
USOO6260045B1 

(12) United States Patent (10) Patent No.: US 6,260,045 B1 
Eidt (45) Date of Patent: Jul. 10, 2001 

(54) METHOD AND APPARATUS FOR 5,765,159 6/1998 Srinivasan ............................ 707/102 
OPTIMIZING INTERFACE DISPATCHING IN 5,842,220 11/1998 De Groot et al. ................... 707/103 
AN OBJECTORIENTED PROGRAMMING 5,870,742 * 2/1999 Chang et al. ............................ 707/8 
ENVIRONMENT 5,872,969 : 2/1999 Copeland et al. 395/671 

5,960,197 * 9/1999 Segnan ................. ... 395/702 

(75) Inventor: Erik L. Eidt, Campbell, CA (US) E. : 'g NES." - - - - - - - - - - - - - - - - - - - 3.27. 2Y----Y-2 al. . . . . . . . . . . . . . . . . . 

(73) ASSignee: Apple Computer, Inc., Cupertino, CA 6,066,181 5/2000 DeMaster ................................. 717/5 
(US) * cited by examiner 

- 0 Primary Examiner John Breene (*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 Alth Est; G. lv, Sokoloff U.S.C. 154(b) by 0 days. 2R, Orney, Agent, Or Firm akely, Sokoloff, Taylor & 

(21) Appl. No.: 09/083,518 (57) ABSTRACT 
(22) Filed: May 22, 1998 A method and apparatus perform optimizations for interface 

dispatching in an object-oriented programming environ 
7 (51) Int. Cl.' ...................................................... G06F 17/30 ment. Specifically, Section of code that dispatches an inter 

(52) U.S. Cl. ................................... 707/103; 707/4; 707/8; face method on a particular object is determined. A table of 
707/102; 707/200 interfaces associated with the class is examined to locate the 

(58) Field of Search ..................................... 707/103, 102, interface Specified by the dispatch. An offset for a location 
707/8, 4, 200 of the interface is determined, and the offset is cached in a 

class cache. The class cache is then examined when a next 
(56) References Cited dispatch is received to determine whether the interface 

U.S. PATENT DOCUMENTS asSociated with the offset in the class cache matches the 
interface Specified by the next dispatch. 

5,542,078 * 
5,721,854 * 

7/1996 Martel et al. ........................ 395/600 
2/1998 Ebcioglu et al. .................... 395/379 

EXAMINEAN OBJECTSPECIFYING 
AMEHOD 

18 Claims, 9 Drawing Sheets 

DETERMINE THE CLASS TOWHICH 
THE OBJECTBELONGS 

EXAMINEATABLE OF METHODS 
ASSOCATED WITH THE CLASSTO 
LOCATE THE METHODSPECIFIED BY 

THE CLASS 

DETERMINEAN OFFSET FORTHE 
LOCATION OF THE METHOD 

CACHETHE OFFSETASSOCATED 
WITH THE LOCATION OF THE 
METHODNA CLASS CACHE 

EXAMINE CLASS CACHE WHENA 
NEXTOBJECTS RECEIVED TO 

DETERMINE WHETHER THE METHOD 
ASSOCATED WITH THE OFFSET IN 
THE CLASS CACHE MATCHESA 

MEHODSPECIFIED BY THE NEXT OBJECT 

YES 

RETRIEVE THE OFFSET FROM THE 
CASS CACHE 

RTREVE THE METHODSPECIFIED 
BY THE OFFSET FROM THE CLASS 

CACHE 

PERFORMSEQUENTIAL 
LINEAR SEARCH OF 
METHODTABLE FOR 

THE METHOD SPECIFIED 
BY THE OBJECT 

    

    

    

  

  



US 6,260,045 B1 

8XC10H13N ?X QOHLEN kX GOHLEW 

8Å GOHIRW ?Å GOHIBW HA GOHIRW 

Sheet 1 of 9 

8 SSVT10 

Jul. 10, 2001 U.S. Patent 

  

        

  

    

  



U.S. Patent Jul. 10, 2001 Sheet 2 of 9 US 6,260,045 B1 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

SEARCH 
METHOD TABLE 100 

FIG. 1B 
(PRIOR ART) 

  



US 6,260,045 B1 Sheet 3 of 9 Jul. 10, 2001 U.S. Patent 

B01AB0 X80 MW | BN GOZ 

70Z W08 

$OZ Å HOWE'W NIWW 

ZOZ ZOZ HOSSE|00}}d   

  

  

  



U.S. Patent Jul. 10, 2001 Sheet 4 of 9 US 6,260,045 B1 

METHOD X2 ADDRESS 

METHOD X3 ADDRESS 

METHOD X ADDRESS 

INTERFACE XMETHOD TABLE 

METHOD Y3 ADDRESS 

METHOD Y ADDRESS 

METHOD Y2 ADDRESS 

INTERFACEYMETHODTABLE 

INTERFACE METHOD TABLES 

FIG. 3A 

  



U.S. Patent Jul. 10, 2001 Sheet S of 9 US 6,260,045 B1 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD ADDRESS 

METHOD TABLE 

m no m an no m is a sm mm a on no m an m as m 

GUESS MATCH TAG 
CACHE 

JAVA RUNTIME 

  



U.S. Patent Jul. 10, 2001 

METHOD X 

METHOD Y2 

METHOD Y 

METHOD X3 

METHOD X2 

METHOD Y3 

(INTERFACE) OFFSET 

CACHE 

Sheet 6 of 9 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

ADDRESS 

METHODTABLE 

FIG. 4 

US 6,260,045 B1 

(INTERFACE) OFFSET 

CACHE 

  



U.S. Patent Jul. 10, 2001 Sheet 7 of 9 US 6,260,045 B1 

EXAMINEAN OBJECT SPECIFYING 
A METHOD 

DETERMINE THE CLASS TO WHICH 
THE OBJECT BELONGS 

EXAMINEA TABLE OF METHODS 
ASSOCATED WITH THE CLASS TO 
LOCATE THE METHOD SPECIFIED BY 

THE CLASS 

DETERMINEAN OFFSET FOR THE 
LOCATION OF THE METHOD 

CACHE THE OFFSETASSOCATED 
WITH THE LOCATION OF THE 
METHOD IN A CLASS CACHE 

EXAMINE CLASS CACHE WHENA 
NEXT OBJECT IS RECEIVED TO 

DETERMINE WHETHER THE METHOD 
ASSOCIATED WITH THE OFFSET IN 
THE CLASS CACHE MATCHES A 

METHOD SPECIFIED BY THE NEXT OBJECT 

PERFORM SEQUENTIAL 
LINEAR SEARCH OF 
METHOD TABLE FOR 

THE METHOD SPECIFIED 
BY THE OBJECT 

NO 

YES 

RETRIEVE THE OFFSET FROM THE 
CLASS CACHE 

RETRIEVE THE METHOD SPECIFIED 
BY THE OFFSET FROM THE CLASS 

CACHE 

FIG. 5 

    

  

  

    

    

  



U.S. Patent Jul. 10, 2001 Sheet 8 of 9 US 6,260,045 B1 

BASE CLASS 

SUB-CLASS 

l, J B 

FIG. 6A 



US 6,260,045 B1 Sheet 9 of 9 Jul. 10, 2001 U.S. Patent 

  



US 6,260,045 B1 
1 

METHOD AND APPARATUS FOR 
OPTIMIZING INTERFACE DISPATCHING IN 
AN OBJECTORIENTED PROGRAMMING 

ENVIRONMENT 

FIELD OF THE INVENTION 

The present invention relates to the field of object 
oriented programming. Specifically, the present invention 
relates to a method and apparatus for optimizing interface 
dispatching in an object-oriented programming environ 
ment. 

BACKGROUND OF THE INVENTION 

In object-oriented programming, an “object' is a Software 
package that contains a collection of related procedures (or 
“methods”) and data (or “variables”). A “class” is a template 
that defines the methods and variables to be included in a 
particular object. 

Once a base class is defined, any number of unique 
“instances” of the class may be created. The class defines the 
characteristics shared by all the instances, while the instance 
itself contains the information that makes the instance 
unique. 

Inheritance is a mechanism whereby a new class of 
objects can be defined as a special case of a more general 
class. The new class automatically includes (or “inherits”) 
the method and variable definitions of the general class. 
Special cases of a class are known as "Subclasses' of that 
class. In addition to the methods and variables they inherit, 
Subclasses may define their own methods and variables and 
may override any of the inherited characteristics. Inheritance 
is thus essentially a mechanism for extending an applica 
tion's functionality by reusing the functionality in the parent 
classes. 

Interfaces are fundamental in object-oriented Systems. 
Objects are known only through their interfaces. An object's 
interface characterizes the complete Set of requests that can 
be sent to the object, or methods recognized and imple 
mented by the object. An objects interface Says nothing 
about its implementation, i.e. different objects are free to 
implement different requests differently. 

“Implementation inheritance' defines an object's imple 
mentation in terms of another object's implementation, i.e. 
implementation inheritance defines a new implementation in 
terms of one or more existing implementations. Implemen 
tation inheritance is thus essentially a mechanism for code 
and representation sharing. In contrast, “interface inherit 
ance” (or Subtyping) describes when an object can be used 
in place of another, i.e. interface inheritance defines a new 
interface in terms of one or more existing interfaces. 

FIG. 1A illustrates an overview of object oriented pro 
gramming concepts. Specifically, FIG. 1A illustrates two 
classes, Class A and Class B, each comprising multiple 
objects. Objects A and A are each instances of Class A and 
inherit all characteristics of Class A. Each object may also 
override any or all of the inherited characteristics. Similarly, 
Objects B, B and B are instances of Class B and inherit 
all characteristics of Class B and may override any or all of 
the inherited characteristics. Class A also inherits from 
Interface X, where Interface X implements multiple meth 
ods. Class B inherits from both Interface X and Interface Y, 
where each interface implements multiple methods. Objects 
in Class A therefore recognize Methods X, X and X, 
while objects in Class B recognize Methods X, X2, X, Y, 
Y and Y. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
In languages like C++, inheritance means both interface 

and implementation inheritance. The Standard way to inherit 
an interface in C++ is to inherit publicly from a class that has 
(pure) virtual member functions. Pure interface inheritance 
can be approximated in C++ by inheriting publicly from 
pure abstract classes. Pure implementation or class inherit 
ance can be approximated with private inheritance. In lan 
guages like Smalltalk, on the other hand, inheritance means 
implementation inheritance only. Instances of any class may 
be assigned to a variable as long as those instances Support 
the operations performed on the value of the variable. 

In contrast with C++ and Smailtalk, in a programming 
environment Such as Java", interface inheritance and 
implementation inheritance are treated distinctly differently. 
The issues facing a programmer in any of these object 
oriented programming environments, however, remain simi 
lar. The present Specification assumes an interface inherit 
ance mechanism implemented in Java. The description is, 
however, also applicable to a C++ or Smalltalk program 
ming environment, with minor modifications. 

Interface inheritance generally requires a mechanism to 
locate appropriate information about an interface with 
respect to the object being dealt with. For example, a 
mechanism is required to determine whether an object 
implements a specific method. FIG. 1B illustrates this prob 
lem conceptually. If “Method X is called in Object A, 
then a method table, method table 100, is accessed to 
determine whether Object A may implement Method X. In 
order to find Method X, method table 100 is searched in a 
linear, Sequential manner. 

Thus, as illustrated in this example, the Search goes 
through each method in method table 100 and locates 
Method X. Then, based on the address for Method X, the 
method can be invoked. Note that Object A does not inherit 
from Interface Y, and thus half the methods in the method 
table are not applicable to Object A. Given that a class can 
implement as many interfaces as a programmer chooses, 
Searching for a Specific method potentially involves check 
ing all methods for each interface the object class imple 
ments for a match. This may result in a time-consuming loop 
to Search for the item required. 

SUMMARY OF THE INVENTION 

The present invention discloses a method and apparatus 
for optimizing interface inheritance in an object-oriented 
programming environment. Specifically, an object Specify 
ing a method is examined and a class to which the object 
belongs is determined. A table of methods associated with 
the class is examined to locate the method specified by the 
object. An offset for a location of the interface within the 
class to which it belongs is determined, and the offset is 
cached in a class cache. The class cache is then examined 
when a next object is received to determine whether the 
interface associated with the offset in the class cache 
matches an interface Specified by the next interface dispatch 
to an object of that class. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example 
and not by way of limitation in the figures of the accompa 
nying drawings in which like reference numerals refer to 
Similar elements and in which: 

FIG. 1A illustrates an overview of object oriented pro 
gramming concepts. 

FIG. 1B illustrates conceptually the problem of determin 
ing whether an object implements a Specific method. 



US 6,260,045 B1 
3 

FIG. 2 illustrates a typical computer system 200 in which 
the present invention operates. 

FIG. 3A is one embodiment of an interface method table. 

FIG. 3B illustrates a cache that stores a “match tag' and 
a "guess,” provided by the Sun Java Runtime. 

FIG. 4 illustrates conceptually the cache according to the 
present embodiment. 

FIG. 5 is one embodiment of a flow diagram of one 
embodiment of the present invention. 

FIG. 6A is one embodiment of a class and interfaces 
implemented by Sub-classes. 

FIG. 6B is one embodiment of a v-table for objects of type 
C as defined in FIG. 6A. 

DETAILED DESCRIPTION 

The present invention discloses a method and apparatus 
for optimizing interface dispatching in an object-oriented 
programming environment. In the following detailed 
description, numerous Specific details are Set forth in order 
to provide a thorough understanding of the present inven 
tion. It will be apparent to one of ordinary skill in the art that 
these specific details need not be used to practice the present 
invention. In other instances, well-known Structures, 
interfaces, and processes have not been shown in detail in 
order not to unnecessarily obscure the present invention. 

FIG. 2 illustrates a typical computer system 200 in which 
the present invention operates. One embodiment of the 
present invention is implemented on a personal computer 
architecture. It will be apparent to those of ordinary skill in 
the art that other alternative computer System architectures 
may also be employed. 

In general, Such computer Systems as illustrated by FIG. 
2 comprise a bus 201 for communicating information, a 
processor 202 coupled with the bus 201 for processing 
information, main memory 203 coupled with the bus 201 for 
Storing information and instructions for the processor 202, a 
read-only memory 204 coupled with the bus 201 for storing 
Static information and instructions for the processor 202, a 
display device 205 coupled with the bus 201 for displaying 
information for a computer user, an input device 206 
coupled with the bus 201 for communicating information 
and command Selections to the processor 202, and a mass 
Storage device 207, Such as a magnetic disk and associated 
disk drive, coupled with the bus 201 for storing information 
and instructions. A data Storage medium 208 containing 
digital information is configured to operate with mass Stor 
age device 207 to allow processor 202 access to the digital 
information on data storage medium 208 via bus 201. 

Processor 202 may be any of a wide variety of general 
purpose processors or microprocessorS Such as the Pow 
erPC(R) processor available from Motorola Corporation of 
Schaumburg, Ill. It will be apparent to those of ordinary skill 
in the art, however, that other varieties of processors may 
also be used in a particular computer System. Display device 
205 may be a liquid crystal display (LCD), cathode ray tube 
(CRT), or other suitable display device. Mass storage device 
207 may be a conventional hard disk drive, floppy disk 
drive, CD-ROM drive, or other magnetic or optical data 
Storage device for reading and writing information Stored on 
a hard disk, a floppy disk, a CD-ROM a magnetic tape, or 
other magnetic or optical data Storage medium. Data Storage 
medium 208 may be a hard disk, a floppy disk, a CD-ROM, 
a magnetic tape, or other magnetic or optical data Storage 
medium. 

In general, processor 202 retrieves processing instructions 
and data from a data Storage medium 208 using mass Storage 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
device 207 and downloads this information into random 
access memory 203 for execution. Processor 202, then 
executes an instruction Stream from random acceSS memory 
203 or read-only memory 204. Command selections and 
information input at input device 206 are used to direct the 
flow of instructions executed by processor 202. Equivalent 
input device 206 may also be a pointing device Such as a 
conventional mouse or trackball device. The results of this 
processing execution are then displayed on display device 
205. 

Computer system 200 includes a network device 210 for 
connecting computer system 200 to a network. Network 
device 210 for connecting computer system 200 to the 
network includes Ethernet devices, phone jacks and Satellite 
links. It will be apparent to one of ordinary skill in the art 
that other network devices may also be utilized. 
One optimization utilized by programmerS to improve the 

mechanism to locate appropriate information about an inter 
face with respect to an object is to implement an interface 
method table. FIG. 3A illustrates an interface method table. 
Instead of a large table that includes all methods imple 
mented by all interfaces in a program, as in FIG. 1B above, 
interface method table 300 includes multiple smaller tables 
that each contain only the methods implemented by a 
Specific interface. Thus, instead of a loop that Searches all 
methods in a method table, the loop may search only the 
appropriate interface table for the methods pertaining to the 
object. In the example of FIG. 1B above, the loop now may 
only search Interface X method table because Object A 
only implements Interface X. AS compared to the Search in 
FIG. 1B, the amount of time required to search for the 
method is significantly reduced. 

Sun's Java Virtual Machine describes an alternative 
optimization, namely a caching optimization. AS illustrated 
in FIG. 3B, the Sun Java Runtime provides a cache that 
Stores a “match tag and a "guess.” Instead of Searching the 
method table or the interface method table, the cache is 
checked first to see if the guess is correct. If the guess is 
correct, the cached guess value is updated. If the guess is not 
correct, then the object's method table is searched for the 
appropriate entry. If found, then the cached guess value is 
updated. Although this provides for an improved perfor 
mance in Searching for a method, there is still its significant 
performance lag and the cache hit rate may not improve 
Significantly given that each interface method dispatch does 
its own independent caching. 

According to one embodiment of the present invention, an 
improved caching mechanism is provided to optimize return 
information So that Subsequent queries of the Same value 
produce results quicker. According to this embodiment, a 
one element cache is provided per class, that implements any 
interface. The one element cache is then shared by all 
instance objects of a given class. FIG. 4 illustrates concep 
tually the cache according to the present embodiment. 
By caching interface locations within a class, interface 

locations can be shared amongst uses of multiple members 
of the same interface. Each time an interface lookup is 
performed, the object's class cache is checked. If the desired 
interface is found in the cache, then its cached location 
within the class is returned. If the desired interface is not 
found, a loop Search for the interface is performed. If the 
loop Search finds the item (implying the cached entry did 
not), then the entry is stored back into the cache (overriding 
any previous entry) before being returned. 

Given that any thread in the System may be performing a 
different interface lookup query on the same class, i.e., using 



US 6,260,045 B1 
S 

the same cache, at the same time, the cache must be 
maintained as if multiple readers and multiple writers are 
using it. Since the one element cache contains two pieces of 
data (the interface identifier as the match target, and the 
interface number within the class as the return value), each 
item is Stored as a 16-bit value and read or written together 
as a single 32-bit word. This avoids the need for explicit 
Synchronization while checking entries in the cache. 

According to one embodiment, if the class implements 
only one interface, then that entry is placed directly into the 
cache, and the class list that is Searched when the cache is 
missed is set to Zero. Thus, the class interface cache is 
pre-primed, which avoids the initial priming during run time 
execution. Additionally, according to an alternate 
embodiment, by removing the implemented interface from 
the list, the negative search case (when the programmer tests 
if an object is not an instance of an interface) is helped as 
well. Many interfaces are implemented by custom classes 
that have been created just to Support that interface. This 
increases the likelihood that a class will implement only one 
interface. 

According to yet another embodiment, the list of inter 
faces implemented by a class is presorted by the number of 
methods in the interface. This moves interfaces which have 
no methods to the end of the list. These kinds of interfaces 
are often never involved in the interface lookup operation. 
When a class Supports more than one interface, this Sorting 
makes it faster to find those involved in interface lookup 
operations. 

FIG. 5 is a flow diagram of one embodiment of the present 
invention. In Step 502, am object specifying a method is 
examined. The class to which the object belongs is deter 
mined in step 504, and a table of methods associated with the 
class is then examined to locate the method specified by the 
object in step 506. In step 508, an offset is determined for a 
location of the interface, and the offset associated with the 
location of the interface is then cached in a class cache in 
step 510. In step 512, the class cache is examined when a 
next object is received to determine whether the interface 
asSociated with the offset in the class cache matches the 
interface Specified by the next interface dispatch. 

FIG. 6A is one embodiment of a class and interfaces 
implemented by Subclasses. In the example of FIG. 6A, 
Class A is a base class and Sub-Classes B and C are 
Sub-classes from Class A inheriting the method and variable 
definitions of Class A. Sub-Class B implements interfaces I 
and J and Sub-Class C implements interface Kin addition to 
interfaces I and J inherited from Sub-Class B. 

FIG. 6B is one embodiment of a v-table for objects of type 
C (e.g., objects of Sub-Class C) as defined in FIG. 6A. In the 
v-table entry of FIG. 6B, each section includes a set of slots 
corresponding to the methods of that Section. It is important 
to note that the order of the class and Sub-class Sections of 
the v-table of FIG. 6B is important. The order of the 
Sub-classes indicates inheritance information based on the 
class and sub-classes “higher' in the v-table. 

The order of the Sections representing interfaces is not 
important So long as the offset from a class and/or Sub-class 
and the interface(s) is known and consistent. Thus, offset 
values for a class or Sub-class indicate the location of an 
interface in the v-table. In the v-table layout of FIG. 6B, a 
method “B.ml” has a slot in the B section. The method 
“B.m.1” also has a slot in any of the interface sections where 
the interface declares an “m1' method. In one embodiment, 
offset values indicate the beginning of a referenced interface 
in the v-table. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
In one embodiment, each object has a slot at a known 

offset (e.g., 0 or -4) that indicates an object identifier 
(ObjID) for the object. In one embodiment, the object 
identifier has a fixed part and a variable length part. The 
fixed part of the object identifier contains information 
including, but not limited to, a pointer indicating an interface 
table, the number of interfaces implemented by the associ 
ated class, an interface dispatch cache, a pointer to addi 
tional information about the class, etc. 

Thus, a method and apparatus for optimizing interface 
inheritance in an object-oriented programming environment 
is disclosed. These Specific arrangements and methods 
described herein are merely illustrative of the principles of 
the present invention. Numerous modifications in form and 
detail may be made by those of ordinary skill in the art 
without departing from the Scope of the present invention. 
Although this invention has been shown in relation to a 
particular preferred embodiment, it should not be considered 
so limited. Rather, the present invention is limited only by 
the Scope of the appended claims. 
What is claimed is: 
1. A computer-implemented method for optimizing inter 

face inheritance in an object-oriented programming 
environment, the computer-implemented method compris 
ing: 

examining an object Specifying a method; 
determining a class to which the object belongs, 
examining a table of methods associated with the class to 

locate the method specified by the object; 
determining an offset for a location of the method; 
caching in a class cache the offset associated with the 

location of the method; and 
examining the class cache when a next object is received 

to determine whether the method associated with the 
offset in the class cache matches a method Specified by 
the next object. 

2. The computer-implemented method according to claim 
1 wherein the class cache resides with the class to which the 
object belongs. 

3. The computer-implemented method according to claim 
1 wherein the Step of examining the table of interfaces 
asSociated with the class to locate the interface Specified by 
the dispatch includes the Step of examining a table of 
interfaces associated with the class to locate the interface 
specified by the object. 

4. The computer-implemented method according to claim 
1 further including retrieving the offset from the class cache 
when the method associated with the offset in the class cache 
matches the method specified by the next object. 

5. The computer-implemented method according to claim 
4 further including retrieving the method specified by the 
offset from the class cache. 

6. The computer-implemented method according to claim 
4 further including performing a linear Search of a method 
table when the method specified by the next object does not 
match the method associated with the offset in the class 
cache. 

7. A machine readable medium having Stored thereon data 
representing Sequences of instructions, which when 
executed by a computer System, cause Said computer System 
to: 

examine an object Specifying a method; 
determine a class to which the object belongs, 
examine a table of methods associated with the class to 

locate the method specified by the object; 



US 6,260,045 B1 
7 

determine an offset for a location of the method; 
cache in a class cache the offset associated with the 

location of the method; and 
examine the class cache when a next object is received to 

determine whether the method associated with the 
offset in the class cache matches a method Specified by 
the next object. 

8. The machine readable medium according to claim 7 
wherein the class cache resides with the class to which the 
object belongs. 

9. The machine readable medium according to claim 7 
further including Sequences of instructions, which when 
executed by the computer System, cause the computer Sys 
tem to examine a table of interface methods associated with 
the class to locate the method specified by the object. 

10. The machine readable medium according to claim 7 
further including Sequences of instructions, which when 
executed by the computer System, cause the computer Sys 
tem to retrieve the offset from the class cache when the 
method asSociated with the offset in the class cache matches 
the method specified by the next object. 

11. The machine readable medium according to claim 10 
further including Sequences of instructions, which when 
executed by the computer System, cause the computer Sys 
tem to retrieve the method specified by the interface offset 
from the class cache. 

12. The machine readable medium according to claim 10 
further including Sequences of instructions, which when 
executed by the computer System, cause the computer Sys 
tem to perform a linear search of a method table when the 
method specified by the next object does not match the 
method associated with the offset in the class cache. 

13. An apparatus for optimizing interface inheritance in 
an object-oriented programming environment, comprising: 

a readable medium having encoded therein a plurality of 
programming instructions designed to enable the 
apparatus, when the programming instructions are 
executed on behalf of a client, to 
examine an object Specifying a method, 
determine a class to which the object belongs, 

15 

25 

35 

8 
examine a table of methods associated with the class to 

locate the method specified by the object, 
determine an offset for a location of the method, 
cache in a class cache the offset associated with the 

location of the method, and 
examine the class cache when a next object is received 

to determine whether the method associated with the 
offset in the class cache matches a method specified 
by the next object; and 

a processor coupled to the readable medium to execute the 
plurality of programming instructions. 

14. The apparatus of claim 13, wherein the plurality of 
instructions include further instructions for residing Said 
class cache within the class to which the object belongs. 

15. The apparatus of claim 12, wherein the instructions for 
examining the table of methods associated with the class to 
locate the method specified by the object include further 
instructions to enable the apparatus to: 

examine a table of interface methods associated with the 
class to locate the method Specified by the object. 

16. The apparatus of claim 13, wherein the plurality of 
instructions include further instructions to enable the appa 
ratuS to: 

retrieve the offset from the class cache when the method 
asSociated with the offset in the class cache matches the 
method specified by the next object. 

17. The apparatus of claim 16, wherein the plurality of 
instructions include further instructions to enable the appa 
ratuS to: 

retrieve the method specified by the offset from the class 
cache. 

18. The apparatus of claim 16, wherein the plurality of 
instructions include further instructions to enable the appa 
ratuS to: 

perform a linear search of a method table when the 
method specified by the next object does not match the 
method associated with the offset in the class cache. 


