

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2017/060837 A1

(43) International Publication Date

13 April 2017 (13.04.2017)

WIPO | PCT

(51) International Patent Classification:

H01M 4/14 (2006.01) *H01M 4/82* (2006.01)
H01M 4/68 (2006.01) *H01M 10/06* (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/IB2016/055973

(22) International Filing Date:

6 October 2016 (06.10.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

713002 6 October 2015 (06.10.2015) NZ
715044 10 December 2015 (10.12.2015) NZ

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(71) Applicant: ARCACTIVE LIMITED [NZ/NZ]; 128b Waterloo Road, Hornby, Christchurch, 8042 (NZ).

(72) Inventors: ABRAHAMSON, John; 16A De Thier Lane, Richmond Hill, Christchurch, 8081 (NZ). TITELMAN, Grigory Isaac; 128b Waterloo Road, Hornby, Christchurch, 8042 (NZ).

(74) Agent: AJ PARK; Level 22, State Insurance Tower, 1 Willis Street, Wellington, 6011 (NZ).

Published:

— with international search report (Art. 21(3))

WO 2017/060837 A1

(54) Title: IMPROVED LEAD-ACID BATTERY ELECTRODE

(57) Abstract: Lead-acid batteries with low water consumption and hydrogen gassing, comprise electrodes of a carbon fibre material having a surface area of less than 50 m²/g. The carbon fibre material may also comprise non-carbon functional groups less than 22% by mass in the bulk fibre, and at least 78% carbon by mass in the bulk fibre. The carbon fibre material may be heated to a temperature of at least 1000°C and cooled in an inert atmosphere to prevent non-carbon functional groups reforming on the carbonised carbon fibre material. The batteries are suitable for use in hybrid vehicles.

IMPROVED LEAD-ACID BATTERY ELECTRODE

FIELD OF THE INVENTION

The invention relates to an improved electrode typically of carbon fibre for use in the

5 manufacture or construction of lead-acid batteries particularly but not exclusively automotive batteries for hybrid vehicles.

BACKGROUND

Vehicle hybridisation driven by increasing worldwide demand for lower automotive emissions

10 and/or increased fuel economy places increased demand on vehicle batteries, which are most commonly Pb-acid batteries. Overcharging a Pb-acid battery, including charging a Pb-acid battery at a rate of charge greater than the battery can accept, can lead to breaking down of water in the electrolyte to hydrogen and oxygen gas, consuming water in the electrolyte which in a closed battery cannot be replaced, permanently reducing the battery capacity. Overcharging also 15 evolves hydrogen and oxygen gas (gassing) which is dangerous and for which venting from the battery is provided.

Hybrid and fully electric vehicles typically employ regenerative braking, in which when a braking

20 force is applied by a generator (which here includes an alternator), the electric energy from which recharges the vehicle battery. Under regenerative braking relatively high charging currents may be generated and thus batteries for hybrid vehicles with regenerative braking should also have a high dynamic charge acceptance (DCA) rate, which refers to the rate at which a battery will accept charge. As companies began developing batteries with high DCA performance, it became apparent that improved DCA came at the expense of unacceptably high water consumption. By 25 around the beginning of 2015, the requirement for a "high DCA" battery had morphed into a requirement for a "high DCA, low water consumption" battery. Additionally, these batteries must also meet the other automotive battery parameters of good cold cranking amps (CCA), high cycle life and good volumetric energy density (VED). In a Pb-acid battery DCA is primarily determined by the charging reaction at the negative electrode. Increased demands driven by the 30 automotive industry for such batteries with increasingly low water consumption under demanding test conditions are being made.

Our international patent application publication WO2011/078707 discloses a lead-acid battery comprising as a current collector a conductive fibrous material of filaments with low interfibre

spacing and conducting chains of Pb-based particles attached to the fibres, which provides improved battery performance particularly DCA.

SUMMARY OF INVENTION

5 It is an object of at least some embodiments of the invention to provide improved or at least alternative electrodes and/or cells and/or batteries particularly but not necessarily exclusively suitable for use in hybrid vehicles, and/or methods for manufacturing same.

In broad terms in one aspect the invention comprises a lead-acid battery or cell including at least 10 one electrode comprising a carbon fibre material which has been heated to a temperature of at least 1000°C and cooled in a substantially inert atmosphere to prevent non-carbon functional groups reforming on the carbonised carbon fibre material.

15 In at least some embodiments the carbon fibre material and/or carbon material in the active mass, has been heat treated to a temperature of at least 1050°C, or at least 1100°C or at least 1200°C, or at least 1400°C or least 1500°C or at least 1600°C.

In at least some embodiments the carbon fibre material comprises a polyacrylonitrile (PAN) carbon fibre material, a rayon, phenol resin or pitch material.

20

In at least some embodiments the current collector carbon fibre material comprises at least 85%, or at least 90%, or at least 95%, or at least 97%, or at least 98% carbon by mass of the bulk fibre.

In broad terms in another aspect the invention comprises a lead-acid battery or cell including at 25 least one electrode comprising a carbon fibre material having a surface area of less than 50 m²/g.

In broad terms in another aspect the invention comprises a lead-acid battery or cell including at least one electrode comprising a carbon fibre material, wherein:

- the carbon fibre material has a surface area of less than 50 m²/g, and
- 30 non-carbon functional groups in the carbon fibre material comprise less than 22% by mass in the bulk fibre, and the carbon fibre material comprises at least 78% carbon by mass in the bulk fibre.

In at least some embodiments the carbon fibre material has a surface area of less than 30 m²/g, or less than 20 m²/g, or less than 10 m²/g, or less than 5 m²/g, or less than 3 m²/g, or less than 1 m²/g (as determined by the BET method for example).

- 5 In at least some embodiments the non-carbon functional groups in carbon fibre material comprise less than 20% by mass in the bulk fibre or, less than 15% in the bulk fibre, or less than 10% in the bulk fibre, or less than 5% in the bulk fibre or less than 3% of the bulk fibre or less than 2% in the bulk fibre.
- 10 In at least some embodiments the carbon fibre material comprises at least 80%, or at least 85%, or at least 90% carbon by mass in the bulk fibre.

In at least some embodiments the metal impurities comprise less than 800ppm, or less than 500ppm, or less than 100ppm, or less than 80ppm, or less than 50ppm, or less than 30 ppm, or less than 20ppm. Undesirable metal impurities comprise for example, Fe, Co, Ni, Ag, Cu.

In at least some embodiments the areal density of the carbon fibre material is less than 500gm/m², or less than 400gm/m², or less than 300 gm/m², or less than 250gm/m², or less than 200gm/m², or less than 150gm/m².

- 20 In broad terms in another aspect the invention comprises a lead-acid battery or cell including at least one electrode comprising as a current collector a carbon fibre material and/or carbon material in the active mass, which exhibits water consumption as indicated by battery or cell weight loss, of not more than 16g/Ah when tested at 60°C ± 2°C over 21 days. In broad terms in another aspect the invention comprises a lead-acid battery or cell including at least one electrode comprising as a current collector a carbon fibre material having a minimum DCA acceptance of 0.6 A/Ah and a water consumption of not more than 16g/Ah (when tested according to European standard EN50432-1:2015 Test 6.9). In at least some embodiments water consumption of a lead-acid battery or cell of the invention is not more than 8g/Ah when tested at 60°C ± 2°C over 42 days, or is not more than 4g/Ah when tested at 60 ± 2C over 42 days, is not more than 3g/Ah when tested at 60°C ± 2°C over 42 days, or is not more than 4g/Ah when tested at 60°C ± 2°C over 84 days. In the alternative, in at least some embodiments the water consumption is not more than 300mA, or is not more than 250mA, or is not more than 200mA, or is not more than 150mA, or is not more than 100mA, or is not more than 90mA, where these values represent the average current for a 12V 60Ah battery.
- 25
- 30
- 35

In at least some embodiments the carbon fibre material has impregnated therein an active material comprising a paste comprising Pb-based particles and a fluid such as water, a dilute acid such as for example sulphuric acid and water, and/or an alcohol. In some embodiments the

5 alcohol is ethanol. In at least some embodiments the pasted carbon fibre material has a pasted density of between 1-5 g/cm³, or between 2-5 g/cm³, or between 2.5-4.5 gm/cm³, or between 3.5-4.5 gm/cm³, or between 3.8-4.2 gm/cm³.

In at least some embodiments, cells and/or batteries comprising an electrode construction of the
10 invention may have a combination of relatively high DCA (and/or may maintain DCA or a higher rate of DCA with an increasing number of charge-discharge cycles) and relatively low water consumption.

In broad terms in another aspect the invention comprises a method of treating a carbon fibre
15 material to reduce non-carbon functional groups comprising heating the carbon fibre material to a temperature of at least 1000°C, or 1100°C, or 1200°C, or 1400°C in the presence of a non reactive gas, followed by a cool down period to atmospheric temperature in the same gas.

The term “carbonisation” as used in this specification refers to increasing the proportion of
20 carbon in the bulk mass of carbon fibre material that has been treated.

The term “comprising” as used in this specification means “consisting at least in part of”. When interpreting each statement in this specification that includes the term “comprising”, features other than that or those prefaced by the term may also be present. Related terms such as
25 “comprise” and “comprises” are to be interpreted in the same manner.

BRIEF DESCRIPTION OF THE FIGURES

The invention is further described with reference to the accompanying figures by way of example wherein:

30 Figure 1 shows an embodiment of a carbon fibre material electrode,

Figure 2 is a schematic cross-section of an electrode comprising multiple layers of carbon fibre material,

Figure 3 shows a Tafel Plot of a low surface area carbon fibre electrode vs a high surface area carbon fibre electrode,

Figure 4 shows the DCA performance of a low surface area carbon fibre electrode vs a high surface area carbon fibre electrode,

Figure 5 shows the DCA performance of a full sized low surface area carbon fibre electrode vs that of traditional lead acid batteries currently on the market,

5 Figure 6 is a water consumption plot for electrodes CF02 and CF05 referred to in Example 1 in the subsequent description of experimental work, with actual and projected data that can be used to determine water consumption in g/Ah with the reference standards W3 and W4 provided,

10 Figure 7 is a water consumption plot for various pasted carbon fibre electrodes that have been built using carbon fibre materials treated at temperatures between 970 °C and approx., 2300 °C as referred to in Example 2 in the subsequent description of experimental work, and

Figure 8 is a plot of carbonisation versus temperature for the carbon fibre materials subsequently used to form the electrodes as set out in the Examples.

15 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Figure 1 shows a section of a conductive fibre electrode such as of carbon fibre material 1, for a Pb-acid cell or battery, with one form of lug 2 for external connection of the electrode, formed on the fibre material. Figure 2 is a schematic cross-section of a similar electrode comprising multiple layers 1 of fibre material, and a lug 2. Typically the lug is formed of metal such as Pb or 20 a Pb alloy (herein both referred to inclusively as Pb) but may be formed of another material which electrically connects preferably by penetration into and/or between the fibrous material. Preferably substantially all or at least a majority of the fibres of the electrode material extend continuously across the electrode to the lug 2. The electrodes of Figures 1 and 2 are shown by way of example only.

25

It will be appreciated that the electrode shown in Figure 2 may also comprise a single layer of carbon fibre material that is then provided with a lug in accordance with that described above. Such a single layer of material may be woven or non-woven (such as for example felted, hydro-entangled, or needle punched), or knitted.

30

In accordance with an aspect of the invention the carbon fibre material 1 the current collector a carbon fibre material and/or carbon material in the active mass, has been heat treated to a temperature of at least 1000 °C, 1100 °C, 1200 °C, 1400 °C, 1500 °C, or 1600 °C (referred to herein as carbonisation). This is effective to reduce non-carbon functional groups on the carbon fibre

material to less than 22% by mass of the carbon fibre material so that the carbon fibre material comprises at least 78% carbon in the bulk fibre.

The carbon fibre material consists of nano-sized regions of graphitic sheets, with the regions

5 linked together by non graphitic carbon. The top and bottom surfaces of the graphitic regions generally comprise aromatic C-C bonds (these do not contribute to gassing). On the edges of these sheets – these bonds are specific and allow the carbon to mate up with other non carbon chemical functional groups or moieties – namely nitrogen and oxygen groups which (we believe) contributes to gassing.

10

Removal of the non-carbon functional groups can be undertaken by a temperature controlled process in an inert atmosphere. The inert atmosphere ensures the carbon does not react with anything else. With reference to Figure 7 and Table 1 below, the heat treatment minimises the edge groupings because (we believe) the high temp creates larger graphite sheets so the same 15 mass of carbon remains but the carbon is now spread over a larger volume. Therefore there is a natural minimisation in the number of carbon edges/unit volume or unit area. This reduction of edge area can be measured using BET.

20 In accordance with another aspect the invention is a low surface area carbon fibre electrode, i.e., having a surface area of less than 50 m²/g, that alone can reduce water consumption. Figure 3 is a Tafel plot for a low surface area carbon fibre electrode vs a high surface area carbon fibre electrode. Figure 4 shows the DCA performance of a low surface area carbon fibre electrode vs a high surface area carbon fibre electrode. Figure 5 shows the DCA performance of a full sized low surface area carbon fibre electrode vs that of traditional lead acid batteries currently on the 25 market.

30 In summary we have found that by forming the battery electrodes or at least the negative electrodes of carbon fibre material having a surface area of less than 50 m²/g alone can decrease water consumption, and further that if the carbon fibre material has non-carbon functional groups on the current collector less than 22% as measured by the bulk fibre, the carbon fibre material comprises at least 78% carbon in the bulk fibre, thereby water consumption and gassing may be reduced without a significant reduction in DCA. For example a lead-acid battery can be produced which exhibits water consumption as indicated by battery or cell weight loss, of not more than 16g/Ah or 8g/Ah or 4g/Ah when tested at 60°V ± 2°C over 21 days for a weight loss

<16g/Ah or under the same conditions over 42 days for a weight loss <8g/Ah or <4g/Ah, and a minimum DCA acceptance of 0.6 A/Ah.

In at least some embodiments the carbon fibre material has impregnated therein an active

5 material comprising a paste comprising Pb-based particles and a fluid such as water, an acid and/or alcohol. In some embodiments the acid is dilute sulphuric acid, being water and sulphuric acid. In some embodiments the alcohol is ethanol. In at least some embodiments the pasted carbon fibre material has a pasted density of between 1-5 g/cm³, or between 2-5 g/cm³, or between 2.5-4.5 g/cm³, or between 3.5-4.5 g/cm³, or between 3.8-4.2 g/cm³.

10

In at least some embodiments the carbon fibre material comprises a carbon fibre material comprising or derived from a rayon, polyacrylonitrile, phenol resin, or pitch material.

In at least some embodiments the carbon fibre material also has an average spacing between

15 conductive fibres in the range about 0.5 to about 10 times or about 5 and about 10 times the average fibre diameter, or less than about 20 microns, or less than about 10 microns, and an average conductive fibre diameter of less than about 10 microns.

Typically the carbon fibre material has an average thickness less than about 5 mm or less than

20 3mm or less than 2mm, and a variation in thickness less than about 0.5 mm or less than about 0.2 mm, or alternatively a variation in thickness of less than about 20%.

In preferred embodiments the conductive current collecting material fibres are inherently conductive. In preferred embodiments the electrode fibres are carbon fibres.

25

Preferably the current collector material and the fibres thereof are flexible, which will assist in accommodating volume changes of the active material attached to the current collector material during battery cycling, and the microscale fibres may also reinforce the active material, both properties assisting to reduce breaking off ("shedding") of active material from the electrode in use.

30

The negative electrode or electrodes, the positive electrode or electrodes, or both, of a cell or battery may be formed as above.

In some embodiments the conductive fibrous material comprises the sole current collector of the electrode. Alternatively the electrode may comprise a metal grid also as a current collector in addition to the conductive fibrous material of carbon fibre. In preferred embodiments conductive fibrous material comprises a carbon fibre material and the metal grid comprises a lead grid. The carbon fibre layer(s) are conductively connected to the metal grid so that the grid receives current from the carbon fibre layer(s) and connects the electrode externally thereof.

The negative or positive or both electrodes of each cell may comprise a metal grid.

10 Where the electrode comprises a metal grid preferably at least 20% of the current generating active mass is dispersed through the conductive fibrous material. In preferred embodiments at least 40%, 50%, 80%, or more than 80% of the active mass is dispersed in the conductive fibrous material. Thus less than 80%, 60%, 50%, or 20% of the active mass may be dispersed in the metal grid (specifically, within its apertures).

15

In some embodiments at least 20% but not more than 40% of the active mass is dispersed through the conductive fibrous material.

20 In preferred embodiments the conductive fibrous material is present as multiple layers of one or more on either side of the metal grid. Alternatively the conductive fibrous material is present as a single layer on one side of the metal grid.

25 The metal grid may have a similar superficial surface area or be of similar height and width dimensions particularly in a major plane, to the conductive fibrous material element(s) but in alternative embodiments the metal grid may have smaller dimensions for example of smaller height and width dimensions, and may comprise for example a narrower lead strip between two larger carbon fibre layers on either side thereof.

30 Typically during battery or cell construction the current collector material is impregnated under pressure with the paste, which in a preferred form comprises a mixture of Pb and PbO particles of Pb and PbO and a fluid such as water, an acid such as for example dilute sulfuric acid, and/or an alcohol. In some embodiments the alcohol is ethanol. Alternatively the paste may comprise lead sulphate ($PbSO_4$) particles and a fluid such as water, an acid such as for example dilute sulphuric acid, and/or an alcohol. In some embodiments the paste at impregnation into the 35 electrode comprises dilute sulphuric acid comprising between greater than 0% and about 5%, or

between 0.25% and about 4%, or between 0.5% and about 4%, or between 0.5 and 3.5% by weight of the paste of sulphuric acid. The Pb-based particles may comprise milled or chemically formed particles which may have a mean size of 10 microns or less, small enough to fit easily into spaces between the fibres.

5

The paste may optionally also contain other additives such as barium sulphate, and/or an expander such as a lignosulphonate. Barium sulfate acts as a seed crystal for lead sulphate crystallisation, encouraging the lead to lead sulfate reaction. An expander helps prevents agglomeration of sulphate particles at the negative plate, for example forming a solid mass of lead sulfate during discharge into the carbon fibre material.

10

For example an expander may comprise between about 0.01% to about 0.25% or about 0.07% to 0.25%, or about 0.08% to 0.2%, or about 0.08 to 0.2% or about 0.08 to 0.15% by weight of the paste at impregnation. It has been found that the inclusion of an expander compound in the

15

paste may have a beneficial effect on CCA performance but a negative effect on DCA performance. Conventionally an expander at a concentration of around 0.2% or more is added to the paste. It has been found that an expander concentration of between about 0.01% to about 0.15% by weight of the paste at impregnation then both good DCA and CCA performance can be achieved.

20

The paste may also comprise Ag, Bi, Zn, or a compound of any thereof as an anti-gassing agent.

25

The paste may have a sufficiently low shear strength to flow (slump) when placed in a cylindrical shape on a horizontal surface under gravity. A sufficient slump is seen for a noticeable slumping

of a 30mm high by 30mm diameter cylinder, at impregnation into the electrode material.

Preferably the paste has a creamy consistency. It has been found that this is achieved where the paste at impregnation into the electrode comprises (greater than 0 but) less than about 5% by weight of sulphuric acid. It has been found that where the acid content approaches 5% by weight, the paste viscosity increases.

30

A fluidiser may be added to the paste to ensure that the paste viscosity remains relatively low to facilitate continuous paste infiltration into the carbon material. A suitable fluidiser may for example be polyaspartic acid, added to the paste in the range from greater than 0 but less than about 5% by weight of the lead containing component of the paste. In other embodiments the polyaspartic acid may be between about 0.05% to about 4%, or between about 0.75% to about

35

3%, or between about 1% to about 2.5%. The fluidiser preferably should not adversely affect battery performance parameters particularly CCA, DCA, water consumption, and capacity. It has also been found useful when mixing the Pb-based particles, sulphuric acid, water and any optional additives to form the paste, to aid mixing by vibration of the paste during mixing.

5

During initial cell formation (first charge and discharge cycle during which active particle linkages form) after cell or battery construction, cell formation occurs first by building the conducting framework, taking up most of the Pb in the negative active material, building normally over lengths of several millimetres (connecting strings of perhaps a thousand or more micron sized particles end to end). This stage also produces small PbSO_4 particles. Second, these smaller particles attach to this conductive framework to provide and receive current.

10 In at least some embodiments the electrode comprises, when fully charged, voidage (being the fractional volume occupied by the pores between the lead and conductive fibres) of between about at least about 0.3, and a mass loading ratio of lead (in whatever form) to the mass of conductive fibres, when converted to volume ratio, in the range about 0.7:1 or about 1:1 to about 15:1 or about 10:1 (each over at least a major fraction of the electrode and more preferably over substantially all of the electrode). In at least some embodiments the voidage is between about 0.3 and about 0.9, about 0.3 and about 0.85, more preferably between about 0.3 and about 0.8, more 15 preferably between about 0.5 and about 0.85, more preferably between about 0.6 and about 0.90, more preferably between about 0.65 and about 0.95, further preferably between about 0.7 and about 0.98. In at least some embodiments the volume loading ratio of the active material when converted to Pb to conductive fibres is between about 0.7 :1 or about 1:1 and about 7:1, or about 1.5:1 and about 5:1, or about 2:1 and about 4:1. Typically the voidage may be present as 20 corridors to form between the lead and carbon to enable lead particles to form between each of the carbon fibres.

25 In some embodiments electrodes of the invention whether composite (also incorporating a metal grid) or non-composite (without a metal grid) have a thickness (transverse to a length and width or in plane dimensions of the electrode) many times such as 10, 20, 50, or 100 times less than the or any in plane dimension of the electrode. The electrode thickness may be less than 5 or less than 3 mm for example. Each of the in plane length and width dimensions of the electrode may be greater than 50 or 100 mm for example. Such electrodes have a planar form with low thickness. One form of composite electrode of the invention may comprise a metal grid of

thickness about 3.5mm or less such as about 0.5mm mm thick, with a carbon fibre layer of thickness about 2 mm or less such as about 0.3 mm thick on either side.

In preferred forms the electrode is substantially planar and has a dimension from a metal lug for

5 external connection along at least one edge of the electrode less than 150mm, or less than 120mm, or less than 100 mm, or less than 70 mm, or less than 50 mm, or about 30 mm or less for example (with or without a macro-scale current collector). Alternatively such a planar form may be formed into a cylindrical electrode for example.

10 As stated, in preferred forms suitable for use in hybrid vehicles cells and/or batteries comprising an electrode construction of the invention may have both improved or relatively high DCA

(measured by the Ford EU DCA test that has now been converted into a standard EU test being EN50432-6:2015 Test 7.3.10 for example) and low water consumption (measured in accordance with EN50432-1:2015 Test 6.9) and/or CCA (measured in accordance with the SAE J357 CCA

15 test for example) and/or may maintain DCA or a higher rate of DCA with increasing number of charge-discharge cycles, and may also have improved or relatively high VED and/or improved battery life. Embodiments of cells or batteries of the invention may maintain DCA at least 70 % or 80% or 90% of starting DCA (when first fully charged) after 5000 or 10000 cycles for example. The capacity of a battery is measured in Amp/hours, and utilisation is the actual battery

20 capacity divided by the theoretical maximum capacity. In other embodiments of the invention the cells or batteries of the invention may have increased utilisation such as a utilisation of at least 55%, 60%, 70%, or 80% or over.

Examples

25 The following description of experimental work in which carbon fibre electrodes were constructed and tested for water consumption and DCA is given by way of example and further illustrates the invention.

Example 1

30 Electrode construction

Pasted electrodes referred to subsequently in this example were constructed as follows: Paste was prepared using leady oxide, dilute sulphuric acid, and 0.1% by weight lignosulphonate as an expander, and <1g of barium sulphate. The paste was mixed in an ultrasound bath to achieve an even consistency. Unpasted carbon fibre material, with areal density of approximately 200g/m²,

35 was then placed on the ultrasound plate, paste was then spread onto the carbon fibre, and then

the ultrasound was turned on to vibrate the paste into the fabric for approximately ~1.5 – 2.0 min. The pasted electrode was turned over a couple of times while the ultra-sound was in operation until a smooth distribution of paste was observed where the majority of paste had penetrated into the fabric. The total amount of wet mass loaded into the electrode achieved a 5 capacity (low current discharging) of approximately 14 Ah (i.e. approx., 62% of the theoretical capacity). The pasted electrode active area had dimensions length 140 mm, width 100 mm, and thickness between 2-2.5 mm. The achieved lead loading per volume (pasted density of the electrode based on the mass loaded into the electrode) was approx. 2.5-3g/cm³. At the fully charged state of the electrode, the Negative Active Mass (NAM) Pb to carbon volume ratio was 10 around 4 to 6. The average spacing between carbon fibres was about 30 microns. The electrode was then air-dried for 24 hours at ambient temperature (18 – 24°C). Where the pasted electrode were subsequently assembled in a cell, this contained electrolyte of 1.15 sg H₂SO₄ with one positive electrode on each side. The cell was left soaking for 24 hours at ambient temperature (18 – 24°C) and standard cell formation was carried out.

15

The electrolyte was replaced with 1.28 sg H₂SO₄ and stabilised over one cycle of low current discharging (0.1C) prior to being sent for DCA and water consumption testing.

Electrode testing – surface area (BET), water consumption, and DCA – tests:

20 A variety of tests were carried out on the carbon fibre fabric before pasting and on the pasted/formed electrodes described above. The test methods for Specific Surface Area, carbon vs non-carbon functional group content, water consumption, and DCA are given below:

Specific Surface Area: The Specific Surface Area (SSA) of the carbon fibre samples was 25 measured using the Brunauer-Emmett-Teller (BET) methodology (benzene analysis with 5ppm benzene vapour in atmospheric pressure nitrogen at room temperature) to determine the amount of nitrogen that was absorbed.

Carbon vs non-carbon functional group content: Samples of carbon fibre fabric were 30 crushed into a powder, and then analysed via X-ray Photoelectron Spectroscopy (XPS). This determines the mass by percentage the carbon and non-carbon functional group content of the carbon fibre material as a bulk measurement.

Water Consumption via electrochemical means, Tafel Method or European Automotive 35 Battery standard: Samples of carbon fibre fabric were tested via electrochemical means as

described below. Pending the outcome of the electrochemical test, the carbon fibre fabric underwent testing by the Tafel method. Here the carbon fabric is made into pasted electrodes as set out above and tested to obtain water consumption related values using the Tafel test current densities regime, by the standard Tafel test described in Fernandez, M., Atanassova, P., ALABC

5 Project ref 1012M report no. 1, Mar-Aug 2011. Subject to the results of the Tafel testing, then some electrodes (carbon fibre fabric with Pb paste) were then further tested using the European Automotive Battery standard EN50432-1:2015, Test 6.9.

10 **DCA:** Electrodes were tested for DCA according to the industry standard Ford EU DCA testing regime, the primary elements of which are now embodied in the EU test EN50432-6:2015 Test 7.3.10.

Testing Methods:

15 **Formation of Electrodes.** Formation is the first time the electrochemically active materials experience a charging current/voltage, and for the negative electrode involves the conversion of the Lead Oxide pasted material into Pb. When electrodes are formed, the electrical charge initially converts the active material to Pb. Towards the end of formation, most, if not all, of the active material is Pb and any current still flowing is because water is being converted into H₂ and O₂. The “asymptotic current” at the end of formation is therefore a strong predictor of the likely 20 water consumption outcome for the battery; the higher the asymptotic current, the higher the water consumption.

25 **Evaluating the Water Consumption tendency of the carbon fabric via electrochemical testing:** This is a relatively quick test in which a higher the current as measured in mA/g indicates a likelihood of increased gassing. Samples of carbon fibre fabric were cut out and made into electrodes that had superficial surfaces of around 12 mm x 12 mm (and were around 2 mm thick). The samples were submerged in sulphuric acid of SG 1.28. Each sample was pressed onto a copper shim and the contact area was completely covered with epoxy resin so that no electrolyte made contact with the copper. One sample electrode was placed opposite a counter 30 electrode made of woven carbon fibres similarly connected to copper shim. A reference electrode of silver/silver sulphate was also placed within the area between the working and counter electrode. Acid of high grade (low metal impurities) suitable for battery production was used. The cell was held at a temperature of 25°C and an overpotential of -150 mV with respect to the Pb/PbSO₄ electrode (- 1.15 V vs the reference electrode) was applied to the felt electrode using a 35 Gamry Interface 1000 potentiostat, as this overpotential is typically what is experienced by the

negative electrode during water consumption testing at battery scale. The steady state current that resulted from the applied overpotential.

Carbon felt/lead based active material electrodes for water consumption - Tafel test:

5 Tafel testing is used as a relatively quick method for determining the water consumption rate that will be achieved in a full battery. The advantage of this test is that useful data can be generated in less than one week. The full EN50432-1:2015 water consumption test, which is the actual standard against which the batteries will be assessed, can take up to 7 weeks to conduct. For the
10 Tafel test, samples of carbon fibre/Pb electrodes were made as described in the Electrode construction section above, with dimensions of 140 mm x 100 mm. Cells were constructed with one such CF/Pb negative electrode sandwiched between two commercially available automotive positive electrodes, with Daramic separators between each electrode surface. Also a silver/silver sulphate reference electrode was inserted in the cell. Acid of high grade suitable for battery production was used. The cells were connected to a testing machine (Arbin BT2000) and
15 electrochemically formed. Tafel tests were done both at 25 and 60°C. A steady state current for an application of -170 mV (the typical overpotential experienced by the negative electrode during the EN50432-1:2015 water consumption test) was noted as the current generated at this overpotential is predictive of the water consumption that will be experienced. (The current generated by applying an overpotential to a fully charged lead acid battery is due to hydrolysis
20 (converting H₂O into H₂ at the negative electrode, and O₂ at the positive electrode, rather than faradaic reactions (converting PbSO₄ into Pb at the negative electrode). The larger the steady state current, the greater the amount of hydrolysis, and the higher the water consumption will be.

Water Consumption via European Automotive Battery standard, EN50432-1:2015: 60Ah
25 cells (being a typical capacity of a Micro Hybrid Battery) were constructed using seven negative electrodes made as described in the Electrode construction section above, sandwiched with 6 automotive positive electrodes with (Daramic) separators between the electrode surfaces. Cells containing negatives and positives suitable for a full sized battery were made as described above. These cells were formed, experienced other tests then placed into an incubator at 60 °C and
30 recharged with a current of 1 A until the cell voltage reached 2.4 V. The voltage was held at 60°C and the current was recorded over time for the test duration of 42 days. Also every week the cell was removed briefly from the incubator, dried down on the outside and weighed.

The requirements for water consumption according to the European Standard (EN5042-1:2015)
35 are set out below:-

Requirement level	Test temperature	Duration (days)	Weight loss g/(Ah C _e)
W1	+60 °C \pm 2 °C	21	<24
W2	+60 °C \pm 2 °C	21	<16
W3	+60 °C \pm 2 °C	42	<8
W4	+60 °C \pm 2 °C	42	<4
W5	+60 °C \pm 2 °C	84	<4

Results:

5 The results are presented in table 1 below:

Test	Electrode CF01	Electrode CF02	Electrode CF03	Electrode CF04	Electrode CF05
Electrochemical Data (fabric only) mA/g	1.56	4.2	6.88		0.43
Specific Surface Area via BET (m ² /g)	0.42	0.3	66	91.61	0.42
Elemental Carbon as a % in the bulk fibre	87	78	84		97
Non carbon content as a % in the bulk fibre	13	22	16		3
Asymptotic Formation Current (mA)	200	200	400		100
EN50432-1:2015 Water Consumption (g/Ah)		7.0			3.4
Tafel Current (mA/60Ah battery)		203			130

Figure 6 is a water consumption plot for electrodes CF02 and CF05 with actual and projected data that can be used to determine water consumption in g/Ah with the reference standards W3 and W4 provided. Figure 6 shows the current that is generated by applying a constant voltage of 2.4V for the duration of the test, as described above. As the battery is fully charged before the

test begins, any current flowing is due to the conversion of H_2O into H_2 and O_2 i.e. due to hydrolysis. The higher the current, therefore, the higher the water consumption. To achieve the W4 water consumption standard mentioned above, the average current flowing over 42 days needs to be 119mA or less. To achieve the W3 standard, the average current over the 42 days is

5 237mA or less.

Conclusions

Electrodes CF01, CF02 and CF05 having a combination of BET levels below 50m²/g, levels of elemental carbon in the bulk fibre $\geq 78\%$ with $\leq 22\%$ non carbon content in the bulk fibre,

10 exhibited the lowest water consumption data. This is further illustrated with reference to Figure 6 that shows the projected and actual water consumption data for electrodes CF02 and CF05. For electrode CF02 both actual and projected water consumption of 7g/Ah (calculated as an average area under the curve) where the W3 line runs at 8g/Ah that correlates to a current of 237mA (representing the asymptotic current). For electrode CF05 projected water consumption of

15 3.4g/Ah at 42 days where the W4 line runs at 4g/Ah that correlates to a current of 119mA. DCA is maintained above the traditional lead grid lead acid battery value of 0.6A/Ah.

Example 2

Electrode testing – temperature of carbonisation

20 **Method:**

Samples of carbon fibre felt that were treated at the temperatures indicated on the x-axis of Figures 7 and 8 were obtained and cut to 140mm length by 100m width. The electrodes were pasted as described in Example 1 and then underwent water consumption testing in accordance with the methods described in Example 1. Again the water testing was carried out at 25 °C with a

25 steady state current over potential of -170mV.

Figure 7 is a water consumption plot for various pasted carbon fibre electrodes made from carbon fibre materials that have been treated at varying temperature ranges starting from 970 °C to approx., 2300 °C with the SSA of each carbon fibre material included. Figure 8 is a plot of

30 carbonisation versus temperature for the carbon fibre materials. Carbonisation temperature is an important parameter as the higher the carbonisation temperature, the higher the Carbon content (bulk measurement) and the lower the non-Carbon content. Hence, the higher the carbonisation temperature, the lower the non-Carbon content and the lower the observed gassing rate.

Conclusions:

As Figure 4 shows, a trend of decreased water consumption as the temperature of carbonisation increases was found. Figure 4 shows the Hydrogen Evolution Current (HER) which is the stable current that is observed from pasted electrodes that are subjected to a charging overpotential for

5 the negative electrode of 170mV, a typical overpotential for batteries in Micro Hybrid Vehicles.

From Figure 7 it can be seen that there is a trend for those electrodes carbonised at a temperature at or above 1400°C are likely to produce a battery product having a water consumption of 3g/Ah. This is indicated by a water consumption of approximately 0.25 mA/g.Pb.

CLAIMS

1. A lead-acid battery or cell including at least one electrode comprising a carbon fibre material which has been heated to a temperature of at least 1000°C and cooled in a substantially inert atmosphere to reduce or remove non-carbon functional groups on ('carbonise') the carbon fibre material.
5
2. A lead-acid battery or cell according to claim 1 wherein the carbon fibre material has been heated to a temperature of at least 1050°C, or at least 1100°C, or at least 1200°C, or at least
10 1400°C.
3. A lead-acid battery or cell including at least one electrode comprising a carbon fibre material having a surface area of less than 50 m²/g.
15
4. A lead-acid battery or cell including at least one electrode comprising a carbon fibre material, wherein:
 - the carbon fibre material has a surface area of less than 50 m²/g, and
 - non-carbon functional groups on the carbon fibre material comprise less than 22% by mass of the bulk fibre and the carbon fibre material comprises at least 78% carbon by
20 mass in the bulk fibre.
5. A lead-acid battery or cell according to any one of claims 1 to 4 wherein the carbon fibre material has a surface area of less than 30 m²/g, or less than 10 m²/g, or less than 5 m²/g, or less than 1 m²/g.
25
6. A lead-acid battery or cell according to any one of claims 1 to 5 wherein non-carbon functional groups on the carbon fibre material comprise less than 20% by mass in the bulk fibre or, less than 15% in the bulk fibre, or less than 10% in the bulk fibre, or less than 5% in the bulk fibre or less than 3% of the bulk fibre or less than 2% in the bulk fibre.
30
7. A lead-acid battery or cell according to any one of claims 1 to 6 wherein carbon fibre material comprises at least 80%, or at least 85%, at least 90%, or at least 95% carbon by mass in the bulk fibre.

8. A lead-acid battery or cell according to any one of claims 1 to 7 wherein the carbon fibre material comprises metal impurities less than 800 ppm, less than 500 ppm, less than 100 ppm less than 80ppm, or less than 50ppm, or less than 30 ppm, or less than 20ppm.

5 9. A lead-acid battery or cell according to any one of claims 1 to 8 wherein the areal density of the carbon fibre material is less than 500gm/m², or less than 400gm/m², or less than 300 gm/m², or less than 250gm/m², or less than 200gm/m², or less than 150gm/m².

10. 10. A lead-acid battery or cell according to any one of claims 1 to 98 wherein the carbon fibre material has impregnated therein an active material comprising a paste comprising Pb-based particles and dilute sulphuric acid.

11. 11. A lead-acid battery or cell according to claim 10 wherein paste comprises carbon particles.

15 12. 12. A lead-acid battery or cell according to claim 11 wherein carbon particles have a surface area in the range 50 to 1500 m²/g.

20 13. 13. A lead-acid battery or cell according to any one of claims 1 to 12 wherein the total specific carbon surface area in the paste impregnated electrode is less than 5 m²/g, or less than 3 m²/g, or less than 1 m²/g.

25 14. 14. A lead-acid battery or cell according to any one of claims 1 to 13 wherein the pasted carbon fibre material has a pasted density of between 1-5 g/cm³, or between 2-5 g/cm³, or between 2.5-4.5gm/cm³, or between 3.5-4.5 gm/cm³, or between 3.8-4.2 gm/cm³.

15. 15. A lead-acid battery or cell according to any one of claims 1 to 14, in which the carbon fibre material and/or carbon material in the active mass, has been heat treated to a temperature of at least 1050°C, or at least 1200°C, or at least 1400°C.

30 16. 16. A lead-acid battery or cell according to any one of claims 1 to 15 wherein surface impurities (non-carbon chemical surface moieties) on the current collector carbon fibre material comprise less than 20% by mass of the bulk fibre, or less than 15% by mass of the bulk fibre, or less than 10% by mass of the bulk fibre, or less than 5% by mass of the bulk fibre, or less than 3% by mass of the bulk fibre, or less than 3% by mass of the bulk fibre.

17. A lead-acid battery or cell according to any one of claims 1 to 16 wherein the current collector carbon fibre material and/or carbon material in the active mass, comprises at least 85% carbon, or at least 90% carbon.

5

18. A lead-acid battery or cell according to any one of claims 1 to 17 which exhibits water consumption as indicated by battery or cell weight loss, of not more than 16g/AH when tested at 60 °C +/- 2C over 21 days.

10 19. A lead-acid battery or cell according to any one of claims 1 to 18 having a minimum DCA acceptance of 0.6 A/Ah and a water consumption of not more than 8g/Ah.

15 20. A lead-acid battery or cell according to any one of claims 1 to 19 wherein the carbon fibre material comprises or is derived from a polyacrylonitrile material, or is derived from a rayon, phenol resin, or pitch material.

21. A lead-acid battery or cell according to any one of claims 1 to 20 wherein the average interfibre spacing between fibres in the conductive fibre material is between about 1 and about 5 average fibre diameters and/or less than about 100 microns.

20

22. A lead-acid battery or cell according to any one of claims 1 to 21 wherein the carbon fibre material comprises a fluid-entangled carbon fibre material.

25 23. A lead-acid battery or cell according to any one of claims 1 to 22 comprising, when fully charged, voidage (being the fractional volume occupied by the pores between the lead and conductive fibres) of at least about 0.3, and a mass loading ratio of lead (in whatever form) to the mass of conductive fibres, when converted to volume ratio, in the range above 0.7:1 to about 15:1 (each over at least a major fraction of the electrode).

30 24. A lead-acid battery or cell according to one of claims 9 to 23 wherein the paste at impregnation into the electrode comprises between greater than 0% and about 5% by weight of sulphuric acid.

35 25. A lead-acid battery or cell according to any one of claims 10 to 24 wherein the paste also comprises an expander.

26. A lead-acid battery or cell according to claim 25 wherein the expander comprises a lignosulfonate.

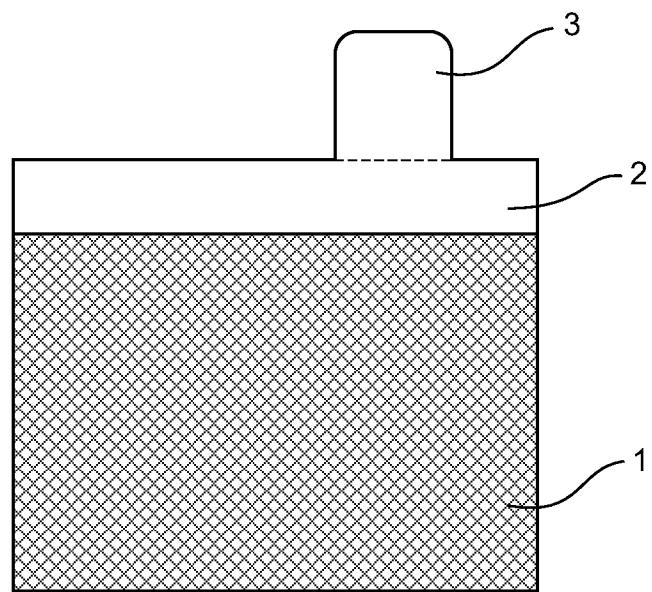
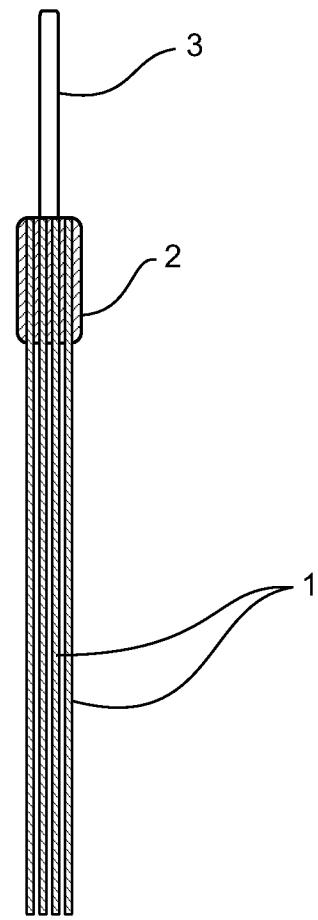
5 27. A lead-acid battery or cell according to any one of claims 1 to 26 wherein the electrode comprises a metal lug for external connection along at least one edge of the electrode.

28. A hybrid or full electric automotive vehicle comprising a battery according to any one of claims 1 to 27.

10

29. A hybrid automotive vehicle according to claim 28 which has stop-start functionality, regenerative braking functionality, and/or wherein the battery carries accessory loads when the engine is off.

15 30. A method of treating a carbon fibre material to reduce non-carbon functional groups comprising heating the carbon fibre material to a temperature of at least 1000°C and cooling the material in a substantially inert atmosphere to prevent non-carbon functional groups reforming on the carbonised carbon fibre material.



20 31. A method according to claim 30 comprising heating the carbon fibre material to a temperature of at least 1050°C, or at least 1100°C, or at least 1200°C, or at least 1400°C.

32. A carbon material for use as an electrode in a lead acid battery comprising a carbon material, wherein:

25

- the carbon fibre material has a surface area of less than 50 m²/g, and
- non-carbon functional groups on the carbon fibre material comprise less than 22% by mass of the bulk fibre and the carbon fibre material comprises at least 78% carbon by mass in the bulk fibre.

30

FIGURE 1**FIGURE 2**

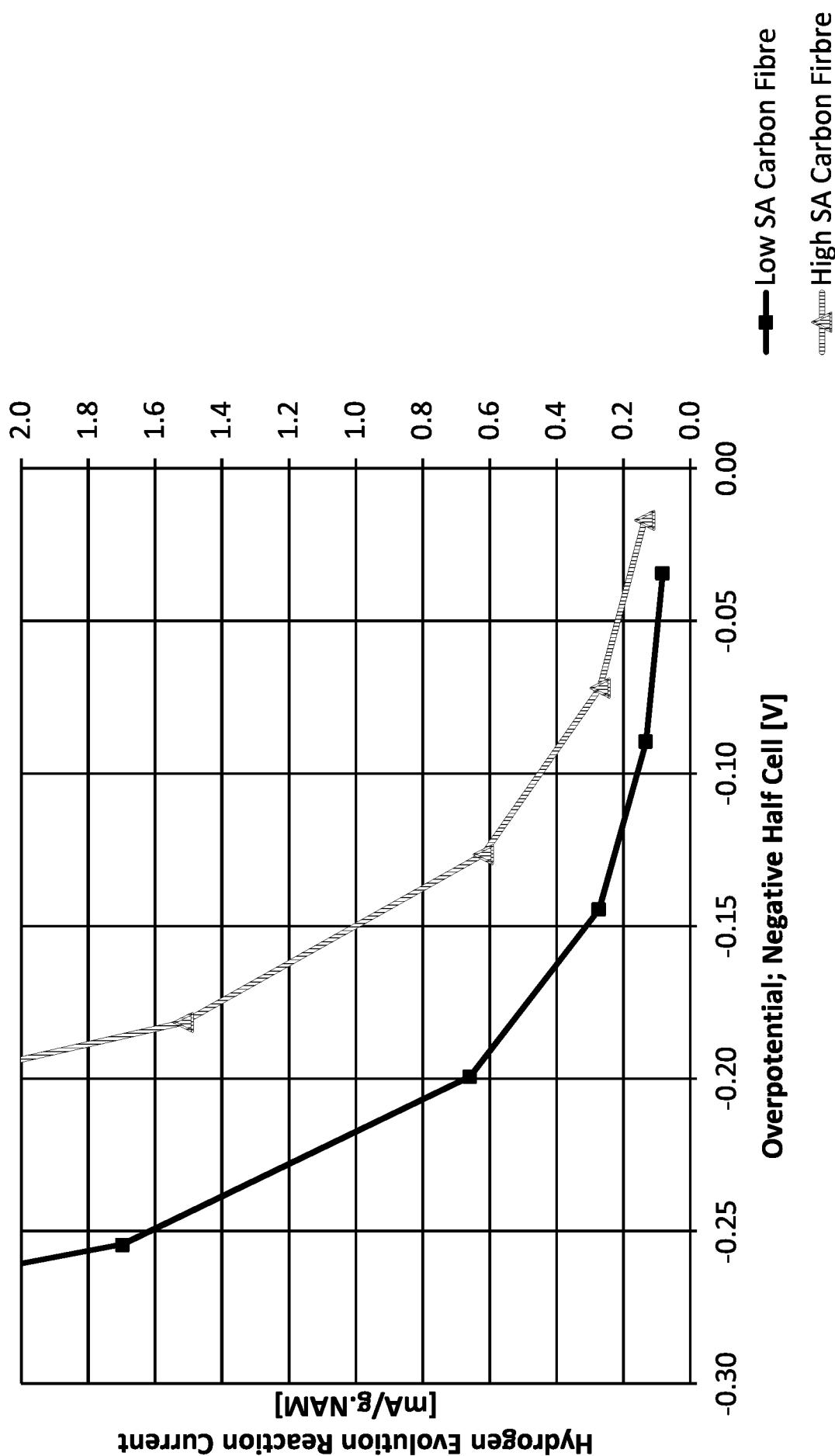


FIGURE 3

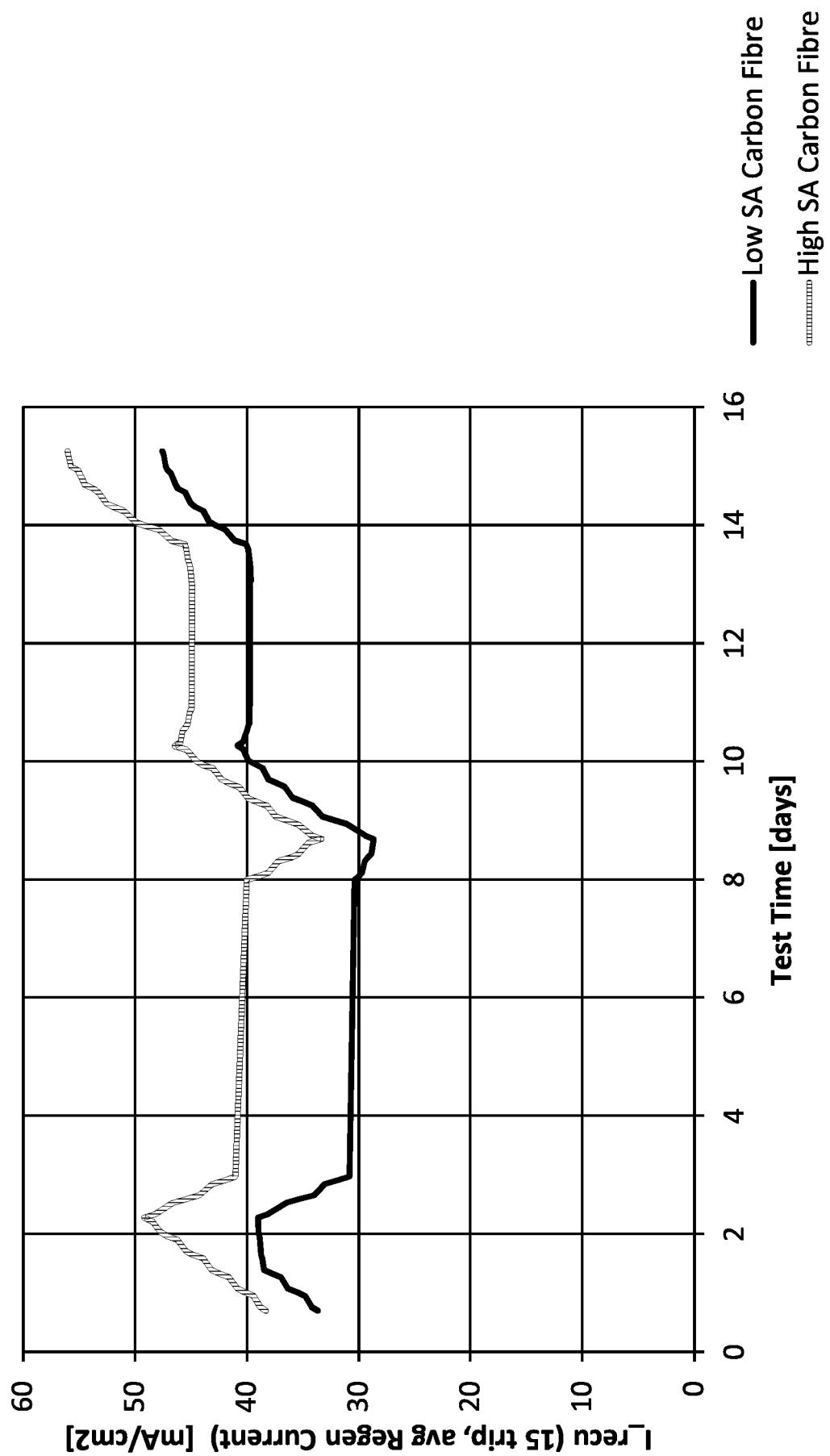


FIGURE 4

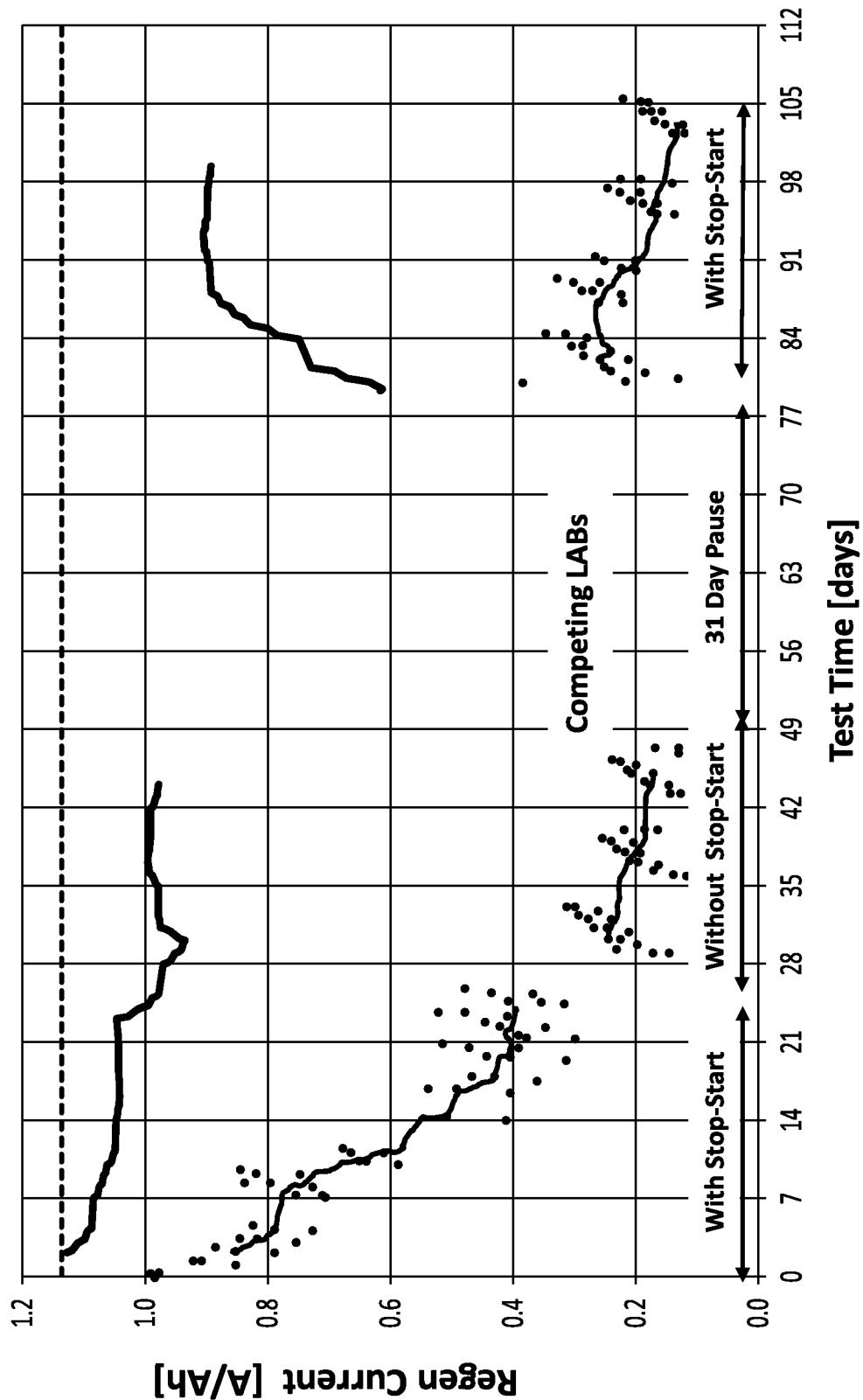


FIGURE 5

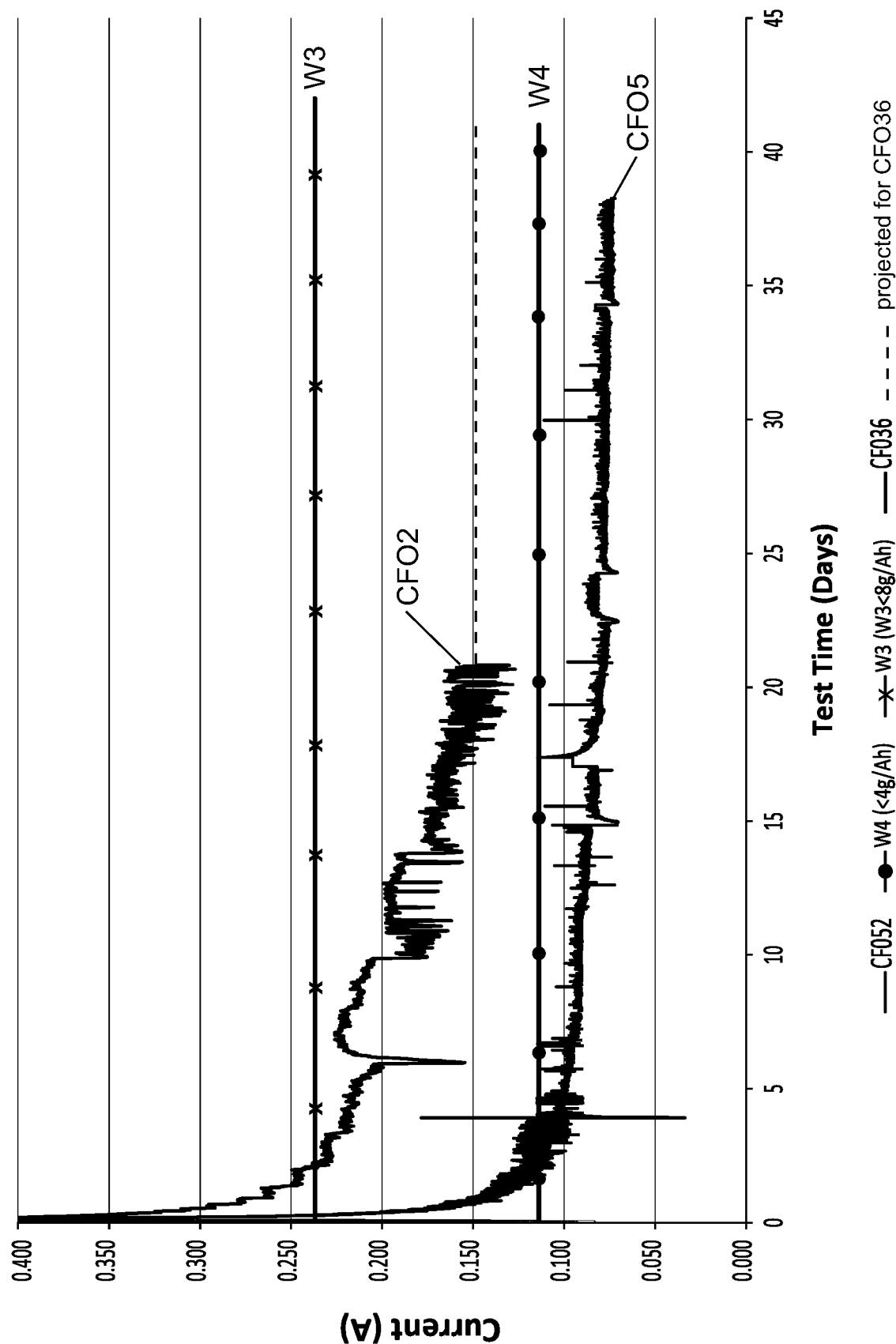


FIGURE 6

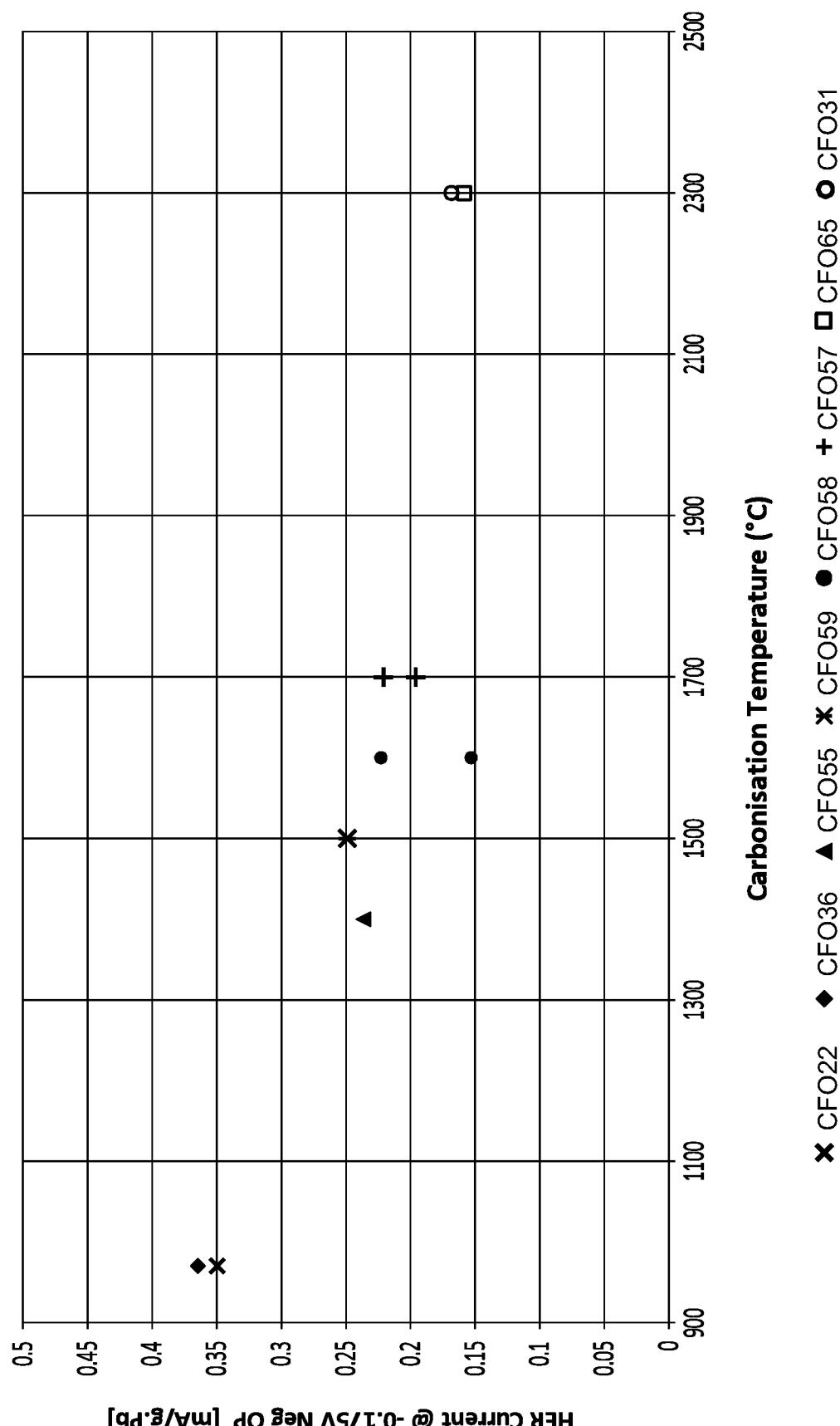


FIGURE 7

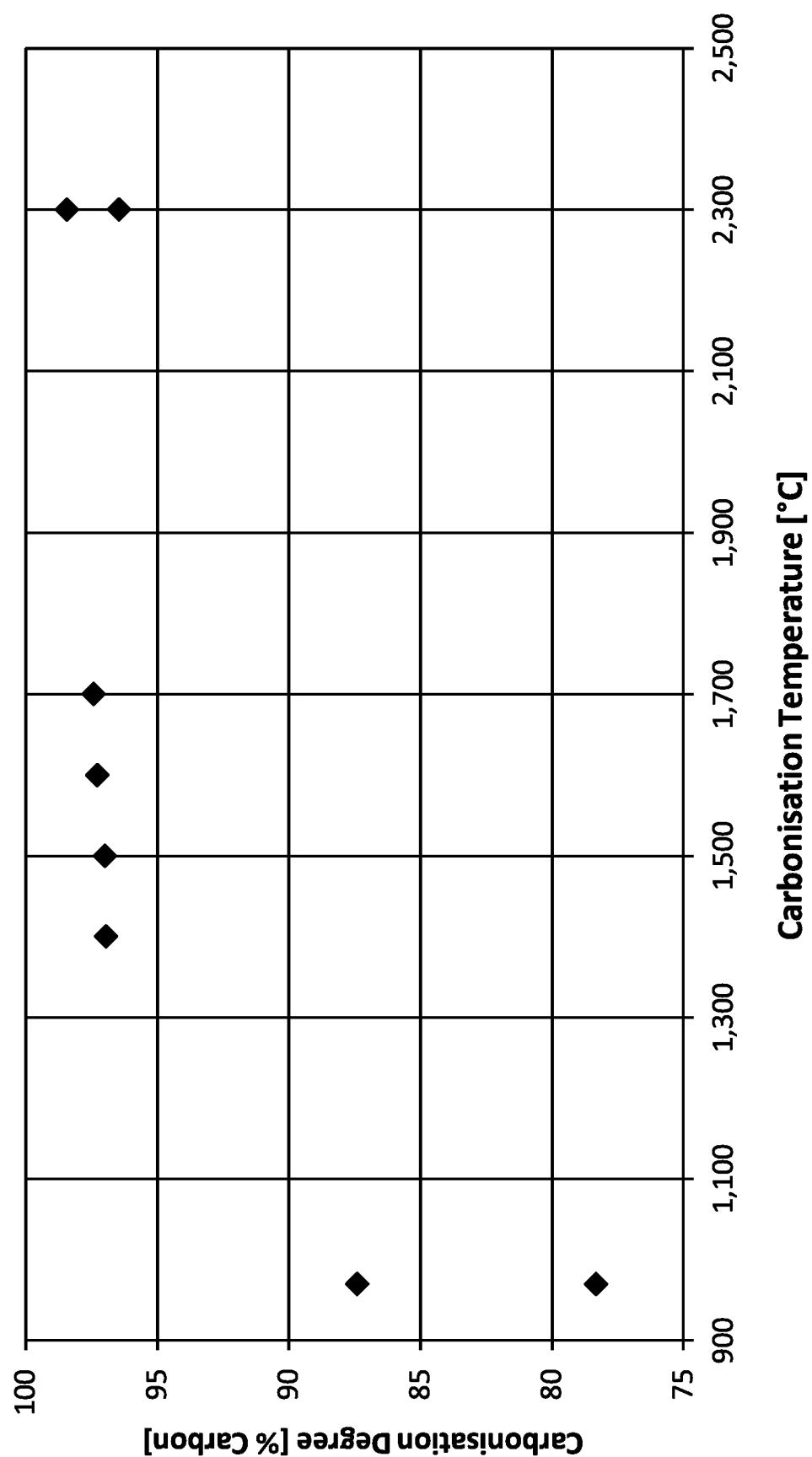


FIGURE 8

INTERNATIONAL SEARCH REPORT

International application No.

PCT/IB2016/055973

A. CLASSIFICATION OF SUBJECT MATTER

H01M 4/14 (2006.01) H01M 4/68 (2006.01) H01M 4/82 (2006.01) H01M 10/06 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Database: EPODOC, WPIAP, TXPEA, TXPEB, TXPEC, TXPEE, TXPEF, TXPEH, TXPEI, TXPEP, TXTPEPEA, TXTPEPEB, TXPES, TXPUSEA0A, TXPUSEA1A, TXPUSEA, TXPUSEB, TXPW0EA, TXTPEPGB, TXTPEPFB: IPC, CPC: H01M4/14/LOW, H01M4/82, H01M10/06, H01M4/68, H01M4/0471, H01M4/625, H01M4/583, H01M4/663, H01M2004/021; keywords: heat, carbon, fiber, electrode, lead acid, inert, temperature, surface area (with similar keywords); Google Patent, Espacenet, Patent Lens Google Scholar: keywords: heat, carbon, cool, electrode, lead acid, inert, surface area (with similar keywords). Applicant/ inventor search in internal databases provided by IP Australia, AUSPAT and ESPACENET: ARCACTIVE LIMITED; ABRAHAMSON, JOHN; TITELMAN, GRIGORY ISAAC.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Documents are listed in the continuation of Box C	

 Further documents are listed in the continuation of Box C See patent family annex

* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E"	earlier application or patent but published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O"	document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search
12 January 2017Date of mailing of the international search report
12 January 2017

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
Email address: pct@ipaaustralia.gov.au

Authorised officer

Konika Khan
AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No. 0262223659

INTERNATIONAL SEARCH REPORT		International application No.
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		PCT/IB2016/055973
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2015/0017545 A1 (ARCACTIVE LIMITED) 15 January 2015 paragraph 0001- 0019, 0063, 0064, 0098-0099, 0103, examples, claims 122, 126, 127, 115,118, 128, figures 1-18	1-2, 6-31
X	US 2013/0004842 A1 (JOHN ABRAHAMSON) 03 January 2013 see examples 1-8, paragraph 0035-0050	1,2,6-31
X	US 8974965 B2 (ZEON CORPORATION) 10 March 2015 abstract, figures 1, column 3 line 19-column 7 line 33, examples	3-14, 16-29, 32

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
the subject matter listed in Rule 39 on which, under Article 17(2)(a)(i), an international search is not required to be carried out, including
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See Supplemental Box for Details

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

Supplemental Box**Continuation of: Box III**

This International Application does not comply with the requirements of unity of invention because it does not relate to one invention or to a group of inventions so linked as to form a single general inventive concept.

This Authority has found that there are different inventions based on the following features that separate the claims into distinct groups:

- Claims 1-2, 30-31 and part of claims 5-29 are directed to a process where carbon fiber material is heated to a temperature of at least 1000 C and cooled in a substantially inert atmosphere. The feature of heating a carbon fiber material to a temperature of at least 1000 C and cooling in a substantially inert atmosphere, is specific to this group of claims.
- Claims 3,4,32 and part of claims 5-29 are directed to a carbon fiber material having surface area of less than 50 m²/g. The feature of carbon fiber material having surface area of less than 50 m²/g is specific to this group of claims.

PCT Rule 13.2, first sentence, states that unity of invention is only fulfilled when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding special technical features. PCT Rule 13.2, second sentence, defines a special technical feature as a feature which makes a contribution over the prior art.

When there is no special technical feature common to all the claimed inventions there is no unity of invention.

In the above groups of claims, the identified features may have the potential to make a contribution over the prior art but are not common to all the claimed inventions and therefore cannot provide the required technical relationship. Therefore there is no special technical feature common to all the claimed inventions and the requirements for unity of invention are consequently not satisfied *a priori*.

INTERNATIONAL SEARCH REPORT Information on patent family members		International application No. PCT/IB2016/055973	
This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.			
Patent Document/s Cited in Search Report		Patent Family Member/s	
Publication Number	Publication Date	Publication Number	Publication Date
US 2015/0017545 A1	15 January 2015	US 2015017545 A1	15 Jan 2015
		AU 2013228118 A1	16 Oct 2014
		CA 2866368 A1	12 Sep 2013
		CN 104321910 A	28 Jan 2015
		EP 2820702 A2	07 Jan 2015
		JP 2015513197 A	30 Apr 2015
		KR 20150022750 A	04 Mar 2015
		MX 2014010616 A	18 Sep 2014
		RU 2014140598 A	27 Apr 2016
		WO 2013133724 A2	12 Sep 2013
US 2013/0004842 A1	03 January 2013	US 2013004842 A1	03 Jan 2013
		AU 2010335073 A1	26 Jul 2012
		AU 2010335073 B2	05 Nov 2015
		BR 112012018809 A2	03 May 2016
		CA 2785030 A1	30 Jun 2011
		CN 102782905 A	14 Nov 2012
		CN 102782905 B	09 Dec 2015
		EP 2517287 A1	31 Oct 2012
		JP 2013516035 A	09 May 2013
		KR 20120123366 A	08 Nov 2012
		MX 2012007404 A	09 Oct 2012
		RU 2012131576 A	27 Jan 2014
		WO 2011078707 A1	30 Jun 2011
US 8974965 B2	10 March 2015	US 2011020693 A1	27 Jan 2011
		US 8974965 B2	10 Mar 2015
		CN 101978532 A	16 Feb 2011
		CN 101978532 B	13 Nov 2013
		EP 2262042 A1	15 Dec 2010
		EP 2262042 B1	10 Jun 2015
		JP 5348131 B2	20 Nov 2013
		WO 2009119582 A1	01 Oct 2009
End of Annex			
Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001. Form PCT/ISA/210 (Family Annex)(July 2009)			