
US 20130254836A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0254836A1

Acicmez et al. (43) Pub. Date: Sep. 26, 2013

(54) BROWSER SECURITY STANDARDS VIA (60) Provisional application No. 61/267,370, filed on Dec.
ACCESS CONTROL 7, 2009.

(71) Applicant: SAMSUNGELECTRONICS CO., O O
LTD., Suwon (KR) Publication Classification

(51) Int. Cl. (72) Inventors: Onur Acicmez, Santa Clara, CA (US); H04L 29/06 (2006.01)
Swaroop S. Kalasapur, Sunnyvale, CA (52) U.S. Cl
(US); Yu Song, Pleasanton, CA (US); AV e. we

CPC H04L 63/10 (2013.01) D Ch San Jose, CA (US oreen Cheng, San Jose, CA (US) USPC ... 726/1; 726/4
(73) Assignee: Samsung Electronics Co., Ltd., Suwon

(KR) (57) ABSTRACT

(21) Appl. No.: 13/891,149 A computing system is operable to contain a security module
within an operating system. This security module may then

(22) Filed: May 9, 2013 act to monitor access requests by a web browser and apply
O O mandatory access control security policies to Such requests. It

Related U.S. Application Data will be appreciated that the security module can apply man
(63) Continuation of application No. 12/643,878, filed on datory access control security policies to Such web browser

Dec. 21, 2009, now Pat. No. 8,458,765. access attempts.

204

Web Page instance

Web Page instance

Web Page instance

User Interface

NetWOrk

ACCeSS

Storage 208

Control BrOWSer Kernel
and audit

200 210

Operating system
File system

Patent Application Publication Sep. 26, 2013 Sheet 1 of 5 US 2013/025483.6 A1

Web Server

Image
Separator

11 O
DOM parser

114

112

FIG. 1

Patent Application Publication Sep. 26, 2013 Sheet 2 of 5 US 2013/025483.6 A1

204

Web Page instance

Web Page instance

Web Page instance t Storage a
User Interface

NetWOrk

ACCeSS
COntrol BrOWSer Kernel

and audit

Operating system
File system

FIG. 2

Patent Application Publication Sep. 26, 2013 Sheet 3 of 5 US 2013/025483.6 A1

304

Web Page instance

Web Page instance

Web Page instance

User Interface

NetWOrk

BrOWSer Kernel

306

302

ACCeSS
COntrol Operating System

and audit File system

FIG. 3

Patent Application Publication Sep. 26, 2013 Sheet 4 of 5 US 2013/025483.6 A1

Run an initialization
SCript on startup of the Mount the file

Begin operating System, to system load a security module
into the kernel

400 402

Receive an
Operating System
service request

from an instance Of
the Web broWSer

Update Settings of
the file system
based On the
configuration

settings from the file

Read a file
containing

Configuration
Settings

406
408 404

Run the operating Retrieve a 412

style security context
q y for the resource operating System

410
Apply an acCeSS COntrol Security
policy based upon the Security 414

Context and based upon information
regarding the instance of a web

browser, wherein the security policy
grants access to the resource if a

property or properties of the security
context match a property or

properties of the instance of the web
browser

End

FIG. 4

Patent Application Publication Sep. 26, 2013 Sheet 5 of 5 US 2013/025483.6 A1

Install a plug-in
to the Web
browser

Run an instance of
the Web browser
(including the

plug-in, if
appropriate)

Send an operating
system service request
to the operating system
When the Web broWSer
(including the plug-in, if
appropriate) needs to
a CCSS a SSOUC6

Receive an
indication as to

whether acCeSS to
the resource is

permitted

510

ls
Error a CCCSS ACCeSS the

handling permitted reSOUCe
2

F.G. 5

US 2013/025483.6 A1

BROWSER SECURITY STANDARDS VA
ACCESS CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 12/643,878, filed on Dec. 21, 2009,
which in turn claims priority to U.S. Provisional Patent Appli
cation No. 61/267,370, filed on Dec. 7, 2009, both incorpo
rated herein by reference.

BACKGROUND OF THE INVENTION

0002. A web browser is a software application for retriev
ing, presenting, and traversing information resources on the
World WideWeb. An information resource is identified by a
Uniform Resource Identifier (URI) and may be a web page,
image, video, or other piece of content. Hyperlinks present in
resources enable users to easily navigate their browsers to
related resources.

0003 Original web browsers were static in nature,
designed to only render hyperlinked documents in a straight
forward manner. Later, Scripting protocols such as JavaScript
were developed, which allowed scripts to be embedded in the
resource to provide simple dynamic functionality, Such as
user interaction and animated menus. AJAX, which is short
hand for asynchronous JavaScript and Extensible Markup
Language (XML) is a group of interrelated web development
techniques used on the client-side to create interactive web
applications. The use of AJAX techniques has led to a dra
matic increase in interactive or dynamic interfaces on web
pageS.

0004 Today, AJAX applications can rival desktop appli
cations when it comes to speed and performance.
0005 FIG. 1 is a diagram illustrating the operation of a
typical web browser. A resource, such as a web page, is
downloaded from a web server 100. Images from the web
page are separated out by an image separator 102. The web
page is then fed to a document object model (DOM) parser
104, which parses the web page into a DOM data structure
(commonly referred to as a DOM tree) 106. The DOM tree
106 is an abstract syntax tree of the document. Content ref
erenced by the web page is then fetched from the web server
100 and in-lined into the DOM. As the content necessary to
display the page is downloaded and decompressed, the web
page becomes available for viewing. Typically the web page
layout is incrementally solved and drawn to the screen. A
layout module 108 performs the laying out of the elements of
the web page, along with images decoded by image decoder
110. A rendering module 112 then renders the web page in the
browser window.

0006. After the initial page load, scripts 114 (written in,
for example, JavaScript) respond to events (such as events
generated by user input or server messages). The scripts can
then rewrite the DOM tree 106 based on the events. This, in
turn, causes the page layout to be recomputed and redrawn.
0007. The primary use of JavaScript is to write functions
that are embedded in web pages and interact with the DOM
tree of the page. Typically such scripts are delineated by the
<script and </script tags. Some examples of Script func
tionality include:

Sep. 26, 2013

0008 Opening or popping up a new window with pro
grammatic control over the size, position, and attributes
of the new window (e.g., whether the menus, toolbars,
etc. are visible).

0009 Validation of web form input values to ensure that
they will be accepted before they are submitted to the
Sever.

0010 Changing images as the mouse cursor moves over
them (e.g., to draw the users attention to important links
displayed as graphical elements).

0011 Because JavaScript code can run locally in a user's
browser (rather than needing to execute on a remote server),
it can respond to user actions quickly, making the browser
seem more responsive. It is this responsiveness that has
allowed browsers to progress from the stage of merely dis
playing static web pages, to acting as full-blown applications
of their own. Indeed, many types of tasks typically reserved
for stand-alone applications, such as word processing tasks,
spreadsheet tasks, and media player tasks can now be
executed from within a browser itself without requiring
stand-alone applications. These are referred to as web appli
cations, even though their execution may require little or no
interaction with the World WideWeb.
0012 JavaScript can also detect user actions which Hyper
TextMarkup Languages (HTML) alone cannot, such as indi
vidual keystrokes. Applications such as Gmail take advantage
of this, as much of its user-interface is written in JavaScript,
and JavaScript dispatches requests for information (such as
the content of an e-mail message) to the server.
0013 A JavaScript engine (also known as a JavaScript
interpreted or a JavaScript implementation) interprets JavaS
cript source code and executes the script accordingly. Most
commonly this engine executed from within a web browser.
Web browsers usually use a public Application Programming
Interface (API) to create host objects responsible for reflect
ing the DOM tree into JavaScript.
0014 Security is a big concern when it comes to interac
tion with networked computers, and with the Internet in par
ticular. Access to various resources must be controlled in
order to prevent malicious or accidental misuse of Such
resources. JavaScript and other dynamic runtime environ
ments allow various actions that present security risks. These
actions include:

0.015 Accessing cookies
0016 Communication with a web server
0.017. Accessing local resources on the host device
0.018. Accessing DOM elements of a web page

(0019. The World WideWeb Consortium (W3C) standard
izes security access rules for these types of actions. One Such
standardization is known as the “same origin policy'. The
term "origin” refers to a triple of (domain name, protocol, and
port number) of a web page containing a particular script or
resource. According to the same origin policy, two resources
must have identical triples in order to be considered as being
of the same origin. Only resources with the same origins are
permitted to access resources associated with each other.
0020 Cookies are handled differently than network
accesses. A cookie is a Small file stored on a user's computer
by a web browser and includes one or more name-value pairs
containing bits of information Such as userpreferences, shop
ping cart contents, the identifier for a server-based session, or
other data used by websites. It is sent as an HyperText Trans
fer Protocol (HTTP) header by a web server to a web browser
and then sent back unchanged by the browser each time it

US 2013/025483.6 A1

accesses that server. A cookie can be used for authenticating,
session tracking (state maintenance), and remembering spe
cific information about users, such as site preferences or the
contents of their electronic shopping carts.
0021 Rather than the (domain name, protocol, and port
number) triple, access permissions for cookies rely on path
information. Two paths must be identical in order for the
JavaScript running on a web page of the first path to access a
cookie of a web page of the second path. For example: www.
example.com/dir/page.html and www.example.com/dir2/
other.html are two different paths and JavaScript running on
the first page cannot directly access the cookie of the second,
even though they have the same "origin” according to the
same origin policy rules outlined above.
0022 Local resources that can be accessed by JavaScript
or other web scripting languages include local devices such as
Global Positioning (GPS) units, cameras, etc. Such devices
are commonplace now on cellular phones, which have now
become popular web surfing platforms. The local resources
also includes local file systems. W3C does not yet have a set
of concrete access control rules for these types of accesses
yet.
0023 Existing access control checks are performed inside
the web browser application itself. In other words, the web
browser applications keep track of each pages origin, path,
etc. and their access requests and make security decisions
based on this information. This requires that the design of the
web browser include security modules to handle such pro
cessing, which complicates the browser design. It also creates
security problems. If a malicious page or web application can
compromise a browser (e.g., via a buffer overflow), it can
circumvent these security checks and gain full access to all
browser data, including cookies or passwords of other pages.
This would then also allow the malicious page or web appli
cation to access the local resources, which can have a devas
tating effect on the functioning of the user's device and com
promise the user's privacy.
0024 Plug-in Support mechanisms cause additional Secu

rity issues in browsers. A plug-in (also called a plugin, addin,
add-in, addon, add-on, Snap-in, or Snapin) is a computer pro
gram that interacts with a host application (a web browser or
email client, for example) to provide a certain, usually very
specific, function on demand. Common plug-ins include
Flash, QuickTime, Silverlight, etc.
0025 Plug-ins run in the same address space as the web
browser. Thus, there is no distinction between the primary
browser code and the plug-in in terms of capabilities. In other
words, a plug-in can access every system resource that a
browser can access, including cookies, password files, and
local resources. Since plug-ins are usually created and/or
distributed by third-parties (i.e., parties other than the creator
of the web browser), the threat that malicious code can be
imported into the browser code via a plug-in is very high, as
users arent always as careful as they should be about which
plug-ins they install.

SUMMARY OF THE INVENTION

0026 Broadly speaking, the invention relates to comput
ing systems and computing environments. More particularly,
the invention pertains to techniques for applying access con
trol techniques to web browsers. Specifically, such access
control techniques may be applied in the operating system.
0027. A computing system can be operable to contain a
security module within an operating system. This security

Sep. 26, 2013

module may then act to monitor access requests by a web
browser and apply security policies to Such requests. It will be
appreciated that the security module can apply access control
security policies to Such web browser access attempts.
0028. When an operating system service request is
received from an instance of a web browser, hooks in the
operating system kernel may act to invoke the security mod
ule. This invocation might occur just prior to, or simulta
neously with, the running of the operating system service
request. The security module may then retrieve a security
context related to the resource to which the operating system
service request is attempting to access. This security context
may then be used to apply an access control security policy
based upon the security context and based upon information
regarding the instance of the web browser. The security policy
grants access to the resource if a property or properties of the
security context match a property or properties of the instance
of the web browser.
0029. The storage of the security context in the operating
system may be accomplished via various different embodi
ments. In one embodiment, the Security context is stored
using an extension to an existing file stored in a file system of
a kernel of the operating system. In another embodiment, the
security context is stored as a stand-alone file in a file system
of the kernel of the operating system. In another embodiment,
the security context is partially stored using an extension to an
existing file stored in a file system of the kernel of the oper
ating system, and partially stored as a stand-alone file in the
file system.
0030 The security policy itselfmay vary in what it allows.
In one embodiment, if the resource is a cookie file, then the
security policy is a same path security policy. In other words,
if the resource is a cookie file, then the cookie file associated
with a script located at one path can only be accessed by
requesters sharing the same path. In another embodiment, if
the resource is a network access, then the security policy is a
same origin security policy. In other words, if the resource is
a network access, then the resource can only be accessed by
requestors sharing the same origin.
0031. The invention can be implemented in numerous
ways, including, for example, a method, an apparatus, a com
puter readable (and/or storable) medium, and a computing
system (e.g., a computing device). A computer readable
medium can, for example, include and/or store at least execut
able computer program code stored in a tangible form. Sev
eral embodiments of the invention are discussed below.
0032. Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings, illus
trating by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0033. The present invention will be readily understood by
the following detailed description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:
0034 FIG. 1 is a diagram illustrating the operation of a
typical web browser.
0035 FIG. 2 is a diagram illustrating the overall OParchi
tecture.

0036 FIG.3 is a diagram illustrating a web browser archi
tecture in accordance with an embodiment of the present
invention.

US 2013/025483.6 A1

0037 FIG. 4 is a flow diagram illustrating a method for
running an operating system in accordance with an embodi
ment of the present invention.
0038 FIG. 5 is a flow diagram illustrating a method for
operating a web browser in accordance with an embodiment
of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

0039. As noted in the background section, access control
checks are handled inside web browsers. This can create
security issues in that a breach of security inside any aspect of
the web browser, including plug-in modules that contain third
party code, can cause a breach of the entire security of the
system. As such, there is the very real danger that resources
that should only be available to particular users and/or web
browser instances may become accessible to malicious third
party users and/or web browser instances.
0040. In an embodiment of the present invention, a sepa
ration is created between the monitoring/enforcement of such
access control checks and the execution of the processes
being monitored. This prevents a compromise or corruption
in a web browser application from rendering the security
mechanisms useless. Resources typically accessible by the
executions of the processes are protected from malicious
processes by this additional layer of security protection.
0041. In an embodiment of the present invention, Manda
tory Access Control (MAC) or other access control mecha
nisms are used to overcome the limitations and shortcomings
of the prior art. More particularly, the access control checks
are performed by an operating system (OS) rather than a web
browser. These access control checks may also be performed
using MAC mechanisms. This allows a security module of an
operating system to monitor the execution of a web browser
without a breach of the web browser compromising the secu
rity module.
0042 MAC refers to a type of access control where the
operating system assigns security labels or classifications to
system resources and allows access only to entities (people,
processes, threads, devices) with distinct levels of authoriza
tion. These controls are enforced by the operating system.
Whenever an entity attempts to access a resource, an autho
rization rule enforced by the operating system examines these
security attributes and decides whether or not to grant the
access. Any operation by the entity on any resource will be
tested against the set of authorization rules (also known as
policies) to determine if the operation is allowed. The strict
ness of the security mechanisms makes mandatory access
control quite common in military and other high-security
computing Systems.
0043. Mandatory access control typically has the security
policy centrally controlled by a policy administrator. Indi
vidual users typically do not have the ability to override the
policy and, for example, grant access to files that would
otherwise be restricted. This can be contrasted with discre
tionary access control (DAC).
0044 Discretionary access control is popular in commer
cial operating systems such as UNIX and Windows. DAC
takes a totally different approach, placing control of an object
into the hands of the person who creates it. For example, if
userl creates a file on a Windows server, he becomes the
owner of that new file. The owner identification is tracked as
part of a security descriptor that the file system maintains for

Sep. 26, 2013

the file. The owner is implicitly granted permission to read the
security descriptor and change the access control list for the
file.
0045. In other words, discretionary access control means
that each object has an owner and the owner of the object gets
to choose its access control policy.
0046 Linux is a generic term referring to Unix-like com
puter operating systems based on the Linux kernel, which was
developed as a free and open source Software collaboration
permitting all the underlying source code to be used, freely
modified, and redistributed, both commercially and non
commercially, by anyone under licenses.
0047 Linux has gained popularity for server implementa
tions, however its popularity is also growing on other com
puting devices, including mobile devices such as mobile
phones, laptop computers, etc.
0048. It should be noted that this document will describe
the invention as if it is implemented in Linux. While one
embodiment is implemented in Linux, nothing in this docu
ment or the fact that Linux is described in detail shall be
construed as limiting the scope of protection of the patent to
Linux embodiments. Indeed, it is foreseen that the present
invention could apply to a number of different operating
systems.
0049 MAC mechanisms in Linux are implemented
through a Linux Security Modules (LSM) framework. LSM
is a computing framework for Linux that allows the Linux
kernel to Supporta variety of computer security models while
avoiding favoritism toward any single security implementa
tion. LSM was designed to provide everything that is needed
to Successfully implement an access control module, while
imposing the fewest possible changes to the Linux kernel.
LSM inserts “hooks, which are upcalls to the LSM, at every
point in the kernel where a user-level operating system ser
Vice request is about to result in access to an important inter
nal kernel object such as inodes and task control blocks. An
operating system service request is a request that attempts to
access a resource of the operating system. This request may
be, for example, a system call.
0050. An inode stores information about a regular file,
directory, or other file system object. This information can
include basic details such as user and group ownership,
access mode (read, write, execute permissions) and type of
file, but also could include additional details such as the
length of the file in bytes, device identification, file mode,
timestamps telling when the inode itself was last changed, the
file content last changed, and last accessed, a link count
indicating how many hard links point to the inode and point
ers to disk blocks that store the file’s contents.

0051 A task control block (TCB), also known as a process
control block (PCB) is a data structure in the operating system
kernel containing the information needed to manage a par
ticular process. This information might include a process
identifier, register values, an address space, priority informa
tion, process accounting information, a pointer to a next PCB,
and I/O information.
0.052 LSM provides a general-purpose framework for
security that allows security modules to be implemented as
loadable kernel modules. Kernel code is modified to invoke
hook functions prior to accessing internal objects. Different
MAC mechanisms can be implemented as loadable modules.
Examples of loadable security modules include SELinux,
Smack, and TOMOYO, all of which can be loaded into the
kernel on demand.

US 2013/025483.6 A1

0053. Each security module registers its own hook func
tions with the kernel. A kernel data structure. Such as security
ops, contains function pointers for each hook function. A
security module implements some or all of these hook func
tions, populates the data structure with the pointers to its
functions, and then passes this data structure to the kernel for
registration. The kernel then asks the security modules, prior
to accessing internal objects, for access decisions by invoking
the appropriate hook function. The security modules canana
lyze the access requests in these hook functions and either
permit or prohibit the access. The kernel is module-agnostic,
but provides a powerful framework for modules to operate
seamlessly.
0054 OP is a new browser architecture that separates
security monitoring mechanisms from the browser instances
themselves. Different browsing entities are put in different
processes to take advantage of process-level isolation mecha
nisms. FIG. 2 is a diagram illustrating the overall OP archi
tecture. As can be seen, access control and auditing 200 can be
performed in a browser kernel 202, which is separated from
the web page instances 204. In this architecture, storage con
trol 206, network control 208, and display control 210 are put
in different processes (subsystems) and separated from the
web page or application instances. The browser kernel 202
controls the interactions between these web pages instances
204 and the storage control 206, network control 208, and
display control 210 mechanisms.
0055. However, the browser kernel itself is still vulnerable
to security breaches as it remains part of the browser. As such,
while having the security features located in the browser
kernel provides moderate levels of security, especially com
pared with prior art Solutions where the security aspects were
managed by the browser instances themselves, the overall
Vulnerability of the system still remains high.
0056. Therefore, in an embodiment of the present inven

tion, a security module for web browser execution is placed in
the operating system, distinct and separate from the web
browser instances and the web browser kernel (if any).
0057 Embodiments of these aspects of the invention are
discussed below with reference to FIGS. 3-5. However, those
skilled in the art will readily appreciate that the detailed
description given herein with respect to these figures is for
explanatory purposes as the invention extends beyond these
limited embodiments.
0058 FIG.3 is a diagram illustrating a web browser archi
tecture in accordance with an embodiment of the present
invention. As can be seen, an access control module 300 is
placed in the operating system 302 itself, distinct from the
web page instances 304 or browser kernel306. By moving the
browser-related security features to the operating system, the
overall security level of the system is vastly increased, as
malicious or corrupt code that has infiltrated the web page
instances 304 or browser kernel 306 cannot access the access
control mechanisms and gain control of additional resources.
0059 Running the access control module 300 from inside
the operating system itself, however, is a non-trivial task.
While each web page or application instance can still be run
as a separate process, mechanisms must be in place to store
browser security related information in the operating system,
update such information at runtime, and enforce browser
security rules using Such information.
0060 Processes and/or threads (i.e., running entities) are
“subjects' in access control terms. The Linux kernel keeps
records of security properties (also known as the security

Sep. 26, 2013

context) of each process or thread. In other words, each Sub
ject has a security context associated with it. The security
context of a task is stored in its process control block. In the
Linux kernel, the process control block is called the task
struct object.
0061 Each security context can be broken into two cat
egories: the objective context portion and the Subjective con
text portion. The objective context portion of a task includes
any portion used when another task is attempting to access or
affect this task. The subjective context portion of a task
include any portion used when the task is attempting to act
upon another object (e.g., a file, task, key, etc.).
0062. A task has two security pointers. The first, task
>real cred, points to the objective context portion. The sec
ond, task->cred, points to the Subjective context portion.
These pointers are stored in a task’s PCB. Additionally, avoid
pointer, cred->security, is typically provided to allow for
custom security credentials. This pointer is commonly used
by add-on security modules. For example, SELinux uses its
own security credentials and sets cred->security to the struc
tures containing these credentials.
0063. In an embodiment of the present invention, the void
pointer is utilized to point to a security module located in the
operating system. This allows the security module of the
present invention to be easily integrated into a Linux environ
ment with the minimum of complexity.
0064. In addition to altering the pointers so that the secu
rity module is referenced, in an embodiment of the present
invention the browser related security information is stored in
the operating system kernel by the security module.
0065 Keeping records of browser security related infor
mation in a security module in the operating system requires
mechanisms to store Such information. In an embodiment of
the present invention, custom data structures are utilized to
store such information. While there are a number of different
ways such data structures can be implemented, one way is
described below.
0066. A novel data structure, called webinstance browse
rOS, can be created as follows:

struct webinstance browserOS {
char *webins path;
char *webins domain;
int webins port;
int webins protocol;

}:

0067. Of course, depending upon the general architecture
of the system, the data structure could contain some or all of
the fields illustrating above (among others). Indeed, the Secu
rity context may include any information that might be rel
evant to the determination of whether or not a requestor such
as a web application instance or process is permitted to access
a SOUC.

0068 Generally speaking, the security context of a web
application instance refers to the collaborative context of the
processes/threads in the web application instance. In other
words, the security context of a web application instance can
be distributed to security contexts of the processes in this web
application instance. Thus, the security context of a web
application instance would include all such process security
COInteXtS.

US 2013/025483.6 A1

0069. Furthermore, in an embodiment of the present
invention, additional custom data structures are provided to
keep information regarding files, file systems, network Sock
ets, etc. Linux MAC mechanisms such as SELinux and
Smack keep different data structures for different kernel
objects. For example, the following structures are defined by
Smack for network sockets and file inodes:

struct socket Smack {
char *Smk out: f* outbound label
char *Smk in: f* inbound label *
char Smk packetSMK LABELLEN); /* TCP peer label'?

}:
f:
* Inode Smack data
*
structinode Smack {

char *Smk inode: flabel of the fso *
Struct mutex Smk lock; finitialization lock I
int Smk flags; f*smack inode flags/

}:

0070. In an embodiment of the present invention, distinct
properties/security labels are provided for each cookie or
item of network traffic So that the operating system can dis
tinguish the assets and interactions/operations of different
browser instances/domains. An example of Such an imple
mentation is as follows:

struct socket browserOS {
char *browserOS domain;
int browserOS port:
int browserOS protocol;
char browserOS packet BrowserOS LABELLEN:

}:
structinode browserOS {

char browserOS path; f* label:
Struct mutex browserOS lock; finitialization lock *
int browserOS flags; /* BrowserOS inode flags/

}:

0071. Additionally, security contexts of files should be
persistent across system startups. In order to accomplish this,
the data can be stored in the file system. In an embodiment of
the present invention, one of two strategies is used for Such
storage. The first is to utilize extended attributes. On a typical
Linux disk-based file system, each file is identified uniquely
by an inode containing critical metadata for the file, including
UNIX ownership and access control information. When the
kernel references a file, its inode is read from disk into
memory. A standard UNIX permission check only uses the
information present within the inode. Linux offers extended
attributes, however, also called EAS or Xattrs. These are name?
value pairs associated with files as an extension to normal
inode-based attributes. EAS allow functionality to be added to
file systems in a standardized way so that interfaces to the
attributes are file system-independent. Examples of EA func
tionality are access controllists (ACLS), storage of character
set metadata alongside file data, and SELinux, Smack, etc.
security context labeling. For example, SELinux extends
standard UNIX security and uses security context labels to
make extended access control decisions. Smack's label of a
file system object is stored as an extended attribute named
SMACK64, in the file.

Sep. 26, 2013

0072 Therefore, in an embodiment of the present inven
tion, the extended attribute feature is used to store the new
security context of a file in its extended attributes. The exact
implementation of such extensions will, of course, depend on
the file systems capabilities and formats.
0073. In certain instances, however, it may not be desir
able or possible to utilize extended attributes. In Linux, the
ext2, ext3, extA, JFS, RegisterFS and XFS file systems sup
port extended attributes (abbreviated Xattr) if the libattr fea
ture is enabled in the kernel configuration. Any regular file
may have a list of extended attributes. Each attribute is
denoted by a name and the associated data. The name is a
null-terminated String, and is prefixed by a namespace iden
tifier and a dot character. Currently, four namespaces exist:
user, trusted, security, and system. The user namespace has no
restrictions with regard to naming or contents. The system
namespace is primarily used by the kernel for access control
lists. The security namespace is used by SELinux/Smack, for
example.
0074. In those instances where it is not desirable or pos
sible to utilize extended attributes, an embodiment of the
present invention stores security context data in a separate
secure and protected file in the file system. The security
module can then keep a mapping between the files and their
security context(s), and then store this mapping in a separate
and isolated file.

0075. There are additional possible embodiments for stor
ing the security contexts according to the present invention.
For example, the first release of SELinux used a different
mechanism for labeling file systems than the extended
attributes approach. Persistent security IDs (PSIDs), integer
representations of security context labels, were stored in an
unused field of the ext12 inode. Mapping files on each file
system were used by SELinux to look up a file's PSID by
inode, and then map the PSID to a security context label. This
functionality can be exploited for an embodiment of the
present invention.
0076. Additionally, embodiments are foreseeable that mix
two or more of the above-described embodiments. For
example, extensions to files may be available to use to store
Some, but not all, of a security context (or it may not be
desirable to store all of the security context using such exten
sions, for whatever reason). In such an instance, an embodi
ment is foreseen wherein a portion of the security context is
stored using the extensions available, while another portion of
the security context is stored as a stand-alone file in the file
system.
0077 Turning now to the configuration of the system as a
whole, in an embodiment of the present invention, a custom
initialization script may be used to run at an early stage of the
system startup and play an important role in the configuring of
the system. It can initialize the security module and set up the
security context of the primary kernel data structures (e.g.,
ensure that certain devices have the correct attributes). This
initialization script may be a part of, or referenced by, a
general initialization file used by the device on bootup.
0078. At runtime, the Linux kernel has the LSM frame
work, which calls the security module hook functions at the
right time and place. An embodiment of the present invention
takes advantage of this functionality to allow the enforcement
of custom security rules. Browser security rules can be imple
mented inside these hook functions. There are many different
hook functions that can be implemented in this fashion. The
hook functions may be very implementation-specific, and as

US 2013/025483.6 A1

such only a few will be mentioned here. One of ordinary skill
in the art will recognize, however that the invention should
not be limited to the hook functions described herein.
007.9 Two of the more important functionalities in an
embodiment of the present invention are file access control
and network control. The hook function that controls most of
the file accesses is known as the inode permission function
(security operations->inode permission). Smack imple
ments a function called Smack inode permission() and reg
isters it to the kernel as its inode permission() hook function.
Thus, whenever a process tries to access an inode, the kernel
calls Smack's Smack inode permission() function. This
function calls a Smk of inode() function to retrieve the Secu
rity contexts of the inode in question and calls another func
tion-Smk curacc()—which retrieves the security context of
the current process. Then the actual security decision func
tion—Smk access()—is called and this core function checks
the labels of the task and inode against the list of security
rules. It then makes the decision as to whether or not access is
permitted.
0080. An embodiment of the present invention uses such
an enforcement strategy for cookie accesses. A hook func
tion, browserOS inode permiss() is registered to the kernel.
When the kernel calls this function during a cookie access, a
series of events are triggered. First, the security module gets
the security context of the inode in question. Second, the
security module determines if this is a cookie file. This may be
accomplished by checking the flags in inode browserOS
>browserOS flags. The security module may also determine
if the task is a browser instance at this time. Third, if the
security context is a cookie file, the path information is
retrieved from the security context of the task and the security
context of the inode. If the path labels are matching, access is
granted. Otherwise, access is denied.
0081 For network traffic of browser instances, the
browser instance makes a request to open a communication
channel with a remote host or to send a network packet. Then
a security module is called during this request. The security
context of the browser instance is then retrieved to get the
same origin policy related data of the task. If the request and
the security context of the task match the same origin policy
rules, the access is allowed. Otherwise, access is denied.
0082 In an embodiment of the present invention, the
updating of the security context is also performed by the
operating system. The security context of a browser instance
can change during runtime. A web application can change its
metadata. For example, a web page can change its own path
via JavaScript APis. Such an action requires an update in the
security context of the web application instance, otherwise
the security checks executed by the security module will be
using outdated information during its analysis. In an embodi
ment of the present invention, the security module monitors
the execution of web page instances and prevents any actions
that conflict with the security rules and standards, while
simultaneously also detecting the requests/actions which
cause a change to, for example, path and/or domain of a web
application. The security module then updates the security
context of the corresponding web application instance
accordingly.
0083. In an embodiment of the present invention, the
above functionality can also be extended to a cloud comput
ing environment. In a cloud computing environment,
resources are distributed across many different computing
platforms. In such a system, duplicate security modules may

Sep. 26, 2013

be utilized, one on the machine operated by the user and one
on one or more of the distributed computing devices (i.e., the
"cloud'). Each security module may then maintain its own
duplicate set of security context in the manner that was
described above. Additionally, a synchronization mechanism
may then be provided to ensure that the duplicates kept by the
various security modules are all identical to one another. This
synchronization mechanism acts to update all the “versions'
of the security context on the duplicate security modules
when one of them is updated.
I0084 FIG. 4 is a flow diagram illustrating a method for
running an operating system in accordance with an embodi
ment of the present invention. The method may be run by an
operating system. Aspects of the method may be run by a
security module operating within the operating system. It
should be noted that elements of the operating system may
operate in different physical locations within a computer
system, and yet still be considered to be a part of one operat
ing system. Indeed, embodiments are even possible where
operation of the operating system is shared between two or
more hardware devices. Nevertheless, the operating system
operates as a distinct module or program from a web browser,
if not physically then at least logically.
I0085. At 400, on startup of the operating system, an ini
tialization Script may be run to load a security module into a
kernel of the operating system. The initialization script can be
one that has been modified to expressly load the security
module. Alternatively, the initialization script can call another
script that loads the security module.
I0086. At 402, a file system may be mounted. At 404, a file
containing configuration settings is read. These configuration
settings may indicate how security contexts should be stored
in the file system. At 406, settings of the file system are
updated based on the configuration settings from the file.
I0087. At 408, an operating system service request is
received from an instance of a web browser. This operating
system service request attempts to access a resource of the
computer system. There are many different types of operating
system service requests that can attempt to access a resource
of a computer system. Examples include an open file com
mand, a write file command, and a read file command. In the
larger scheme of things, the web browser may be attempting
to access a physical resource of the computer system, such as
a GPS module. Alternatively, the web browser may be
attempting to access an object, such as DOM elements. Alter
natively, the web browser may be attempting to access a
cookie. Regardless of the overall intent of the web browser, at
Some level an operating system service request is invoked to
effectuate Such an access.
I0088 At 410, the operating system service request is run
by the operating system. The operating system service
request contains an access request for a particular resource. It
should be noted that the running of the operating system
service request may or may not involve the complete execu
tion of the operating system service request. Specifically, just
prior to the Substance of the operating system service request
being executed, the operating system will perform a security
check to determine whether or not the access to the resource
is permitted. This security check is described in more detail
below with respect to steps 412 and 414. If the security check
fails, then the Substantive portion of the operating system
service request may never actually be executed. Rather, an
error message may be sent back to the web browser informing
it that the operating system service request is not permitted to

US 2013/025483.6 A1

access the resource in question. If, on the other hand, the
security check indicates that access is permitted, then the
Substantive portion of the operating system service request
may be executed in accordance with a security policy. Thus,
the running of the operating system service request at Step 410
may only involve running non-substantive portions of the
operating system service request (e.g., loading the call into
memory) while the Substantive portions of the operating sys
tem service request are executed, if at all, only once the
security check is performed and access is granted.
0089. In order to effectuate this, hooks may be inserted
into the operating system code just prior to an operating
system service request. As such, upon running of an operating
system service request, the hooks may be executed to cause
the security module to perform the security checks described
in steps 412 and 414.
0090. At 412, a security context is retrieved for the
resource. This security context may be stored in the file sys
tem of the operating system. There may be a number of
different ways that this security context is stored. In one
embodiment, the security context is stored using an extension
to an existing file stored in a file system of the operating
system. In another embodiment, the security context is stored
as a stand-alone file in a file system of the operating system.
In another embodiment, the security context is partially
stored using an extension to an existing file stored in a file
system of the operating system, and partially stored as a
stand-alone file in the file system.
0.091 At 414, an access control security policy is applied
based upon the security context and based upon information
regarding the instance of a web browser, wherein the security
policy grants access to the resource if a property or properties
of the security context match a property or properties of the
instance of the web browser. This applying of the security
policy may be performed by the security module. The security
policy itself may vary in what it allows. In one embodiment,
if the resource is a cookie file, then the security policy is a
same path security policy. In other words, if the resource is a
cookie file, then the cookie file associated with a script
located at one path can only be accessed by requesters sharing
the same path. In another embodiment, if the resource is a
network access, then the security policy is a same origin
security policy. In other words, if the resource is a network
access, then the resource can only be accessed by requestors
sharing the same origin.
0092 FIG. 5 is a flow diagram illustrating a method for
operating a web browser in accordance with an embodiment
of the present invention. At 500, a plug-in to the web browser
may be installed. It should be noted that this plug-in is
optional, but if the plug-in is installed, it has access to all the
same resources as the web browser itself, and thus has the
same security issues. At 502, an instance of the web browser
is run (including the plug-in, if appropriate). At 504, an oper
ating system service request is sent to the operating system
when the web browser (including the plug-in, if appropriate)
needs to access a resource. At 506, an indication is received as
to whether the access is permitted. This indication is received
from the operating system, and is based upon an access con
trol security policy using a stored security context for the
resource and a current context of the instance of the web
browser. At 508, it is determined if the indication permits
access or not. If so, then at 510, the web browser accesses the
resource. Otherwise, at 512, error handling is performed to
deal with the rejection of the access of the resource.

Sep. 26, 2013

0093. The error handling may vary based upon the imple
mentation of the browser. In some embodiments, the user may
be alerted that the access to the resource has been rejected. In
other embodiments, the web browser may attempt an alter
native resource access. In other embodiments, processing of
the web page may stop entirely. No matter how the rejection
is handled, however, the rejection itself helps to prevent mali
cious code from corrupting an entire system.
0094. By essentially quarantining the web browser from
the access control systems designed to monitor the web
browser, an additional level of security is achieved. System
wide mandatory access control is achieved using various
embodiment of the present invention. System-wide MAC is
much stronger than either DAC and user-level managers.
Furthermore, use of various embodiments of the present
invention results in much less performance overhead. Inter
process communication and other communication overhead
between different subsystems is significantly reduced. Addi
tionally, the browser design is able to be much simpler, as the
browser code does not need to contain security enforcement
code. The browser also does not have to deal with resource
management. As such, the present invention, in its varying
embodiments, provide significant benefits over the prior art.
0095. It should be noted that while in one embodiment of
the present invention, MAC or MAC-type access control is
utilized, embodiments are also foreseeable wherein other
types of access control are utilized instead of or in addition to
MAC. As such, the claims should not be construed as being
limited to MAC unless specifically recited.
0096. The various aspects, features, embodiments or
implementations of the invention described above can be used
alone or in various combinations. The many features and
advantages of the present invention are apparent from the
written description and, thus, it is intended by the appended
claims to coverall such features and advantages of the inven
tion. Further, since numerous modifications and changes will
readily occur to those skilled in the art, the invention should
not be limited to the exact construction and operation as
illustrated and described. Hence, all suitable modifications
and equivalents may be resorted to as falling within the scope
of the invention.
What is claimed is:
1. A method, comprising:
retrieving a security context for a resource, wherein autho

rization to access the resource is based on the security
context;

maintaining duplicates of the security context on multiple
cloud computing platforms;

detecting a change inaccess control information relating to
the resource; and

updating the duplicates maintained based on the change
detected.

2. The method of claim 1, further comprising:
authorizing a request to access the resource if the request

complies with the security context for the resource.
3. The method of claim 2, wherein:
the resource is a web application.
4. The method of claim 3, further comprising:
executing an instance of the web application on at least one

of said multiple cloud computing platforms; and
monitoring execution of the instance of the web applica

tion.
5. The method of claim 4, wherein monitoring the instance

of the web application comprises:

US 2013/025483.6 A1

detecting a change to access control information for the
instance; and

updating each duplicate maintained on each cloud comput
ing platform based on the change detected.

6. The method of claim 1, wherein the security context
comprises security rules and standards.

7. The method of claim 1, wherein each duplicate main
tained on each cloud computing platform is identical to
another duplicate maintained on another cloud computing
platform.

8. The method of claim 1, wherein:
the security context is retrieved from a file system of an

operating system.
9. The method of claim 8, wherein:
a portion of the security context is stored in an extension to

a file in the file system.
10. The method of claim 8, wherein:
a portion of the security context is stored in a stand-alone

file in the file system.
11. A system, comprising:
a resource having a corresponding security context,

wherein authorization to access the resource is based on
the security context; and

multiple cloud computing platforms, wherein each cloud
computing platform comprises a security module con
figured to:
maintain a duplicate of the security context; and
detect a change in access control information relating to

the resource, wherein each duplicate maintained on
each cloud computing platform is updated based on
the change detected.

12. The system of claim 11, wherein:
a request to access the resource is authorized if the request

complies with the security context for the resource.
13. The system of claim 12, wherein:
the resource is a web application.

Sep. 26, 2013

14. The system of claim 13, wherein:
each security module of each cloud computing platform is

further configured to:
monitor execution of an instance of the web application

executing on said cloud computing platform;
detect a change to access control information for the

instance, wherein each duplicate maintained on each
cloud computing platform is updated on the change
detected.

15. The system of claim 11, wherein the security context
comprises security rules and standards.

16. The system of claim 11, wherein each duplicate main
tained on each cloud computing platform is identical to
another duplicate maintained on another cloud computing
platform.

17. The system of claim 11, wherein:
the security context is retrieved from a file system of an

operating system.
18. The system of claim 11, wherein:
a portion of the security context is stored in an extension to

a file in the file system.
19. A non-transitory computer-readable medium having

instructions which when executed on a computer perform a
method comprising:

retrieving a security context for a resource, wherein autho
rization to access the resource is based on the security
context;

maintaining duplicates of the security context on multiple
cloud computing platforms;

detecting a change inaccess control information relating to
the resource; and

updating the duplicates maintained based on the change
detected.

20. The medium of claim 19, wherein each duplicate main
tained on each cloud computing platform is identical to
another duplicate maintained on another cloud computing
platform.

