(54) **Titre :** UTILISATION DE GLYCERO-PHOSPHOLIPIDES POUR UNE LUBRIFICATION DES ARTICULATIONS
(54) **Title:** USE OF GLYCERPHTOSPHOLIPIDS FOR JOINT LUBRICATION

(57) **Abrégé/Abstract:**
The present invention concerns the use of liposomes having membranes with at least one phospholipid (PL) of the group consisting of a glycerophospholipid (GPL) having two, being the same or different, C_{12}-C_{18} hydrocarbon chain and a sphingolipid (SPL) having a C_{12}-C_{18} hydrocarbon chain, the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of about 20°C to about 39°C for lubrication of joints.
(73) Propriétaires(suite)/Owners(continued): TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD., IL; YISSUM RESEARCH DEVELOPMENT COMPANY OF THE HEBREW UNIVERSITY OF JERUSALEM, IL

(74) Agent: BORDEN LADNER GERVAIS LLP
Title: USE OF GLYCEROPHOSPHOLIPIDS FOR JOINT LUBRICATION

Abstract: The present invention concerns the use of liposomes having membranes with at least one phospholipid (PL) of the group consisting of a glycerophospholipid (GPL) having two, being the same or different, C14-C16 hydrocarbon chain and a sphingolipid (SPL) having a C16-C18 hydrocarbon chain, the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of about 20°C to about 39°C for lubrication of joints.
Published:
— with international search report

(88) Date of publication of the international search report: 12 February 2009

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

the filing date of the international application is within two months from the date of expiration of the priority period
USE OF GLYCEROPHOSPHOLIPIDS FOR JOINT LUBRICATION

FIELD OF THE INVENTION

This invention concerns liposomes and their therapeutic use.

LIST OF PRIOR ART

The following is a list of prior art, which is considered to be pertinent for describing the state of the art in the field of the invention.

A complete list of prior art, which is referred to occasionally in the text below, appears at the end of the description before the claims. Reference to the publications will be made by indicating their number from the complete list of references.

BACKGROUND OF THE INVENTION

Joint dysfunctions affect a very large portion of the population. Sufficient biolubrication is a prerequisite for proper joint mobility, which is crucial for prevention and amelioration of degradative changes of the joint

A common joint dysfunction is osteoarthritis (OA), with prevalence exceeding 20 million in the United States alone. The etiology of OA is multifactorial, including inflammatory, metabolic and mechanical causes. Among the list of risk factors involved are age, gender, obesity, occupation, trauma, atheromatous vascular disease and immobilization. OA may arise as a result of articular cartilage breakdown; or conversely, subchondral bone
sclerosis may actually precede cartilage degeneration and loss. Once articular cartilage is injured, damage progresses.

Current treatment focuses on reducing overloading of joints, physiotherapy, and alleviation of pain and inflammation, usually by systemic or intra-articular administration of drugs.

Articular cartilage forms a smooth, tough, elastic and flexible surface that facilitates bone movement. The synovial space is filled with the highly viscous synovial fluid (SF), containing hyaluronic acid (HA) and the glycoprotein lubricin. HA is a polymer of D-glucuronic acid and D-N-acetylglucosamine, which is highly unstable and degrades under the inflammatory conditions of OA. Lubricin is composed of ~44% proteins, ~45% carbohydrates and ~11% phospholipids (PL), of which ~41% are phosphatidylcholines (PCs), ~27% phosphatidylethanolamines (PE) and ~32% sphingomyelins. These PL are referred to as “surface-active phospholipids” (SAPL). The PE and PC of SAPL contain two hydrocarbon chains, one of which is the monounsaturated oleic acid (18:1).

Boundary lubrication, in which layers of lubricant molecules separate opposing surfaces, occurs under loading of articular joints. Several different substances have been proposed as the native boundary lubricants in articular cartilage. In the past, HA was thought to be the major lubricant, however, a recent tribological study states that HA “by itself ... is not responsible for the nearly frictionless boundary biolubrication found in articular cartilage”, but may contribute to load bearing and wear protection. Many reports have shown lubricin to play the major role in the lubricating properties of synovial fluid. Pickard et al. and Schwartz and Hills demonstrated that phospholipids defined as surface active phospholipids (SAPL) of lubricin facilitate joint lubrication in articular cartilage. Hills and coworkers demonstrated that OA joints have a SAPL deficiency, and that injection of the surface-active phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) into joints of
OA patients resulted in mobility improvement lasting up to 14 weeks26 without major side effects27. In another study, utilizing a unique cryogenic cartilage preservation technique, Watanabe et al. observed lipidic globular vesicles on the surface of healthy cartilage, which are assumed to play a major role in lubrication28. Kawano et al.29 and Forsey et al.30, using animal models, have shown that use of high molecular weight HA (~2000 kDa) combined with DPPC improved lubricating ability of the latter.

US patent 6,800,298 discloses dextran-based hydrogel compositions containing lipids, particularly phospholipids, for lubrication of mammalian joints.

Recently, Klein and coworkers summarized various issues of joint lubrication at the molecular level. They point to the potential role of highly-hydrated brush-like charged macromolecules at the surface of cartilage as major contributors to cartilage lubrication31-33.

SUMMARY OF THE INVENTION

The present invention is based on the discovery of a liposomal system for joint lubrication and on studying the effect of different PL compositions, size, and lamellarity on joint friction, using a cartilage-on-cartilage apparatus that mimics articular joints.

Thus, in accordance with the invention, a novel lubricant formulation based on a liposome system comprising phospholipids (PL) is proposed, for introduction into synovial joints in order to improve or restore joint mobility.

Thus, in accordance with a first of its aspects, there is provided the use of liposomes comprising one or more membranes with at least one phospholipid (PL) of the group consisting of a glycerophospholipid (GPL) having two, being the same or different, C12-C16 hydrocarbon chain and a sphingolipid (SPL) having a C12-C18 hydrocarbon chain, the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a
temperature of about 20°C to about 39°C, the use being for lubrication of joints having a joint temperature which is above the phase transition temperature.

In accordance with another aspect of the invention there is provided the use of liposomes comprising one or more membranes with at least one phospholipid (PL) of the group consisting of glycerophospholipid (GPL) having two, being the same or different, C_{12-16} hydrocarbon chain and a sphingolipid (SPL) having a C_{12-18} hydrocarbon chain, the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of about 20°C to about 39°C, for the preparation of a pharmaceutical composition for administration to joints having a joint temperature being above said phase transition temperature.

In accordance with yet another aspect there is provided a method for lubricating a joint of a mammal, comprising: administering into a cavity of the joint having a joint temperature a therapeutically effective amount of liposomes comprising one or more membranes with at least one phospholipid (PL) of the group consisting of glycerophospholipid (GPL) having two, being the same or different C_{12-16} hydrocarbon chain and a sphingolipid (SPL) having a C_{12-18} hydrocarbon chain, the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being at a temperature of about 20°C to about 39°C; the phase transition temperature being lower than the joint temperature.

By a still further aspect of the invention there is provided a pharmaceutical composition for joint lubrication of joints having a joint temperature and comprising a physiologically acceptable carrier and liposomes; the liposomes comprising one or more membranes with at least one phospholipid (PL) of the group consisting of glycerophospholipid (GPL) having two, being the same or different, C_{12-16} hydrocarbon chains and a sphingolipid (SPL) having a C_{12-18}
hydrocarbon chain; the one or more membranes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of about 20°C to about 39°C and being below said joint temperature.

In one embodiment said C_{12}-C_{16} or C_{12}-C_{18} hydrophobic chains are saturated.

The GPL, SPL or their combination form liposomes, preferably liposomes with a mean diameter greater than about 0.3μm, typically greater than about 0.5μm and at times greater than about 0.8μm. The mean diameter of the liposomes is usually less than about 10μm, typically less than about 8, 7, 6 or 5μm and at times less than 3.5μm. The liposomes may be a single-membrane liposome or may be, according to one embodiment, multilamellar vesicles (MLV) liposomes. According to other embodiments the liposomes may also be large multivesicular vesicles (LMVV) or dehydrated rehydrated vesicles (DRV) liposomes.

The liposome composition of the invention may be administered to an afflicted joint through intra-articular injection, orthoscopic administration, surgical administration and in general any form of administration that can be used to instill such a formulation into the joint synovium or onto the joint cartilage. Afflicted joints treatable according to the invention may be associated with a variety of conditions, such as arthritis, rheumatoid arthritis, osteoarthritis (as well as osteoarthritis in rheumatoid arthritis patients), traumatic joint injury, sports injury, locked joint (such as in temporomandibular joint (TMJ)), status post surgical intervention such as arthrocentesis, arthroscopic surgery, arthroplasty, knee and hip replacement. A preferred condition to be treated or prevented by the invention is primary or secondary osteoarthritis.
BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

Figure 1 is a bar graph showing the friction coefficients (static and dynamic) obtained for various lubricating media, including inflamed synovial fluid (ISF); histidine buffer (HB, 5 mM), dispersions comprising multilamellar vesicles (MLV, carried in 5 mM HB, the lipids being at a concentration range of 35-140mM) with the phospholipid being DMPC, MLV comprising DMPC, or DMPC-cholesterol, or mixture of DMPC andPEG-DSPE DMPC or a mixture of DMPC and DPPC, or small unilamellar vesicles (SUV) comprising DMPC. All measurements were performed at 37°C under contact pressure of 2.4 MPa (30N load) and sliding velocity of 1 mm/s. Saline was used as a control.

Figure 2 shows the effect of the various lubricants and media on total phospholipid concentration, in cartilage specimens from healthy individuals after being subjected to similar friction tests in the presence of the different lubricants. The controls were not subjected to friction tests.

Figure 3 is a graph showing PC concentration as a function of vertical depth into cartilage where cartilage specimens were subjected to similar friction tests in the presence of: DMPC-MLV (0.8-3.5 μm in diameter) 141 mM in 5mM HB (■); DMPC-SUV (~100 nm in diameter) 141 mM in 5mM HB (▲); or HB alone 5 mM (x); sliced into discs and tested for their DMPC concentration as a function of cartilage depth.

Figures 4A–4F are scanning electron microscope (SEM) micrographs of cartilage specimens in the presence and absence of lubricating media and friction tests. SEM micrographs of control specimens, in the absence of friction test: Fig. 4A is a micrograph of healthy cartilage, showing its naturally occurring lipidic vesicle structures on the surface (x3000); Fig. 4B is a micrograph of
arthritic cartilage (x3000); and healthy cartilage subjected to friction tests in the
presence of the following lubricants: saline (x6000, Fig. 4C); ISF (x800 Fig. 4D);
DMPC-SUV (x800, Fig. 4E); and DMPC-MLV (x6000 Fig. 4F).

DETAILED DESCRIPTION OF SOME EMBODIMENTS

The present invention is based on results from a combination of (i) friction
coefficient measurements using a human cartilage-on-cartilage setup (Merkher,
Y. et al.40), (ii) cartilage morphological studies based on SEM, (iii) cartilage
quantitative phospholipid and phosphatidylcholine (PC) determinations, and (iv)
physicochemical characteristics of different PC-based liposomes, which
demonstrated the potential of large (diameter greater than 0.3 µm) multilamellar
vesicles, such as DMPC-MLV and of DMPC/DPPC-MLV (0.6/1.0 mole ratio),
dispersed in low ionic-strength HB, as effective cartilage lubricants and wear
reducers at temperature slightly above (e.g. about 1°C, 2°C, 3°C, 5°C, 8°C, 11°C
and at times up to about 15°C) the SO-to-LD phase transition temperature.

Initially, the lubricating efficacy of multilamellar liposomes composed of
various PCs, with two hydrocarbon chains from 14 to 22 carbons, fully saturated
or with varying degrees of unsaturations, was compared. C_{12}-C_{16} hydrocarbon
chains where shown to be of preferred length.

Then, using the most effective single-component lubricant, DMPC, the
effects of liposome size, lamellarity, and of incorporating either cholesterol,
mPEG-DSPE or an additional PL into the lipidic bilayers of DMPC liposomes
was investigated. These studies showed that MLV, such as DMPC-MLV or
DMPC/DPPC-MLV (0.8–3.5 µm in diameter), when used as lubricants at
temperature slightly above the SO-to-LD phase transition temperature, were most
effective. This was confirmed by the performance of DMPC/DPPC-MLV at
37°C, which is slightly above the range of its SO to LD phase transition
temperature, i.e., T_m = ~34°C, in comparison to its performance at 24°C (SO
phase).

The results presented herein below further show the following:
DMPC, which was identified as one preferred component of the liposomal biolubricant composition (when used alone or in combination with DPPC) has saturated, medium-length acyl chains (14 carbons), having a \(T_m \) slightly lower than the physiological temperature (\(T_m = 23.2^\circ C \) for DMPC-MLV and \(T_m = \sim 34^\circ C \) for DMPC/DPPC [0.6/1.0 mole/mole] used), thus both PL compositions providing liposomes which are in the liquid-disordered (LD) phase at 37\(^\circ\)C, in which its polar headgroup is highly hydrated (~9.7 water molecules per DMPC or DPPC headgroup, in comparison to <4.3 water molecules per headgroup when below the \(T_m \) in the SO phase)\(^5\)

The adiabatic compressibility data presented herein below demonstrate the differences between PC in the solid-ordered (SO) phase (low \(K \) values) and the LD phase (higher \(K \) values) and the superiority of the LD phase. Partial adiabatic lipid bilayer compressibility (\(K \)), which correlates well with the thermotropic behavior\(^4\) and was found to reflect the level of hydration, physical state and the volume of cavities (free volume) in the lipid bilayer\(^4\). Bound water molecules, which interact with the PC headgroup, are suggested to affect the total volume of cavities in the bilayer, thus affecting intermolecular interactions, as well as the adiabatic compressibility. Specifically, both DOPC and DMPC are in the LD phase (above their \(T_m \)) at 24\(^\circ\)C as well as at 37\(^\circ\)C. However the lubrication ability of DMPC liposomes is substantially superior to that of DOPC. Without being bound by theory, it is believed that the difference in behavior between DMPC and DOPC resides in the fact that under physiological conditions, i.e. at a temperature of between 36\(^\circ\)C and 43\(^\circ\)C DMPC is only slightly above the \(T_m \). Moreover, the temperature in synovial joints of the hand can be as low as ~ 28\(^\circ\)C. Under such conditions DMPC is also slightly above the \(T_m \). In addition, DMPC is the PC with the shortest acyl chains capable of forming stable liposomes, thus composing the mechanically "softest" bilayer of all other single-component PC bilayers exemplified herein\(^4\).
The lubrication ability of MLV composed of DMPC/DPPC (0.6:1.0 mole/mole) mixture having good miscibility and nearly ideal mixing properties, and a combined SO-to-LD phase transition temperature of ~34°C. The DMPC/DPPC-MLV showed high lubricating efficacy at 37°C (static and dynamic friction coefficients of 0.017 and 0.0083, respectively) but not at 24°C (0.042 and 0.021, respectively), compared with DPPC-MLV alone (T_m of 41.4°C) which were inferior at 37°C (0.029 and 0.022, for the static and dynamic friction coefficients, respectively);

The “softness” and hydration level of DMPC-MLV and the impact of changes in these features on cartilage lubrication. The first modification in formulation included introduction of ~33 mole% cholesterol into liposome membranes. As shown below, this resulted in a physical transition from the LD phase to the liquid-ordered (LO) phase34. Such a change is known to "dry" the lipid bilayer36, and is also reflected in a reduction in the adiabatic compressibility and therefore in bilayer softness. Therefore, lubricating cartilage with DMPC/cholesterol-MLV was substantially inferior to lubricating of cartilage with DMPC-MLV (Fig. 1). In another modification 5 mole% of the lipopolymer mPEG-DSPE into the lipid bilayer of DMPC-MLV was introduced. The PEG moieties, extending 4--10 nm from the liposome surface (depending on the polymer chain state, being either in a mushroom or brush configuration35), and are highly flexible and highly hydrated (3 to 4 water molecules per ethylene oxide group)45. However, addition of mPEG-DSPE to DMPC liposomes did not improve lubrication (Fig. 1), which seemed to be contradictory to the role of hydration in lubrication. This may be explained by the fact that the PEG moiety although highly polar is nonionic and therefore its hydration differs from that of the hydration of ionic the PC headgroup45. It must be noted, that these grafted PEG moieties may still be beneficial in vivo as they can protect the liposomes from interacting with macromolecules of interstitial fluid34, similarly to the cartilage-protecting behavior of HA22;
Friction coefficients obtained by different media (saline, ISF, and low ionic strength HB) demonstrated that HB was superior to saline and to ISF (Fig. 1). Furthermore, the total PL concentration of cartilage specimens lubricated with HB was nearly twice that of cartilage lubricated with ISF and substantially higher than that of cartilage lubricated with saline (Fig. 2). Suggesting that HB may better retain naturally-occurring cartilage SAPLs, thereby improving lubrication. The superiority of HB over saline (Fig. 1) can also be explained by its lower ionic strength, which induces a less compact PL packing in the lipid bilayer, thus enabling rapid bilayer recovery after frictional events. This further supports the importance of bilayer softness as a major contributor to effective lubrication. From the above, it became apparent that HB is an effective and supportive medium for liposomes as lubricants;

Large multilamellar DMPC-MLV were found to be superior to small unilamellar liposomes (<100 nm). Without being limited by theory as it is not required for the establishment of the invention, it is believed that this superiority stems from the way the former are retained near the cartilage surface, as demonstrated by the PC distribution along cartilage depth (Fig. 3), due to the large size of MLV (0.8–3.5 µm in diameter). Mároudas et al. reported the presence of 100-nm gaps between collagen fibers in cartilage. Stockwell and Barnett and Barnett and Palfrey state that these fibers act as barriers against penetration of large particles into the cartilage, reporting that small silver proteinate particles penetrated deeper than large particles into cartilage. The results presented herein show that smaller DMPC-SUV penetrated deeply into cartilage, while DMPC-MLV remained near the surface (Fig. 3). This is in agreement with the similarity of friction levels obtained from cartilage lubricated with DMPC-SUV in HB and of cartilage lubricated with HB alone (Fig. 1), as DMPC-SUV penetrate deeply into the cartilage the effect of lubrication is primarily of the media (i.e. HB).

SEM morphological studies, in which naturally-occurring globular structures, in the size range of DMPC-MLV, seemed to be present on the surface
of healthy non-lubricated cartilage prior to conducting friction tests (Fig. 4A), and absent after friction tests of healthy cartilage lubricated with saline or ISF (Figs. 4C and 4D, respectively). Cartilage specimens lubricated with DMPC-MLV seemed to have globular lipidic structures on their surface, after conducting friction tests (Fig. 4F).

In light of these results, it has been envisaged that phospholipids (PL) selected from glycerophospholipids (GPL) and sphingolipids (SPL), are potential substituents for the naturally-occurring lipidic globular structures, being capable of reducing friction and protecting against cartilage wear.

Further, it has been envisaged that when present near cartilage surface liposomes comprising GPL, SPL or their combination as the liposome forming phospholipids act as a reservoir for replenishing a protective lipid bilayer coating the cartilage surface, thus assisting in preservation of naturally-occurring PL, as indicated by the higher total PL level in cartilage lubricated with DMPC-MLV in comparison to cartilage lubricated with other lubricants and media (Fig. 2).

In accordance with some embodiments of the invention, the GPL is carrying a phosphocholine headgroup (phosphatidylcholine, PC-based lipid) or a phosphoglycerol headgroup (phosphatidylglycerol, PG-based lipid), and the SPL is a ceramide (N-acyl sphingosine carrying a phosphocholine headgroup, also referred to as N-acyl sphigosyl-phosphocholine (SM-based lipid).

As appreciated by those versed in lipid based technologies, PCs and SMs are zwitterionic phospholipids with the cationic choline and anionic diester phosphate moieties (constituting the phosphocholine head group) remain fully ionized over a broad pH range with no net charge (zeta potential = 0 mV)\(^{34}\). The PG is negatively charged over broad pH range as evident from it negative zeta potential. The hydrophobic part of the PC and PG includes 2 hydrocarbon (e.g. acyls and alkyls) chains. The SM also has two hydrophobic hydrocarbon chains of which one is the chain of the sphingoid base itself and the other is N-acyl chain. PC, SM and PG in which the hydrocarbon chains is above 12 carbon
atoms are all cylinder like in shape as their packing parameter is in the range of 0.74-1.0. They form lipid bilayers which above the SO to LD phase transition become highly hydrated and vesiculate to form lipid vesicles (liposomes)34, 35. The PC and PG liposome bilayers can be either in a solid ordered (SO) phase (previously referred to as gel or solid phase), or in a liquid disordered (LD) phase (previously referred to as liquid crystalline or fluid phase)34. The transformation between the SO to LD phases involves an endothermic, first order phase transition referred to as the main phase transition. T_m is the temperature in which the maximum change in the heat capacity change during the SO to LD phase transition occurs. T_m and the temperature range of the SO to LD phase transition of PCs depend, inter alia, on PC hydrocarbon chain composition. In the LD phase (but not in the SO phase), the charged phosphocholine and phosphoglycerol head group are highly hydrated.

It is further noted that PGs and SM have T_m that are similar to that of the corresponding PC (the same length of substituting hydrocarbon chain(s)). For instance, the T_m of DMPG is identical to that of DMPC, namely, 23°C, and that of DPPG or N-palmitoyl SM is identical to that of DPPC, namely, 41°C. Thus, while the following examples make use of PC-based lipids, the PL in accordance with the invention may also be a PG- or SM-based lipid.

In accordance with the invention, a mixture of two or more PLs (e.g. two different PCs, a PC with PG, two different PGs, two SM, a PC or PG with SM, etc) may be used, as long as the mixture formed is in a LD state and the lipid headgroups are highly hydrated, when in situ (either at the articular region of a healthy or dysfunctioning joint).

Having considered the above, the inventors have developed liposomal systems for joint lubrication, which are chemically stable, oxidative-damage-resistant and free of HA.
Thus, in accordance with an aspect of the invention, the use of a liposome comprising at least one PL selected from glycerophospholipid (GPL) or sphingolipid (SPL), for joint lubrication is provided.

By another aspect of the invention, there is provided the use of a liposome comprising at least one PL selected from glycerophospholipid (GPL) or sphingolipid (SPL), for the preparation of a pharmaceutical composition for joint lubrication.

The liposomes in accordance with both aspects being characterized in that they comprise one or more membranes with at least one phospholipid (PL) of the group consisting of a glycerophospholipid (GPL) having two, being the same or different, C_{12}-C_{16} hydrocarbon chains and a sphingolipid (SPL) having a C_{12}-C_{18} hydrocarbon chain. The phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, is within a temperature range of about 20°C to about 39°C. The liposomes are used to lubricate joints that have a joint temperature that is somewhat higher than the phase transition temperature. Accordingly the liposomes are in an LD phase within the joint. The fact that the joint temperature is typically only slightly (e.g. within the range of about 1°C to about 15°C, as detailed above) above the phase transition temperature seems to be of importance for efficient lubrication.

In one embodiment said C_{12}-C_{16} or C_{12}-C_{18} hydrophobic chains are saturated.

It is noted that the above conditions are cumulative, namely, the selection of PL (either a single PL or a combination of PL with additional PLs) contained in the liposome is so that the liposome will have SO-LD phase transition temperature between about 20°C to about 39°C.

In accordance with additional embodiment of the invention, the liposomal systems making use the said GPL or SPL further encompass one or more of the following:
The GPL or SPL have alkyl, alkenyl or acyl C₁₂ to C₁₆ hydrocarbon chain. In the case of GPL, the two chains may be the same or different.

One particular embodiment concerns the use of liposomes having GPL or SPL with at least one C₁₄ acyl chain.

Another particular embodiment concerns the use of a GPL having C₁₄ and C₁₆ acyl chains.

Another particular embodiment concerns the use of liposomes having SPL with a C₁₆ acyl chain.

Another particular embodiment concerns the use of a combination of any of the above liposomes.

Some GPL or SPL have a ionic headgroup and, according to embodiments of the invention, this headgroup is highly ionized at a wide range of pH. A wide range may be defined by a pH between 3 and 14.

The GPL as well as the SPL are highly hydrated, namely, the number of water molecules per lipid headgroup is at least about 6; 7 or at times at least 8 water molecules that are complexed to the ionized head group of the GPL or SPL.

The GPL or SPL are capable of forming MLV (as well as the other type of liposomes mentioned above), preferably MLV having a mean diameter above 0.3μm. According to one embodiment, the MLV are defined by a mean diameter in the range of between 0.3μm and 5μm. According to another embodiment, the MLV are defined by a mean diameter in the range of between 0.8μm and 3.5μm.

As cholesterol was found to reduce lubrication properties of the MLV being formed from GPL, SPL or their combinations, as defined herein, the MLV or the other types of liposomes that may be used in accordance with the invention, should not include in their bilayers a membrane active sterol, such as cholesterol. A membrane active sterol is defined as affecting short- and long-range lipid order within membranes, minimizing volume, and decreasing
membrane permeability. Specifically, the sterol should possess 1), a flat, fused ring system, 2), a hydroxyl or other small polar group at position 3, 3), a "cholesterol-like" tail, and 4), a small area per molecule (<40 Å² when assembled at the air/water interface at a surface pressure of 12 mN/m).

It is to be noted that the compositions of the invention preferably do not contain propylene glycol.

It should further be noted that the compositions of the invention preferably do not contain dextran.

A particular group of GPLs encompassed by one or more of the above embodiments comprise a GPL carrying a phosphocholine headgroup (PC or SM-based lipids). One preferred PC in accordance with the invention is dimyristoylphosphatidylcholine (DMPC).

Non-limiting examples of PC-based lipids which may be used in in accordance with the invention comprise 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC, Tm 41.4°C); 1,2-dipentadecanoyl--sn-glycero-3-phosphocoline (C15, Tm 33.0°C). SPL which may be in accordance with the invention comprise a sphingomyelin (SM) carrying a phosphocholine headgroup, and non-limiting examples include N-palmitoyl SM Tm 41.0°C and 1, 2-dimyristoyl-sn-glycero-3-PC. Tm values of various PC-based lipids may be found in "Thermotropic Phase Transitions of Pure Lipids in Model Membranes and Their Modifications by Membrane Proteins", John R. Silvius, Lipid-Protein Interactions, John Wiley & Sons, Inc., New York, 1982, and also in the Lipid Thermotropic Phase Transition Data Base – LIPIDAT, and in Marsh (1990)³⁶.

It is noted that in accordance with the invention the MLV liposomes (or the other liposomes useful according to the invention) have an offset temperature (upper limit) of the SO to LD phase transition which is not higher than 15°C from the temperature in situ, i.e. in the joint, within the range of about 20°C to about 39°C. In accordance with the invention the MLV liposomes are formed from GPL, SPL or their combination, and the SO to LD phase transition
temperature described above thus concerns MLV liposomes which are formed from GPL, SPL and combinations thereof, thus providing a liposome in which the PLs or their mixture are in LD phase.

A particular embodiment in accordance with the invention concerns the use of DMPC-MLV or DMPC/DPPC-MLV for the preparation of a replacement of naturally-occurring cartilage PL, namely as a cartilage lubricant and wear reducer. These MLV have major practical advantages as well. They can be prepared simply and at low cost. DMPC and DPPC are both resistant to oxidative damage and stable for long periods of time. Furthermore, these PCs are already approved for human use. According to one embodiment, when using a mixture of DMPC and DPPC, the mole ratio between DMPC and DPPC depends on the temperature of the joint to be treated and is designed such that the T_m of the combination provides MLV in LD phase. One example of a suitable ratio is about 0.6/1.0 which provides MLV in LD phase at a joint temperature of between 35°C to 39°C.

In accordance with an additional aspect of the invention there is provided a method for lubricating a joint of a mammal, the method comprises administering into a cavity of said joint containing synovial fluid an amount of liposomes effective to yield a lubricating effect.

In one embodiment said C_{12}-C_{16} or C_{12}-C_{18} hydrophobic chains are unsaturated.

It is noted that the temperature of joints in patients afflicted with reduced joint lubrication or with joint wear, such as osteoarthritis varies as the disease proceeds [Hollander, J. L.; Moore, R., Studies in osteoarthritis using Intrarticular Temperature Response to Injection of Hydrocortisone. *Ann. Rheum. Dis*. 1956, 15, (4), 320-326]. In fact, this temperature change was used as a clinical tool for assessing osteoarthritis inflammation [Thomas, D.; Ansell, B. M.; Smith, D. S.; Isaacs, R. J., Knee Joint Temperature Measurement using a Differential Thermistor Thermometer. *Rheumatology* 1980, 19, (1), 8-13]. In

Thus, in accordance with the invention it is essential and in fact a prerequisite that the GPL or the mixture thereof with additional PLs, be in a LD phase, in situ, at the joint region to be lubricated therewith.

The method of the invention may be used to treat, alleviate, retard, prevent, manage or cure any articular disorder or symptoms arising there from which is associated with joint dysfunction. For the purposes of this disclosure the term "articular disorder" shall be held to mean any affliction (congenital, autoimmune or otherwise), injury or disease of the articular region which causes degeneration, pain, reduction in mobility, inflammation or physiological disruption and dysfunction of joints. The disorder may be associated with reduced joint secretion and lubrication as well as from complications of knee and hip replacement.

The joint in accordance with the invention may be any one of the knee, hip, ankle, shoulder, elbow, tarsal, carpal, interphalangeal and intervertebral.

Specific articular disorders include, but are not limited to, deficiencies of joint secretion and/or lubrication arising from arthritis, including conditions of joint erosion in rheumatoid arthritis, osteoarthritis, osteoarthritis in rheumatoid arthritis patients, traumatic joint injury (including sports injury), locked joint (such as in temporomandibular joint (TMJ)), status post arthrocentesis, arthroscopic surgery, open joint surgery, joint (e.g. knee or hip replacement) in mammals, preferably humans. A preferred disorder to be treated or prevented by the method of the invention is osteoarthritis.
The method of the present invention could be used as a prophylactic measure to prevent future damage or degeneration. For example, the PL based MLV liposomes could be administered intra-articularly to athletes intermittently throughout their career to minimize the risk of stress related injury or cartilage degeneration.

The method of the present invention may be used exclusive of, or as an adjunct to, anti-inflammatory agents, analgesic agents, muscle relaxants, antidepressants, or agents that promote joint lubrication commonly used to treat disorders associated with joint stiffness, such as arthritis. A combined therapeutic approach is beneficial in reducing side effects associated with agents, such as non-steroidal, anti-inflammatory drugs (NSAIDs), commonly used to prevent, manage, or treat disorders such as osteoarthritis associated with reduced joint lubrication. In addition to enhancing safety, a combined therapeutic approach may also be advantageous in increasing efficacy of treatment.

The administration of the liposomes into an articular cavity of a patient may be by a method chosen from the group consisting of intra-articular injection, arthroscopic administration or surgical administration.

The invention also provides, in accordance with yet another aspect of the invention, a pharmaceutical composition for joint lubrication comprising a physiologically acceptable carrier and liposomes comprising at least one PL selected from GPL or SPL as defined herein.

In accordance with one embodiment, the physiologically acceptable carrier is hylauronic acid (HA) or histidine buffer (HB). The composition may also include polymers such as those described by Klein, 2006.31.

The composition according to the invention is preferably in a form suitable for administration by a route selected from intra-articular injection, arthroscopic administration or surgical administration.

The amount of liposomes in the composition will vary depending on the liposome's PL composition, the disease, its severity and treatment regimen, as
well a on the age, weight, etc., of the mammal to be treated. The amount for purposes herein is determined by such considerations as may be known in the art. The amount must be effective to achieve an improvement in the lubrication of the treated joint, namely, to reduce friction between the cartilages forming the joint, the improvement may be exhibited by clinical tests as well as by an improvement in the well-being of the subject undergoing said treatment (e.g. reduced pain in the afflicted joint, improvement in mobility). The effective amount is typically determined in appropriately designed clinical trials (dose range studies) and the person versed in the art will know how to properly conduct such trials in order to determine the effective amount.

Throughout the description and claims of this specification, the singular forms "a" "an" and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, a reference to "a PL" is a reference to one or more PLs and "a liposome" refers to one or more liposomes. Throughout the description and claims of this specification, the plural forms of words include singular references as well, unless the context clearly dictates otherwise.

Yet, throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", mean "including but not limited to", and are not intended to (and do not) exclude other moieties, additives, components, integers or steps.

The invention will now be described by way of non-limiting examples.

DESCRIPTION OF NON-LIMITING EXAMPLES

Materials and Methods

Lipids: Lipids used in this study are >98% pure.
Water: Water was purified using a WaterPro PS HPLC/Ultrafilter Hybrid system (Labconco, Kansas City, MO), providing pyrogen-free water with low levels of total carbons and inorganic ions (18.2 MΩ).

Reagents: All other reagents used are of analytical grade or better.

Liposomes: Multilamellar liposomes (MLV) were prepared by dissolving the desired lipids in tert-butanol, followed by lyophilization to form a dry "cake". This was hydrated in low ionic strength (5 mM) histidine buffer (HB) pH 6.7, at a temperature at least 5°C above the \(T_m \) \(^{34} \). When desired, MLV were downsized to form small unilamellar vesicles (<100 nm, SUV) by stepwise extrusion through polycarbonate membranes (GE-Osmotics, Minnetonka, MN), starting with a 400-nm and ending with a 50-nm-pore-size membrane, using a 10-ml extrusion system (Northern Lipids, Vancouver, Canada) heated at least 5°C above the \(T_m \) \(^{37} \).

Initial screening of cartilage lubricants was performed with MLV of different PC compositions — DMPC, DPPC, HSPC, DBPC, DOPC and POPC. In this screening it was found that DMPC liposomes acted as the best friction reducers. Therefore, DMPC-based liposomes were further investigated comparing liposomes composed of either DMPC alone, of different sizes and lamellarities, or of a DMPC/DPPC mixture (0.6:1.0 mole ratio), or of DMPC combined with cholesterol (2:1 mole ratio), or of DMPC combined with the lipopolymer mPEG-DSPE (95:5 mole ratio). The mPEG-DSPE used consists of a 2000 Dalton polyethylene glycol attached to the primary amino group of distearoyl phosphatidylethanolamine.

Liposome characterization: Liposomes were characterized for:

(i) **phospholipid (PL) concentration**, using the modified Bartlett assay\(^{37,38} \);

(ii) **size distribution**, for liposomes under 1 μm by dynamic light scattering using an ALV-NIBS High Performance Particle Sizer (Langen, Germany) at a scattering angle of 173°; and for liposomes above 400 nm
by light diffraction using a Beckman Coulter LS Particle Size Analyzer 13-320 (Fullerton, CA), equipped with polarization intensity differential scattering (PIDS) to provide a dynamic detection range from 40 nm to 2000 μm;

(iii) **partial specific adiabatic compressibility**, by calculation from the density of the liposome dispersion (using a DMA 5000 density meter, Anton Paar, Graz, Austria) and the velocity of an 5 MHz ultrasonic wave traveling through it (using a UCC-12 ultrasonic velocimeter, NDT Instruments, Jerusalem, Israel), as described by Garbuzenko et al.\(^{39}\); and

(iv) **structure**, using scanning electron microscopy (SEM).

Cartilage: Articular cartilage from healthy or OA humans (aged 65 to 86 years) was obtained from femoral head fracture operations or total hip replacements. Full plugs of cartilage (4 and 8 mm in diameter, ~1.5 cm thick) were removed from the load-bearing area of the femoral head and subsequently trimmed, on the bone side, using a 1320 Leica freezing microtome, resulting in flat cartilage discs, 2 mm thick, which were held at ~20°C.

Friction and wear testing: Liposomes covering a wide range of sizes and concentrations, dispersed in HB, were screened as potential lubricants to reduce friction and wear between two discs of human cartilage at 24°C and 37°C. Friction measurements were carried out with a cartilage-on-cartilage setup (Merkher, Y.; Sivan, S.; Etsion, I.; Maroudas, A.; Halperin, G.; Yosef, A., A rational human joint friction test using a human cartilage-on-cartilage arrangement. *Tribol. Lett.* **2006**, **22**, 29-36), using two discs of cartilage immersed in a liposomal dispersion in HB, or as controls, in HB alone, or in physiological saline (0.9% w/v; pH 5.0; Teva Medical, Israel), or in inflamed synovial fluid (ISF) obtained from OA patients. These discs were subjected to relative sliding over a wide range of loads (1 to 30 N), equivalent to physiological pressures in joints (0.08 to 2.4 MPa). Various sliding velocities (0.5 to 2 mm/s) and dwell
times (5 to 300 s) were used to simulate, together with various loads, a range of physiological movements.

For the evaluation of wear, the effect of friction tests on the concentration of total PL in cartilage, and on the structure of the cartilage surface was determined.

PL extraction and quantification: Total PL were extracted from cartilage specimens before and after lubrication tests, using the Bligh and Dyer extraction procedure. For this, cartilage specimens were incubated in a chloroform–methanol solution (1:1 v/v) for 1h at 37°C. Water was added to a final chloroform–water–methanol ratio of 1:1:1, the solution was Vortexed for 1 min and then centrifuged, using a desk centrifuge, to form two phases. The chloroform-rich lower phase, containing the PL, was collected, dried under vacuum (Concentrator 5301, Eppendorf), and the residual (containing lipids) was re-dissolved in a small volume of chloroform–methanol solution (2:1 v/v) and then loaded onto low-phosphorus silica gel TLC glass plates (Uniplate – Silica Gel G, Analtech, Newark, DE). A chloroform–methanol–water (65:25:4 v/v/v) solvent system was used for TLC. Commercial markers of sphingomyelin, PC and PE were also loaded on the plates for spot identification. Lipid spots were detected after spraying the dried TLC plates with a UV-detectable primulin (Sigma) solution (1 mL of 0.1% w/v primulin in water, added to 100 mL acetone–water, 4:1 v/v). Each PL spot was scraped from the TLC plate, and its PL content was quantified by the modified Bartlett procedure.

PL concentration was also quantified as a function of cartilage depth. For this, cartilage specimens were sectioned by microtome into slices 20 or 50 μm thick, from the cartilage surface inwards, parallel to the face of the cartilage. PL concentration of each slice was quantified, after PL were extracted as mentioned above, by the modified Bartlett procedure.

Cartilage structure: Cartilage structure was examined by SEM. Specimens were preserved by rapid cooling in liquid nitrogen and kept under
vacuum (~15 mbar) for 48 h to remove excess water. Next, specimens were mounted on stubs and sputter-coated with gold in a Polaron E5100 Sputter Coater (Watford, England). The specimens were examined using an FEI Quanta 200 scanning electron microscopy system (Polaron) using an accelerating voltage of 30 kV.

Results

The surface-active phospholipids (SAPL) tested were phosphatidylcholines (PCs), which are also naturally present in cartilage and synovial fluid.

Screening liposomes for cartilage lubrication and wear reduction, involved comparison of the static and dynamic friction coefficients obtained with MLV composed of various single-component PCs (as described in Materials and Methods). The exemplified PCs differ in their acyl chains, which determine the basic characteristics of the liposomes, especially the T_m and physical state.

Screening liposomes of different PC compositions: Screening MLV (0.8 to 3.5 μm in diameter) composed of different PCs (DMPC, DPPC, HSPC, DBPC, DOPC and POPC) revealed that both at 24°C and 37°C, DMPC was the best-performing cartilage lubricant. Regarding the liposome dispersion media, it was found that the lubrication efficiency of HB is better than that of saline, or of ISF (Fig. 1). Furthermore, liposomes dispersed in HB were better lubricants than liposomes dispersed in saline (data not shown).

Friction and wear in cartilage lubricated with several DMPC-based liposomes: Investigating the effect of liposome size and lamellarity, the lubricating efficacy of multilamellar DMPC liposomes (DMPC-MLV) was compared to that of <100-nm unilamellar DMPC liposomes (DMPC-SUV). In addition, the efficacy as cartilage lubricants of DMPC-MLV enriched with lipids which are non-liposome-forming, although are common liposome components, such as cholesterol or mPEG-DSPE, was studied. Cholesterol, having a packing
parameter of ~ 1.2 \(^{39}\), was added at ~ 33 mole\% to form DMPC/cholesterol-MLV, thus causing the transformation of the lipid bilayer from the solid-ordered (SO, if PL are below the \(T_m \)) or liquid-disordered (LD, if PL are above \(T_m \)) phase to a new physical phase termed liquid-ordered (LO)\(^{43, 44}\). Thereby, it was possible to compare the effect of liposomes at the three different bilayer phases LD, SO and LO on lubrication. Another component added to DMPC-MLV was the lipopolymer mPEG-DSPE, having a relatively low packing parameter of ~ 0.5 \(^{39}\), which introduces a highly-hydrated extended steric barrier that surrounds the liposome\(^{39, 45}\). mPEG-DSPE was added at 5 mole\% to form DMPC/mPEG-DSPE-MLV.

The static and dynamic friction coefficients of DMPC-MLV in HB (0.020 and 0.011, respectively) were lower than those obtained with DMPC/cholesterol-MLV in HB (0.040 and 0.036, respectively) or DMPC/mPEG-DSPE-MLV in HB (0.022 and 0.023, respectively), as shown in Fig. 1, and were similar to the low friction coefficients which exist in healthy synovial joints\(^{46}\). Furthermore, the static and dynamic friction coefficients of cartilage lubricated with DMPC-MLV were lower than those of cartilage lubricated with DMPC-SUV (0.045 and 0.036, respectively) which were only slightly lower than those of HB alone (0.053 and 0.037, respectively), Fig. 1.

Statistical evaluation, by Student’s \(t \) test, indicated the superiority of DMPC-MLV over the other liposome formulations tested at this assay and media \((p<0.008)\).

Compressibility of the lipid bilayer: The partial specific adiabatic compressibility, \(K \), is a measure of both the physical phase of the lipid bilayer (SO, LD or LO) and its hydration state, which is postulated herein to have an important contribution to the liposomes’ efficacy as friction and wear reducers \(^{45}\). Values of \(K \) for DMPC, DPPC and hydrogenated soy phosphatidylcholine (HSPC) determined at 37\(^\circ\)C were 50.7, 31.2 and 33.3 \(\times 10^{-6} \) mL/(g-atm), respectively. A similar profile, with somewhat lower values of \(K \), 46.4, 28.0 and
30.3 \(\times 10^{-6} \) mL/(g-atm), was found at 24°C for DMPC, DPPC and HSPC, respectively. These \(K \) values reflect the higher phase transition temperatures, \(T_m \), of DPPC and HSPC (41.4 °C, 52.5 °C) than that of DMPC (23.2°C). In DMPC/cholesterol liposomes (2:1 mole ratio) \(K \) is reduced to 42.2 and \(45.5 \times 10^{-6} \) mL/(g-atm) at 24°C and 37°C, respectively. Introducing 5 mole% mPEG-DSPE into HSPC liposomes (\(T_m 53°C \))\(^{39} \) raised compressibility to 32.8 and \(35.5 \times 10^{-6} \) mL/(g-atm) at 24°C and 37°C, respectively. While in HSPC/cholesterol liposomes (2:1 mole ratio) \(K \) is reduced to 30.0 and \(33.6 \times 10^{-6} \) mL/(g-atm) at 24°C and 37°C.

Without being bound by theory, the above results suggest that the physical phase of the MLV bilayers are important for cartilage biolubrication, and that the optimal conditions for lubrication are being at the LD phase, not far above the SO-to-LD phase transition temperature (\(T_m \)). To further test this hypothesis the inventors tested MLV composed of 0.6/1.0 (mole/mole) DMPC/DPPC. This composition was selected so as to enable the formation of a liposome having a \(T_m \) of \(\sim 34°C \)\(^{47} \) (being possible due to the nearly ideal mixing of these two PCs). These MLV were studied at 24°C and 37°C. The results clearly support the above hypothesis, as they show (Fig. 1) that DMPC/DPPC-MLV are the most effective lubricants at 37°C (static and dynamic friction coefficient of 0.017 and 0.0083, respectively) but not at 24°C (static and dynamic friction coefficient of 0.042 and 0.021, respectively). Furthermore DMPC/DPPC-MLV were superior to DPPC-MLV (\(T_m = 41.3 \)) alone, which are inferior at 37°C (static and dynamic friction coefficient of 0.029 and 0.022, respectively).

PL levels in lubricated cartilage specimens: The total PL (which includes naturally-occurring SAPLs and PLs from liposomes) levels of healthy cartilage specimens (thickness \(\sim 1200 \) μm), before and after being subjected to friction tests, in the presence of different lubricants and media, was measured. It can be seen (Fig. 2) that the total PL concentration in cartilage lubricated with DMPC-MLV is the highest among all specimens tested. The PL concentration of
cartilage obtained from healthy subjects and lubricated with HB is higher than that of similar cartilage lubricated with saline or ISF, the latter (ISF), has similar PL levels to that of cartilage obtained from OA patients.

Effect of Liposome Size and Lamellarity on their Penetration into Cartilage: PC concentration, as a function of cartilage depth (0–800 μm, in 20-50-μm increments), was measured after friction tests for specimens lubricated with DMPC-MLV and DMPC-SUV, both dispersed in HB, and for specimens lubricated with HB alone (control). Among these specimens, cartilage lubricated with DMPC-MLV had the highest PC concentration near the cartilage surface (Fig. 3). PC concentration reached a maximum at a depth of ~100 μm, below which, it decreased. On the other hand, in cartilage lubricated with DMPC-SUV the highest PC concentration occurred deep (~600 μm) inside the cartilage, while at the surface PC concentration was similar to that of the control (cartilage lubricated with HB).

Cartilage morphology: SEM was used to study cartilage surface morphology and wear. In Fig. 4 we present SEM images of cartilage specimens subjected to different treatments. The two control specimens (Fig. 4A and 4B) were not subjected to friction tests, whereas all other specimens (Fig. 4C–4F) of cartilage were obtained from healthy people and subjected to identical friction tests in the presence of different lubricants. Fig. 4A shows healthy cartilage, where naturally-occurring globular lipidic structures are dispersed on its porous surface, as previously shown on the surface of rat cartilage by Ohno and coworkers. On the other hand, the surface of osteoarthritic cartilage lacks these structures (Fig. 4B), as does friction-tested healthy cartilage lubricated with saline (Fig. 4C) or ISF (Fig. 4D), indicating poor protection against wear by these lubricants. On the surface of cartilage lubricated with DMPC-SUV (Fig. 4E), very few lipidic structures can be noticed after friction testing. With DMPC-MLV (Fig. 4F), large lipidic structures, resembling those on healthy cartilage, are present after friction testing.
References

CLAIMS:

1. Use of liposomes, consisting essentially of one or more membranes with at least one phospholipid (PL) selected from the group consisting of a glycerophospholipid (GPL) having two, being the same or different, C_{12}-C_{16} hydrocarbon chains and a sphingolipid (SPL) having a C_{12}-C_{18} hydrocarbon chain, the one or more membranes of the liposomes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of 20°C to 39°C, the use being for lubrication of joints having a joint temperature which is above the phase transition temperature.

2. Use of liposomes consisting essentially of one or more membranes with at least one phospholipid (PL) selected from the group consisting of glycerophospholipid (GPL) having two, being the same or different, C_{12}-C_{16} hydrocarbon chains and a sphingolipid (SPL) having a C_{12}-C_{18} hydrocarbon chain, the one or more membranes of the liposomes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of 20°C to 39°C, for the preparation of a pharmaceutical composition for administration to joints having a joint temperature being above said phase transition temperature.

3. The use of claim 1 or 2, wherein said GPL comprises two C_{14} or C_{16} acyl chains.

4. The use of any one of claims 1 to 3, wherein at least one of said hydrocarbon chains of the GPL is a saturated hydrocarbon chain.

5. The use of claim 4, wherein the two hydrocarbon chains of the GPL are saturated.

6. The use of any one of claims 1 to 5, wherein said PL is a phosphatidylcholine (PC).

7. The use of claim 6, wherein said PC is dimyristoylphosphatidylcholine (DMPC).
8. The use of claim 6, wherein said PC comprises 1, 2-dipalmitoyl-
 sn-glycero-3-phosphocoline (DPPC).

9. The use of claim 6, wherein said PC comprises DMPC and DPPC.

10. The use of any one of claims 1 to 9, wherein said liposomes are multilamellar vesicles (MLV).

11. The use of claim 10, wherein the liposomes have a mean diameter of between 0.3\(\mu\)m to 10\(\mu\)m.

12. The use of any one of claims 1 to 11, wherein said SPL is a sphingomyelin.

13. The use of any one of claims 1 to 12, wherein the PL's head group is complexed with at least 6 molecules of water per head group.

14. The use of any one of claims 1 to 13, wherein the joint temperature is 1-15°C above said phase transition temperature.

15. The use of any one of claims 1 to 14, wherein the liposomes are formulated for intra-articular injection, arthroscopic administration or for surgical administration.

16. The use of any one of claims 1 to 15, being for the treatment of an articular disorder or symptoms arising therefrom.

17. The use of claim 16, wherein said articular disorder is selected from arthritis, osteoarthritis, osteoarthritis in rheumatoid arthritis patients, traumatic joint injury, locked joint, sports injury, status post arthrocentesis, arthroscopic surgery, open joint surgery, and joint replacement.
18. The use of claim 17, being for enhancing joint lubrication or preventing joint wear.

19. The use of any one of claims 1 to 15, for the treatment, management or prevention of deterioration of locked joints, sports injury or traumatic injury towards osteoarthritis (OA) or disorders secondary to rheumatoid arthritis, and psoriatic arthritis.

20. A pharmaceutical composition for joint lubrication of joints having a joint temperature, the composition consisting essentially of a physiologically acceptable carrier and liposomes; the liposomes consisting essentially of one or more membranes with at least one phospholipid (PL) of the group consisting of glycerophospholipid (GPL) having two, being the same or different, C_{12}-C_{16} hydrocarbon chain and a sphingolipid (SPL) having a C_{12}-C_{18} hydrocarbon chain; the one or more membranes of the liposomes having a phase transition temperature in which solid ordered (SO) to liquid disordered (LD) phase transition occurs, the phase transition temperature being within a temperature of about 20°C to about 39°C and being below said joint temperature.

21. The composition of claim 20, wherein said physiologically acceptable carrier comprises histidine buffer.

22. The composition of claim 20 or 21 in a form suitable for administration by intra-articular injection, arthroscopic administration or by surgical administration.
FIGURE 2