US007661006B2

a2 United States Patent 10) Patent No.: US 7,661,006 B2
Abou-Emara et al. 45) Date of Patent: Feb. 9, 2010
(54) METHOD AND APPARATUS FOR 5,020,059 A 5/1991 Gorin et al.
SELF-HEALING SYMMETRIC 5,359,547 A 10/1994 Cummins et al.
MULTI-PROCESSOR SYSTEM 5625841 A 4/1997 Dawkins et al.
INTERCONNECTS 5,659,748 A 8/1997 Kennedy
5,761,412 A 6/1998 Higgins
(75) Inventors: LuaiA.Abou-Emara, Austin, TX (US); 6.058.475 A 52000 McDonald ef al.
Mark David McLaughlin, Austin, TX 6.530.002 Bl 3/2003 Martin et al.
(US); Jorge N. Yanez, Leander, TX (US) 6,697,854 Bl 2/2004 Glassen et al.
(73) Assignee: International Business Machines 6,865,157 B1* 3/2005 S(.:ott e.t F:) VOO 370/242
Corporation, Armonk, NY (US) 2008/0159321 Al* 7/2008 Rispolietal. 370/419
’ ’ 2009/0141621 Al* 6/2009 Fanetal.cccooeunne 370/223
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 561 days. * cited by examiner
(21) Appl. No.: 11/621,354 Primary Examiner—Thomas Lee
Assistant Examiner—James Henson
(22) Filed: Jan. 9, 2007 (74) Attorney, Agent, or Firm—Yee & Associates, P.C.;
Matthew B. Talpis
(65) Prior Publication Data
US 2008/0168255 A1 Jul. 10, 2008 7 ABSTRACT
(51) Imt.ClL .
GO6F 1/04 (2006.01) A computer implemented mgthod, apparatus, and. computer
program product for managing symmetric multiprocessor
GO6F 9/00 (2006.01) : . . : :
GO6F 15/177 (2006.01) interconnects. The process identifies functional communica-
GO6F 11/07 (2006.01) tion connections between each processor in a plurality of
(52) US.Cl oo T13/375; 713/1; 7132, PIOSEsSos ad Iélolﬂﬁgcrggisssoﬁg iigélels(:eg;gsggﬁ;ﬁﬁgl
713/1007; 17 21 /41‘/11.070 l’ 27/%/17’ 17 21/3/12. ; 77 1122//232;.77112 2//1303’ tional communication connection between any two proces-
. . N ’ ’ ’ sors in the plurality of processors, based on the identified
(58) Field of Class1ﬁcat10n. Search s 713/1, functional communication connections, to form an intercon-
713/2,100; 714/100; 712/1,2, 3,10, 11, nect matrix. The process creates a path map using the inter-
g Lication file f et 712111115.’31’ 22,33 connect matrix. The path map comprises a sequence of com-
cc application file for complete search history. munication connections between the plurality of processors.
(56) References Cited The process initializes the plurality of processors using the

U.S. PATENT DOCUMENTS

4,306,288 A 12/1981 Nakamura

820

GENERATE PATH
MAP USING | X!
ALTERNATE

PATHS

INTERCONNECTS FAIL
DURING INITIALIZATION

REMOVE FAULTY
INTERCONNECTS FROM THE
INTERCONNECT MATRIX

INTERCONNECTS

LOG INTERCONNECT FAILURE

path map.

20 Claims, 5 Drawing Sheets

SUFFICIENT

REMAINING?

U.S. Patent

Feb. 9,2010 She

etlof5

US 7,661,006 B2

100
FIG. 1 ¥
| 110
104~
102
CLIENT
SERVER | -112
599;9
106~ CLIENT
- <L P14
SERVER OFPPY
CLIENT
108
FIG. 2
206~_| PROCESSING
™ UNIT 200
210 202 208 216 236
\ N / / /
GRAPHICS MAIN AUDIO
PROCESSOR K= NBMCH (K= MEMORY ADAPTER Sio
204
240 \ 238
BUS BUS
W U il/ I T
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK"| [CD-ROMI | A papTER S(T)';.EFS‘ pevices | | mouse || MODEM | | ROM
ADAPTER
/ / / / / N N \
226 230 212 232 234 220 222 224

US 7,661,006 B2

Sheet 2 of 5

Feb. 9,2010

U.S. Patent

Jam Iam JaM JAIM .
SIAd Y SIAG ¥ oﬁﬁ SILAE S S3LAG / € OIA S BvLr
A A A A A
WILSAS Y c
¢ce 4 d0SS300HdILTINN L Toxa14 ‘0 opaTovey e
Ny o 9ce a3g 139 A
0IX 0IX L
T T 3 J1901
JAISYAHId
OIW 52~ 108 | 7 o 1 %€ swwaron | oo | ooie o P2E
/
028 efm - gze
(413 SNg LOANNODHILNI INIWT 1T
— e~ ng | vve 0re ~ ng | €¥E 6E€ ~ ng | ¢ve
60€ :me r/ ﬁfm [/ @/m [/
dVA H1Vd oLY oLY 0LV
LAY _ LAY _ 1AH |
NNANHOYNG| NNNHOYNG| NAWHOovWa |
;o7 L0 ||, ,, ;7 90€ ;7 G0€
L 81 8¢EE 04N LIS IEE D4N 9LE 9E€ 24N
80¢
XIHLVIN L L L
103INNOOHALNI ¢le m_._ ™-GlE LIE ST Ny1g 0le m_._ gl
10€ WVHAN ¥0€ H0SSI0Hd €0€ H0SSI00Hd Z0€ H0SSI004d

U.S. Patent Feb. 9, 2010 Sheet 3 of 5 US 7,661,006 B2
MULTIPROCESSOR
400
401
\ MASTER PROCESSOR 402
- N RECEIVING | | SENDING |
» CONTROLLER }«—{ | REGISTER PORTS PORTS
4 N N N
Y 408 414 420 430
MEMORY 7
LOG 429 L 4 BUS 4
42/7 434 | 426 DATA DATA 428
/ PACKET PACKET
PATH MAP
INTERCONNECT 410 416 418 424
MSRIX \ \ ' ! / /
RECEIVING RECEIVING | | SENDING
432 REGISTER | | poprs PORTS PORTS
| Recever | SENDING RECEIVER
PROCESSOR | PORTS REGISTER | o 0GESSOR
404 (N 406
— 422 412 —
FIG. 4
INTERCONNECT
MATRIX
MULTIPROCESSOR 512 | 500
A—B-"
902 B—C—514
C—D~-516
504~ PROCESSOR A | | PROCESSORB 506 C—B~_g1g
510/ L"ROCESSORD | | PROCESSOR C [\ ¢ AT

™-520

FIG. 5

U.S. Patent

Feb. 9,2010

CREATE INTERCONNECT
MATRIX

|~ 602

v

STORE IN NON-
VOLATILE MEMORY

|~ 604

606

NO FAILED

Sheet 4 of 5

US 7,661,006 B2

RETRIEVE AN
INTERCONNECT MATRIX

| ~802

Y

CHECK AN INTERCONNECT
ERROR LOG

| -804

806

ANY FAULTY

CONNECTION YES
INTERCONNECTS
?
REMOVE FAILED
CONNECTION ™-608 GENERATE PATH MAP BASED| - 808
! ON INTERCONNECT MATRIX
STORE MODIFIED ¥
INTERCONNECT N INITIALIZE INTERCONNECTS |~ 810
MATRIX IN NON- 610
VOLATILE MEMORY
i INTERCONNECTS FAIL
END DURING INITIALIZATION
FIG. 6 812
TYES
K]
LOG FAILURE IN
INTERCONNECT ERROR LOG [>-814
¥
REMOVE FAULTY
INTERCONNECTS FROM THE |_g. ¢
INTERCONNECT MATRIX
820
N
GENERATE PATH SUFFICIENT
MAP USING | YES INTERCONNECTS
ALTERNATE REMAINING?
PATHS
818
JNO
)
FIG. 8 LOG INTERCONNECT FAILURE _ g0

U.S. Patent Feb. 9, 2010

702~ INITIALIZE A MULTIPROCESSOR UP

TO INTERCONNECT INITIALIZATION

!

SELECT A PROCESSOR AND CREATE
A BACKUP OF THE SELECTED
PROCESSOR'S REGISTER VALUES

704~

!

SET THE SELECTED PROCESSOR AS
A "MASTER" AND SET ALL OTHER
PROCESSORS AS "RECEIVERS"

706~

3

y

Sheet 5 of 5 US 7,661,006 B2
FIG. 7
SELECTANEXT |~ 726
RECEIVER -
PROCESSOR
OPENANEXT | 722
RECEIVING PORT

ORDER MASTER PROCESSOR TO
SEND A DATA PACKET OUT ON ALL
MASTER'S DRIVING BUSES

708~

!

710~ ORDER MASTER CHIP
TO DETECT ITSELF
712] SELECT A RECEIVER PROCESSOR

ANY
UNOPENED RECEIVING
PORTS?

YES

ANY
UNTESTED RECEIVER

A

OPEN A RECEIVING PORT ON THE
SELECTED RECEIVER PROCESSOR

714

PROCESSORS

MASTER PROCESSOR
DETECT RECEIVER PROCESSOR
THROUGH THE OPEN

HAS EACH
PROCESSOR BEEN
DESIGNATED AS A
MASTER?

728
PORT?
716
GENERATE AN
. INTERCONNECT
WRITE THE RECEIVER PROCESSOR'S MATRIX BASED ON [™-732

748] PORT THAT CONNECTED TO THE THE QUTPUT FILE

MASTER TO AN OUTPUT FILE

| END
SELECT A NEXT PROCESSOR |

730

US 7,661,006 B2

1

METHOD AND APPARATUS FOR
SELF-HEALING SYMMETRIC
MULTI-PROCESSOR SYSTEM

INTERCONNECTS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present application relates generally to a data process-
ing system and in particular to a method and apparatus for
symmetric multiprocessors. More particularly, the present
application is directed to a computer implemented method,
apparatus, and computer usable program code for automati-
cally managing symmetric multiprocessor interconnects.

2. Description of the Related Art

A processor is an independent processing unit or compu-
tational unit capable of executing threads, tasks, or other
processes independently of any other processor. A processor
may include a single core, as well as two or more cores
located on a single die. A processor having two or more cores
is referred to as a multi-core microprocessor. As used herein,
aprocessor includes, but is not limited to, a central processing
unit (CPU), graphics processor, a multi-core microprocessor,
or any other known or available type of processor.

A computer system having two or more independent pro-
cessors is referred to as a multiprocessor. Each processor on a
multiprocessor is plugged into its own processor socket and
shares the same platform interface which connects each pro-
cessor to memory, input/output, and storage resources. The
processors in the multiprocessor system share address bus,
data bus, which is also referred to as a computer bus, and self
sync buses. The processors also share storage subsystems.
However, each processor has its own memory controller, level
one (L.1) cache, and level two (I.2) cache. As used herein, a
multiprocessor system is a computer system that includes all
the independent processors sharing address buses, data buses,
self sync buses, and/or storage subsystems.

A symmetric multiprocessor system is a multiprocessor in
which two or more identical processors are connected to a
single shared main memory. A symmetric multiprocessor
treats all processors in a multiprocessor system identically. In
contrast, an asymmetric multiprocessor assigns certain tasks
only to certain processors.

In a symmetric multiprocessor, it is important that two or
more processors be able to access shared memory and execute
on common data sets without interfering with the other pro-
cessor’s performance. Therefore, all processors in a symmet-
ric multiprocessor system should be synchronized with one
another during initialization of the multiprocessor.

Synchronization is a matter of time keeping. Each proces-
sor needs to be synchronized or in sync time-wise with every
other processor in order to coordinate simultaneous threads or
tasks executing on the multiprocessor. In other words, all of
the processors need to be set to the same time. The processors
are synchronized with each other by sending a data packet to
each processor. The processors are able to use this data packet
to synchronize (sync) with every other processor.

Processors transmit data packets to other processors on a
multiprocessor by means of an interconnect bus. The inter-
connect bus is a communications path between all the pro-
cessors on the multiprocessor. In other words, the intercon-
nect bus connects the independent processors together by
means of links or connections between two or more proces-
sors. Each processor contains driver ports for sending data to
the other processors through the interconnect bus and receiv-
ing ports for receiving data from the other processors through
the interconnect bus.

20

25

30

35

40

45

50

55

60

65

2

Currently, each multiprocessor platform is built with a
specific network of interconnects, referred to as an intercon-
nect map. The interconnect map provides information regard-
ing all the links and connections in the interconnect bus. This
interconnect map is created by system architects and pro-
vided in the system workbooks. A system workbook is a
document written for multiprocessor system developers and
testers. A system workbook typically contains technical data
about a processor chip, a multiprocessor system, or any other
technical data regarding a computer system. The interconnect
map is provided in system workbooks or simply communi-
cated from the processor chip designers to the firmware pro-
grammers. Based on this interconnect map, firmware design-
ers select a path map.

The path map is a predetermined communication path
between the processors. In other words, the path map pro-
vides a single, one-way path for traversing each processor
during initialization of the processors when a multiprocessor
system is booted. The path map is used to initialize and
synchronize the processors. The path map is hard coded in a
multiprocessor systems firmware. The path map is generated
based on the interconnect map.

However, the interconnect map is sometimes inaccurate
and includes mistakes or incorrect information. In addition,
an interconnect map is sometimes not available in system
workbooks or from any other source. In such cases, a user can
sometimes decipher or generate an interconnect map based
on schematics for the multiprocessor system. However, most
engineers have limited access to multiprocessor system sche-
matics. In addition, manually deciphering an interconnect
map based on schematics is a time consuming and burden-
some process for a user.

Unlike the interconnect map, the path map is hard-coded in
system firmware. The path map is not updated or modified
after its initial creation and coding into firmware. In addition,
the path map only provides a single path out of many possible
paths that are actually available in the hardware. In other
words, multiple routes between the processors could be avail-
able. However, a system will only use the one path provided
in the path map that is hard coded in firmware. If an intercon-
nect link in the path map fails, the system has no way of
passing addresses, data, and/or sync packets between the
processors. This results in the system failing beyond repair.
Thus, if a system encounters a faulty interconnect during
initialization or runtime, the system will shut down and be
unable to recover.

SUMMARY OF THE INVENTION

The illustrative embodiments provide a computer imple-
mented method, apparatus, and computer usable program
code for managing symmetric multiprocessor interconnects.
In one embodiment, a process identifies functional commu-
nication connections between each processor in a plurality of
processors on a multiprocessor to form identified functional
communication connections. The process maps every func-
tional communication connection between any two proces-
sors in the plurality of processors, based on the identified
functional communication connections, to form an intercon-
nect matrix. The process creates a path map using the inter-
connect matrix. The path map comprises a sequence of com-

US 7,661,006 B2

3

munication connections between the plurality of processors.
The process initializes the plurality of processors using the
path map.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 is a pictorial representation of a network of data
processing systems in which illustrative embodiments may
be implemented;

FIG. 2 is a block diagram of a data processing system in
which illustrative embodiments may be implemented;

FIG. 3 depicts an exemplary diagram of a multiprocessor
system in which aspects of the illustrative embodiments may
be implemented in accordance with an illustrative embodi-
ment;

FIG. 4 is a block diagram illustrating data flow through a
multiprocessor for identifying functional interconnects in
accordance with an illustrative embodiment;

FIG. 5 is a block diagram illustrating an interconnect
matrix and path map in accordance with an illustrative
embodiment;

FIG. 6 is a flowchart illustrating a process for creating and
updating an interconnect matrix in accordance with an illus-
trative embodiment;

FIG. 7 is a flowchart illustrating a process for testing con-
nections between processors in accordance with an illustra-
tive embodiment; and

FIG. 8 is a flowchart illustrating a process for generating a
path map and an alternative path map in accordance with an
illustrative embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference now to the figures and in particular with
reference to FIGS. 1-2, exemplary diagrams of data process-
ing environments are provided in which illustrative embodi-
ments may be implemented. It should be appreciated that
FIGS. 1-2 are only exemplary and are not intended to assert or
imply any limitation with regard to the environments in which
different embodiments may be implemented. Many modifi-
cations to the depicted environments may be made.

With reference now to the figures, FIG. 1 depicts a pictorial
representation of a network of data processing systems in
which illustrative embodiments may be implemented. Net-
work data processing system 100 is a network of computers in
which embodiments may be implemented. Network data pro-
cessing system 100 contains network 102, which is the
medium used to provide communications links between vari-
ous devices and computers connected together within net-
work data processing system 100. Network 102 may include
connections, such as wire, wireless communication links, or
fiber optic cables.

In the depicted example, server 104 and server 106 connect
to network 102 along with storage unit 108. In addition,
clients 110, 112, and 114 connect to network 102. These
clients 110, 112, and 114 may be, for example, personal
computers or network computers. In the depicted example,
server 104 provides data, such as boot files, operating system
images, and applications to clients 110, 112, and 114. Clients

20

25

30

35

40

45

50

55

60

65

4

110, 112, and 114 are clients to server 104 in this example.
Network data processing system 100 may include additional
servers, clients, and other devices not shown.

In the depicted example, network data processing system
100 is the Internet with network 102 representing a world-
wide collection of networks and gateways that use the Trans-
mission Control Protocol/Internet Protocol (TCP/IP) suite of
protocols to communicate with one another. At the heart of
the Internet is a backbone of high-speed data communication
lines between major nodes or host computers, consisting of
thousands of commercial, governmental, educational and
other computer systems that route data and messages. Of
course, network data processing system 100 also may be
implemented as a number of different types of networks, such
as for example, an intranet, a local area network (LAN), or a
wide area network (WAN). FIG. 1 is intended as an example,
and not as an architectural limitation for different embodi-
ments.

With reference now to FIG. 2, a block diagram of a data
processing system is shown in which illustrative embodi-
ments may be implemented. Data processing system 200 is an
example of a computer, such as server 104 or client 110 in
FIG. 1, in which computer usable code or instructions imple-
menting the processes may be located for the illustrative
embodiments.

In the depicted example, data processing system 200
employs a hub architecture including a north bridge and
memory controller hub (MCH) 202 and a south bridge and
input/output (I/O) controller hub (ICH) 204. Processor 206,
main memory 208, and graphics processor 210 are coupled to
north bridge and memory controller hub 202. Graphics pro-
cessor 210 may be coupled to the MCH through an acceler-
ated graphics port (AGP), for example.

Inthe depicted example, local area network (LAN) adapter
212 is coupled to south bridge and I/O controller hub 204 and
audio adapter 216, keyboard and mouse adapter 220, modem
222, read only memory (ROM) 224, universal serial bus
(USB) ports and other communications ports 232, and PCI/
PCle devices 234 are coupled to south bridge and 1/O con-
troller hub 204 through bus 238, and hard disk drive (HDD)
226 and CD-ROM drive 230 are coupled to south bridge and
1/O controller hub 204 through bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCle does not. ROM 224 may be, for
example, a flash binary input/output system (BIOS). Hard
disk drive 226 and CD-ROM drive 230 may use, for example,
an integrated drive electronics (IDE) or serial advanced tech-
nology attachment (SATA) interface. A super /O (SIO)
device 236 may be coupled to south bridge and 1/O controller
hub 204.

An operating system runs on processor 206 and coordi-
nates and provides control of various components within data
processing system 200 in FIG. 2. The operating system may
be a commercially available operating system such as
Microsoft® Windows® XP (Microsoft and Windows are
trademarks of Microsoft Corporation in the United States,
other countries, or both). An object oriented programming
system, such as the Java™ programming system, may run in
conjunction with the operating system and provides calls to
the operating system from Java programs or applications
executing on data processing system 200. Java and all Java-
based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as hard disk drive 226, and

US 7,661,006 B2

5

may be loaded into main memory 208 for execution by pro-
cessor 206. The processes of the illustrative embodiments
may be performed by processor 206 using computer imple-
mented instructions, which may be located in a memory such
as, for example, main memory 208, read only memory 224, or
in one or more peripheral devices.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
Also, the processes of the illustrative embodiments may be
applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which is generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data. A bus system may be comprised of one or more
buses, such as a system bus, an I/O bus and a PCI bus. Of
course the bus system may be implemented using any type of
communications fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture. A communications unit
may include one or more devices used to transmit and receive
data, such as a modem or a network adapter. A memory may
be, for example, main memory 208 or a cache such as found
in north bridge and memory controller hub 202. A processing
unit may include one or more processors or CPUs. The
depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 200 also may be a tablet
computer, laptop computer, or telephone device in addition to
taking the form of a PDA.

Turning now to FIG. 3, an exemplary diagram of a multi-
processor system is shown in which aspects of the illustrative
embodiments may be implemented in accordance with an
illustrative embodiment. Multiprocessor system 300 is a
single-chip, symmetric multiprocessor.

Non-volatile random access memory (NVRAM) 301 is a
non-volatile memory located on multiprocessor system 300.
Multiprocessor system 300 includes a plurality of processors,
such as processor 302, processor 303, and processor 304.
Although only three processors are illustrated, multiproces-
sor 300 can include any number of processors. Each of pro-
cessors 302-304 is plugged into its own processor socket.

Interconnect matrix 308 is a map of every functional com-
munication connection between any two processors in a plu-
rality of processors. Interconnect matrix is generated during
system initialization and stored in non-volatile memory, such
as NVRAM 301. When a connection between two processors
fails, the failed connection is logged in an error log. If the
error log indicates that a connection in path map 309 is a
failed connection, the interconnect matrix is updated by
removing the failed connection from interconnect matrix 308.

Path map 309 is a sequence of communication connections
between a plurality of processors used to transmit data
between processors. Path map 309 is generated based on
interconnect matrix 308. If a connection in path map 309 fails
during initialization or during runtime, path map 309 can be
updated based on the updated interconnect matrix. An
updated path map is an alternate path map that bypasses the
failed connection. When a connection between two proces-
sors fails, the failed connection is logged in an error log. Ifthe
error log indicates that a connection in path map 309 is a
failed connection in path map 309, alternative path maps are
provided for initializing a system when a connection in path
map 309 fails.

20

25

30

35

40

45

50

55

60

65

6

In these examples, each processor includes one synergistic
processor unit (SPU) 310, 311, or 312 with its own local store
(LS) area 313, 314, or 315 and a dedicated memory flow
controller (MFC) 305, 306, or 307 that has an associated
memory management unit (MMU) 316, 317, or 318 to hold
and process memory protection and access permission infor-
mation. Once again, although synergistic processor units are
shown by example, any type of processor unit in a multipro-
cessor may be supported.

Multiprocessor system 300 implements element intercon-
nect bus (EIB) 319 and other /O structures to facilitate inter-
nal and external data flow. Element interconnect bus 319
serves as the primary bus for processors 302, 303, and 304. In
addition, element interconnect bus 319 interfaces to other
interface controllers that are dedicated to off-chip accesses.
The interface controllers include the memory interface con-
troller (MIC) 320, which provides two extreme data rate I/O
(XIO) memory channels 321 and 322, and broadband engine
interface (BEID) unit 323, which provides two high-speed
external 1/O channels and the internal interrupt control for
multiprocessor system 300. The multiprocessor interface unit
323 is implemented as bus interface controllers (BIC0 &
BIC1) 324 and 325 and I/O interface controller (10C) 326.
The two high-speed external /O channels connected to a
polarity of RRAC interfaces provide the flexible input and
output (FlexIO_0 & FlexIO_1) 353 for multiprocessor sys-
tem 300.

Each synergistic processor unit 310, 311, or 312 has a
corresponding local store area 313, 314, or 315 and synergis-
tic execution units (SXU) 354, 355, or 356. Each individual
synergistic processor unit 310, 311, or 312 can execute
instructions (including data load and store operations) only
from within its associated local store area 313, 314, or 315.
For this reason, all required data transfers to or from storage
elsewhere in a system is performed using memory flow con-
troller direct memory access operations via synergistic pro-
cessor unit’s 310, 311, and 312 dedicated memory flow con-
trollers 305, 306, and 307.

A program running on synergistic processor unit 310, 311,
or 312 only references its own local store area 313, 314, or
315 using a local store address. However, each synergistic
processor unit’s local store area 313, 314, or 315 is also
assigned a real address (RA) within the overall system’s
memory map. This allows privileged software to map a local
store area to the effective address (EA) of a process to facili-
tate direct memory access transfers between the local store of
one synergistic processor unit and the local store of another
synergistic processor unit.

Main storage is shared by processors 302, 303, and 304,
and I/O devices in a system. All information held in this level
of storage is visible to all processors and devices in the sys-
tem. A synergistic processor unit program accesses main
storage by generating and placing a direct memory access
data transfer command, with the appropriate effective address
and local store address, into its memory flow controllers
(MFCs) 305, 306, or 307 command queue for execution.
When executed, the required data is transferred between its
own local store area and main storage. The proxy command
queue is typically used to store a program in local storage
prior to starting the synergic processor unit. Proxy commands
can also be used for context store operations.

Synergistic processor unit 310, 311, or 312 and memory
flow controllers (MFCs) 305, 306, and 307 communicate
with each other through unidirectional channels that have
capacity. The channel interface transports messages to and
from memory flow controllers 305, 306, and 307, synergistic
processor units 310, 311, and 312. Bus interface units 339,

US 7,661,006 B2

7

340, and 341 connect memory flow controllers 305, 306, and
307 to element interconnect bus (EIB) 319.

Memory flow controllers 305, 306, and 307 provide two
main functions for synergistic processor units 310, 311, and
312. Memory flow controllers 305, 306, and 307 move data
between synergistic processor unit’s 310, 311, or 312 local
store (LS) area 313, 314, and 315 and main storage. Addi-
tionally, memory flow controllers 305, 306, and 307 provide
synchronization facilities between synergistic processor units
310, 311, and 312 and other devices in the system.

Memory flow controllers 305, 306, and 307 implementa-
tion has four functional units: direct memory access control-
lers (DMAC) 336, 337, and 338, memory management units
(MMU) 316, 317, and 318, atomic units (ATO) 342,343, and
344, replacement management tables (RMT) 345, 346, and
347, and bus interface units (BIU) 339, 340, and 341. Direct
memory access controllers 336, 337, and 338 maintains and
processes memory flow controller command queues (MFC
CMDQs), which consist of a memory flow controller syner-
gistic processor unit command queue (MFC SPUQ) and a
memory flow controller proxy command queue (MFC

PrxyQ).

In a virtual mode, memory management units 316, 317,
and 318 provides the address translation and memory protec-
tion facilities to handle the effective address translation
request from direct memory access controllers 336, 337, and
338 and send back the translated address.

Atomic units 342, 343, and 344 provide the level of data
caching necessary for maintaining synchronization with
other processing units in the system. Coherency with other
caches in the system is maintained. Atomic direct memory
access commands provide the means for the synergist proces-
sor elements to request synchronization with other units.

The main function of bus interface units 339, 340, and 341
is to provide processors 302, 303, and 304 with an interface to
the element interconnect bus. Element interconnect bus 319
provides a communication path between all of the processors
on multiprocessor system 300 and the external interface con-
trollers attached to element interconnect bus 319.

Memory interface controller 320 provides an interface
between element interconnect bus 319 and one or two of
extreme data rate /O cell memory channels 321 and 322.
Extreme data rate (XDR™) dynamic random access memory
(DRAM) is a high-speed, highly serial memory provided by
Rambus. The extreme data rate dynamic random access
memory is accessed using a macro provided by Rambus,
referred to in this document as extreme data rate /O cell
memory channels 321 and 322.

Memory interface controller 320 is a slave on element
interconnect bus 319. Memory interface controller 320
acknowledges commands in its configured address range(s),
corresponding to the memory in the supported hubs.

Bus interface controllers 324 and 325 manage data transfer
on and off the chip from element interconnect bus 319 to
either of two external devices. I/O interface controller 326
handles commands that originate in an [/O interface device
and that are destined for the coherent element interconnect
bus 319. An I/O interface device may be any device that
attaches to an I/O interface such as an 1/O bridge chip that
attaches multiple I/O devices or another multiprocessor that is
accessed in a non-coherent manner. I/O interface controller
326 also intercepts access to element interconnect bus 319
that are destined to memory-mapped registers that reside in or
behind an I/O bridge chip or non-coherent multiprocessor
system 300, and routes them to the proper 1/O interface. /O

20

25

30

35

40

45

50

55

60

8

interface controller 326 also includes internal interrupt con-
troller (IIC) 349 and 1/O address translation unit (I/O Trans)
350.

Although specific examples of how the different compo-
nents may be implemented, these examples are not meant to
limit the architecture in which the aspects of the illustrative
embodiments may be used.

The illustrative embodiments recognize the need to auto-
matically produce an interconnect matrix for each multipro-
cessor platform quickly and accurately. In addition, the illus-
trative embodiments recognize the need to update or modify
the interconnect matrix as links or connections in an inter-
connect bus fail or otherwise become non-functional. There-
fore, the illustrative embodiments provide a computer imple-
mented method, apparatus, and computer program product
for managing multiprocessor interconnects.

In one embodiment, a process identifies functional com-
munication connections between each processor in a plurality
of processors on a multiprocessor in an output file. A com-
munication connection is a pathway or link on a bus between
two processors. A communication connection permits one
processor to send data to another processor by means of the
link. A functional communication connection is a communi-
cation connection that is functioning such that a processor is
able to send data to another processor by means of the com-
munication connection. If the communication connection
becomes disabled for any reason such that data can no longer
be transmitted along the link, the communication connection
is a non-functional or failed communication connection.

The process generates an interconnect matrix based on the
output file. An interconnect matrix is a map of every func-
tional communication connection between any two proces-
sors in a plurality of processors. The process creates a path
map based on the interconnect matrix. A path map is a
sequence of communication connections between a plurality
of processors. The process initializes the plurality of proces-
sors in accordance with the path map. The process removes
the failed connection from the interconnect matrix in
response to a determination that a connection between two
processors in the plurality of processors has failed to form a
failed connection.

FIG. 4 is a block diagram illustrating data flow through a
multiprocessor for identifying functional interconnects in
accordance with an illustrative embodiment. Multiprocessor
400 is a device having two or more processors. The processors
in multiprocessor 400 are processors that are packaged in
separate integrated circuit packages. Each separate processor
in multiprocessor can include a single processor core, as well
as multiple processor cores in a single integrated circuit pack-
age.

Controller 401 is a software component for managing mul-
tiprocessor interconnects. Controller 401 identifies func-
tional communication connections between each processor in
aplurality of processors on a multiprocessor in an output file.
Controller 401 designates a processor in the set of processors
on multiprocessor 400 as master processor 402. Controller
401 makes the designation by setting a flag in a register on the
processor. Each processor in the multiprocessor system is
designated as a master processor in turn, until every processor
has been designated a master processor for purposes of test-
ing interconnects between the master processor and all other
processors on the multiprocessor system. Controller 401 des-
ignates all other processors on multiprocessor 400 as receiver
processors, such as receiving processor 404 and 406.

Controller 401 designates a processor as master processor
402 by setting a register, such as register 408. Likewise,
controller 401 designates a processor as receiver processors

US 7,661,006 B2

9

by setting a register on the processor, such as register 410 on
receiver processor 404 and register 412 on receiver processor
406.

Receiving ports 414, 416, and 418 are ports for receiving a
data packet from another processor. In this illustrative
example, receiving ports 414, 416, and 418 include three (3)
receiving ports. Sending ports 420, 422, and 424 are driver
ports for sending data packets to another processor.

Controller 401 tests the connections between each proces-
sor by designating a master processor to send a data packet to
all other receiver processors. Controller 401 initiates trans-
mission of a data packet, such as data packet 426 and 428
from sending ports 420 on master 402 to all receiver proces-
sors 404 and 406, by means of interconnect bus 430.

Interconnect bus 430 is an interconnect network for allow-
ing processors on multiprocessor 400 to communicate with
each other. Interconnect bus 430 is used by master processor
402 to transmit data packet 426 and 428 to other processors on
multiprocessor 400.

Controller 401 then identifies functional connections
between master processor 402 and a given receiver by open-
ing each receiving port and determining if data packet 426 or
428 was received by the given receiver port. If the data packet
was received, the connection between master processor 402
and the given receiver port is a functional connection.

Controller 401 orders receiver processor 404 to open given
receiving ports 416 to determine whether the given receiver
port receives data packet 426 sent by master processor 402. If
controller 401 determines that the given receiving port
received data packet 426, controller 401 identifies the con-
nection between the master and the given receiving port as a
functional connection in an output file, such as log 427 in
memory 429. In this illustrative example, memory 429 is a
non-volatile memory, such as non-volatile random access
memory (NVRAM). However, memory may be any type of
known or available data storage device for storing data.

If the receiving port did not receive data packet 426, the
connection between master processor 402 and the given
receiving port is not a functional connection. A non-func-
tional connection may also be logged into an output file, such
as log 427.

Controller 401 continues this process until every receiving
port on every receiver processor has been opened to deter-
mine if each connection between master processor 402 and a
given receiving port is a functional connection. Controller
401 then designates a next processor as a master processor. In
this example, receiver processor 404 is designated a master
and master processor 402 is designated a receiver. Processor
404 sends a data packet by means of interconnect bus 430 to
all other processors to determine if a connection between
receiver processor 404 and a given receiving port on each
processor is a functional connection. This process is contin-
ued until every processor on multiprocessor 400 has been
designated a master processor.

Thus, controller 401 iteratively designates a next processor
as a master and designates all other processors as receiver
processors and identifies all functional connections between
the master and the receiver processors until each processor in
the plurality of processors has been designated as a master.
Controller 401 identifies all functional connections in an out-
put file such as log 427.

Controller 401 generates interconnect matrix 432 based on
log 427. Interconnect matrix 432 is a map of every functional
communication connection between any two processors on
multiprocessor 400. Controller 401 then creates path map 434
based on interconnect matrix 432. Path map 434 is a sequence
of communication connections between processors. Path

20

25

30

35

40

45

50

55

60

65

10

map 434 sets forth a path or route for sending data and
synchronizing processors by means of interconnect bus 430.
Path map 434 is a single path out of a set of possible paths
between processors. Controller 401 initializes the processors
on multiprocessor 400 in accordance with path map 434.

Ifa connection between two processors fails during initial-
ization or during runtime, the failed connection is logged in
an error log. Based on the error log, controller 401 removes
the failed connection from interconnect matrix 432. Thus,
controller 401 dynamically and automatically updates inter-
connect matrix 432 to reflect newly failed connections.

If the failed connection is a connection in path map 434,
controller 401 generates an alternative path map based on the
updated interconnect matrix. The alternative path map
bypasses the failed connection. The alternative path map is
saved in memory 429 as a replacement for path map 434.

If the failed connection failed during initialization of the
processors, controller 401 will generate the alternative path
map during initialization and continue initialization of the
processor using the alternative path map. Thus, even if a
connection in a path map fails during initialization, the illus-
trative embodiments dynamically provide an alternative path
map bypassing the failed connection to enable the initializa-
tion process to continue.

In accordance with this illustrative embodiment, initializa-
tion will only be halted if controller 401 is unable to generate
an alternative path map due to insufficient functional connec-
tions remaining in interconnect matrix 432. In this case, the
system will shut down and be unable to be initialized until the
failed connections are repaired or replaced.

If the failed connection fails during run-time, controller
401 will update interconnect matrix 432 and generate an
alternative path map. However, the system will have to shut
down and re-boot due to the failed connection. When the
system re-initializes, the alternative path map is used to ini-
tialize the processors and bypass the failed connection. In this
manner, a system is able to re-initialize even if a connection in
path map fails during run-time.

FIG. 5 is a block diagram illustrating an interconnect
matrix and path map in accordance with an illustrative
embodiment. Interconnect matrix 500 is an interconnect
matrix for multiprocessor 502. Multiprocessor 502 is a mul-
tiprocessor, such as multiprocessor 300 in FIG. 3 and multi-
processor 400 in FIG. 4. Processor A 504, processor B 506,
processor C 508, and processor D 510 are processors, such as
processors 402, 404, and 406 in FIG. 4. Processors 504-510
communicate with each other by transmitting data packets
from sending ports to receiving ports by means of an inter-
connect bus.

Interconnect matrix 500 includes all functional connec-
tions between the processors on multiprocessor 502. For
example, interconnect matrix 500 includes connection 512
between processors A and B, connection 514 between pro-
cessors B and C, connection 516 between processors C and D,
and connection 518 between processors C and B. Connec-
tions 512-518 are one-way connections between two proces-
SOrS.

Path map 520 is a path map generated based on intercon-
nect matrix 500. Path map 520 is a sequence of connections
for traversing each processor in multiprocessor 502. In this
example, path map 520 does not utilize every connection in
interconnect matrix 500. In this example, path map utilizes
connections 512-516. Thus, if connection 518 between pro-
cessor C and B should fail, path map 520 would not be
affected. However, interconnect matrix 500 would need to be
updated to remove failed connection 518.

US 7,661,006 B2

11

Referring now to FIG. 6, a flowchart illustrating a process
for creating and updating an interconnect matrix is shown in
accordance with an illustrative embodiment. In this illustra-
tive example shown in FIG. 6, the process is performed by a
software component for managing interconnects, such as
controller 401 in FIG. 4.

The process begins by creating an interconnect matrix
during a system initialization (step 602). The process stores
the interconnect matrix in non-volatile memory, such as
NVRAM (step 604). The process makes a determination as to
whether a connection has failed (step 606). If a connection
has not failed, the process terminates thereafter. In other
words, once the interconnect matrix is generated, the inter-
connect matrix is not re-generated, altered, modified, or
updated unless a connection fails after generation of the inter-
connect matrix.

Returning to step 606, if a connection does fail, the process
removes the failed connection from the interconnect matrix
(step 608). The modified interconnect matrix is stored in
non-volatile memory (step 610) with the process terminating
thereafter.

FIG. 7 is a flowchart illustrating a process for testing con-
nections between processors in accordance with an illustra-
tive embodiment. In this illustrative example shown in FIG. 7,
the process is performed by a software component for man-
aging interconnects, such as controller 401 in FIG. 4.

The process begins by initializing a multiprocessor up to
interconnect initialization (step 702). This step takes place
during a system boot process. The process selects a processor
and creates a backup of the selected processor’s register val-
ues (step 704). The process sets the selected processor as a
master processor and sets all other processors as receiver
processors (step 706). The process orders the master to send
a data packet out on all the master’s driving buses or sending
ports (step 708).

The process orders the master to detect itself (step 710).
When a processor is designated as a master, the master pro-
cessor confirms by showing that the master processor
detected itself. Once the master processor detected itself, the
master processor can send data packets out to all the other
processors in the multiprocessor.

The process selects a receiver processor (step 712). The
process opens a receiving port on the selected receiver pro-
cessor (step 714). The process makes a determination as to
whether the master processor detected the receiver processor
through the open port (step 716). The process writes the
receiver processor’s port that connected to the master to an
output file as a functional connection if the process did detect
the open port (step 718).

If the process did not detect the open port at step 716 or
after the process writes the functional connection to an output
file at step 718, the process makes a determination as to
whether any unopened receiving ports remain (step 720). If
any unopened receiving ports remain, the process opens a
next receiving port (step 722) and iteratively continues to
execute steps 716-722 until all receiving ports on a given
receiver processor have been opened and tested.

Once all receiving ports have been opened and tested at
step 720, the process makes a determination as to whether any
untested receiver processors remain (step 724). In other
words, the process determines if each receiver processor on
the multiprocessor has opened each of the receivers receiving
ports. If “no”, an untested receiver processor remains and the
process selects a next receiver processor (step 726) and itera-
tively executes steps 714-724 until every receiving port on
every receiver processor has been opened and tested.

20

25

35

45

50

55

60

65

12

Returning to step 724, if all receiver processors have been
tested, the process makes a determination as to whether each
process has been designated a master processor (step 728). If
each processor has not been designated a master processor,
the process selects a next processor (step 730) and iteratively
continues to execute steps 708-728 until every processor has
taken a turn as a master processor for the purpose of testing
connections between the processor and the other receiver
processors on the multiprocessor.

When all processors have been designated as a master
processor at step 728, the process generates an interconnect
matrix based on the output file (step 732) with the process
terminating thereafter. The interconnect matrix includes all
functional connections between every processor on the mul-
tiprocessor.

Turning now to FIG. 8, a flowchart illustrating a process for
generating a path map and an alternative path map is shown in
accordance with an illustrative embodiment. In this illustra-
tive example shown in FIG. 8, the process is performed by a
software component for managing interconnects, such as
controller 401 in FIG. 4.

The process begins by retrieving an interconnect matrix for
a multiprocessor (step 802). The process checks an intercon-
nect error log (step 804). The error log indicates if any con-
nections have failed.

The process makes a determination as to whether any
faulty interconnects are present in the error log (step 806). If
no faulty interconnects are present, the process generates a
path map based on the interconnect matrix (step 808). The
process initializes interconnects based on the path map (step
810). The process then makes a determination as to whether
any interconnects fail during initialization (step 812).

Ifan interconnect fails during initialization at step 812 or if
a faulty interconnect is detected at step 806, the process logs
the failed connection in the interconnect error log (step 814)
and removes the faulty interconnect from the interconnect
matrix (step 816).

If'the failed connection is not a connection in the intercon-
nect path, the original path map can still be used to complete
initialization of the processors. However, if the failed connec-
tion is a connection in the interconnect path, the process
makes a determination as to whether sufficient interconnects
remain to generate an alternative path map (step 818).

If sufficient interconnects do remain, the process generates
a path map using an alternate path (step 820). The process
logs the interconnect failure (step 822) and uses the alternate
path map to initialize the multiprocessor with the processor
terminating thereafter. The process identifies functional com-
munication connections between each processor on a multi-
processor in an output file. The process generates an inter-
connect matrix based on the output file.

Returning now to step 818, if sufficient interconnects to
generate an alternative path map are not available, the process
logs the interconnect failure (step 822) and the process ter-
minates thereafter.

An interconnect matrix is a map of every functional con-
nection between any two processors in a plurality of proces-
sors. The process creates a path map based on the interconnect
matrix. A path map is a sequence of communication connec-
tions between processors. The process initializes the proces-
sors in accordance with the path map. The process removes
the failed connection from the interconnect matrix in
response to a determination that a connection between two
processors has failed to form a failed connection.

The illustrative embodiments traverse all the processors in
a system. The process sets each processor to be a connecting
master in turn. Each processor in the system opens its ports

US 7,661,006 B2

13

one at a time to determine if there is a direct connection
between the processor and the master. Thus, all usable con-
nections between processors are explored and written to an
output file for use in generating an interconnect matrix and
path map. In addition, an alternative path map can be gener-
ated if a connection fails. The system has more than one
option of getting addresses, data, and sync packets between
chips.

The illustrative embodiments replace the need for static
processor bus maps by providing an algorithm to build an
interconnect matrix and path maps at initialization of the
system. This solution has the potential of producing smaller
software builds rather than having a map for each system
platform in firmware. Small software build may aid in faster
load and initialization of the system. In addition, workbooks
or schematics are not required to decipher the path map and
interconnect matrix.

By using the interconnect map that was created during the
initialization phase of the system, the system will utilize one
of the alternative paths to finish initialization of the system.
The system can continue the initialization process with minor
or no interruptions until the system is fully initialized and
continue to runtime. This is an advantage over current sys-
tems that will fail to initialize if a connection fails.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of some possible
implementations of systems, methods and computer program
products according to various embodiments. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci-
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved.

The invention can take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. In a
preferred embodiment, the invention is implemented in soft-
ware, which includes but is not limited to firmware, resident
software, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any tangible
apparatus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device.

The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or apparatus
ordevice) or a propagation medium. Examples of'a computer-
readable medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), aread-only memory (ROM),
arigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD-
ROM), compact disk-read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk

20

25

30

35

40

45

50

55

60

65

14

storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems, and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The description of the illustrative embodiment has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What is claimed is:

1. A computer implemented method for managing sym-
metric multiprocessor interconnects, the computer imple-
mented method comprising:

identifying functional communication connections

between each processor in a plurality of processors on a
multiprocessor to form identified functional communi-
cation connections;

mapping every functional communication connection

between any two processors in the plurality of proces-
sors, based on the identified functional communication
connections to form an interconnect matrix;

creating a path map using the interconnect matrix, wherein

the path map comprises a sequence of communication
connections between the plurality of processors; and
initializing the plurality of processors using the path map.

2. The computer implemented method of claim 1 further
comprising:

responsive to identifying a failed connection, removing the

failed connection from the interconnect matrix, wherein
a failed connection is a connection between two proces-
sors in the plurality of processors that has failed.

3. The computer implemented method of claim 2 wherein
removing the failed connection from the interconnect matrix
forms an updated interconnect matrix, and further compris-
ing:

responsive to a determination that the failed connection is

a connection in the path map, generating an alternative
path map based on the updated interconnect matrix,
wherein the alternative path map bypasses the failed
connection.

4. The computer implemented method of claim 3 wherein
the failed connection is a connection that failed during run
time, and further comprising:

rebooting the system; and

initializing the plurality of processors in accordance with

the alternative path map.

5. The computer implemented method of claim 3 wherein
the failed connection is a connection that failed during ini-
tialization, and further comprising:

continuing initialization of the plurality of processors in

accordance with the alternative path map.

US 7,661,006 B2

15

6. The computer implemented method of claim 3 further
comprising:

designating a system as unable to initialize only if an alter-
native path map cannot be generated due to insufficient
functional interconnects remaining.

7. The computer implemented method of claim 1 further

comprising:

storing the identified functional communication connec-
tions in an output file.

8. The computer implemented method of claim 1 wherein
the step of identifying functional communication connec-
tions between each processor further comprises:

designating a processor in the plurality of processors as a
master and designating all other processors in the plu-
rality of processors as receiver processors;

initiating transmission of a data packet from a set of send-
ing ports on the master to all receiver processors; and

opening a set of receiving ports on each receiver processor
to determine whether each connection between the mas-
ter and the receiver is a functional connection; and

identifying all functional connections in an output file.

9. The computer implemented method of claim 8 further

comprising:

responsive to a determination that each processor in the
plurality of processors has not been designated a master,
iteratively designating a next processor as the master and
designating all other processors as receiver processors;
and

identifying all functional connections between the master
and the receiver processors until each processor in the
plurality of processors has been designated as the mas-
ter.

10. The computer implemented method of claim 8 wherein
the step of opening a set of receiver ports on each receiver
processor further comprises:

opening a given receiver port in a set of receiver ports on the
receiver processor;

determining whether the given receiver port receives the
data packet sent by the master; and

responsive to determining that the given receiver port
received the data packet, identifying a connection
between the master and the given receiver port as a
functional connection in the output file.

11. The computer implemented method of claim 10 further

comprising:
responsive to a determination that each receiver port in the
set of receiver ports has not been opened, iteratively
opening each receiver port and determining if the
opened receiver port received the data packet, wherein a
connection between the master and the opened receiver
port is identified as a functional connection in the output
file if the opened receiver port received the data packet.
12. The computer implemented method of claim 1 wherein
the interconnect matrix and path map are saved in non-vola-
tile memory.
13. A computer program product comprising:
a computer recordable storage medium having computer
usable program code for symmetric multiprocessor
interconnects, the computer program product compris-
ing:
computer usable program code for identifying func-
tional communication connections between each pro-
cessor in a plurality of processors on a multiprocessor
to form identified functional communication connec-
tions;

computer usable program code for mapping every func-
tional communication connection between any two

10

20

25

30

40

45

60

65

16

processors in the plurality of processors, based on the
identified functional communication connections to
form an interconnect matrix;

computer usable program code for creating a path map
using the interconnect matrix, wherein the path map
comprises a sequence of communication connections
between the plurality of processors; and

computer usable program code for initializing the plu-
rality of processors using the path map.

14. The computer program product of claim 13 further
comprising:

computer usable program code for removing the failed

connection from the interconnect matrix to form an

updated interconnect matrix in response to a determina-
tion that a connection between two processors in the
plurality of processors has failed.

15. The computer program product of claim 14 further
comprising:

computer usable program code for generating an alterna-

tive path map based on the updated interconnect matrix

in response to a determination that the failed connection
is a connection in the path map, wherein the alternative
path map bypasses the failed connection.

16. The computer program product of claim 13 wherein the
failed connection is a connection that failed during initializa-
tion, and further comprising:

computer usable program code for continuing initializa-

tion of'the plurality of processors in accordance with the

alternative path map.

17. An apparatus for managing symmetric multiprocessor
interconnects, the apparatus comprising:

a computing device, the computing device comprising:

a bus;

a storage device connected to the bus, wherein the stor-
age device contains a computer usable program prod-
uct; and

a plurality of processors, wherein at least one processor
in the plurality of processors executes the computer
usable program code to identify functional commu-
nication connections between each processor in a plu-
rality of processors on a multiprocessor in an output
file; generate an interconnect matrix based on the
output file, wherein an interconnect matrix is a map of
every functional communication connection between
any two processors in a plurality of processors; create
apath map based on the interconnect matrix, wherein
a path map is a sequence of communication connec-
tions between a plurality of processors; and initialize
the plurality of processors in accordance with the path
map.

18. The apparatus of claim 17 wherein the processor fur-
ther executes the computer usable program code to remove
the failed connection from the interconnect matrix in
response to a determination that a connection between two
processors in the plurality of processors has failed.

19. A multiprocessor, the multiprocessor comprising:

an interconnect bus;

a plurality of processors;

a memory; and

a controller, wherein the controller identifies functional

communication connections between each processor in

the plurality of processors in an output file in the
memory; generates an interconnect matrix based on the
output file, wherein an interconnect matrix is a map of
every functional communication connection between
any two processors in a plurality of processors; creates a
path map based on the interconnect matrix, wherein a

US 7,661,006 B2

17 18
path map is a sequence of communication connections and wherein the controller generates an alternative path map
between a plurality of processors; and initializes the based on the updated interconnect matrix in response to a
plurality of processors in accordance with the path map. determination that the failed connection is a connection in the
20. The multiprocessor of claim 19 wherein the controller path map, wherein the alternative path map bypasses the

removes a failed connection from the interconnect matrix to 5 failed connection.
form an updated interconnect matrix in response to a deter-
mination that a connection between two processors has failed, L

