(54) 发明名称
一种耐水解聚乳酸复合纤维的制备方法

(57) 摘要
本发明涉及一种耐水解聚乳酸复合纤维的制备方法，它是通过改变喷丝孔形状，经熔融纺丝，制成一种以酯纶为皮层（非封闭式）、聚乳酸为芯层的皮芯型复合纤维。本发明制备方法简单，成本低，有望实现大规模生产；本发明的聚乳酸复合纤维仍具备可降解性、耐水解效果好，且耐磨性好、强力提高，也在一定程度上使得该复合纤维染色的上染率高于纯聚乳酸纤维，促进聚乳酸纤维的广泛应用。
1. 一种耐水解聚乳酸复合纤维的制备，其特征在于，所述复合纤维制备原料包括主体原料和辅料，其中主体原料为聚乳酸纤维。

2. 根据权利要求1所述的聚乳酸复合纤维，其特征在于，所述复合纤维中聚乳酸纤维质量百分含量为70％-90％，优选为75％-85％。所述涤纶纤维质量百分含量为10％-30％，优选为15％-25％。

3. 根据权利要求1或2所述的聚乳酸复合纤维的制备，其特征在于，采用皮芯结构纺丝组件进行熔融纺丝。

4. 根据权利要求3所述的聚乳酸复合纤维的制备方法，其特征在于，所述熔融纺丝的工艺为：纺丝温度为170-260℃，卷绕速度为500-2000m/min。

5. 根据权利要求3所述的聚乳酸复合纤维的制备方法，其特征在于，所述的牵伸工艺为：热盘温度：50-120℃，热板温度：50-140℃，牵伸倍率1.5-6.5倍。

6. 根据权利要求3所述的方法，其特征在于，所述方法包括：将涤纶纤维切片作为皮层料、聚乳酸纤维切片作为芯层料后，使用皮芯结构组件进行熔融纺丝，得到原丝，然后用牵引机对原丝进行拉伸，即得所述耐水解聚乳酸复合纤维。

7. 根据权利要求1所述的一种抗水解聚乳酸复合纤维的制备方法，其特征在于：喷丝孔形状不同于一般纺皮芯复合纤维所用的全包围式，在外部皮层处开缺口，使得皮层结构不完全包裹芯结构。

8. 根据权利要求1所述的一种抗水解聚乳酸复合纤维的制备方法，其特征在于：皮层结构所开缺口直径在不影响其复合结构稳定性情况下越小，其耐水解性越好，为其周长的5％-25％，优选为5％-15％。

9. 根据权利要求1所述的一种抗水解聚乳酸复合纤维的制备方法，其特征在于：纤维皮芯复合比在1/9到1之间。

10. 本发明所制备的聚乳酸复合纤维其耐水解性远优于纯聚乳酸纤维，且耐磨性提高，上染效果更好。
一种耐水解聚乳酸复合纤维的制备方法

技术领域
[0001] 本发明属于聚乳酸复合纤维的制备领域，特别涉及一种耐水解聚乳酸复合纤维的制备方法。

背景技术
[0002] 全球石油资源的匮乏已日渐制约化纤行业的发展，资源节约和环境保护的倡导对化纤行业提出了新的要求。聚乳酸纤维是一种资源可再生、生物可降解的绿色环保型纤维，它不依赖于传统石油资源，完全符合可持续发展要求。兼有合成纤维和天然纤维的优点，发展极具潜力。然而聚乳酸纤维抗水解性能差，上染率低限制了其广泛应用。
[0003] 已发表的专利公开了解决聚乳酸易水解问题的不同解决方法，均是通过化学方式加入一种或几种成分与聚乳酸共混进行熔融纺丝，取得了一定成效。但化学方法在一定程度上会改变聚乳酸分子结构，从而改变聚乳酸纤维的部分性能。

发明内容
[0004] 本发明采用物理方法，制备一种具有耐水解性的聚乳酸复合纤维，该方法不改变聚乳酸原本分子结构，只是在聚乳酸纤维外层包裹涤纶纤维，使其大部分不与水直接接触，大大降低其水解速率，从而使该复合纤维具有耐水解性。为达到此效果，本发明采用以下方案：
[0005] 第一方面，本发明提供了一种聚乳酸复合纤维，其包括主体原料和辅料，其中主体原料为聚乳酸纤维。
[0006] 本发明的复合纤维中皮层选择涤纶纤维，使其与主体聚乳酸纤维进行组合，能够使两者发挥协同作用，其中，相单一的聚乳酸纤维，耐水解效果更好，能够大大降低聚乳酸纤维的水解速率，并使其强力、耐磨性有所提高。
[0007] 另外，聚乳酸属于资源可再生、生物可降解的环保型纤维，复合纤维的皮层纤维设计为半封闭式，仍保持了其可生物降解的优点。
[0008] 本发明的聚乳酸复合纤维，其耐水解性能好，强力高，手感好，耐磨性好，可生物降解。
[0009] 本发明中，所述聚乳酸纤维质量百分含量为 70％-90％，例如可以是 70％、75％、80％、85％、90％，优选为 75％-85％。
[0010] 本发明中，所述涤纶纤维的质量百分含量为 10％-30％，例如可以是 10％、15％、20％、25％、30％，优选为 15％-25％。
[0011] 本发明的复合纤维通过对聚乳酸纤维和涤纶纤维的含量进行优化选择，使得两者配合后进一步提高复合纤维性能。
[0012] 本发明通过将聚乳酸纤维的含量控制在 70％-90％，涤纶纤维含量控制在 10％-30％，两者在含量上的配比能够使最终得到的复合纤维具有优异的性能，当聚乳酸含量高于 90％或低于 70％，以及涤纶纤维高于 30％或低于 10％时，所配形成的组合物
在性能上不及本发明的复合纤维。

[0013] 作为本发明进一步的改进，所述熔融纺丝时所用喷丝孔外围皮层所开缺口为其周长的5％-25％，例如可以是5％、10％、15％、20％、25％，优选为5％-15％。

[0014] 作为本发明进一步的改进，所述方法包括以下步骤：

[0015] (1) 将涤纶切片作为皮层料、聚乳酸切片作为芯层料后，使用皮芯结构组件进行熔融纺丝，得到原丝，然后用牵伸机对原丝进行牵伸，即得耐水解聚乳酸复合纤维。

[0016] (2) 纺丝熔融工艺优选为纺丝温度优选为200-230℃，牵伸工艺优选为牵伸倍率3-5倍。

[0017] 本发明的有益效果:

[0018] (1) 本发明的制备方法简单，成本低，可大规模生产。

[0019] (2) 本发明制得的聚乳酸复合纤维仍具备可生物降解性，耐水解性效果好，且耐磨性、强力均有一定程度提高。

附图说明

[0020] 图1喷丝孔的结构，m为皮层料涤纶所开孔径。为周长的5％-25％，优选为5％-15％。

具体实施方式

[0021] 为便于理解本发明，本发明列举实施例如下。本领域技术人员应该明白了，所述实施例仅仅是帮助理解本发明，不应视为对本发明的具体限制。

[0022] 实施例

[0023] 一种聚乳酸复合纤维，主体原料为聚乳酸纤维，辅料为涤纶纤维。

[0024] 该复合纤维的制备方法包括如下步骤：

[0025] (1) 将聚乳酸纤维切片作为芯层料，涤纶纤维切片作为皮层料。

[0026] (2) 熔融纺丝工艺设置为：纺丝温度为170-260℃，卷绕速度500-2000m/min。牵伸工艺设置为：热盘温度50-120℃，热板温度50-140℃，牵伸倍率1.5-6.5倍。

[0027] (3) 使用皮芯结构组件和特殊结构喷丝孔进行熔融结构纺丝得到原丝，后对原丝进行牵伸。

[0028] 实施例1-5

[0029] 按上述实施例所述原料配比和制备方法制得复合纤维，具体配比如表1所示。

[0030] 对比例1-6

[0031] 按上述实施例所述制备方法制得复合纤维，但对于其中的各原料配比进行了调整，分别调整实施例中的聚乳酸纤维和涤纶纤维所占质量百分含量。具体复合比如表1所示。

[0032] 表1

[0033]
<table>
<thead>
<tr>
<th>原料（wt%）</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>对比例 1</th>
<th>对比例 2</th>
<th>对比例 3</th>
<th>对比例 4</th>
<th>对比例 5</th>
<th>对比例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>聚乳酸纤维</td>
<td>90</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>93</td>
<td>96</td>
<td>98</td>
<td>60</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>涤纶纤维</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>40</td>
<td>35</td>
<td>45</td>
</tr>
</tbody>
</table>

[0034] 将实施例 1-5 和对比例 1-6 所制备的复合纤维所制成的非织造布进行性能测试，数据汇总如表 2 所示。

[0035] 该非织造布所测试的相关性能有：

[0036] （1）磨损率：采用 YG522N 型织物耐摩仪，磨损后的重量损失为在 750g 重锤压力下摩擦 20 次后的重量损失百分比。

[0037] （2）断裂强力：采用 HD026N+ 型织物拉伸强力仪。

[0038] （3）断裂伸长：采用 HD026N+ 型织物拉伸强力仪。

[0039] （4）强度保持率：85℃热水处理 10h 后的强度保持率。

[0040] 表 2

<table>
<thead>
<tr>
<th>性能</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>对比例 1</th>
<th>对比例 2</th>
<th>对比例 3</th>
<th>对比例 4</th>
<th>对比例 5</th>
<th>对比例 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损率%</td>
<td>11.60</td>
<td>10.55</td>
<td>8.92</td>
<td>8.90</td>
<td>7.40</td>
<td>11.80</td>
<td>11.82</td>
<td>12.10</td>
<td>6.40</td>
<td>6.43</td>
<td>5.64</td>
</tr>
<tr>
<td>断裂强力（N）</td>
<td>29.10</td>
<td>38.10</td>
<td>40.74</td>
<td>54.32</td>
<td>57.70</td>
<td>28.74</td>
<td>29.34</td>
<td>28.40</td>
<td>87.46</td>
<td>77.06</td>
<td>89.34</td>
</tr>
<tr>
<td>断裂伸长%</td>
<td>3.50</td>
<td>3.72</td>
<td>3.66</td>
<td>3.75</td>
<td>3.78</td>
<td>3.35</td>
<td>3.32</td>
<td>3.32</td>
<td>4.70</td>
<td>4.67</td>
<td>6.90</td>
</tr>
<tr>
<td>强度保持率%</td>
<td>60</td>
<td>63</td>
<td>72</td>
<td>77</td>
<td>78</td>
<td>57</td>
<td>55</td>
<td>56</td>
<td>82</td>
<td>85</td>
<td>86</td>
</tr>
</tbody>
</table>

[0042] 通过表 1 和表 2 可以看出以下几点：

[0043] （1）随着涤纶纤维复合比的增加，复合纤维的耐磨性均有不同程度提高。

[0044] （2）随着涤纶纤维复合比的增加，复合纤维的断裂强力均有不同程度提高。

[0045] （3）随着涤纶纤维复合比的增加，复合纤维的断裂伸长均有不同程度提高。

[0046] （4）该复合纤维的耐水解性随涤纶纤维含量的增加而提高，但考虑到聚乳酸纤维生物可降解、资源可再生的优点，原则上在保证该复合纤维满足基本性能要求的情况下聚乳酸纤维的含量越高越好，因此聚乳酸纤维/涤纶纤维复合比优选为 7/3-9/1。

[0047] 申请人声明：本发明通过上述实施例来说明本发明的详细方法，但本发明并不局限于上述详细方法，即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的
技术人员应该明了，对本发明的任何改进，对本发明产品各原料的等效替换及辅助成分的添加具体方式的选择等，均落在本发明的保护范围和公开范围之内。
图 1