7024628 A2 | IV Y00 0 0O

Tg)

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

17 March 2005 (17.03.2005)

(10) International Publication Number

WO 2005/024628 A2

(51) International Patent Classification’: GOG6F 9/40
(21) International Application Number:
PCT/US2004/028433

(22) International Filing Date:
1 September 2004 (01.09.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/500,364 3 September 2003 (03.09.2003) US

(71) Applicant (for all designated States except US): BIT-
FONE CORPORATION [US/US]; 32451 Golden
Lantern, Suite 301, Laguna Niguel, CA 92677 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHEN, Shao-Chun
[CN/US]; 27662 Aliso Creek Road, Apt. #7304, Aliso
Viejo, CA 92656 (US). CHOI, Young, Hee [KR/US]; 1732
Creekside Lane, Vista, CA 92081 (US). GUSTAFSON,
James, P. [US/US]; 2100 Timberwood, Irvine, CA 92620
(US).

(74) Agent: FRENCH III, Fredrick; MCANDREWS, HELD
& MALLOY, LTD., 500 W. Madison Street, Suite 3400,
Chicago, IL 60661 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: TRI-PHASE BOOT PROCESS IN ELECTRONIC DEVICES

305

0x700000

L 331
Update Reserved for Update Package 333
Status (32B) /
37 Location for
exemplary RESERVED :
Elgglrlglc - Can be used for 350
[ Update Status
334 5 Reserved Bank 0x670000
b 335

Application

Electronic Device

0x20000

340
Checksum 48) « — | ——— 1T 1 1 (328) P 350
336 Update Agent Executables 010000
Device Boot
Cod
38— = oo 337

Flash memory

(57) Abstract: Disclosed herein is an electronic device network including a plurality of electronic devices. The electronic devices
may each have updating software adapted to update firmware/software resident in the electronic devices. The electronic devices
& may also employ additional software for updating the updating software in the electronic devices. The electronic devices may also
& have software adapted to determine whether a current version of the updating software is to be invoked or whether a previous backup
version of the updating software is to be invoked. The determination may be made based upon status information resident in a update
status indicator. The status information may indicate that an update upon the updating software is to be conducted, rather than a
normal startup operation without performing any updates. The network may also include an update generator adapted to generate
updates for use in updating the updating software in the electronic devices.



WO 2005/024628 A2 II}IH10 Y A0VYH0 A0 0O 00 0O 0 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.



WO 2005/024628 PCT/US2004/028433

TRI-PHASE BOOT PROCESS IN ELECTRONIC DEVICES

BACKGROUND OF THE INVENTION

[0001] Electronic devices, such as mobile phones and personal digital
assistants (PDA’s), often contain firmware and/or software applications that are
either provided by the manufacturers of the electronic devices, by
telecommunication carriers, or by third parties. These firmware and software
applications often contain bugs. New versions of firmware and software are

periodically released to fix the bugs and/or to introduce new features.

[0002] Update programs, code, or functions employed to update the
firmware and/or software components in electronic devices may also need to be
changed, modified, and/or updated. Programs may be updated by employing an
update agent. An update agent may comprise software for updating one of
firmware and/or software. Updating the update agent in an electronic device,
for example a mobile handset, may be challenging. If the update is not executed
properly, the update agent may be rendered inoperable and/or become

corrupted.

[0003] Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of ordinary skill in the art
through comparison of such systems with the present invention as set forth in

the remainder of the present application with reference to the drawings.

SUMMARY OF THE INVENTION

[0004] Aspects of the present invention may be found in an update
status indicator for use in updating one of firmware and software in a mobile
electronic device. The update status indicator may comprise an update address
block of memory. The update address may identify where an updating software
is stored in the electronic device. The update status indicator may also comprise
a return block of memory comprising a value to be returned when updating the
electronic device has been completed and an indicator block of memory

comprising a plurality of status indicators.



WO 2005/024628 PCT/US2004/028433

[0005] In an embodiment according to the present invention, the
plurality of status indicators may be employed by updating software comprising
a plurality of executable instructions for converting a first version of software to

a second version of software.

[0006] In an embodiment according to the present invention, at least one
of the plurality of status indicators may be employed to indicate that an update

is present in the electronic device and that an update is to be performed.

[0007] In an embodiment according to the present invention, at least one
of the plurality of status indicators may be employed to indicate whether the

software to be updated is valid and capable of being updated.

[0008] In an embodiment according to the present invention, at least one
of the plurality of status indicators may be employed to indicate which pass

through the software to be updated that the update is currently performing.

[0009] In an embodiment according to the present invention, at least one
of the plurality of status indicators may be employed to indicate that the update

of the software to be updated is completed.

[0010] Aspects of the present invention may be found in a memory
configuration for a mobile electronic device comprising a software for booting
the electronic device located in a first portion of memory, an updating software
for updating one of firmware and software in the electronic device located in a
second portion of memory, a reserved portion of memory usable for backing up
one of code and information during an updating event, and at least one
additional portion of memory for storing an update usable by the updating
software during the updating event. Updating one of software and firmware in
the electronic device may comprise executing a plurality of executable
instructions for converting a first version of one of software and firmware to a

second version of one of software and firmware.

[0011] In an embodiment according to the present invention, the

updating software may be updatable in a fault tolerant manner.



WO 2005/024628 PCT/US2004/028433

[0012] In an embodiment according to the present invention, the

memory configuration may comprise non-volatile memory.

[0013] In an embodiment according to the present invention, software
and firmware may be stored in the memory configuration in a compressed form
and may be decompressed out of the memory configuration into random access

memory for one of processing and updating.

[0014] Aspects of the present invention may be found in an updating
software employable for updating one of software and firmware in a mobile
electronic device. The updating software may comprise a software component.
The software component may be adapted to survey and validate one of software
and firmware to be updated in the electronic device to determine that the one of
software and firmware are capable of being updated. The software component

may also be adapted to identify an update interruption.

[0015] In an embodiment according to the present invention, identifying
an update interruption may provide a fault tolerant update and may permit an

interrupted update to be re-initiated where the interruption occurred.

[0016] Aspects of the present .invention may be found in an update
software wrapper employable in conjunction with updating software for
updating one of software and firmware in a mobile electronic device. The
update software wrapper may be adapted to facilitate interaction between

electronic device specific software and application specific software.

[0017] In an embodiment according to the present invention, electronic
device specific software may comprise software adapted to operate in a

particular manufacturers electronic device models.

[0018] In an embodiment according to the present invention, application
specific software may comprise software adapted to perform a specific function

that is independent of a particular manufacturers electronic device models.

[0019] In an embodiment according to the present invention, the update

software wrapper may further comprise software combining manufacturer



WO 2005/024628 PCT/US2004/028433

dependent electronic device model root code and update information adapted to
perform application specific updates independent of manufacturer electronic
device models to permit interaction and interfacing of generated updates and

particular manufacturer electronic device model one of firmware and software.

[0020] In an embodiment according to the present invention, the update
software wrapper may be adapted to call a flash erase function before a flash

write function of at least one component of a memory module.

[0021] In an embodiment according to the present invention, the update
software wrapper may be adapted to manage and adjust at least one of

evaluation settings, update variables, and update functions.

[0022] Aspects of the present invention may be found in a mobile
electronic device comprising a software adapted to update an updating software
resident in the electronic device in a non-fault-tolerant manner and a fault-

tolerant manner.

[0023] In an embodiment according to the present invention, updating
the updating software in a fault tolerant manner may comprise storing a backup
copy of the updating software in non-volatile memory prior to initiation of an

update event.

[0024] Aspects of the present invention may be found in a mobile
electronic device comprising at least two program files stored in a non-volatile
memory configuration. The at least two program files may comprise at least one
of code and data usable for booting an electronic device. The at least two
program files may be adapted to call associated boot instructions from different

locations in memory depending upon a status of a software to be updated.

[0025] In an embodiment according to the present invention, the at least

two program files may be binary files.

[0026] In an embodiment according to the present invention, the at least

two program files may be adapted to perform boot activities at different times.



WO 2005/024628 PCT/US2004/028433

[0027] In an embodiment according to the present invention, one of the
at least two program files may be adapted to boot updating software from a
default start location in non-volatile memory and another of the at east two
program files may be adapted to boot updating software from a reserved backup

location in non-volatile memory.

[0028] In an embodiment according to the present invention, the at least
two program files may each be associated with additional block of re-locatable
code that is copied from a default location to a reserved backup location to
provide fault tolerance prior to initiation of a fault tolerant update of updating

software resident in the electronic device.

[0029] In an embodiment according to the present invention, the mobile
electronic device may further comprising software for booting the electronic
device. The software for booting may be adapted to invoke at least one of the at
least two program files to initialize and relocate updating software to be updated
and an associated block of re-locatable code from storage in non-volatile
memory to a random access memory for one of booting, processing, and

updating.

[0030] These and other advantages, aspects, and novel features of the
present invention, as well as details of illustrated embodiments, thereof, will be

more fully understood from the following description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGS

[0031] FIGURE 1 is a block diagram illustrating an exemplary
provisioning system comprising an electronic device communicatively coupled

to a delivery server in accordance with an embodiment of the present invention;

[0032] FIGURE 2 is a block diagram illustrating an exemplary update
status component comprising at least an update package address, an indicator
block, a return code, and an unused/unspecified portion in accordance with an

embodiment of the present invention;



WO 2005/024628 PCT/US2004/028433

[0033] FIGURE 3 is a block diagram illustrating an exemplary memory
configuration for an exemplary electronic device in accordance with an

embodiment of the present invention;

[0034] FIGURE 4 is a flow diagram illustrating an exemplary method
of fault tolerant updating of an update agent in an exemplary electronic device

in accordance with an embodiment of the present invention;

[0035] FIGURE 5 is a flow diagram illustrating a portion of the
exemplary method of fault tolerant updating of an update agent in an exemplary
electronic device illustrated in FIGURE 4 in accordance with an embodiment

of the present invention;

[0036] FIGURE 6 is a flow diagram illustrating an exemplary tri-phase
method of updating of an update agent in an exemplary electronic device in

accordance with an embodiment of the present invention;

[0037] FIGURE 7 is a block diagram illustrating an exemplary memory
configuration for an exemplary electronic device in accordance with an

embodiment of the present invention;

[0038] FIGURE 8 is a block diagram illustrating an exemplary memory
configuration for an exemplary electronic device in accordance with an

embodiment of the present invention; and

[0039] FIGURE 9 is a block diagram illustrating an exemplary memory
configuration for an exemplary electronic device in accordance with an

embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0040] Electronic devices may be adapted to access servers to retrieve
update information for updating electronic devices. An electronic device may
be, for example, a mobile electronic device having software/firmware, such as,
mobile cellular phone handsets, personal digital assistants (PDA’s), pagers,

MP3 players, digital cameras, etc.



WO 2005/024628 PCT/US2004/028433

[0041] Update information may comprise information that modifies,
converts, or changes firmware and/or software components installed in the
mobile electronic device. Update information may also add new services to the
mobile electronic device, as desired by a service provider, device manufacturer,
or an end-user. Update information may also comprise information that
modifies, converts, or changes software capable of performing updates upon
other firmware and/or software components installed in the mobile electronic

device.

[0042] Aspects of the present invention may be found in a fault tolerant
method of updating software and/or firmware. The software and/or firmware
may be stored in compressed form in a non-volatile memory device, for
example, a flash memory device. The software and/or firmware may comprise
program instructions, code, information and/or data. The non-volatile memory
may be erased before reprogramming. In another embodiment according to the
present invention, the non-volatile memory may be overwritten, with or without

being erased, during updating and/or reprogramming.

[0043] In an embodiment according to the present invention, a fault
tolerant method of updating software and/or firmware may comprise preventing
loss of information, in the event that power failure occurs during an updating
and/or reprogramming event. In an embodiment according to the present
invention, a fault tolerant method of updating software and/or firmware may
comprise ensuring continuity of an updating and/or reprogramming procedure,
in the event that power failure occurs during the updating and/or
reprogramming procedure. In an embodiment according to the present
invention, a fault tolerant method of updating software and/or firmware may
comprise preventing corruption and/or invalidation of the software and or
firmware, in the event that power failure occurs during an updating and/or

reprogramming event.

[0044] In an embodiment according to the present invention, software
and/or firmware to be updated in the electronic device may comprise program

code and/or data. The program code and/or data may be organized/arranged in



WO 2005/024628 PCT/US2004/028433

units or blocks. The blocks may also be called banks, compressed units/blocks,

and decompressed units/blocks herein.

[0045] In an embodiment according to the present invention, an update
package generator may be adapted to generate an update. package comprising a
plurality of update units/blocks for use in updating one of firmware and/or
software in the electronic devices. An update block/unit may be defined as a
block containing information and/or executable program instructions usable to

update a block of information to be updated.

[0046] An update (update package) may comprise a firmware/software
update that may be used to modify or change a version of a particular
firmware/software, for example, upgrading to a newer version. Updating
software (update agent) used for updating firmware and/or software, may be
stored in the electronic device. The updating software may be referred to herein
as an update agent. The update agent may also be updated by an update (update

package) generated in the update package generator.

[0047] In an embodiment according to the present invention, the update
package may comprise, for example, a set of executable instructions for
converting a first version of firmware/software (“code”) to a second version of
code. In an embodiment according to the present invention, an update package
may also add new services to the electronic device or delete services, as desired
by the service provider or an end-user. An update package may also be referred
to in abbreviated form herein as an update. Updating one of firmware/software
in a mobile electronic device may comprise performing the set of executable
instructions and converting a first version of firmware/software (“code”) to a

second version of code.

[0048] In an embodiment according to the present invention, an
electronic device network adapted to support a plurality of electronic devices
may comprise an update package generator. The update package generator may
be adapted to generate updates (update packages) comprising a plurality of

update units/blocks. The update units/blocks may comprise the set of



WO 2005/024628 PCT/US2004/028433

executable instructions for converting a first version of firmware/software

(“code™) to a second version of code.

[0049] In an embodiment according to the present invention, generating
an update package may comprise overwriting information/code resident in an
existing/previous update package with new or different (updated) information.
For example, an update package comprising a plurality of executable program
instructions may have previously been generated (and employed) to update a
firmware in a mobile electronic device, for example, from firmware version 2 to
firmware version 3. The update may be called update 2-3, for example. To
generate an update package for updating firmware in an electronic device from
firmware version 3 to firmware version 4 (update 3-4), for example, the
previous update package (update 2-3) may be modified (executable
instructions/code/data may be added, deleted, and/or overwritten) to
economically generate the update package for updating firmware in an
electronic device from firmware version 3 to firmware version 4 (update 3-4).
In this manner, the update package generator may not have to generate an
entirely new update package, but rather the update generator may be adapted to
recycle a previous update package using at least some new/different executable

instructions.

[0050] In an embodiment according to the present invention, generating
an update may comprise writing and organizing in memory information/code
creating a new update package. An update package may be built using a

plurality of blocks of update information.

[0051] In an embodiment according to the present invention, an update
(update package) generated by the update package generator in the electronic
device network may be compressed for transmission to a plurality of electronic
devices having firmware/software to be updated. The compressed update

package may also be decompressed after being received in the electronic device.

[0052] FIGURE 1 is a block diagram illustrating an exemplary
provisioning system 105 comprising an electronic device, for example, mobile

handset 107 in accordance with an embodiment of the present invention. The



WO 2005/024628 PCT/US2004/028433

electronic device, for example, mobile handset 107, may be communicatively
coupled to a delivery server 127 in an electronic device network via a
communications link 177. The communication link 177 may be one of a wire

or wireless communication link.

[0053] In an embodiment according to the present invention, the
delivery server 127 may be disposed in a wireless/carrier electronic device
network remote from the electronic device, for example mobile handset 107.
The delivery server 127 may also be communicatively coupled to an update
store 129 via a communications link 167. The communication link 167 may be
one of a wire or wireless communication link. The update store 129 may be a
repository of update packages generated by an update package generator 131.
The update store 129 may also be communicatively coupled to the update
package generator 131 via a communication link 169. The communication link

169 may be one of a wire or wireless communication link.

[0054] In an embodiment according to the present invention, the
electronic device, for example, mobile handset 107 may comprise a non-volatile
memory (NVM) 109 and a firmware manager 159. The NVM 109 may
comprise a boot loader 111, an update agent 113, a firmware 117, an operating
system (OS) 119, electronic device applications 121, and an update package
123, for example. The update agent 113 may, for example, comprise software
for updating at least one of the firmware 117, the operating system 119, and/or
the electronic device applications 121 of the electronic device, for example,
mobile handset 107, by employing the update package 123. In an embodiment
according to the present invention the update agent 113 may also be updated.
The update package generator 131 in the electronic device network may also be
adapted to generate an update package, for example update package 123, for use

in updating the update agent 113.

[0055] In an embodiment according to the present invention, the update
agent 113 may be adapted to employ a random access memory (RAM) device
125 as temporary update storage/processing memory to update the firmware
117, the operating system 119, and/or the electronic device applications 121.

The RAM 125 may also be used as temporary update storage/processing

10



WO 2005/024628 PCT/US2004/028433

memory during an update of the update agent 113. The update agent 113 may
be adapted to update the firmware 117, the operating system 119, and/or the
electronic device applications 121 in a fault-tolerant manner. In an embodiment
according to the present invention, the update agent 113 may also be updated in

a fault tolerant manner.

[0056] In an embodiment according to the present invention, the boot
loader 111 may be executed during startup or reboot, for example. The boot
loader 111 may be capable of determining whether to execute the update agent
113. The boot loader 111 may also be capable of determining that an update
package, for example update package 123, is present and that an update of one
of the firmware 117, the OS 119, electronic device applications 121, and/or the

update agent 113 is to be performed.

[0057] In an embodiment according to the present invention,
determining whether to execute the update agent 113 may, for example, be
facilitated by the boot loader 111 accessing and evaluating at least one status
flag/indicator associated with a generated update package, for example, update
package 123. In an embodiment according to the present invention, a status
flag/indicator may also be evaluated by the boot loader 111 to determine
whether the update agent 113 is to be updated. If an update is to be conducted,
the boot loader 111 may evaluate the update agent 113 to determine whether the
update agent 113 is valid and useable for performing the update, or corrupted

and incapable of performing the update, for example.

[0058] In an embodiment according to the present invention, whether to
execute the update agent 113 may be determined by the boot loader 111 by
computing and evaluating a cyclic redundancy check (CRC) and/or checksums,
for example. The CRC and/or checksums may be compared to previously

computed reference values by the boot loader 111.

[0059] In an embodiment according to the present invention, during the
update of an update agent, for example update agent 113, if the update
procedure is interrupted, then the update agent 113 may be left in a state of

partial update. A partially updated update agent may be unusable, inoperable,

11



WO 2005/024628 PCT/US2004/028433

and/or corrupted. To avoid rendering inoperable and/or corrupting the update
agent, for example update agent 113, a backup copy of the update agent 113 to
be updated may be created, stored, and maintained in the NVM 109 prior to
initiation/performance of the update procedure. A status flag/indicator may also
be used to alert/notify the boot loader 111 that an update of the update agent is
partially completed and further may indicate where the update was interrupted,

for example.

[0060] In an embodiment according to the present invention, a fault
tolerant (recoverable) update of the update agent may therefore be ensured. If
the update agent being updated, for example update agent 113, is rendered
inoperable or corrupted by a failure during the update procedure, the un-
modified (original) backup copy of the update agent may be recovered from
memory, for example NVM 109, wherein the update may subsequently be re-
initiated where the update was interrupted, for example. If, during reboot or
startup, it is determined that the partially updated or improperly updated update
agent is corrupted and/or inoperable, then the backup copy of the update agent
stored in NVM 109 may be invoked by boot loader 111, and the update
procedure may be re-initiated/re-executed. A status flag/indicator may also be
employed to alert/notify the boot loader 111 that the update agent, for example

update agent 113, is corrupted and/or inoperable.

[0061] In an embodiment according to the present invention, the boot
loader 111 may be adapted to determine whether the current update agent 113 is
to be invoked (a default bootstrapping), whether the update agent is to be
updated, or whether a backup version of the update agent 113 in NVM 109 is to
be invoked. The determination may be made based upon status information,
(status flags/indicators), for example, whether an update is to be conducted

and/or whether a normal startup operation without updates is to be conducted.

[0062] In an embodiment according to the present invention, the
electronic device may also comprise a handoff agent 166 capable of facilitating
the setting of status information (status flags/indicators) and memory location
addresses after an update package, for example update package 123, is

downloaded to the electronic device from delivery server 127. In an

12



WO 2005/024628 PCT/US2004/028433

embodiment according to the present invention, the electronic device may also
comprise a download agent 196. The download agent 196 may be capable of
facilitating the downloading of update packages, for example update package
123.

[0063] FIGURE 2 is a block diagram illustrating an exemplary update
status indicator 205. The update status indicator 205 may be stored in non-
volatile memory, such as for example, NVM 109 illustrated in FIGURE 1. The
update status indicator may accompany an update package and/or be part of a
generated update package being downloaded to an electronic device. The
update status indicator 205 may be 32 bytes long, for example. The update
status indicator 205 may at least comprise an update package address 209, an
indicator block 215, a return code 213, and a unused/unspecified portion 211.
The update package address 209 may be 4 bytes long, for example. The
indicator block 215 may be 4 bytes long, for example. The return code also
may be 4 bytes long, for example. The indicator block 215 of update status
indicator 205 may comprise a plurality of status flags/indicators that may be
evaluated by the boot loader 111 to determine whether an update is to be

performed, an update is partially completed, the update agent is corrupted, etc.

[0064] In an embodiment according to the present invention, an update
agent, for example update agent 113 illustrated in FIGURE 1, may employ the
update package address 209 to retrieve an update package, for example update
package 123. The retrieved update package 123 may be employed to update the
firmware 117, the operating system 119, and/or applications 121. The retrieved
update package 123 may also be employed to update the update agent 113
illustrated in FIGURE 1.

[0065] In an embodiment according to the present invention, the
indicator block 215 may comprise a plurality of status flags/indicators, for
example, by, bj, by, and bs. The exemplary indicators, (bg, by, b;, and b3) in
indicator block 215 may be employed by the boot loader to control invocation
of the update agent 113, for example. Flags, addresses, indicators, security

information, and additional device status information may also be employed in

13



WO 2005/024628 PCT/US2004/028433

the update status indicator 205 to indicate the status of functions associated with

corresponding firmware, software, hardware, and other code/data/information.

[0066] In an exemplary embodiment according to the present invention,
the exemplary indicators (b, by, bz, and bs) may be provided with the following

exemplary definitions, for example.

[0067] In an embodiment according to the present invention, the
indicator by may comprise an update indicator, for example. The indicator bg
may be set by a handoff agent, for example handoff agent 166 illustrated in
Figure 1. The indicator by may be set to O to indicate that an update package
123 is present and an update is to be performed. The default/initial value for

indicator bp may be 1, for example.

[0068] In an embodiment according to the present invention, the
indicator b; may comprise a validation phase indicator, for example. When the
validation phase has been completed, the value of indicator by may be set to 0 in
a plurality of device wrappers. The default/initial value for indicator b; may be
1, for example. A device wrapper may comprise a software interface adapted to
permit generic software to interact with a particular version of software. For
example, electronic device manufacturers may each provide unique particular
firmware in a corresponding electronic device model. Electronic device update
generating companies may not be provided the proprietary or root code
provided in the manufacturer’s electronic devices. The electronic device update
generating companies may generate generic update packages adapted to
perform specific updates on any electronic device, regardless of manufacturer,
for example an update agent. Therefore, device wrappers are developed to
permit interaction/interfacing of the generic updating software and the particular
electronic device firmware/software. Wrappers facilitate reuse of update agent

code without customization of the update agent.

[0069] In an embodiment according to the present invention, the
indicator b, may indicate a transform 1 phase, for example. Updating
firmware/software may comprise multiple passes (updating passes) through the

software before the update is completed. A transform phase indicator may

14



WO 2005/024628 PCT/US2004/028433

comprise an indicator alerting/notifying the boot loader 111 which pass or phase
the update was performing when, for example, the update was interrupted, or
when the electronic device rebooted as part of the update. A transform 1 phase
indicator, for example, by, may indicate that the update had completed or was
involved in a first pass of phase through the software when the device rebooted
or the update was interrupted. When the transform 1 phase has been completed,
the value of indicator b, may be set to 0 in a plurality of device wrappers. The
default/initial value for indicator b, may be 1, for example. A plurality of
transform indicators may reside and be evaluated in indicator block 215
depending on the number of passes or phases that an update may be deemed to
make in performing an update. In an exemplary embodiment according to the
present invention, three transform phases may be employed, for example, a pre-
processing phase (transform 1, for example), an updating phase (transform 2,

for example), and a post-processing phase (transform 3, for example).

[0070] In an embodiment according to the present invention, the
indicator b3 may comprise an update completion indicator, for example. When
an update has been completed, the value of indicator b3 may be set to 0. The

default/initial value for indicator b; may be 1, for example.

[0071] In an embodiment according to the present invention, when
indicator by is set to 0 and indicator bs is set to 1, an update may be initiated, for

example.

[0072] In an embodiment according to the present invention, when an
update procedure is completed, the return code 213 illustrated in FIGURE 2
may be set to a return value provided by the boot loader 111, update package
123, the update agent 113, and/or an update agent (UA) software development
kit (SDK). The UASDK may comprise a library comprising plurality of
functions associated with the device wrappers, the update agent 113, the update
package 123, and the boot loader 111. In another embodiment according to the
present invention, the plurality of function may be miscellaneous functions that
are not directly related to any particular software, but may comprise information

and/or data used to carryout miscellaneous functions, for example.

15



WO 2005/024628 PCT/US2004/028433

[0073] . In an embodiment according to the present invention, the update
package address 209 illustrated in FIGURE 2 may comprise 4 bytes (4B), for
example. The 4 bytes of the update address block 209 may be used to store the
address in NVM 109, illustrated in FIGURE 1, of an update package, for
example update package 123.

[0074] Aspects of the present invention may be found in a tri-phase
method of booting and updating an electronic device. In a first phase
boot/reboot, also referred to as a default boot/reboot, the electronic device may
boot/reboot firmware/software in the electronic device and initiating normal

operation, for example.

[0075] In a second phase update boot/reboot, the electronic device may
boot/reboot and update any and/or all firmware/software in the electronic
device. However, if the update agent 113 is being updated, a backup copy of
the update agent 113 may be stored in NVM 109, for example, before updating
the update agent. The second update boot/reboot method is fault tolerant
because if a failure occurs during updating the update agent 113, catastrophic
failure may be avoided because the backup copy of the original update agent

113 may be invoked.

[0076] In the third phase update boot/reboot, the electronic device may
boot/reboot and update any and/or all firmware/software in the electronic
device. However, in this method the boot loader 111 may determine that the
update agent 113 is improperly updated. Therefore, during the boot/reboot, the
backup copy of the update agent 113 is invoked and decompressed out of NVM
109 into RAM 125, and a catastrophic failure is averted. The third update
boot/reboot method is fault tolerant because if a failure during the update of the
update agent 113 is detected, catastrophic failure is avoided because the backup

copy of the original update agent 113 remains usable.

[0077] Aspects of the present invention may also be found in integrating
an update agent, for example update agent 113 illustrated in FIGURE 1,
comprising updating software into electronic devices, such as for example,
mobile handset 107 also illustrated in FIGURE 1.

16



WO 2005/024628 PCT/US2004/028433

[0078] Aspects of the present invention may also be found in an update
package generator, such as update package generator 131 illustrated in
FIGURE 1. The update package generator 131 may be capable of generating
update packages for updating at least one of the firmware 117, the OS 119,
electronic device applications 121, and the update agent 113 in an electronic
device, such as for example, mobile handset 107, all illustrated in FIGURE 1,
by employing a command line for the electronic device images. A command
line may comprise a textual interface for entering commands to a processing
device, as opposed to a graphical interface for entering commands. The present
invention is not limited to a command line interface but may also comprise a

graphical interface in another embodiment according to the present invention.

[0079] In an embodiment according to the present invention, the update
agent software development kit (UASDK) may comprise a UASDK engine.
The UASDK engine may comprise the minimum functionality to perform an

update.

[0080] In an embodiment according to the present invention, an
exemplary electronic device, such as for example, mobile handset 107 may
comprise the following configuration and/or specifications. The electronic
device may comprise a flash-type non-volatile memory, such as for example,
NVM 109. The flash-type non-volatile memory 109 may be, for example, an
AMD DS42585 designed by Advanced Micro Devices, Inc. The AMD
DS42585 is a 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) top boot flash & 8 Mbit (1
M x 8-Bit/512 K x 16-Bit) static RAM device having a bank size of 64 KB, a
boot block size of 8 KB *8, a code size of 7 MB (0x0 — 0x700000), and RAM
of 1 MB (0x1200000 - 0x1300000).

[0081] FIGURE 3 is a block diagram illustrating an exemplary memory
configuration 305 of a flash memory for an exemplary electronic device, such
as for example, the mobile handset 107 illustrated in FIGURE 1, in accordance

with an embodiment of the present invention.

[0082] The exemplary flash memory 305 illustrated in FIGURE 3 may

comprise a block of memory 338 for storing an electronic device boot code and

17



WO 2005/024628 PCT/US2004/028433

an unspecified block of memory 337. The exemplary flash memory 305 may
also comprise a block of memory 336 for storing update agent executables. The
block of memory 336 for storing update agent executables may be further sub-
~ divided into a reserved block 350 and a checksum block 340. The reserved
block 350 may be 32 bytes long, for example. The checksum block 340 may be

4 bytes long, for example.

[0083] The exemplary flash memory 305 may also comprise a block of
memory 335 for storing electronic device applications and a reserved bank of
memory 334. The reserved bank of memory 334 may also be sub-divided into
another reserved block of memory 360. The reserved block of memory 360
may be used for storing an update status indicator, such as for example, the
update status indicator 205 illustrated in FIGURE 2. The reserved block of
memory 360 may be 32 bytes long, for example.

[0084] The exemplary flash memory 305 may also comprise an
unspecified block of memory 333. The unspecified block of memory 333 may
also be sub-divided into an update status block 370. The update status block
370 may be used for storing an update status indicator, such as for example, the
update status indicator 205 illustrated in FIGURE 2. The update status block
370 may be 32 bytes long, for example.

[0085] The exemplary flash memory 305 illustrated in FIGURE 3 may
also comprise a block of memory 332 reserved for receiving and storing an
update package, for example. The exemplary flash memory 305 may also

comprise another unspecified block of memory 331.

[0086] In an embodiment according t the present invention, to make a
tri-phase booting test demonstrable, two update packages may be flashed/stored
in memory block 332, for example, as illustrated in FIGURE 3. The update
packages may comprise a base version and a base version converted to a new

version, for example.

[0087] In an embodiment according to the present invention, the update
status blocks 360 and 370 may comprise the last and first 32 bytes of reserved

bank of memory 334 and unspecified memory block 333, respectively.

18



WO 2005/024628 PCT/US2004/028433

However, if a problem occurs in accessing the data/information during an
initialization/boot/reboot, the update status blocks 360 and 370 may be

changed/moved to another different available location.

[0088] In an embodiment according to the present invention, the
reserved block of memory 360 and the update status block 370 may both be 32,
bytes long, for example. The blocks may be used to detect the status of and
facilitate initiation of the update agent 113 and alerting/notifying the UASDK,
the boot loader 111, and/or the handoff agent 166 of the status of the update

agent 113, for example.

[0089] In an embodiment according to the present invention, the handoff
agent 166, the firmware manager 158, the download agent 196, etc. may not
originally be integrated into the electronic device image permitting the update
agent 113 to be tested during manual downloading of an update package 123
using JTAG flash programming, for example. JTAG comprises a standard
specification of an interface for testing integrated circuits. JTAG permits

detecting of status and control of integrated circuit functionality.

[0090] In an embodiment according to the present invention, an
electronic device menu may be enabled to set the exemplary update indicator
bits (bg, by, bz, and bs, for example) in the update status indicator block 205. In
another embodiment according to the present invention, the handoff agent 166
may be enabled to set the exemplary update indicator bits (bg, by, bz, and bs, for

example) in the update status indicator block 205.

[0091] In an embodiment according to the present invention, baseline
implementations, such as for example, for security and authentication
implementations, may be used to create a valid electronic device image
updatable employing the update agent 113. Baseline implementations may
comprise, for example, a checksum implementation, such as for example, a
cyclic redundancy check (CRC32), a compression implementation, such as for
example, bfzlib compression, a security implementation, such as for example,
MDS5 with RSA, a predictor implementation, such as for example, a predictor

for a thumb processor (by ARM) developed by Bitfone Corp., a surveyor

19



WO 2005/024628 PCT/US2004/028433

implementation (update agent validation and update interruption/failure
identification), a heap module implementation, and a utility interface

implementation.

[0092] In an embodiment according to the present invention, to test the
functionality of the update agent 113, the electronic device may also be
programmed so that all possible electronic device features are integrated and
present in the electronic device. Electronic device testing features may
comprise testing fault tolerant updating of firmware/software, testing fault
tolerant updating of the update agent 113, testing the tri-phase booting method,

and testing a thumb prediction method.

[0093] In an embodiment according to the present invention, the handoff
agent 166 may not be available for testing, but handoff agent interfaces and

device wrappers may be employed.

[0094] In an embodiment according to the present invention, a UASDK
Library may comprise a single library provided for the implementation of the
functionality of the update agent 113. In another embodiment according to the
present invention, a UASDK Library may comprise a plurality of application-
specific libraries provided for implementing the functionality of the update
agent 113. All of the baseline update agent functionality may be included in the
library/libraries as well as all currently available update agent plug-ins.
Functionality may be compiled for a particular target electronic device

environment.

[0095] In an embodiment according to the present invention, the
UASDK library/libraries may comprise a set(s) of source directories. At
integration time, files adapted for linking and compiling the update agent 113

may be selected by adjusting electronic device interfaces and device wrappers.

[0096] FIGURE 4 is a flow diagram 405 illustrating an exemplary
method of fault tolerant updating of any of the firmware 117, the software
applications 121, the operating system (OS) 119, and the update agent 113 in an
exemplary electronic device in accordance with an embodiment of the present

invention.

20



WO 2005/024628 PCT/US2004/028433

[0097] The exemplary method illustrated in FIGURE 4 may be used to
update firmware/software using the UASDK engine, electronic device
interfaces, and device wrappers resident in the baseline library/libraries. The
following implementation/method illustrates how to use the engine prototypes,
interface functions, and wrapper/driver functions during an update. In an
embodiment according to the present invention, the ua_Main_Start() function is

an exemplary module initiating the update of a target firmware.

[0098] The method may begin at start (block 401). The method may
comprise initializing access to one of the firmware 117, hardware components,
the operating system (OS) 119, the software applications 121, and/or the update
agent 113 (block 440). Initializing access to software/firmware may also
comprise initializing access to device wrapper functions
exposing/decompressing data from non-volatile flash memory 109 into RAM

125, for example.

[0099] The method may also comprise accessing the encryption (block
441). Accessing the encryption (encryption engine/software) (block 441) may
comprise accessing a public key, such as, a 261-byte public key, a 1024-byte

public key, etc., for example.

[00100] The method may also comprise accessing variables facilitating
the update of the electronic device (block 442). Accessing variables to be used
to facilitate the update of the electronic device may comprise dynamically
allocating a plurality of global variables used by the UASDK, for example. A
void pointer may also be sent to the UASDK engine for initialization. The void

pointer may persist throughout the entire update.

[00101] The method may also comprise computing an index to facilitate
fault tolerant update recovery (block 443). The method may also comprise
decompressing a compressed update package from non-volatile memory 109 to
RAM 125, for example, (block 444). The method may also comprise obtaining
a decompressed update package from a compressed update package by
employing a compression implementation, such as for example, the zlib

compression plug-in. The method may also comprise a loop of instructions that

21



WO 2005/024628 PCT/US2004/028433

may be repeated within the implementation until the update is completed (see
FIGURE 5 for the loop steps) (block 445). After completing the loop of

instructions illustrated in FIGURE §, the method may continue as follows.

[00102] The method may comprise freeing memory allocated for use
during the update (block 446). Freeing the allocated memory may also
comprise freeing memory from a cyclic redundancy check (CRC) table or

checksum table, for example.

[00103] The method may also comprise flash erasing all temporary write
units/blocks/banks set-aside, allocated, and/or used during the update (block
447). Flash erasing the temporary write units may also comprise issuing a
flash-erase command. The method may also comprise freeing memory
allocated for a plurality of global variables. The method may also comprise
setting an update status flag/indicator in an update status indicator 205 for the

handoff agent 166 (block 448).

[00104] The method may also comprise cleaning up the update package,
for example, update package 123 illustrated in FIGURE 1 (block 449).
Cleaning up the update package 123 may comprise processing the device
wrapper functions employed during the update. The method may also comprise
resetting the electronic device (block 451). Resetting the electronic device may
also comprise rebooting the electronic device. The method illustrated in

FIGURE 4 may end at block 402.

[00105] FIGURE 5 is a flow diagram 505 illustrating additional detail of
a loop of instructions associated with the exemplary method of fault tolerant
updating of an exemplary electronic device (such as mobile handset 107
illustrated in FIGURE 1) illustrated in FIGURE 4 (block 445) in accordance

with an embodiment of the present invention.

[00106] The method may comprise displaying user interface messages
(block 540). Displaying user interface messages may comprise using a
customer-configured implementation for starting an update. The method may
also comprise determining whether a memory management system is initialized

and operational (block 541).

22



WO 2005/024628 PCT/US2004/028433

[00107] The method may also comprise opening a heap library (block
542), wherein the memory environment for executing the update may be
established. The method may also comprise decompressing the update package
123 and producing a pointer to the raw update package (block 543).
Decompression may comprise employing the zlib decompression
implementation by Bitfone Corp.  Decompression may also comprise
employing a produced pointer to point to the decompressed update package

employed for the update, which may be located in the RAM 125.

[00108] The method may also comprise performing a security check,
such as an MD5 with RSA check, upon the update package 123 data/code
(block 544). The method may also comprise initializing a checksum library
and/or a CRC library (block 545) and initializing an update agent engine (block
546). A global void pointer and an allocated checksum pointer may be passed
to an initialization routine during initialization. A global update structure may
also be initialized. In an embodiment according to the present invention, the
checksum pointer may be referenced by the global void pointer and may not be

passed to other functions.

[00109] The method may also comprise loading an update package 123
that the update agent engine may employ to build an updated firmware/software
image (block 547). Loading the update package 123 may also comprise
checking the validity of the update package 123, both by evaluating the update
package size and by evaluating the calculated checksum. A surveyor may
support both an original firmware validation and also identification of an update
procedure interruption, for example. The surveyor may be a component of the
update agent 113 or the boot loader 111, for example. For integrations
performed in a non-fault tolerant mode, the original firmware validation may be
run, but identification of an update procedure interruption may be skipped.
Skipping identification of an update procedure interruption may be
accomplished by setting a device wrapper/driver function related to the
surveyor. The surveyor function may return an index of recovery to be used

later.

23



WO 2005/024628 PCT/US2004/028433

[00110] The method may also comprise validating an original firmware
117 and monitoring the update (block 548). The method may also comprise
invoking an update transformation (transform phase indicator) and sending a
pointer and a recovery index (block 549). The loop of instructions set forth
above may be repeated as many times as necessary until the update is
completed. The method illustrated in FIGURE $ ends at block 502, where the
method may continue in FIGURE 4 at block 446.

[00111] In an embodiment according to the present invention, interface
functions may be provided in a C file to adjust direction between modules in the
UASDK, for example. In an embodiment according to the present invention,
electronic device integration may employ a baseline implementation, a
library/libraries, and a plurality of program calls. One implementation may
comprise implementing a program call to a baseline cyclic redundancy check,
such as CRC32, for example. Another implementation may comprise linking a
thumb predictor, for example. Another implementation may comprise

implementing a baseline memory utility, for example.

[00112] In an embodiment according to the present invention, header
files may contain all the prototypes that are to be implemented into the UASDK
library/libraries for subsequent use during an update and incorporation into an
update package, for example. . The UASDK may call a flash erase function

before a write-flash function.

24



WO 2005/024628 PCT/US2004/028433

[00113] To facilitate a non-fault-tolerant update of an update agent 113,
the UASDK library/libraries may be compiled and linked to the interface files
and device wrapper files. The output may be hexadecimal and/or plain binary
form. The entry point to be used may be 0x10000. A scatter load file, such as

for example, the file illustrated below may be used.

FLASH 0x10000 0x800
{
FLASH 0x10000
{ uainit.o (Init, +First)
uabootmem.o
<anon>

}
RAM_RO 0x1200000

{

}
RAM_RWZI +0

{

* (+RO)

* (+RW)
* (+ZI)

[00114] For a fault-tolerant update of the update agent 113, the UASDK
library/libraries may be compiled and linked to the interface files and device

wrapper files. The output here may be in plain binary form.

[00115] To support fault tolerant updating of an update agent, such as for
example, update agent 113, tri-phase booting, as discussed above and with

respect to FIGURE 6 below, may be integrated.

[00116] FIGURE 6 is a flow diagram 605 illustrating an exemplary
initialization, validation, and fault tolerant method of updating an update agent
113 in an exemplary electronic device in accordance with an embodiment of the
present invention. In FIGURE 6, the method may start at (block 601). An
electronic device, for example, mobile handset 107 illustrated in FIGURE 1,
may be started, booted or rebooted (block 606). The method may also comprise
initializing the electronic device, evaluating the update status indicator, for
example, update status indicator 205 illustrated in FIGURE 2, and

detecting/determining whether an update package, such as for example update

25



WO 2005/024628 PCT/US2004/028433

package 123 illustrated in FIGURE 1 is present (block 616). If no update
package 123 is present and/or no update is currently to be performed, the
electronic device may initiate normal operation (block 676) and the procedure

may conclude at end block 602.

[00117] In an embodiment according to the present invention, if an
update package 123 is detected based upon evaluation of the update status
indicator, for example update status indicator 205 illustrated in FIGURE 2, the
update agent, for example update agent 113 illustrated in FIGURE 1, may be
validated (block 626). If the update agent 113 is determined to be valid, i.e.,
operable and/or un-corrupted, the update may proceed to branch to the update
agent 113 (block 636), wherein the update may be performed (block 686).
Upon completion of the update, the electronic device may start up again or
reboot (block 606). The electronic device may again evaluate the update status
indicator 205 and determine whether another update package 123 is present
(block 616), or determine whether the update has been completed. If no update
package 123 is present, the update is complete, and/or no update is currently to
be performed, the electronic device may initiate normal operation (block 676)

and the procedure may conclude at end block 602.

[00118] In an embodiment according to the present invention, if an
update package 123 is detected based upon evaluation of the update status
indicator, for example update status indicator 205 illustrated in FIGURE 2, the
update agent, for example update agent 113 illustrated in FIGURE 1, may be
validated (block 626). If the update agent 113 is determined to be invalid,
inoperable, and/or corrupted, a backup or reserve copy of the update agent 113,
previously stored in non-volatile memory may be accessed, invoked, and
validated (block 646). If the backup or reserve copy of the update agent 113 is
also determined to be invalid, inoperable, and/or corrupted, a non-recoverable

failure may occur (block 666) and/or the update may conclude at end block 602.

[00119] However, if the backup or reserve copy of the update agent 113
is determined to be valid, operable, and/or un-corrupted, the update may
proceed to branch to the reserve copy of the update agent 113 in the reserved

unit/bank of memory (block 656), wherein the update may be performed (block

26



WO 2005/024628 PCT/US2004/028433

686). Upon completion of the update, the electronic device may start up again
or reboot (block 606). The electronic device may evaluate the update status
indicator 205 and determine whether another update package 123 is present
(block 616). If no update package 123 is present and/or no update is currently
to be performed, the electronic device may initiate normal operation (block 676)

and the procedure may conclude at end block 602.

[00120] FIGURE 7 is a block diagram illustrating an exemplary memory
configuration 705 of a flash memory for an exemplary electronic device, for
example mobile handset 107 illustrated in FIGURE 1, in accordance with an
embodiment of the present invention. The flash memory configuration 705 may
comprise a block of memory 781 storing an electronic device boot code and an
unspecified block of memory 779. The flash memory configuration 705 may
also comprise a block of memory 778 storing an update agent (UA) boot 1 and
another block of memory 777 storing an update agent (UA) boot 2. The flash
memory configuration 705 may also comprise a block of memory 776 storing a
UAL1 re-locatable code. The block of memory 776 storing the UA1 re-locatable
code may also comprise a sub-block checksum 740. The checksum 740 may be

4 bytes long, for example.

[00121] In an embodiment according to the present invention, the flash
memory configuration 705 may also comprise a block of memory 775 storing
electronic device application(s), for example. The flash memory configuration
705 may also comprise a block of memory 774 storing another UA boot 1 and
another block of memory 773 storing another UA boot 2. The flash memory
configuration 705 may also comprise a block of memory 772 storing another

UA1 re-locatable code.

[00122] In an embodiment according to the present invention, the UA
boot 1 stored in memory block 778 may be the same as the UA boot 1 stored in
memory block 774, for example. The UA boot 2 stored in memory block 777
may be the same as the UA boot 2 stored in memory block 773, for example.
The UA 1 re-locatable code stored in memory block 776 may be the same as the

UA 1 re-locatable code stored in memory block 772, for example.

27



WO 2005/024628 PCT/US2004/028433

[00123] The block of memory 772 storing the UA1 re-locatable code may
also comprise a sub-block storing a checksum 740. The checksum 740 may be
4 bytes long, for example. The flash memory configuration 705 may also

comprise another unspecified block of memory 771.

[00124] In an embodiment according to the present invention, the boot
binary files UA boot 1 and UA boot 2, stored in memory blocks 778 and 777,
respectively, and/or 774 and 773, respectively, may be functionally similar and
may be involved in update agent boot activities at different times. For example,
one binary UA boot file may be adapted to perform a bootstrapping of the
update agent 113 from an update agent default start location (such as for
example, 0x100000) and the other binary UA boot file may be adapted to
perform a bootstrapping of the update agent 113 from a reserved unit location
(such as for example, 0x670800). Therefore, the UA boot 1 and the UA boot 2
binary files may perform the same function but on update agents stored in and

invoked from different memory locations having different memory addresses.

[00125] In an embodiment according to the present invention, UA boot 1
may be adapted to initialize and relocate the update agent re-locatable code
from an update agent write unit to RAM, for example, RAM 125 illustrated in
FIGURE 1.

[00126] In an embodiment according to the present invention, UA boot 2
may be adapted to initialize and relocate the update agent re-locatable code
from an update agent reserved write unit to RAM, for example, RAM 125
illustrated in FIGURE 1.

[00127] In an embodiment according to the present invention, the update
agent re-locatable code, along with the bootstrap code, for example, UA boot 1
and/or UA boot 2, may be copied from default locations near 0x100000 to a
reserved unit (reserved memory location) to ensure fault tolerant updating just
prior to initiating a fault tolerant update of the update agent 113 in the electronic

device.

[00128] FIGURE 8 is a block diagram illustrating an exemplary memory

configuration 805 of a flash memory during an update of an update agent 113

28



WO 2005/024628 PCT/US2004/028433

for an exemplary electronic device in accordance with an embodiment of the
present invention. The flash memory configuration 805 may comprise a block
of memory 888 storing an electronic device boot code and an unspecified block
of memory 887. The flash memory configuration 805 may also comprise an
erased block of memory 886. The flash memory configuration 805 may also
comprise a block of memory 885 storing an electronic device application(s).
The flash memory configuration 805 may also comprise a block of memory 884
storing a UA boot 1 and a block of memory 883 storing another UA boot 2.
The flash memory configuration 805 may also comprise a block of memory 882
storing a UA1 re-locatable code. The block of memory 882 storing the UA1 re-
locatable code may also comprise a sub-block storing a checksum 840. The
checksum 840 may be 4 bytes long, for example. The flash memory

configuration 805 may also comprise another unspecified block of memory 881.

[00129] FIGURE 9 is a block diagram illustrating an exemplary memory
configuration 905 of a flash memory after a completed update procedure of an
update agent 113 for an exemplary electronic device in accordance with an
embodiment of the present invention. The flash memory configuration 905 may
comprise a block of memory 996 storing an electronic device boot code and an
unspecified block of memory 995. The flash memory configuration 905 may
also comprise a block of memory 994 storing the updated update agent. The
flash memory configuration 905 may also comprise a block of memory 993
storing an electronic device application(s). The flash memory configuration
905 may also comprise a reserved unit block of memory 992. The flash
memory configuration 905 may also comprise another unspecified block of

memory 991.

[00130] In an embodiment according to the present invention, the
updated update agent 113 may remain associated with UA boot 1 and UA Boot

2 in order to support further updates to the updated update agent 113.

[00131] In an embodiment according to the present invention, to integrate
a variation on the tri-phase boot method, an electronic device image may be

built by modifying a pair of update agent scatter load files as set forth below.

29



WO 2005/024628 PCT/US2004/028433

[00132] The following exemplary first scatter load file may refer to two
binary files that may be employed as outputs. At linking time, the entry point
used may be 0x10000. The output files may be used in running a batch file, for
example. For debugging purposes, an executable and linking format (ELF) file

may also be employed.

FLASH 0x10000 0x800
{
FLASH 0x10000
{

uainit.o (Init, +First)
uabootmem.o

<anon>
}
}
RAM_UA 0x11000
{
RAM_RO 0x1200000
{
* (+RO)
}
RAM_RWZI +0
{
* (+RW)
* (+ZI)
}
}

30



WO 2005/024628 PCT/US2004/028433

[00133] The following exemplary second scatter load file may also refer
to two binary files that may be employed as outputs. At linking time, the entry
point used may be 0x670800. The output files may be used in running a batch
file, for example. For debugging purposes, an executable and linking format

(ELF) file may also be employed.

FLASH 0x670800 0x800
{
FLASH 0x670800
{

uainit.o (Init, +First)
uabootmem.o
<anon>

}

RAM_UA 0x671000

{
RAM_RO 0x1200000

{

}
RAM_RWZI +0

{

* (+RO)

* (+RW)
* (+21)

}

[00134] To make three binary files into one update agent executable
binary file, the three binary files may be merged. In an embodiment according
to the present invention, an exemplary utility tool may be employed to merge
multiple binary files. The following is an exemplary command that may be
used to accomplish the merge in an embodiment according to the present

invention.

binmerge -o ua.bin 0x10000 0x 10000 -f flash1 0x10000 flash2
0x10800 ram_rol 0x11000

[00135] In an embodiment according to the present invention, the validity
of the update agent may be checked before invoking the update agent. To
support a validity check of update agent, a checksum computation may be

added to the update agent binary image at a checksum location. In an

31



WO 2005/024628 PCT/US2004/028433

embodiment according to the present invention, an exemplary utility tool may
be employed to incorporate the checksum into the image file. The following are

exemplary command(s) may be employed.

mcsfile -0 ua_cs.bin ua.bin 0xffdc -c crc32

binmerge -o uadl.bin 0x10000 0x10000 -f ua.bin 0x10000
ua_cs.bin Ox1ffdc

[00136] In an embodiment according to the present invention, an
exemplary utility tool may be employed as a batch file for merging the binary
files and incorporating the checksum for the update agent binary code as
described above. To execute the batch file, an attached file containing the
checksum for the update agent binary file may be copied into an appropriate

directory.

[00137] In an embodiment according to the present invention, the boot
loader 111 may detect the update status of the update agent and may also
validate the update agent 113. Similarly, a cyclic redundancy check (for
example, CRC32) based checksum computation code may also be incorporated
into the electronic device image build environment for performing the

computations.

[00138] Additional build commands for electronic device images may
also be employed after creating a current electronic device image. The build
commands may facilitate merging the update agent 113 and the electronic

device image, for example.

[00139] While the present invention has been described with reference to
certain embodiments, it will be understood by those skilled in the art that
various changes may be made and equivalents may be substituted without
departing from the scope of the present invention. In addition, many
modifications may be made to adapt a particular situation or material to the
teachings of the present invention without departing from its scope. Therefore,
it is intended that the present invention not be limited to the particular
embodiment disclosed, but that the present invention will include all

embodiments falling within the scope of the appended claims.

32



WO 2005/024628 PCT/US2004/028433

CLAIMS
What is claimed is:

1. An update status indicator for use in updating one of firmware
and software in a mobile electronic device, the update status indicator
comprising:

an update address block of memory, the update address identifying
where an updating software is stored in the electronic device;

a return block of memory comprising a value to be returned when
updating the electronic device has been completed; and

an indicator block of memory comprising a plurality of status indicators.

2. The update status indicator according to claim 1, wherein the
plurality of status indicators are employed by updating software for processing a
plurality of executable instructions for converting a first version of one of

firmware and software to a second version of one of firmware and software.

3. The update status indicator according to claim 1, wherein at least
one of the plurality of status indicators is employed to indicate that an update is

present in the electronic device and that an update is to be performed.

4. The update status indicator according to claim 1, wherein at least
one of the plurality of status indicators is employed to indicate whether the one

of firmware and software to be updated is valid and capable of being updated.

5. The update status indicator according to claim 1, wherein at least
one of the plurality of status indicators is employed to indicate which phase of

the update is currently performing,.

6. The update status indicator according to claim 1, wherein at least
one of the plurality of status indicators is employed to indicate that the update of

the one of firmware and software to be updated is completed.

33



WO 2005/024628 PCT/US2004/028433

7. A memory configuration for a mobile electronic device
comprising:

a software for booting the electronic device located in a first portion of
memory;

an updating software for updating one of firmware and software in the
electronic device located in a second portion of memory;

a reserved portion of memory usable for backing up one of code and
information during an updating event; and

at least one additional portion of memory for storing an update usable by
the updating software during the updating event, wherein updating one of
software and firmware in the electronic device comprises executing a plurality
of executable instructions for converting a first version of one of software and

firmware to a second version of one of software and firmware.

8. The memory configuration according to claim 7, wherein the

updating software is updatable in a fault tolerant manner.

0. The memory configuration according to claim 7, wherein the

memory configuration comprises non-volatile memory.

10. The memory configuration according to claim 7, wherein
software and firmware are stored in the memory configuration in a compressed
form and are decompressed out of the memory configuration into random

access memory for one of processing and updating.

11.  An updating software employable for updating one of software

and firmware in a mobile electronic device, the updating software comprising:

a software component adapted to survey and validate one of software
and firmware to be updated in the electronic device to determine that the one of
software and firmware are capable of being updated; and

the software component also being adapted to identify an update

interruption.

34



WO 2005/024628 PCT/US2004/028433

12. The updating software according to claim 11, wherein
identifying an update interruption provides a fault tolerant update and permits

an interrupted update to be re-initiated where the interruption occurred.

13.  An update software wrapper employable in conjunction with
updating software for updating one of software and firmware in a mobile
electronic device, the update software wrapper being adapted to facilitate
interaction between electronic device specific software and application specific

software.

14.  The update software wrapper according to claim 13, wherein
electronic device specific software comprises software adapted to operate in an

electronic device of a pre-determined manufacturer.

15.  The update software wrapper according to claim 13, wherein
application specific software comprises software adapted to perform a specific

function that is independent of an electronic device.

16.  The update software wrapper according to claim 13, further
comprising software interfacing one of proprietary electronic device firmware
and software and proprietary application specific updating software independent

of an electronic device of a particular manufacturer.

17.  The update software wrapper according to claim 13, wherein the
update software wrapper is adapted to perform a memory erase function before

a memory write function for at least one component of a memory module.

18.  The update software wrapper according to claim 13, wherein the
update software wrapper is adapted to manage and adjust at least one of status

information, update variables, and update functions.

19. A mobile electronic device comprising software adapted to
update an updating software resident in the mobile electronic device in a non-

fault-tolerant manner and a fault-tolerant manner.

35



WO 2005/024628 PCT/US2004/028433

20.  The mobile device according to claim 19, wherein updating the updating
software in a fault tolerant manner comprises storing a backup copy of the

updating software in non-volatile memory prior to initiation of an update event.

21. A mobile electronic device comprising at least two program files
stored in a non-volatile memory configuration, the at least two program files
comprising at least one of code and data usable for booting the mobile
electronic device, wherein the at least two program files are adapted to call
associated boot instructions from different locations in memory depending upon

a status of a software to be updated.

22.  The mobile electronic device according to claim 21, wherein the

at least two program files are binary files.

23.  The mobile electronic device according to claim 21, wherein the
at least two program files are adapted to perform boot activities at different

times.

24.  The mobile electronic device according to claim 21, wherein one
of the at least two program files is adapted to boot updating software from a
default start location in non-volatile memory and another of the at east two
program files is adapted to boot updating software from a reserved backup

location in non-volatile memory.

25. The mobile electronic device according to claim 21, wherein the
at least two program files are each associated with an additional block of re-
locatable code that is copied from a default location to a reserved backup
location to provide fault tolerance prior to initiation of a fault tolerant update of

updating software resident in the mobile electronic device.

26.  The mobile electronic device according to claim 21, further
comprising software for booting the mobile electronic device, wherein the
software for booting is adapted to invoke at least one of the at least two program
files to initialize and relocate updating software to be updated and an associated
block of re-locatable code from storage in non-volatile memory to a random

access memory for one of booting, processing, and updating.

36



WO 2005/024628

105

PCT/US2004/028433

Update
Package [H]123
Applications L1}—121
159 FIRMWARE
MANAGER
0S
T 119
125\ RAM .
Firmware |J}l—117
166 Handoff Non-Volatile f‘1 09
Agent Memory
Update
Agent MNL—113
196 _ Download
Agent Boot
Loader MNlL—111
Mobile Handset
107
1\1\177 167 169
Update
Delivery Update Package
Server M, o7 Store Generator
= =
129 131

Figure 1

1/9




PCT/US2004/028433

WO 2005/024628

slojeoipu]

€12 ¢ NOI4 502
ay f K/
°%qi'ql%q|%q SpoD wimay | payoadsun |6, v_mwwn__uwmgs
\V\ - J =
G| ¢ 20|g Jojedipuy| b1e
snjejs ’\J
G0¢

2/9



WO 2005/024628 PCT/US2004/028433
305
0x700000
o — 331
0x6C0000 332
Update Reserved for Update Package 333
Status (32B) M
Locatio? for
exemplary RESERVED :
Electronic <4 0x680000 )
i Can be used for
Device L] Update Status 360
| (32B)
334 J—— Reserved Bank 0X670000
—— 335
Electronic Device
Application 0x20000
340
1 RESERVED
CheckSum (4B) €« | ——— 1L 1 J—* 528) 350
Update Agent Executables
336 J : 0x10000
Device Boot
338 __I— Code 0x0
337

Flash memory

FIGURE 3

3/9



WO 2005/024628 PCT/US2004/028433

405
401

START

440

Initialize Access to Firmware and Hardware

441

S S5

Access Encryption

442

S

Access Variables Facilitating Update

443

v

S

Compute an Index to Facilitate Fault Tolerant Update Recovery

444

S

Decompress a Compressed Update Package

445

S

446 Loop (see FIGURE 5) Carry Out Steps in FIGURE 5 To Completion of Update

Free Memory Allocated During Update

Salbs

Flash Erase All Temporary Write Units

Set the Update Status for the Handoff Agent
448 {
Process Functions (Cleanup the Update Package)
449{ l
Reset the Electronic Device
451 {
END
402
FIGURE 4

4/9



WO 2005/024628 PCT/US2004/028433

505
01

START

540

Display User Interface Message

541 v

Determine whether Memory Management System is Initialized and Operational

v

542 N Open the Heap Library

v

543 ¢y Decompress the Update Package and Produce a Pointer to the Raw Update Package

v

544 ¢~ Perform a Security Check on the Update Package Data
y
545 ¢ Initialize the Checksum Library
546
\/\ Initialize the Update Agent Engine
547

Load Package the Update Agent Engine Employs to Build an Updated Firmware

548

y
\,\ Validate Original Firmware and Monitor the Update Process

549 S Invoke the Update Transformation and Send a Pointer and a Recovery Index

END

502

FIGURE §

5/9



PCT/US2004/028433

WO 2005/024628

9 3dNOId
989
N\
.| ayepdn
aNd 4 b 71 waopag
209
nun 4
pansasay vn
U vn 0} youeuag
969 5 | o voumg /\/omo

ainpe
9|(BJaA023I-UON

éPIlBA VN
aAIasay

999
99

929

10}EDIpu]|
uonesado ajepdn
D Zm _NE_._OZ ON uO@uOQ
IH. 9 azifeniu
¢09 9.9

G09

6/9



PCT/US2004/028433

WO 2005/024628

L 3ENOId

Aowaw yse|4

0x0 apo joog /'\—\l, —‘w&.
90iA8(Q 21U0I03[]
00001X0 1 300G ¥N /-L\} wNN
008011017 giosavn L 7))
y V - «
00041%0 8po 3|qejea0jRY LYN
9]~ _|~\\\\\l|\||v (ap) wnsyoayd O/
0000ZX0
uoleolddy
921A9(J 21U0I}08(]
~~—
S..
0000290
09/ Mun panssay +iooavn ~— ¥y
008029%0 2i0avn T ¢y,
0001.9X0 8poQ 8|qejed0ay VN
CLL— [ > (@ unswauo gy
000089X
00000/X

W,

VLL

G0.

7/9



PCT/US2004/028433

WO 2005/024628

G08

0x0

00001 %0
00801x0

0001 1x0

0000¢x0

000049%0
0080.9%0

0001 .9%0

8 J¥NOId

fowsw yse|4

888
apo) joog |||\\|

801A3(Q JIU0O3|3

.pasesy

~——— 988
uoneslddy
801A3(J 21U0408]]
Liooqvn 88
Jewoayn L —~cgg

2poY 8jqeiedo|ay Lvn

000089%

00000.x0

. A@/saﬁgo ovw
M 288
188

8/9



PCT/US2004/028433

WO 2005/024628

966

6 3ANOId

/\/ Kiowaw yse|4

0X0

apoJ joog
821A8( 21U0JO3|]

G66 ~—

00001x0
00804x0

0001 1x0

juaby ejepdn pajepdn

¥66 :\\\.

00002x0

€66 I\\\..

0000.9%0

uoneoyddy
0IA8(] J1U0}IB|]

¢66 I\.\.

000089x

jyun panesay

00000.x

166

S

G06

9/9



	Abstract
	Bibliographic
	Description
	Claims
	Drawings

