H, 0C1H, 05AH, 0D3H, 06CH, OE5H, 07EH, OF7H
081H, 008H, 093H, 01AH, 0ASH, 02CH, 0B7H, 03EH
0C9H, 040H, 0DBH, 052H, OEDH, 064H, OFFH, 076H
002H, 08BH, 010H, 099H, 026H, OAFH, 034H, 0BDH
04AH, 0C3H, 058H, 0D1H, 06EH, OE7H, 07CH, OF5H
083H, 00AH, 091H, 018H, 0A7H, 02EH, 0B5H, 03CH
OCBH, 042H, 0D9H, 050H, OEFH, 066H, OFDH, 074H
004H, 08DH, 016H, 09FH, 020H, 0A9H, 032H, OBBH
04CH, 0C5H, 05EH, OD7H, 068H, OE1H, 07AH, OF3H
085H, 00CH, 097H, 01EH, 0A1H, 028H, 0B3H, 03AH
OCDH, 044H, ODFH, 056H, OE9H, 060H, OFBH, 072H
006H, 08FH, 014H, 09DH, 022H, OABH, 030H, 0B9H
04EH, 0C7H, 05CH, 0D5H, 06AH, OE3H, 078H, OF1H
087H, 00EH, 095H, 01CH, 0A3H, 02AH, 0B1H, 038H
OCFH, 046H, ODDH, 054H, OEBH, 062H, 0F9H, 070H
008H, 081H, 01AH, 093H, 02CH, 0ASH, 03EH, 0B7H
040H, OC9H, 052H, ODBH, 064H, OEDH, 076H, OFFH
089H, 000H, 09BH, 012H, 0ADH, 024H, OBFH, 036H
0C1H, 048H, 0D3H, 05AH, OE5H, 06CH, OF7H, 07EH
00AH, 083H, 018H, 091H, 02EH, 0A7H, 03CH, OBSH
042H, 0CBH, 050H, 0D9H, 066H, OEFH, 074H, OFDH
08BH, 002H, 099H, 010H, OAFH, 026H, 0BDH, 034H

7 0A8
;0BO
;0B8
10CO
;0C8
10DO
;0D8
1 0EO
;1 OE8
:O0F0
;OF8

;000
;008
1010
;018
1020

;030
;038
7040
1048

;058
;060
;068
7070
;078
;080
;088
7090
;098
;1 0A0Q
7 OA8
;0BO

WO 92/02989 PCT/US91/05659

- 223 -

APPENDIX 1

DB 0C3H, 04AH, OD1H, 058H, OE7H, 06EH, OF5H, 07CH ;0BS
DB 00CH, 085H, 01EH, 097H, 028H, 0A1H, 03AH, 0B3H ;0CO
DB 044H, OCDH, 056H, ODFH, 060H, OE9H, 072H, OFBH ;0CS8
DB 08DH, 004H, 09FH, 016H, 0A9H, 020H, 0BBH, 032H ;0D0
5 DB 0C5H, 04CH, OD7H, 05EH, OE1H, 068H, OF3H, 07AH ;0D8
DB 00EH, 087H, 01CH, 095H, 02AH, 0A3H, 038H, 0B1H ;0EO
DB 046H, 0CFH,054H, ODDH, 062H, OEBH, 070H, OF9H ;0ES
DB 08FH,006H,09DH, 014H, 0ABH, 022H, 0B9H, 030H ;OF0
DB 0C7H, 04EH, OD5H, 05CH, OE3H, 06AH, OF1H, 078H ;OF8
10

~-e

printstat Data,size,is,$$-tb

FhRkkkkkdkdkkdkkkkkkkkkkk D E B U G G E R dkdkdeddoeskdeoesdededeohsk ook

15 ;
H DEBUGGER or DUMMY INCLUSION
H
include TCdbg001
20 ;k k % k Kk k ok k k k Kk k K K Kk k k k k * k * % * k Kk *k *k * *
H

unplanned_int:

brk
rbreak:

25 ;break_out:
nop
nop -
nop
rti

30 ;

jhkkkkkkkkkdkk** VECTOR TABTLE dkkdhkkkhkkhkhkkdkhk

H VECTOR TABLE

35 ; ds O-progaddr-($-cb)-32,0
;7 Jsb 0

WO 92/02989
; Jsb
; Jsb
5
: Jsb
; Jsb
10 ; Jsb
;s Jsb
; Jdsb
15

20

25

30

35

~'

~e

~e

~e

~-e

~e

~-e

NMI

-e

aw
aw
aw
aw
aw
aw
aw

dw

aw
aw
dw
aw

dw

Irql,Pd7 Edge

- dw

dw

- 224 -

APPENDIX 1
unplanned_int-
ﬁnplanned_int
unplanned_int
unplanned_int
unplanned_int
unplanned_int
unplanned_int

unplanned_int

Irqg6,break, PTGA,PTGb,bE

break

Irgs,SerIn Stat, TimerA

break out

Irq4,PA3,Edge/bF

unplanned_int

Irqg3,Host/Timerb

HostInt

Irqg2,Pb@ Edge

unplanned_int
unplanned_int

unplanned int

; unplanned_int

reset:

dw

printstat

PCT/US91/05659

dbginit ; start in debugger

=>,%16384~($~cb)

.
4

end

<C000-FFFFh Block Free

WO 92/02989 PCT/US91/05659

- 225 =

APPENDIX 2

SOURCE LISTING GUIDE

Page 1, lines 1 through 11
Define the assembly environment.
Page 1, line 12
5 The "include ITEC19" statement copies a source file
which uses the MACRO facility in the assembler to
provide some higher level language type constructs.
Page 1, line 13
The "include TCDFM001" statement copies a source file
10 which defines the internal register and I/0 structure
in the C19.
Page 1, lines 14 through 28
Assembly macros used to manage/display the assembly
environment and status.
15 Page 1, lines 33 through 40
Setting of symbols which control some assembly time
features of the algorithm. These are used to
enable/disable various structures and code to evaluate
compression effectiveness.
20 Page 1, line 46 through Page 2, line 32
' More assembly time controls which affect compression
mechanisms and establish sizes of certain memory

structures.
Page 2, line 38 through Page 3, line 8
25 Assembly time controls for diagnostics and speed of

execution having little or no effect on compression
effectivity.
Page 3, lines 12 through 42
Definition (mapping) of some structures used by the
30 algorithm.
Page 3, line 47 through Page 6, line 36
Declaration of byte (8 bit) and word (16 bit) variables
used by the encoding and decoding processes. Variables
beginning with "EC" are used by the encoder
35 (compression process) and beginning with "DC" are the
decoder (decompression process). Other prefixes are

WO 92/02989

10

15

20

25

30

35

Page

Page

Page

Page

Page

Page

Page

Page

Page

PCT/US91/05659

- 226 -

APPENDIX 2

general use.

6, line 42 through Page 7, line 36

Declaration of encoder/decoder structures which are a
multiple of 256 bytes in length.

7, line 40 through Page 8, line 27

Declaration of more encoder structures that are a
multiple of 256 bytes in length. This block is from
absolute address 4000h to 0c000h (size = 32768 bytes)
and is bank switched alternating with the next
described block.

8, line 33 through Page 9, line 5

The decoder bankswitched block (size = 32768).

9, line 10 through Page 11, line 48

Interface points to the operating system code for the
production implementation of the algorithm. 1In
production, these hooks replace development environment
code on pages 22 through 25 inclusive.

11, line 11 through Page 14, line 14

Table initialize code. All compression/decompression
tables and variables are set to initial conditions.
14, line 18 through Page 16, line 46 7

Program startup code which sets environment and
initializes stacks for alternate execution of
encoder/decoder.

17, lines 1 through 19

Context switch subroutines.

17, line 25 through Page 26, line 3

Development enVironment routines for Memory Dump to PC
and character transfer to/from PC bus. Characters
transferred are to bé compressed or decompressed. The
PC interface is an emulation of a standard PC
asynchronous communications IC an INS16450.

26, line 11 through Page 28, line 24

Macro declarations which facilitate the generation of
certain microcode routines for bit stream output as
either in-line code or as subroutines.

it 4

WO 92/02989 PCT/US91/05659

- 227 -

APPENDIX 2

Page 28, line 30 through Page 29, line 11
A macro which embodies the microcode to select the
appropriate one of four NCToFrequency tables based on
the prior character of the input stream, leaving the
5 base address of the table ECNCChar in ECWordl and the
base address of the table ECNCFreq in ECWord2.
Page 29, line 17 through Page 41, line 21
The body of the FontUpdate Macro. This generates all
of the microcode to perform the Processes of CRC Hash
10 generation, Font access, Font Creation, etc. 1In
general, all of the processes (steps) 3 through 9 as
described with Figure 2B.
Page 41, line 27 through Page 45, line 44
The Encode main loop first phase. This is the Refill
15 process which accepts characters from the input stream,
stores them in the process buffer (ECChar, ECCharcCopy),
invokes the FontUpdate Macro (process). As required by
flush operations and ProcessBuffer full conditions,
this process invokes the second phase of execution.
20 Page 46, line 1 through Page 48, line 37
The Mode A string search macro. This embodies the code
to locate the longest string in the history buffer
matching the string beginning at the position of the
ECChar buffer at position A (the value in the C19
25 accumulator register).
Page 48, line 41 through Page 52, line 43
The Mode A string find routines. These routines
perform two iterations of the above macro, reject
strings overlapping the next history buffer stream
30 location, select the longer of the two if two were
found.
Page 52, line 44 through Page 54, line 44
The Mode A Pair Encoding and bit cost comparison
routines.
35 Page 54, line 45 through Page 57, line 19
Mode A String bit cost computation and comparison with

WO 92/02989 PCT/US91/05659

- 228 -

APPENDIX 2

Font encoding.
Page 57, line 25 through Page 62, line 8
Mode A bit stream format and output routines. -
Page 62, line 12 through Page 67, line 34
5 Mode A repeats output, history buffer and access table
update routine, and phase 2 iteration (flush mode or
normal) control.
Page 67, line 40 through Page 72, line 3
Mode B String search macro routines.
10 Page 72, line 6 through Page 74, line 16
Mode B String find routines. Performs Mode B string
search macros and rejects strings which overlap next
history buffer store location.
Page 74, line 17 through Page 76, line 13
15 Mode B Pair encoding and bit cost comparison
subroutines.
Page 76, line 14 through Page 78, line 27
Mode B string bit cost comparison routines.
Page 78, line 32 through Page 79, line 40
20 Mode B antiexpansion summing routines.
Page 79, line 46 through Page 80, line 49
Mode B history buffer and access table update.
Page 81, line 1 through Page 92, line 18
Mode B bit stream format and output.
25 Page 92, line 17 through Page 96, line 29
Decoder macros for character input/output and bit
stream fetch.
Page 96, line 33 through Page 105, line 17
Decoder main body.
30 Page 105, line 26 through Page 107 line 9
Encoding Table and FontCode (Huffman Font codes)
tables. Used to emit Font encoding bit patterns.
Page 107, line 14 through Page 109, line 9
Decoder Huffman Font decoding trees.
35 Page 109, line 13 through Page 109, line 21
New Character to Frequency preload tables.

WO 92/02989

10

15

20

25

30

35

Page

Page

Page

Page

Page

Page

Page

Page

Page

PCT/US91/05659

- 229 -

APPENDIX 2

109, line 23 through Page 109, line 41

Font Bits table. Used for computing bit cost of Font
encodings. -

109, line 43 through Page 110, line 10

Global bits Table. Used to compute the bit cost of
NewChar and any other encodings which use the
GlobalBits tables.

110, line 12 through Page 115, line 25

The GlobalBits High and Low Huffman tables, used as a
pair to encode any items such as NewChar, Mode A String
length, and Repeat count.

115, line 27 through Page 117, line 7

The LengthA encoding tables. Not in use by the
preferred embodiment.

117, line 9 through Page 117, line 22

The LengthBBits LengthBCode, LengthBValue and
LengthBNext tables. LengthBBits and LengthB value are
used for encoding the Mode B string length.
LengthBNext and LengthBValue are used for decoding Mode
B string lengths.

117, line 24 through Page 118, line 32

The ZoneBits, ZoneCode, ZoneNext and ZoneValue tables.
ZoneBits and ZoneCode are used for encoding the Zone
portion of Mode A and Mode B string location offsets.
ZoneNext and ZoneValue are used for decoding the Zone
portion of Mode A and Mode B string location offsets.
118, line 34 through Page 120, line 3

The precalculated CRC table. Used for rapid CRC hash
calculations in the FontAccess Routines.

120, line 11

Inclusion of the C19 debugger (soft monitor) file.
120, line 15 through Page 121, line 17

Vector jump tables for the C19 hardware vectoring
systemn.

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 230 -

What is claimed is:
1. A system for the dynamic encoding of a character
stream, the system comprising:

an input for receiving the character stream;

an output for providing encoded data;

single character encoding means, connected to the
input, for providing, for a given character, an encoded
signal indicative of the given character, including

a) means, hereinafter referred to as "font means,"
connected to the input, associated with a character pair,
hereinafter referred to as "the given character pair", for
storing, accessing and updating for each given character of

a plurality of characters, a table listing the set of

candidates for the character that may follow the given
character pair in the stream, such table hereinafter
referred to as a "font"; wherein all the candidates in such
font are stored in approximate order of their local
frequency of occurrence after the given character pair with
which the font is associated;

b) font identification means, connected to the input,
for identifying the font, hereinafter referred to as the
ngiven font", for that character in the stream at the input;
and

c) position encoding means for providing, for one
given character, a signal indicative of the position,
occupied by the given character, in the given font;

string encoding means, connected to the input, for
providing, for a given string of characters, an encoded
signal indicative of the given string of characters,
including:

a) a history buffer; ,

b) history buffer access means for finding a
candidate string in the history buffer; and

c) longest match search means for searching for
longest match by comparing an object string in the character
stream with a candidate string in the history buffer; and

output selection means for accepting encoded signals

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 231 -

from the single character encoding means and encoded signals
from the string encoding means and selectively sending these
encoded signals to the output;

wherein the font identification means further includes
hash encoding means for producing hash codes and hash code
storage means for storing hash codes and the history buffer
access means further includes means for retrieving hash
codes from the hash code storage means, such that a common
hash code is used by both the font encoding means and the
string encoding means.

2. A system according to claim 1, wherein the hash
encoding means includes means for applying a CRC algorithm
to an ordered character pair to produce a hash code

3. A system according to claim 1, further including:

means for maintaining a value for the position of any
character that is not otherwise listed in the font, such
character hereinafter referred to as "new character" or
"NC", in relation to other candidates in a given font, in
approximate order of such new character's local frequency of
occurrence after the given character pair;

such that new character is assigned a "virtual
position" in the font, as distinct from a position that is
associated with a location in the font capable of storing a
specific candidate character; and

such that the address of the position of each candidate
character below the new character position in the table is
incremented by 1.

4. A system according to claim 3, further including:

a plurality of NC fonts, each font listing the
candidates for the new character which may follow a given
set of characters in the character stream wherein all the
candidates in such font are stored in approximate order of
their local frequency of occurrence after the given set of
characters with which the font is associated; and

NC font selection means for selecting the NC font to be
used to encode a given new character based on predefined
bits from the set of characters preceding the given

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 232 -

character in the character stream.
5. A system according to claim 4, wherein the number of NC
fonts is four and the predefined bits are bits 5 and 6 from
the character prior to the given character.
6. A system according to claim 1, further including:

means for maintaining a value for the position of a
string in a given font.
7. A system according to claim 1, further including:

means for maintaining a value for the position of a new
character, i.e., any character that is not otherwise listed
in the font, in relation to other candidates in a given
font, in approximate order of such new character's local
frequency of occurrence after the given character pair; and

means for maintaining a value for the position of a
string;

such that the value for the position of a string is one
greater than the value for the position of a new character;

such that the string is assigned a "virtual position"
in the font as distinct from a position associated with a
location in the font capable of storing a specific candidate
character; and -

such that the address of the position of each candidate
character below the new character position in the font is
incremented by 2.

8. A system according to claim 1, further including:
repeat character encoding means for encoding repeat
character sequences, i.e. characters all alike, found in the

character stream; .

wherein the history buffer stores characters found in
the character stream; and

wherein repeat character sequences having three or more
characters are represented in the history buffer by three
characters only.
9. A system according to claim 3, wherein the string
encoding means has a plurality of modes of operation, the
system further including:

means for summing, over a predetermined number of new

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 233 -

character occurrences, the bit-count of the code for each
new character encoded;

means for comparing the sum with a predetermined value;
and

switch means for switching modes whenever the bit-count
exceeds the predetermined value.

10. A system according to claim 9, wherein the
predetermined value has a value between seven bits per
character and eight bits per character.

11. A system according to claim 9, wherein the
predetermined value is 7.5 bits per character.

12. A system for providing, for a given string of
Characters, an encoded signal indicative of the given string
of characters, comprising:

a) a history buffer tagged at regular intervals;

b) history buffer access means for finding a
candidate string in the history buffer; and

c) longest match search means for searching for
longest match by comparing an object string in the character
stream with a candidate string in the history buffer;

d) a hash head table, which may be entered by a hash
code derived from consecutive characters;

e) a hash link/test table, having a number of records
equal to the number of tagged entries in the history buffer,
each record having a link field and a test field and an
address related to the address of the corresponding tagged
entry in the history buffer;

wherein the hash head table contains pointers,
consisting of part of the hash code, each pointing to the
first candidate match in a linked list of candidates in the
Hash Link field and the Hash Test field contains a match
value consisting of another part of the hash code.

13. A system according to claim 12, wherein the longest
match search means includes means for testing for a match
beginning at a character in the candidate string at least
one character ahead of the first character in such string.
14. A systenm according to claim 13, wherein the longest

WO 92702989 ' PCT/US91/05659

10

15

20

25

30

35

- 234 -

match search means includes means for testing for a match
beginning at character "n" ahead of the first character of
the candidate string in the history buffer, where "n" is the
length of the longest match found so far, and searching
forward to identify the longest match.

15. A system according to claim 14, wherein the longest
match search means further includes means for searching back
for the longest match.

16. A system according to claim 12, further including means
for discarding string matches having less than a
predetermined number of characters.

17. A system according to claim 16, wherein the
predetermined number is 3.

18. A system according to claim 12, wherein the linked list
is terminated by non-match of the contents of the Hash Test
field with its corresponding part of the hash code.

19. A system according to claim 1, further including pair

‘encoding means for encoding two characters by presenting the
two characters in sequence to a CRC algorithm.

20. A system according to claim 19, wherein pair encoding
processes and string encoding processes may be active at the
same time.

21. An improved data compression modem of the type having
terminal interface control means for controlling an
interface with a terminal, data compression means for
compressing data from the terminal, line control means for
controlling data flow over a data line, lire interface means
for interfacing with a data line, wherein the improvement
comprises: ,

(a) first processor means for controlling both flow of
data over the interface with the terminal and for
compressing data from the terminal, and

(b) second processor means for controlling flow of
data over the data line.

22. An improved data compression modem of the type having
terminal interface control means for controlling an
interface with a terminal, data compression and

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 235 -~

decompression means for compressing data received from the
terminal and for decompressing data going to the terminal,
line control means for controlling data flow over a data
line, line interface means for interfacing with a data line,
wherein the improvement comprises:

(a) first processor means for controlling both flow of
data over the interface with the terminal and for
compressing data received from the terminal, and for
decompressing data going to the terminal, and

(b) second processor means for controlling flow of
data over the data line.

23. An improved data compression moden according to claim
21, wherein the first processor and the second processor
access a common memory.

24. A method for dynamically encoding a character stream,
in an encoder having a history buffer and fonts, comprising
the following steps:

a) receiving the character stream;

b) creating, from a two-character string, having a
first character and a second character, a hash code;

c) associating each font with a pair of characters;

d) maintaining the position of a candidate character
in a font in approximate order of the local frequency of
occurrence of the candidate character in the character
stream after the pair of characters with which the font is
associated;

e) encoding a given character using the hash code to
access the font associated with the pair of characters
immediately preceding the given character in the character
stream; and

£f) encoding a given string of characters using the
hash code to access a matching string in the history buffer.
25. A method for dynamically encoding a character stream,
in an encoder having a history buffer and having fonts that
are dynamically created and updated, comprising:

a) receiving the character strean;

b) creating, from a two-character string, having a

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 236 -

first character and a second character, a hash code having
desirable statistical properties and a match code;

c) associating each font with a pair of characters;

d) maintaining the position of a candidate character
in a font in approximate order of the local frequency of
occurrence of the candidate character in the character
stream after the pair of characters with which the font is
associated;

e) encoding a given character using the hash code and
the match code to access the font associated with the pair
of characters immediately preceding the given character in
the character stream; and

£) encoding a given string of characters using the
hash code and the match code to access a matching string in
the history buffer.

26. A method for creating, from a two-byte string having a
first byte and a second byte, a hash code having desirable
statistical properties, comprising:

encoding the two-byte string by presenting the two
bytes in sequence to a CRC algorithm to produce a CRC hash;
and)

designating selected bits from the CRC hash for use as
a hash code.

27. A method for creating, from a two-byte string having a
first byte and a second byte, a hash code having desirable
statistical properties and a match code for resolving
ambiguity, comprising:

encoding the two-byte string by presenting the two
bytes in sequence to a CRC algorithm to produce a CRC hash;

designating selected bits from the CRC hash for use as
a hash code; and

designating the remaining bits from the CRC hash for
use as a match code.

28. A method according to claim 27, wherein ten bits are
selected for use as a hash code.

29. A method for accessing a specific font within a data
processing system, the system having a link table and a

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 237 -

plurality of fonts, each font being uniquely associated with
a specific character pair, comprising:

accepting a pair of characters, having a first
character and a second character, each character represented
by a single byte;

encoding the pair of characters using a CRC algorithm
to produce a CRC hash;

selecting a first part of the CRC hash as a look=-up
code;

linking, in the link table, those fonts that are
associated with pairs of characters whose encoding produces
the same first part cf the CRC hash;

entering the hash table with the look-up code to access
a linked list of fonts; and

identifying, from among the fonts in the linked list,
the specific font corresponding to the pair of characters,
by matching the remainder of the CRC hash.
30. A method according to claim 29, wherein the method of
encoding the pair of characters includes:

encoding the two-byte string by presenting the two
bytes in sequence to a CRC algorithm to produce a CRC hash;
and

designating selected bits from the CRC hash for use as
a hash code.
31. A method according to claim 29, wherein the first part
of the CRC hash consists of ten bits.
32. A method, for accessing a specific pair of characters
in a history buffer within a system for the dynamic encoding
of a character stream, the system having a history buffer
containing characters from the character stream, and a link
table, comprising:

accepting a pair of characters from the character
stream, hereinbelow referred to as "the given pair of
characters", each pair having a first character and a second
character, each character represented by a single byte;

encoding the given pair of characters using a CRC
algorithm to produce a CRC hash;

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 238 -

selecting a first part of the CRC hash as a look-up
code;

linking, in the link table, history buffer entry points
that have pairs of characters in the history buffer whose
encoding produces the same first part of the CRC hash;

entering the hash table with the look-up code to access
a linked list of history buffer entry points; and

identifying, from among the history buffer entry points
in the linked list, points corresponding to the given pair
of characters, by matching the remainder of the CRC hash.
33. A method according to claim 32, wherein the method of
encoding the given pair of characters using the CRC
algorithm to produce the CRC hash comprises:

encoding the byte representing the first character
using the CRC algorithm to produce an intermediate CRC hash;

encoding the second character using the CRC algorithm
and the intermediate CRC hash to produce the CRC hash.
34. A method according to claim 32, wherein the first part
of the CRC hash consists of ten bité._
35. A method, for accessing a specific sequence of four
characters in a history buffer within a system for the
dynamic encoding of a character stream, the system having a
history buffer containing characters from the character
stream, and a link table, comprising:

accepting four consecutive characters, hereinbelow
referred to as "the given four characters", comprising a
first pair of consecutive characters and a second pair of
consecutive characters, each pair having a first character
and a second character, each character represented by a
single byte, from the character stream;

encoding the given four characters using a CRC
algorithm to produce a hash code;

sélecting a first part of the hash code as a look-up
code;

linking, in the link table, history buffer entry points
that have four sequential characters in the history buffer
whose enéoding produces the same first part of the hash

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 239 -

code;

entering the link table with the look~up code to access
a linked list of history buffer entry points; and

identifying, from among the history buffer entry points
in the linked list, points corresponding to the given four
characters, by matching the remainder of the hash code.
36. A method according to claim 35, wherein the method of
encoding the given four characters using a CRC algorithm to
produce a hash code comprises:

encoding the first pair of characters by presenting the
Characters in sequence to a CRC algorithm to produce a first
pair CRC hash;

encoding the second pair of characters by presenting
the characters in sequence to a CRC algorithm to produce a
second pair CRC hash;

subtracting the second pair CRC hash from zero to
produce a negated second pair CRC hash: and

performing an Exclusive OR operation on the first pair
CRC hash and the negated second pair CRC hash to produce a
hash code.
37. A method according to claim 35, wherein the first part
of the hash code consists of ten bits.
38. A method for controlling the selection of alternative
string encoding modes in a system for the dynamic encoding
of a character stream, comprising:

maintaining a set of fonts, each font being associated
with a pair of characters, wherein all the candidates in
such font are stored in approximate order of their local
frequency of occurrence after the given character pair with
which the font is associated, the fonts further including
means for maintaining the position of a symbol for a new
Charzcter, i.e., any character that is not otherwise listed
in the font, in relation to other candidates in a given font
in approximate order of such symbol's local frequency of
occurrence after the given character pair;

maintaining a new character encoding table;

encoding new characters from the character strean,

10

15

20

25

30

35

WO 92/02989 ‘ . PCT/US91/05659

- 240 -

according to the position of the new character in the new
character encoding table;

summing the bit cost of encoding each new character
over a predetermined plurality of new character occurrences;

comparing the sum with a predetermined value; and

switching modes whenever the bit-count exceeds the
predetermined value.
39. A method for encoding a character pair, within a systenm
for the dynamic encoding of a character stream, the system
having a link table and a plurality of fonts, each font
being uniquely associated with a specific character pair,
comprising:

accepting a pair of characters, having a first
character and a second character, each character represented
by a single byte;

encoding the pair of characters using a CRC algorithm
to produce a CRC hash;

selecting ten bits of the CRC hash as a look-up code;

linking, in the link table, those fonts that are
associated with pairs of characters whose encoding produces
the same first part of the CRC hash;

entering the hash table with the look-up code to access
a linked list of fonts;

identiffing, from among the fonts in the linked list,
the specific font corresponding to the pair of characters,
by matching the remaining six bits of the CRC hash; and

encoding the pair of characters as the relative address
of the identified font.
40. In a system for dyﬁémic encoding of a character stream
having a link table and a plurality of fonts, each font
being associated with a unique, ordered character pair, the
system encoding a given character by means of the font
associated with the pair of characters immediately preceding
a given character in the character stream, a method for
maintaining fonts that are most recently used, comprising:

accepting a pair of characters, having a first
character and a second character, each character represented

WO 92/02989 PCT/US91/05659

10

15

20

25

30

35

- 241 -

by a single byte;

encoding the pair of characters using a CRC algorithm
to produce a CRC hash;

selecting a first part of the CRC hash as a look-up
code;

linking, in the link table, fonts that are associated
with pairs of characters whose encoding produces the same
first part of the CRC hash;

entering the hash table with the look-up code to access
a linked list of fonts;

identifying, from among the fonts in the linked list,
the specific font corresponding to the pair of characters,
by matching the remainder of the CRC hash; and

discarding a font, when a font must be discarded, whose
associated character pair was least recently encountered in
the character stream.
41. A method for use in a data processing system for
finding an object string within a data string comprising:

presenting the object string to a CRC algorithm to
produce an object string hash code;

presenting each of a plurality of candidate strings
within the data string to a CRC algorithm to produce a
candidate string hash code for each candidate string;

identifying candidate strings whose hash code matches
the object string hash code;

testing a candidate string, whose hash code matches the
object string hash code, for a match with the object string.
42. A method for finding the longest match between an
object string in a stream of characters and candidate
strings in a buffer, comprising:

comparing a character in the object string with a
character in a first candidate string;

comparing, if the prior comparison yields a match, each
next character in the object string with each next character
in the first candidate string until the comparison fails to
yield a match;

storing the number of characters so matched as the

WO 92/02989 PCT/US91/05659

- 242 -

length of the longest match;
comparing a character in the object string with a

character in a second candidate string, starting at a
character ahead of the origin of each string by a number of

5 characters substantially equal to the length of the longest
match. '

WO 92/02989

PCT/US91/05659
1/20 1
___________ < _
ENCODER
/4 456 j—l
11| MODEM ouT I
—=={PC IN BUFFER ~ BUFFER _.,.
13
- - - ——— — - T i
ENCODER SOF TWARE
DECODER SOF TWARE
e t_ T2 —1
DECODER 10] 8
|/ 12 L/
| ~1¢] MODEM IN
~~—IPC OUT BUFFER |==— =1 BUFFER -~
14

WO 92/02989 PCT/US91/05659

2/20
Ve 17
FIRST PHASE
19
N
Y
18
L/
SECOND PHASE
20
N
Y

FIG. 1B

PCT/US91/05659

WO 92/02989

3720

Ve 914

M......v uaw poob 11D Jo} auny ayy s MoN“ m

)
0¢
- Ado9ipynH3 - 4DYy393 -
/ 7
22 74
rusymfiousw.pofob.11D-10 XB3A-UBYM|l-UBW-PO

w NJ OMWmN
74 Ge ¢e

(

9¢

Jlem

0

WO 92/02989 PCT/US91/05659
4/20
201 —, 0 M~ ~S3 255
ECRepeats * Jo[ofo[o]o]o]) /[ToTolo]2]0]0]0]0 0fofo
202~ S2~ 21
ECCharCopy M ~Tv [T [n]c]i]/ {T~T~]~]~TnTo[w]~ i[d]
ECCB)| T
ar VI~V]itdnjcy~ ~1~l1~1~iNjo|w]~ Pldfi S1
203~ TN £
204'0\ j l\\210
N [e4|9n 3] | |
E
CHashRav ol enleol] (
2041" &4 /; 28 3
Y | FT FONT
204 21371 || |RouGH
} | TABLE LINK | NC{SZ[=CHARACTERS={ MATCH
|]
| \:—163 0003 F=0003[00 00 [0 [2 [1]e 28
S5 | |
, FONT #) th 2
20{0 0 L\ 917 255 (221
0 07] 09 ENCODING
FCHoshie | [B e
cLNWWE T 210 218 i
2051 PN, e o~
| + 5 ~ 12
-y (1 57— 218" T 9
! 542+ 0 -
220 |yl / o
ECNewIndex/, 3l 8| NI 4|
G COlE |\ BITS
208 'ﬁ" J 0l 2
ECFontIndex 717~223 2 5 IL 5 é
1 0
2o7j EL; —7 00| 7 3
\ \ ¥ 3
ECFrequency N 2
A O
208 '\ N —L—) 59
— : 0101 0110 225
ECTYpe P ¢ A (I | "
2097 28 NP A 00 12 6
S9 01 35 05
ECNextChor N | B BT
FIG.2B THEEIE
NCFreqTables, i

WO 92/02989

0000
0001

0003

000C

0013
0IFF

PCT/US91/05659

5/20

’,—-31

33 ;4 3% 3% 37

A

(

e J

LINK

NC

S

——— CHARACTERS———

0000

00

00

00

0000

00

00

01

0000

E4

00

01

0000

28

00

02

0000

AC

00

01

0000

AC

00

01

—|D = =])

0000

IC

00

01

0000

20

01

01

0000

6C

01

01

0000

64

00

02

0000

EC

00

01

- |||) |-

0000

E0

00

01

0013

04

00

01

aR s

0060

B0

00

01

0000

AC

00

01

0000

i

00

01

0000

aC

00

01

0000

6C

00

01

0000

B8

00

01

0000

JC

00

01

olal|) |]|)]-

00 00

00

00

00

FIG.3

WO 92/02989

42

ACCESS

ABLE

0

41

6/20

43~ FONT

CODE

2

5

9

14

20

\T
0
1
2
3
4
5
6
7

27 |————
35 |/

- 1

010
011

E—

00
010
0110
0111

10

000
001
010
o011

- 10

11
000
001
010

0110
0111

—10

000
001
0100
0101
0110
01

FIG. 4A

=10
11
000
001
0100
0101
0110
01110

01111

PCT/US91/05659

44~

FONT
BITS

— —

CNDBLADRGIGINNMN| A D ADGIMNIN D D oItioiromN NI | BBOGIN=] N — | poro —

WO 92/02989

1100
1101
1110
1111
1000

00000011 11101
00000011 11110
00000011 11111

F16G. 4B

11
101
100

0000010
0000001
0000000

F16. 4D

PCT/US91/05659

7/20

1

011
010
0011
00011
00010
00001
000001
000000
0010

F16.4C

WO 92/02989 PCT/US91/05659

| 8/20
0 5 58 3~
\ wo\wcifont] 57 /o e
HASH \VAL | ADR _r LMK | [NC | SZj—— CHARACTERS ——
= 0000 [00/ 000 ﬂoouooou 0000[00] 00 (00
v B70B [E4[308 . ooot [oooojoofoofor[~[|
e 293 [2B[163 0000 [E4[00]01] V
1] eof [ATTDIACII7D 029/ 000D 0003 [0000[2B[00]02]
a AC76 [AC[076 . o000 [Ac[00]01] n
. 3¥73(3C[373 D000 [AC[00]01] i | e
~| [2Eajeo]ees 0760005] 0000 [T 0001]
v 609D [6C[19D 0000 [20]01 [ot] ~
; 2963]28] 163 048] 000a 0000]6C o1 01| V
d 6711 [64[311 : 0000[64]00]02] d [n
1 ECAB|EC| 048 0B0] 0012 | 0000 [EC[00]01] i
. E203]E0[203 . 0000 [E0[00]o1] .
~ PeEA [20]2E4 163 0003] o0oc ,[0013[04]0001] ¢
] 609D |6 1911/) 0000 [B0[00[01]
| 2963]28] 163 i o000 [ac oo]o1]
D 3\ 671L]64[311 1700004 0000 [44 0001 ~
c| :[0506]04]106 — 0000 [5C[00]01] A
{509 [B029]B0[029 190[0008 0000 [6C[00]01] ~
. AF OB [AC[308 . o000 [e[oo]oi] d
~ 4702 [44] 312 . o013 [0000]7c]00[01] o
A 5E2D [5C[22)) 1D6] 000C : -
~ 6EAF |6C[2H . otFF (00 00[00{00 Jo0
d 3\ 333088 00 |
0 7006 |7C) 106 203] 0008
s]

24FT o011

2E4T0007

308 0008

30T 0002

3110009 |

373] 0006

302] 000F |

3FFJ o000

1\ J
v FIG.5

WO 92/02989 PCT/US91/05659

9/20

N
65
r L N 64
msb|D|D(D[b |b|b{b]b|b{bb|b [b|b|blb|(sh
u J\. J/
R e
63 62

PCT/US91/05659

WO 92/02989

V. 914 44 44
118 1SvfLLLL0|000|LIg 1SHI4
v i
-
WiLo mr..lalul_
sor—"
o 0 0
S MO1 ‘HOIH 102 ~ [318v1) |=
= 3009 w8019 -9}2 ERCLADERE
0l IN
9 P, O 90/
S ,u, OUlOo ¢ P, L0 0 | :
v 1S 010 b wla 00| 2hL 1 To o
¢ 3d 100 ¢ 1S 00| / R -
——] 2 ON000=+' 2 ON 0001t 1
M—.N.\\l_‘ ..>= P— v =>= _-—. m:N mONI\ .VON\J ~\.MOM.— w. N
O :H...O_. O _.n_.: O— NON.._U utga u_. ¢ N
vl 8 300w vaiow e Zs| 9N
0L2—~—| S378VL 9NIGOONT LNO3 V8019 (ON) 1NO4

— M

10L

WV3YLS

| ¥3.LovavH) |

PCT/US91/05659

WO 92/02989

11/20

g4, 914
(LEL 9L SEL

118 100 1SV | 1010

L0000} | V1V | LOO | 118 LNO 1SHI4

\
8¢l ~
:)
y
— 1010 1000 Ol 00 = G|2—= ,
—]| —x | i
n 1€) qiD|IC|l |Sle— _
9¢L ZS|N S
(. M) LNOA _
S P, WO :
v ,u, 010 el ~
n o w Y
<z}t 1S 100 T th\m "
¢ ON 000
| ..>= b m Y
s _ L.ll_ll ;
¢2L vV 3Q0W LR A K-
378VL 9NIGOON3 22 »\ zs[oN WY3YLS
1INO4 V8019 (ON) 1NO4 431JVHVHI|

leL

12720 PCT/US91/05659

WO 92/02989

8

(. Sﬁ 13540 uch\\.mﬁ
]
0111 0011 0001 0000—— 38
Y l/, £e6-
10010 | @ J 1021
86L
] O g | Mowowsns
3000 IN0Z
J AT, ﬁ 96,
(3]
1ig 1n0 ISV1{ 0TTT00TT | 710010 | 1101 | 100 | L@ 100 ISH L/
et | L= .
2 —" | Q (—
) TIavL y
INIGOIN)
INIONIND3 N
S LP. TI0 VBB | o s
— £ 1S w0y ¥49-6 =H1ONIT \r -
47T N o0 Y) st 5
S B! 1
—~J 0 .. m SLI0RE N
ohL ~ \ ZS [N VLS
TIGVL INIGOONT ol) 1Nod MALVEVHO
INO4 Tv80T9 —
ISL

LG8L

NJANIE

174}

¥ |

£26

q-m:(-m(-w.:m(:: =Z|o

WO 92/02989

PCT/US91/05659
ECRR 13720 85 [ECRR [ECRR |86
HASH}—84 81 ECRR 15 _{RASH | HASH | J
HEAD BUFFER LINK | TEST
0000 0000 0 [A | 0000
) 1
,&; 0]4a| 0002
11u
0013 [0008 : ¢
(1) 1
L—-—oooa ? £ | 0008 [0000] 0013
[
J"'\/ O 0
T~ 1 g
0
111
(1) e
a
A *
1811 | 7300 —
—] \ —— 7284 <1) E 7284 [0000][1811
0|E
1]y
0
1] ¢
ol A
1] R
0| E
1] D
e
2047 ol u
1] A
? T
— 7300 c1) ; 7300 [7284 1181
0| E
1yl
s g)‘\" 8188
87 0
(8191 1
“fr'—=|cre| ® "0g" [cre] = 0013
83
||THII__.- CRC @llEYll CRC - 1811

(TN

WO 92/02989 PCT/US91/05659
- 14/20
- |
ECRR ECRR |ECRR |86
HASH | —g4 81 85 ~—{HASH |HASH
HEAD BUFFER LiNK |TESTH
— 0000 0 0000
™ g 1
0012 [0006 F—— 0002 0 [X 0002
1
0
1
1
T \—=0006 0|z 0006 |3750[0012
1q
0806 0010 03
! 1[5
0010 0 |3 0010 0806
1 |6
0
1
0
1
P
lr\f
0
1023 82 ~_ 1
0
‘)
3750 0|7 |
1| aq
0
1
0L
88 1]
\ 0
1
"70" —[cre] = 0012
83
“36" — [CRC| = 0806

FIG. 8B

WO 92/02989

DATA
STREAM

N
0

W

o |3|—|~

91

PCT/US91/05659

/20 g 94
HISTORY
BUFFER CC
ECRR BUFFER
N
0
W
— 904
- e
93 95 |S 902
W

FIG. 9

/

®|IJ|—| —+

PCT/US91/05659

WO 92/02989

UVHOMIN

LAVIANIE

440 SINOA

1yvIS

NS

- 1) = 8 4
b= i, - sal T
1 =
(HY 9 | o0’ ¢4 v 3a0m
INRIIS V |
o 4
g 10
- @ HSVH 3A8 Z 0 < T
3dAL 300330 Y s
INiOd U <
vosag <> 4 _SAV. ¢ 4 ["g 3a0m
@zﬁ G20
N3l 300930 Xa bl | T
NoyJ 0
- IN03 10

PCT/US91/05659

WO 92/02989

" 17720

20

l& Sa

01 4

IdAL 300930

INIOd
NOISID3a

A3l 360934

Wou4
/0L HONVYE

q801°91
XX y A -
WHOINO3
/
O IEL. ¥ 300N
T
A» st IR O ®
IN04 00
Z
6=1
J
1a NS @ TR < 0| 40 [E——
@\:@: U8 ¢ 1+IN=4
| 49 g 4
IN=1

Jo

PCT/US91/05659

WO 92/02989

18720

¢l

117014

99s/10Yyd 00G‘}

HOSS3004d

€1l

H40SS300Ud

14Y"

288 \E;o 00S°'LL .

LLL

PCT/US91/05659

WO 92/02989

19/20

¢l

99s/10Yd 0QG'|

!

(v ¥owid) Z1°914

H40SS3004d

¥4 \

09S \L_E_o 00S'LL

LLL

PCT/US91/05659

WO 92/02989

20/20

4%

(1av ¥omd) €1°914

40SS3004d

el \

28s/10yd (QQG‘}

d40SS3004d

€1 \

29s/I0yo> 00G'L1

LEL

INTERNATIONAL SEARCH REPORT

International Application No

L. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate alné
According to International Patent Classification @PC) or to both National Classification and IPC

PCT/US 91/05659

Int.C1. 5 HO3M7/42; HO3M7/30; HO3M7/48
IL. FIELDS SEARCHED
Minimum Documentation Secarched”
Classification System Classification Symbols

Int.C1. § HO3M

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched$

HI. DOCUMENTS CONSIDERED TO BE RELEVANT®
Category ° Citation of Document, 1! with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.13

A MINI MICRO SYSTEMS. 1,3,4,38
vol. 21, no. 2, February 1988, BOSTON US

pages 77 - 81;

BACON: 'How to guadruple dial-up communications
efficiency’

see page 79, middle column, last paragraph -
page 81, right column, last paragraph; figure 2

A US,A,4 730 348 (MAC CRISKEN) 8 March 1988 1,3,4,
12,16,
17,38,42
see column 6, 1ine 50 - column 14, Tine 49;
figures 3-7

© Special categories of cited documents : 10 “T” later document published after the international filing date

waw riority date and not in conflict with the application but
A" document defining the general state of the art which is not orP

considered to be of particalar rel nce gtv: tt;:r :nderstaud the principle or theory underlying the

E mar‘immm but published on o after the internationa! “X” document of particular relevance; the claimed invention
g date canrot be considered novel or cannot be considered to

bt P4 dg&n‘u& vtveh‘leh may tll:sr:w l’dubﬁ'o- Jrie;ity e::ln(s)hor invoive an inventive step

et 15 cited to establish the publication date of another *Y” document of particular relevance; the claimed iavention

citation or other special reason (as specified) cannot be wmw to involve an inventive step when the
"O” document referring to an orat disclosure, use, exhibition or docement is combined with one or more other such docu-

other means ments, such combination being obvious to a person skilled
“P* document publisied prior o the International filing date but In the art.

later than the priority date claimed "&” document member of the same pateat family

IV. CERTIFICATION
Date of the Actual Completion of the International Search Date of Mailing of this International Search Report

04 DECEMBER 1991 27.12. 9

International Searching Authority Signature of Authorized Officer L~
EUROPEAN PATENT OFFICE FEUER F.S. _‘<:§{;:::::;,,,,,,

Form PCT/ISA/210 (second sieet) (Jawwary 1945)

ANNEX TO THE INTERNATIONAL SEARCH REPORT

ON INTERNATIONAL PATENT APPLICATION NO. gi 91052-;’372

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report.

The members are as contained in the European Patent Office EDP file on’
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 04 /12/91

Patent document Publication Patent family Publication ™
cited in search report date member(s) date ‘ ’
US-A-4730348 08-03-88 None

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

