wo 2016/183547 A1 | [N0 AT OO AR A A

(43) International Publication Date
17 November 2016 (17.11.2016)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2016/183547 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 7/00 (2006.01) GO6F 17/30 (2006.01)

International Application Number:
PCT/US2016/032589

International Filing Date:
14 May 2016 (14.05.2016)

Filing Language: English

Publication Language: English
Priority Data:
62/161,813 14 May 2015 (14.05.2015) US

Applicant: WALLEYE SOFTWARE, LLC [US/US];
2800 Niagara Lane N., Plymouth, MN 55447 (US).

Inventors: TEODORESCU, Radu; 303 East 109th Street,
Apt 1, New York, NY 10029 (US). CAUDY, Ryan; 360
East 88th Street, Apt 25b, New York, NY 10128 (US).

(74

(8D

KENT, David, R.; 6965 Winter Hawk Circle, Colorado
Springs, CO 80919 (US). WRIGHT, Charles; 48 Furnace
Woods Road, Cortland Manor, NY 10567 (US). ZELDIS,
Mark; 16 Castle Court, Randolph, NJ 07869 (US).

Agent: CARMICHAEL, James, T.; Carmichael Ip, Pllc,
8000 Towres Crescent Drive, 13th Floor, Tysons Corner,
VA 22182 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: PARSING AND COMPILING DATA SYSTEM QUERIES

500 518

502

Precompiled Code
Available?

\\ Obtain data system query string
(e.g., query language code for filter,
update view, etc.)

504

Identify Optimized Query Patterns Compile programming

language code

522 l

Persist Compiled Code

{When OQP Branch to 530)

506

\\ Parse expressions/sub-expressions
into abstract syntax tree (AST)

1 I

Load Compiled Code o

526 l

508

\ Substitute Variables and/or Column
References into AST

510 l

] Identify Matching Method or Library Instantiate Compiled Code
Calls for AST
l 528 l
512 \\\ Use Instantiated Cade in

Infer Column Types Query

514 l
Generate Programming Language >

Code from AST

516 l

\\ Check for availability of precompiled] |
cede

Process OQP in
Performance Tuned OQP
Processing Section

530

FIG. 5

(57) Abstract: Described are methods, systems and computer
readable media for parsing and compiling data system queries.

WO 2016/183547 A1 AT 00T 0 O O

(84) Designated States (unless otherwise indicated, for every SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
kind of regional protection available). ARIPO (BW, GH, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, .
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, Kz, RU, Tublished:
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, — with international search report (Art. 21(3))
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

WO 2016/183547 PCT/US2016/032589

PARSING AND COMPILING DATA SYSTEM QUERIES

{0001} This application claims the benefit of U S. Provisional Application No. 62/161,813,
entitled “Computer Data System” and filed on May 14, 2015, which 1s incorporated herein by
reference 1o its entirety.

{0002} Embodiments relate generally to computer data systems, and more particularly, to
methods, systems and computer readable media for parsing and compiling data system queries.
{8083} Some conventional computer data systers may provide a query language 10 which a
query 1s interpreted by the computer data system to produce a query results. These query
languages may have a static grammar with a fixed number of commands or operators. These
conventional query languages may not be extensible and may not provide for operations outside
of the static grammar. A need may exist to provide a data system parser and compiler that can
parse and compile a data system query written 1n a query language that permits inclusion of
programming language code or constructs, where a result of the parsing and compiling s
compiled programming language code suitable for execution on a processor. Further, a need
may exist to provide a concise, expressive data system query language. Also, a need may exist
to provide an expressive data system query language along with improved data system query
execution performance.

{0004} Some implementations were conceived in hight of the above mentioned needs, problems
and/or limitations, among other things.

{0005} Some implementations can include a system for parsing, generating code and compiling
computer data system query language code, the system comprising one or more hardware
processors coupled to a nontransitory computer readable medium having stored thereon software
mstructions that, when executed by the one or more processors, cause the one or more processors
to perform operations. The operations can include obtaining, at the one or more hardware
processors, computer data system query language code from an electronic computer readable
data storage, and parsing, at the one or more hardware processors, the computer data system
query language code to generate a computer data system query language parsed code structure.
{0006] The operations can also include resolving, at the one or more hardware processors, a type

of one or more columns represented in the parsed code structure, and inserting, at the one or

WO 2016/183547 PCT/US2016/032589

more hardware processors, resolved types into the parsed code structure. The operations can
further include generating, at the one or more hardware processors, computer programming
language code from the computer data system query language parsed code structure, and
determining, at the one or more hardware processors, whether precompiled code corresponding
to the generated computer programming language code is available in a precompiled code
repository stored in the electronic computer readable data storage.

{0007} The operations can also include, when precompiled code is available in the precompiled
code repository, loading, at the one or more hardware processors, the precompiled code. The
operations can further mclude, when precompiled code 1s not available 1o the precompiled code
repository, compiling, at the one or more hardware processors, the computer programming
language code to generate compiled computer programming language code, and loading, at the
one or more hardware processors, the compiled computer programming language code.

{0008] The operations can also include instantiating, at the one or more hardware processors, the
ioaded precompiled code or the compiled computer programming language code, and executing,
at the one or more hardware processors, the instantiated code to perform a query operation
corresponding to the computer data system query language code.

{8609] The computer data system query language code can include one or more 1ustructions of a
data system query language. The operations can further include identifying a source of columns
or query scope variables for substitution and use in computer programming language code. The
operations can further include persisting the compiled computer programming language code by
storing the precompiled code in the precompiled code repostiory.

{00818} Determining whether precompiled code corresponding to the programming language
code is available in a precompiled code repository can include generating a token representing
the generated computer programming language code, wherein the token includes a result of a
hash function of one or more attributes of the computer programming language code, comparing
the token to one or more repository tokens in the precompiled code repository corresponding to
precompiled code units, and based on the comparing, determining whether the token matches
any of the reposttory tokens.

{0011} The nserting can include inserting references to data objects and variables that have been
made available to the query language code. The operations can further include repeating the

resolving and inserting until any unresolved columns or variables have been resolved.

-]

WO 2016/183547 PCT/US2016/032589

10012} Some implementations can include a method for parsing, generating code and compiling
computer data system query language code. The method can include obtaining, at a hardware
processor, computer data system query language code from an electronic computer readable data
storage, and parsing, at the hardware processor, the computer data system query language code
to generate a computer data system query language parsed code structure. The method can also
include resolving, at the hardware processor, a type of one or more columns represented in the
parsed code structure, and inserting, at the hardware processor, resolved types into the parsed
code structure. The method can further include generating, at the hardware processor, computer
programming language code from the computer data system query language parsed code
structure, and determining, at the hardware processor, whether precompiled code corresponding
to the generated computer programming language code 1s available in a precompiled code
repository stored in the electronic computer readable data storage.

{0813] The method can also include when precompiled code 1s available in the precompiled code
repository, loading, at the hardware processor, the precompiled code. The method can further
mclude, when precompiled code 1s not available 1 the precompiled code repository, compiling,
at the hardware processor, the computer programming language code to generate compiled
computer programming language code, and loading, at the hardware processor, the compiled
computer programming language code.

{08614] The method can also include instantiating, at the hardware processor, the loaded
precompiled code or the compiled computer programming language code, and executing, at the
hardware processor, the instantiated code to perform a query operation corresponding to the
computer data system query language code. The computer data system query language code
includes one or more instructions of a data system query language.

{001 5] The method can also include 1dentifying a source of columns or query scope variables for
substitution and use in computer programming language code. The method can further include
persisting the compiled computer programming language code by storing the precompiled code
in the precomptiled code repository.

{0016} Determining whether precompiled code corresponding to the programming language
code s available in a precompiled code repository comprises generating a token representing the
generated computer programming language code, wherein the token includes a result of a hash

function of one or more attributes of the computer programming language code, comparing the

WO 2016/183547 PCT/US2016/032589

token to one or more repository tokens in the precompiled code repository corresponding to
precompiled code units, and based on the comparing, determining whether the token matches
any of the reposttory tokens.

{0017} The nserting can include inserting references to data objects and variables that have been
made available to the query language code. The method can further include repeating the
resolving and inserting until any unresolved columns or variables have been resolved.

{0018} Some implementations can include a nontransitory computer readable medium having
stored thereon software instructions that, when executed by one or more processors, cause the
one or more processors to perform operations. The operations can include obtaining, at the one
or more hardware processors, computer data system query language code from an electronic
computer readable data storage, and parsing, at the one or more hardware processors, the
computer data systern query language code to generate a computer data system query language
parsed code structure.

[{8019] The operations can also include resolving, at the one or more hardware processors, a type
of one or more columns represented in the parsed code structure, and mserting, at the one or
more hardware processors, resolved types into the parsed code structure. The operations can
further include generating, at the one or more hardware processors, computer programming
language code from the computer data system query language parsed code structure, and
determining, at the one or more hardware processors, whether precompiled code corresponding
to the generated computer programming language code is available 1n a precompiled code
repository stored in the electronic computer readable data storage.

{0028} The operations can also include, when precompiled code 1s available in the precompiled
code repository, loading, at the one or more hardware processors, the precompiled code. The
operations can further include, when precompiled code is not available in the precompiled code
repository, compiling, at the one or more hardware processors, the computer programming
language code to generate compiled computer programming language code, and loading, at the
one or more hardware processors, the compiled computer programming language code.

{0021} The operations can also include instantiating, at the one or more hardware processors, the
loaded precompiled code or the compiled computer programming language code, and executing,
at the one or more hardware processors, the instantiated code to perform a query operation

corresponding to the computer data system query language code.

WO 2016/183547 PCT/US2016/032589

{0022} The computer data system query language code can include one or more instructions of a
data system query language. The operations can further include identifyving a source of columns
or query scope variables for substitution and use in computer programming language code. The
operations can further include persisting the compiled computer programming language code by
storing the precompiled code in the precompiled code repository.

{0023] Determining whether precomptled code corresponding to the programmung language
code 1s available in a precompiled code repository can include generating a token representing
the generated computer programming language code, wherein the token includes a result of a
hash function of one or more attributes of the computer programming language code, comparing
the token to one or more repository tokens in the precompiled code reposttory corresponding to
precompiled code units, and based on the comparing, determining whether the token matches
any of the repository tokens.

[0024] The inserting can include inserting references to data objects and vaniables that have been
made available to the query language code. The operations can further include repeating the

resolving and inserting until any unresolved columns or variables have been resolved.

BRIEF DESCRIPTION OF THE DRAWINGS

{8023] FIG. 1 1s a diagram of an example computer data system showing an example data
distribution configuration in accordance with some implementations.

{0626] FI1G. 2 1s a diagram of an example computer data system showing an example
administration/process control arrangement in accordance with some implementations.

{8027} FIG. 3 1s a diagram of an example computing device configured for parsing and
compiling data system quertes in accordance with some implementations.

{0028] FI1G. 4 1s a diagram showing a data system parser and comptler in accordance with some
implementations.

{0629} FI1G. 5 1s a flowchart showing an example method for parsing and compiling data system

queries in accordance with some implementations.

W

WO 2016/183547 PCT/US2016/032589

DETARED DESCRIPTION

{0030] Reference may be made herein to the Java programming language, Java classes, Java
bytecode and the Java Virtual Machine (JVM]} for purposes of tllustrating example
unplementations. It will be appreciated that implementations can include other programming
languages {e.g., groovy, Scala, R, Go, etc.), other programming language structures as an
alternative to or in addition to Java classes {e g., other language classes, objects, data structures,
program units, code portions, script portions, etc.}, other types of byiecode, object code and/or
executable code, and/or other virtual machines or hardware implemented machines configured to
execute a data system query.

[0031] FIG 1 15 a diagram of an example computer data system and network 100 showing an
example data distribution configuration in accordance with some implementations. In particular,
the system 100 includes an application host 102, a periodic data import host 104, a query server
host 106, a long-term file server 108, and a user data import host 110. While tables are used as an
example data object in the description below, 1t will be appreciated that the data system
described herein can also process other data objects such as mathematical objects (e.g., 8 singular
value decomposition of values 10 a given range of one or more rows and columus of a table},
TableMap objects, etc. A TableMap object provides the ability to lookup a Table by some key.
This key represents a unique value (or unique tuple of values) from the columns aggregated on
a byExternal() statement execution, for example. A TableMap object can be the result of a
byExternal(} statement executed as part of a query. It will also be appreciated that the
configurations shown in FIGS. 1 and 2 are for iflustration purposes and in a given
implementation each data pool (or data store} may be directly attached or may be managed by a
file server.

{0632} The application host 102 can include one or more application processes 112, one or more
log files 114 (e. g, sequential, row-oriented log files), one or more data log tatlers 116 and a
multicast key-value publisher 118, The periodic data import host 104 can include a local table
data server, direct or remote connection to a periodic table data store 122 (e.g., a column-
oriented table data store) and a data import server 120. The query server host 106 can include a
multicast key-value subscriber 126, a performance table logger 128, local table data store 130

and one or more remote query processors {132, 134) each accessing one or more respective

WO 2016/183547 PCT/US2016/032589

tables (136, 138). The long-term file server 108 can include a long-term data store 140. The
user data import host 110 can include a remote user table server 142 and a user table data store
144, Row-oriented log files and column-oriented table data stores are discussed herein for
illustration purposes and are not intended to be limiting. It will be appreciated that log files
and/or data stores may be configured in other ways. In general, any data stores discussed herein
could be configured in a manner suitable for a contemplated implementation.

{0033] In operation, the input data application process 112 can be configured to receive input
data from a source {e.g., a securities trading data source}, apply schema-specified, generated
code to format the logged data as t's being prepared for output to the log file 114 and store the
received data in the sequential, row-oriented log file 114 via an optional data logging process. In
some implementations, the data logging process can include a daemon, or background process
task, that 1s configured to log raw input data received from the application process 112 to the
sequential, row-oriented log files on disk and/or a shared memory queue (e g., for sending data to
the multicast publisher 118). Logging raw mput data to log files can additionally serve to
provide a backup copy of data that can be used in the event that downstream processing of the
mput data 1s halted or mterrupted or otherwise becomes unreliable,

{08034] A data log tailer 116 can be configured to access the sequential, row-oriented log file{s)
114 to retrieve mput data logged by the data logging process. In some implementations, the data
log tailer 116 can be configured to perform strict byte reading and transmission {e.g., to the data
mmport server 120}, The data import server 120 can be configured to store the input data into one
or more corresponding data stores such as the periodic table data store 122 in a column-oriented
configuration. The pertodic table data store 122 can be used to store data that is being received
within a time period {e.g., a minute, an hour, a day, etc.} and which may be later processed and
stored in a data store of the long-term file server 108, For example, the periodic table data store
122 can include a plurality of data servers configured to store periodic securities trading data
according to one or more characteristics of the data (e.g., a data value such as security symbol,
the data source such as a given trading exchange, etc.}.

{0035} The data import server 120 can be configured to recetve and store data into the periodic
table data store 122 in such a way as to provide a consistent data presentation to other parts of
the system. Providing/ensuring consistent data in this context can include, for example,

recording logged data to a disk or memory, ensuring rows presented externally are available for

~1

WO 2016/183547 PCT/US2016/032589

consistent reading {(e.g., to help ensure that if the system has part of a record, the system has all
of the record without any errors), and preserving the order of records from a given data source.
If data 1s presented to clients, such as a remote query processor (132, 134), then the data may be
persisted in some fashion (e g., written to disk).

{0036] The local table data server 124 can be configured to retrieve data stored in the periodic
table data store 122 and provide the retrieved data to one or more remote query processors (132,
134} via an optional proxy.

{0037] The remote user table server (RUTS) 142 can include a centralized consistent data writer,
as well as a data server that provides processors with consistent access to the data that it s
responsible for managing. For example, users can provide input to the system by writing table
data that 1s then consumed by query processors.

{0038] The remote query processors {132, 134) can use data from the data import server 120,
local table data server 124 and/or from the long-term file server 108 to perform queries. The
remote query processors {132, 134} can also receive data from the multicast key-value subscriber
126, which recetves data from the multicast key-value publisher 118 in the application host 102.
The performance table logger 128 can log performance information about each remote query
processor and its respective queries into a local table data store 130, Further, the remote query
processors can also read data from the RUTS, from local table data written by the performance
logger, or from user table data read over NFS, for example.

{0039] It will be appreciated that the configuration shown in FIG. 1 1s a typical example
configuration that may be somewhat idealized for illustration purposes. An actual configuration
may nclude one or more of each server and/or host type. The hosts/servers shown in FIG. 1
{e.g, 102-110, 120, 124 and 142) may each be separate or two or more servers may be combined
into one or more combined server systems. Data stores can include local/remote, shared/isolated
and/or redundant. Any table data may flow through optional proxies indicated by an asterisk on
certain connections to the remote query processors. Also, it will be appreciated that the term
“pertodic” is being used for illustration purposes and can include, but is not himited to, data that
has been received within a given time period (e.g., millisecond, second, minute, hour, day, week,
month, year, etc.} and which has not yet been stored to a long-term data store {e.g., 140).

{0040} FIG. 215 a diagram of an example computer data system 200 showing an example

administration/process control arrangement in accordance with some implementations. The

WO 2016/183547 PCT/US2016/032589

system 200 includes a production client host 202, a controlier host 204, a GUT host or
workstation 206, and query server hosts 208 and 210. It will be appreciated that there may be
one or more of each of 202-210 in a given implementation

{0041} The production client host 202 can include a batch query application 212 {e.g., a query
that 1s executed from a command line interface or the like) and a real time query data consumer
process 214 (e.g., an application that connects to and listens to tables created from the execution
of a separate query). The batch query application 212 and the real time query data consumer 214
can connect to a remote query dispatcher 222 and one or more remote query processors (224,
226) within the query server host 1 208,

{0042] The controller host 204 can include a persistent query controller 216 configured to
connect to a remote query dispatcher 232 and one or more remote query processors 228-230. In
some 1mmplementations, the persistent query controller 216 can serve as the "primary client” for
persistent queries and can request remote query processors from dispatchers, and send
mstructions to start persistent queries. For example, a user can submit a query to the persistent
query controlier 216, and the persistent query controller 216 starts and runs the query every day.
In another example, a securities trading strategy could be a persistent query. The persistent guery
controller can start the trading strategy query every morning before the market opened, for
mstance. It will be appreciated that 216 can work on times other than days. In some
mmplementations, the controller may requure s own clients to request that queries be started,
stopped, etc. This can be done manually, or by scheduled {e.g., cron jobs). Some
implementations can include "advanced scheduling” (e.g., auto-start/stop/restart, time-based
repeat, ¢tc.) within the controller.

{8043] The GUI/host workstation can include a user console 218 and a user query application
220. The user console 218 can be configured to connect to the persistent query controller 216.
The user query application 220 can be configured to connect to one or more remote query
dispatchers (e.g., 232) and one or more remote query processors {228, 230).

{0644} FI1G. 3 is a diagram of an example computing device 300 in accordance with at least one
unplementation. The computing device 300 includes one or more processors 302, operating
system 304, computer readable medium 306 and network interface 308. The memory 306 can
nclude a data system query parser and compiler application 310 and a data section 312 {e.g., for

storing data system query strings, abstract syntax trees, precompiled code, etc.}.

WO 2016/183547 PCT/US2016/032589

{0045] In operation, the processor 302 may execute the application 310 stored in the memory
306. The application 310 can include software mstructions that, when executed by the processor,
cause the processor to perform operations for parsing and compiling data system queries in
accordance with the present disclosure (e. g, performing one or more of 502-528 described
below). The application program 310 can operate in conjunction with the data section 312 and
the operating system 304,

{0046] FIG. 4 shows an example parser and compiler configuration 400 for use with a data
system. The configuration 400 mcludes a parser/code generator 404, a compiler 408 and a
precompiled code repository 412

{0047] In operation, a data system query language string 402 1s provided to the parser/code
generator 404, The data system query language string 402 can include one or more of a data
system query language string, an object oriented programming language code string {e.g., Java
code, Groovy code, etc), other programming language string (e.g., R programming language
code), or the like. Also, a data system query language string 402 may be augmented by code
generated by a code generator, thus helpmg the data system query language to be concise.

{0048] The data system query language string 402 can be parsed by the parser/code generator
404 nto computer language code 406, The parser/code generator 404 may be configured to
parse computer data svstem language code, and then produce code 1o another computer
programming language. As part of the two-phase parsing/code generation operation, the parser
may generate an abstract syntax tree { AST}, which can be used by the code generator to generate
computer fanguage code and to infer the type of any data columns and/or tables produced by the
data system query language string. For example, a string in a computer data system language
can be parsed into an AST that 1s then used by the code generator to generate Java code having
properly inferred types. The parser/code generator 404 can also vectorize operations from the
query language code. For example, for a query language statement of “a=b+¢”, where band ¢
are column sources, the code generator 404 can generate a looping code structure to perform the
operation, for example “ai = b1 + ¢1, for all 1 values in the column sources.”

{0049] The computer language code 406 1s provided as input to the compiler 408, Based on one
or more attributes and/or dertved attributes of the computer language code 406, the code
generator or compiler can determine whether there i1s a precompiled class {or other precompiled

code) for the computer language code 406, The attributes and/or derived atiributes can include a

16

WO 2016/183547 PCT/US2016/032589

hash function result value of one or more atiributes of the computer language code 406 such as
class file name, object name, one or more parameters, a portion of the code itself, etc.

{0058] When the precompiled code repository 412 contains precomptiled code {e.g., one or more
precompiled Java class files) that corresponds to the computer language code 406, the
precompiled code can be used, which permits the system to avoid using processing time to
compile the computer language code 406. If precompiled code corresponding to the computer
language code 406 1s not found in the repository, the compiler compiles the computer language
code 406 to generate compiled programming language code {e.g., one or more compiled Java
class files) and optionally add the compiled code to the precompiled code repository for future
reuse. The precompiled code library can be updated over time to include compiled code not
found in the repository during a parsing/compiling process {or be updated to remove compiled

code). Further details of the parsing and compiling are described below in connection with FIG,

L

{0051} FIG. S a flowchart showing an example method 500 for parsing and compiling data
system queries in accordance with some implementations. Processing begins at 502, where a
data system query language string 1s obtained. The query language string {e.g., 402} can be
obtained from anocther system, from a file sent by a user, from a command line interface or the
itke. The query language string can include one or more data system query operations inclading
but not lunited to filtering, updating and/or viewing data retrieved from the data system or
created by a query. Processing continues to 504,

{8052] At 504, the parser identifies whether the query siring 1S an optimized query pattern
(0P}, which can include, for example, special, very common queries that have been
performance tuned.

{0053} Some simple examples include:

{0054] "Symbol in "AAPL') GOOG™

[0055] "A = 13"

[0056] "B < 12"

10057} If the query string is identified as an OQP, processing continues to 530, where the OQP s
processed via a special performance tuned OQP processing section without requiring code

generation / compilation, etc. Otherwise processing continues to 506.

I

WO 2016/183547 PCT/US2016/032589

{0058} At 506, one or more expressions {or subexpressions) within the query string are parsed
mto a syntax tree {e.g., an abstract syntax tree or AST). The AST can be used to provide
contextual information to the compiler in later stages described below. The AST can include a
tree representation of the abstract syntactic structure of source code written 1n a programming
language {e.g., the query string). Each node of the AST can represent a construct in the source
code. Processing continues to 508,

{0059] At S08, variables and/or column representations are substituted into the AST. Because
the query language string may include references to data within a row, column or table of the
data system, the parser may need to substitute the programming language representation of
certain variables, column names, table names etc. with representations that are suitable for the
compilation process. For example, assume the following code:

[0660] a =13

[0061] 12 =t1 update("X=A+a")

T

[0062] In this example, there 15 a variable "a" and a column "A". When "X=A+a" goes through
the code generation and compilation process, the system recognizes that A" 1s a column and "a"
1s a vanable that was defined in a scope outside of the snippet we are compiling. Processing
continues to 510,

[0063] At 510, matching method or hibrary calls are identified within the AST. For example,
assume a code string of 12 = t] apdate("X=tunc{A,2}"}. When the string "X=func(A,2)" 1s
parsed and compiled, the system needs to determing what "func” 1s. Here, the system can
determine that 2 s an "int". From the type of column A, know the type of A -- let's say "float" for
this example. Now the system needs to find an appropriate function for "func{float,int)". if we
are able to find an exact maich, we use it. We may have to handle type conversions. For example
"func{double long}" may be the closest match. In general, the system 13 performing this step to
determine what the correct function 1s. Processing continues to 512.

0064} At 512, column types within the AST are inferred. Because a query string can create one
or more tables having one or more columns each, the compiler may need to have type
nformation for the columns created by the query string. Often, determining variable or object
type within a programming language can be difficult, especially for data objects or structures
created dynamically from a language such as the data system query language described herein in

which the user may not be required to declare a type of a data column. Without a type

12

WO 2016/183547 PCT/US2016/032589

declaration, a compiler may have to resort to using a lowest common denominator type or catch
all type (e.g., java.lang Object in Java) as a substitute for the actual type of a column created by
the query string,

{0065] To infer {or resolve} the type of a column, the parser traverses the AST in order to
determine a context of the column in question. The context of the column in question can
include the type of variables or objects related to the column within the AST (e.g., return types,
argument types, etc.). The parser can evaluate the type of the adjacent variables or objects to
infer (or resolve) the type of the column in question. The resolution of the type can follow
standard conventions once the context of the column 1n question has been determined. For
example, if a column having an unknown type 1s defined to contain the result of a hypothetical
mathematical operator “plus” and the parameters to the “plus” operator are both of type “int” or
integer, the parser may identify a “plus” function that takes two variables of type “int” as
parameters and returns a value of tvpe “double” as a result. Because the parser has identified the
plus operator that matches the input parameter context, the return type of “double” from the
“plus” function can be used to resolve the type of the column to double and a column with a
correct type can be created to hold the results of the “plus” function. The parser continues
traversing the AST until all unknown column types are resolved. Processing continues to 514,
[0066] At 514, the AST with unknown columns types resolved 1s translated into {or used to
generate) programming language code. For example, the AST may be used by the code
generator to generate Java language code. The code generation can also include adding
programming language boilerplate for compilation purposes, providing mformation to permit
access to relevant variables within scope, and adding information to permit access to relevant
libraries and/or classes which may be in scope for the query. Processing continues to 516,
{0067} At 516, once the programming language code is available, the parser/compiler system can
determine whether precompiled code corresponding to the translated code s available. The
parser/compiler system can use one or more attributes of the translated code to generate a token
for comparison to precompiled code sections within a precompiled code repository {e.g., 412).
The token can include a result of processing one or more attributes of the translated code using a
hash function. The attributes can include one or more of the code class name, code file name, a

portion of the code, or the like. Processing continues to 518,

I3

WO 2016/183547 PCT/US2016/032589

{0068] At 518, the result of the determining whether a precompiled version of the translated
code is available is evaluated. If precompiled code s present, processing continues to 524
Otherwise, processing continues to 520,

{0069] At 520, the translated code is compiled by a compiler {e.g., 408) into compiled
programming language code (e.g., 410). For example, the translated code may be Java language
code that 15 compiled into one or more Java language classes. Processing continues to 522.
{00708 At 522, the compiled code 1s persisted {or stored} in a precompiled code repository (e.g.,
412y along with one or more tokens (e.g., a result of hash function) that can be used to identify
and retrieve the precompiled code. Processing continues to 524,

{8071} At 524, the compiled code 1s loaded. The compiled code may be the newly compiled
code resulting from 320 or precompiled code wdentified at 516/518. Processing continues to 526,
{0072] At 526, the loaded code 15 mstantiated {e.g., prepared for use, constructed mn mermory for
execution, or the like). Processing continues to 528,

{B073] At 528, the mstantiated code 15 executed to perform the query function specified in the
query string provided at S02. It will be appreciated that 502-528 may be repeated in whole or n
part in order to accomplish a contemplated query task.

{08674} It will be appreciated that the modules, processes, systems, and sections described above
can be implemented m hardware, hardware programmed by software, software instructions
stored on a nontransitory computer readable medium or a combination of the above. A system as
described above, for example, can include a processor configured to execute a sequence of
programmed instructions stored on a nontransitory computer readable medium. For example, the
processor can include, but not be limited to, a personal computer or workstation or other such
computing system that includes a processor, microprocessor, microconiroller device, or is
comprised of control logic including integrated circuits such as, for example, an Application
Specific Integrated Circuit {ASIC), a field programmable gate array (FPGA), a graphics
processing unit (GPU), or the like. The instructions can be compiled from source code
mstructions provided in accordance with a programming language such as Java, C, C++, CHnet,
assembly or the like. The instructions can also comprise code and data objects provided in
accordance with, for example, the Visual Basic™ language, a specialized database query
language, or another structured or object-oriented programming language. The sequence of

programmed instructions, or programmable logic device configuration software, and data

14

WO 2016/183547 PCT/US2016/032589

associated therewith can be stored in a nontransitory computer-readable medium suchas a
computer memory or storage device which may be any suitable memory apparatus, such as, but
not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like.

{0075] Furthermore, the modules, processes systems, and sections can be implemented as a
single processor or as a distributed processor. Further, it should be appreciated that the steps
mentioned above may be performed on a single or distributed processor (single and/or multi-
core, or cloud computing system). Also, the processes, system components, modules, and sub-
modules described in the various figures of and for emnbodiments above may be distributed
across multiple computers or systems or may be co-located in a single processor or system.
Example structural embodiment alternatives suitable for implementing the modules, sections,
systems, means, or processes described herein are provided below.

{0076] The modules, processors or systems described above can be maplemented as a
programimed general purpose computer, an electronic device programmed with microcode, a
hard-wired analog logic circuit, software stored on a computer-readable mednum or signal, an
optical computing device, a networked system of electronic and/or optical devices, a special
purpose computing device, an imtegrated circuit device, a semiconductor chip, and/or a software
module or object stored on a computer-readable medium or signal, for example.

{0677} Embodiments of the method and system {or their sub-components or modules}, may be
mplemented on a general-purpose computer, a special-purpose computer, a programmed
microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other
mtegrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a
discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the
like. In general, any processor capable of implementing the functions or steps described herein
can be used to implement embodiments of the method, system, or a computer program product
{software program stored on a nontransitory computer readable medium).

{0078} Furthermore, embodiments of the disclosed method, system, and computer program
product {or software instructions stored on a nontransitory computer readable medium) may be
readily implemented, fully or partially, in software using, for example, object or object-oriented
software development environments that provide portable source code that can be used ona
variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and

computer program product can be implemented partially or fully in hardware using, for example,

WO 2016/183547 PCT/US2016/032589

standard logic circuits or a VLST design. Other hardware or software can be used to implement
embodiments depending on the speed and/or efficiency requirements of the systems, the
particular function, and/or particular software or hardware system, microprocessor, or
microcomputer being utilized. Embodiments of the method, system, and computer program
product can be implemented in hardware and/or software using any known or later developed
systems or structures, devices and/or software by those of ordinary skill in the applicable art
from the function description provided herein and with a general basic knowledge of the
software engineering and computer networking arts.

[8879] Moreover, embodiments of the disclosed method, system, and computer readable media
{or computer program product) can be implemented in software executed on a programmed
general purpose computer, a special purpose computer, a microprocessor, or the like.

{0080] 1t 15, therefore, apparent that there 1s provided, m accordance with the various
ernbodiments disclosed herein, methods, systems and computer readable media for parsing and
compiling data system queries.

{8081] Apphication No. , entitled "DATA PARTITIONING AND ORDERING”
{Attorney Docket No. W1.1-10057}) and filed in the United States Patent and Trademark Office
on May 14, 2016, 1s hereby incorporated by reference herein 1o its entirety as if fully set forth
herem.

{8082] Application No. , entitled "COMPUTER DATA SYSTEM DATA SOURCE
REFRESHING USING AN UPDATE PROPAGATION GRAPH" (Attorney Docket No. W1 .4-
10058) and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby
mcorporated by reference herein in its entirety as if fuily set forth herein.

{0083] ApplicationNo. , entitled "COMPUTER DATA SYSTEM POSITION-
INDEX MAPPING" (Attorney Docket No. W1.5-10083) and filed in the United States Patent
and Trademark Office on May 14, 2016, ts hereby incorporated by reference herein in its entirety
as if fully set forth herein.

{00684] ApplicationNo. , entitled "SYSTEM PERFORMANCE LOGGING OF
COMPLEX REMOTE QUERY PROCESSOR QUERY OPERATIONS" (Attorney Docket No.
W1.6-10074) and filed in the United States Patent and Trademark Office on May 14, 2016, is

hereby incorporated by reference herein in 1ts entirety as if fully set forth herein.

It

WO 2016/183547 PCT/US2016/032589

{0085} ApplicationNo. , entitled "DISTRIBUTED AND OPTIMIZED GARBAGE
COLLECTION OF REMOTE AND EXPORTED TABLE HANDLE LINKS TO UPDATE
PROPAGATION GRAPH NODES" (Attorney Docket No. W1 .8-10085) and filed in the United
States Patent and Trademark Office on May 14, 2016, 15 hereby incorporated by reference herein
in 1ts entirety as if fully set forth herein.

{0086] Application No. , entitled "COMPUTER DATA SYSTEM CURRENT
ROW POSITION QUERY LANGUAGE CONSTRUCT AND ARRAY PROCESSING
QUERY LANGUAGE CONSTRUCTS" (Attorney Docket No. W2 1-10060) and filed in the
Unmited States Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by reference
herem m its entirety as if fully set forth herein,

{8087} Application No. , entitled "PARSING AND COMPILING DATA SYSTEM
QUERIES" { Attorney Docket No. W2.2-10062) and filed in the United States Patent and
Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in tis entirety as
if fully set forth heremn.

{B088] Apphication No. , entitled "DYNAMIC FILTER PROCESSING" { Attorney
Docket No. W2.4-10075) and filed in the United States Patent and Trademark Office on May 14,
2016, 1s hereby mcorporated by reference herein n its entirety as if fully set forth herem.

{0689] Application No. , entitled "DYNAMIC JOIN PROCESSING USING REAL-
TIME MERGED NOTIFICATION LISTENER" (Attorney Docket No. W2.6-10076} and filed
in the United States Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by
reference herein in its entirety as if fully set forth herein.

{0090} ApplicationNo. , entitled "DYNAMIC TABLE INDEX MAPPING"
{Attorney Docket No. W2.7-10077) and filed in the United States Patent and Trademark Otfice
on May 14, 2010, is hereby incorporated by reference herein in its entirety as if fully set forth
herem.

{0091} ApplicationNo. , entitled "QUERY TASK PROCESSING BASED ON
MEMORY ALLOCATION AND PERFORMANCE CRITERIA" (Attorney Docket No. W2 8-
10094} and filed in the United States Patent and Trademark Office on May 14, 2016, is hereby
mcorporated by reference herein in its entirety as if fully set forth herein.

{0092} Application No. , entitled "A MEMORY-EFFICIENT COMPUTER

SYSTEM FOR DYNAMIC UPDATING OF JOIN PROCESSING" {Attorney Docket No.

17

WO 2016/183547 PCT/US2016/032589

W2.9-10107) and filed in the United States Patent and Trademark Office on May 14, 2016, 18
hereby incorporated by reference herein in its entirety as if fully set forth herein.

{0093} ApplicationNo. , entitled "QUERY DISPATCH AND EXECUTION
ARCHITECTURE" {Attorney Docket No. W3.1-10061) and filed in the United States Patent and
Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as
it fully set forth herein.

{0094} ApplicationNo. , entitled "COMPUTER DATA DISTRIBUTION
ARCHITECTURE" {Attorney Docket No. W3 2-10087) and filed in the United States Patent and
Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in tis entirety as
it fully set forth herein.

{80693} Application No. , entitled "DYNAMIC UPDATING OF QUERY RESULT
DISPLAYS" (Attorney Docket No. W3.3-10059) and filed in the United States Patent and
Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in tis entirety as
if fully set forth heremn.

{8696] Apphication No. , entitled "DYNAMIC CODE LOADING" (Attorney
Docket No. W3.4-10065) and filed in the United States Patent and Trademark Office on May 14,
2016, 1s hereby mcorporated by reference herein n its entirety as if fully set forth heremn.

{0697} Application No. , entitled "IMPORTATION, PRESENTATION, AND
PERSISTENT STORAGE OF DATA" (Attorney Docket No. W3.5-10088} and filed in the
United States Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by reference
herem in its entirety as if fully set forth herein.

{0098} ApplicationNo. , entitled "COMPUTER DATA DISTRIBUTION
ARCHITECTURE" (Attorney Docket No. W3.7-10079) and filed in the United States Patent and
Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in its entirety as
it fully set forth heremn.

{0099} ApplicationNo, , entitled "PERSISTENT QUERY DISPATCH AND
EXECUTION ARCHITECTURE" (Attorngy Docket No. W4.2-10089) and filed in the United
States Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein
m its entirety as if fully set forth herein.

10100} Application No. , entitled "SINGLE INPUT GRAPHICAL USER

INTERFACE CONTROL ELEMENT AND METHOD" (Attorney Docket No. W4.3-10063)

I8

WO 2016/183547 PCT/US2016/032589

and filed in the United States Patent and Trademark Office on May 14, 2016, 1s hereby
mcorporated by reference herein in its entirety as if fully set forth herein.

[0101] ApplicationNo. entitled "GRAPHICAL USER INTERFACE DISPLAY
EFFECTS FOR A COMPUTER DISPLAY SCREEN" {Attorney Docket No. W4.4-10090) and
filed in the United States Patent and Trademark Office on May 14, 2016, is hereby incorporated
by reference herein in iis entirety as if fully set forth herein.

{0102} ApplicationNo, , entitled "COMPUTER ASSISTED COMPLETION OF
HYPERLINK COMMAND SEGMENTS" (Attorney Docket No. W4.5-10091) and filed in the
United States Patent and Trademark Office on May 14, 2016, is hereby mncorporated by reference
herem m its entirety as if fully set forth herein,

[0103] Application No. , entitled "HISTORICAL DATA REPLAY UTILIZING A
COMPUTER SYSTEM" {Attorney Docket No. W5.1-10080) and filed in the United States
Patent and Trademark Office on May 14, 2016, 1s hereby incorporated by reference herein in s
entirety as if fully set forth herem.

{8104] Apphication No. , entitled "DATA STORE ACCESS PERMISSION
SYSTEM WITH INTERLEAVED APPLICATION OF DEFERRED ACCESS CONTROL
FILTERS" {Attorney Docket No. W6.1-10081) and filed n the United States Patent and
Trademark Office on May 14, 2016, 1s hereby mcorporated by reference herein in 1ts entirety as
if fully set forth herem.

{0105} ApplicationNo. , entitled "REMOTE DATA OBIECT
PUBLISHING/SUBSCRIBING SYSTEM HAVING A MULTICAST KEY-VALUE
PROTOCOL" (Attorney Docket No. W7.2-10064) and filed in the United States Patent and
Trademark Office on May 14, 2016, is hereby incorporated by reference herein in its entirety as
if fully set forth herein.

{8106] While the disclosed subject matter has been described in conjunction with a number of
embodiments, it is evident that many alternatives, modifications and variations would be, or are,
apparent to those of ordinary skill in the applicable aris. Accordingly, Applicants intend to
embrace all such alternatives, modifications, equivalents and variations that are within the spirit

and scope of the disclosed subject matter.

19

WO 2016/183547 PCT/US2016/032589

CLAIMS

What is claimed 1s:

1. A system for parsing, generating code and compiling computer data system query
language code, the system comprising:
one or more hardware processors coupled to a nontransitory computer readable medium
having stored thereon software instructions that, when executed by the one or more processors,
cause the one or more processors to perform operations meluding:
obtaining, at the one or more hardware processors, computer data systern query
language code from an electronic computer readable data storage;
parsing, at the one or more hardware processors, the computer data system query
language code to generate a computer data system query language parsed code structure;
resolving, at the one or more hardware processors, a type of one or more columns
represented in the parsed code structure;
mserting, at the one or more hardware processors, resolved types into the parsed
code structure;
generating, at the one or more hardware processors, computer programnung
language code from the computer data system query language parsed code structure;
determining, at the one or more hardware processors, whether precompiled code
corresponding to the generated computer programmung language code 15 available ina
precompiled code reposttory stored in the electronic computer readable data storage;
when precompiled code is available in the precompiled code repository, loading,
at the one or more hardware processors, the precompiled code;
when precompiled code is not available in the precompiled code repository:
compiling, at the one or more hardware processors, the computer
programming language code to generate compiled computer programming language code; and
loading, at the one or more hardware processors, the compiled computer
programming language code;
instantiating, at the one or more hardware processors, the loaded precompiled

code or the compiled computer programming language code; and

WO 2016/183547 PCT/US2016/032589

executing, at the one or more hardware processors, the instantiated code to

perform a query operation corresponding to the computer data system query language code.

2. The system of claim 1, wherein the computer data system query language code includes

one or more instructions of a data system query language.

3. The system of claim 1, wherein the operations further include identifying a source of
columns or query scope variables for substitution and use in computer programming language

code.

4. The system of claim 1, wherein the operations further include persisting the compiled
computer programming language code by storing the precompied code in the precompiled code

repository.

5 The system of claim 1, wherein determining whether precompiled code corresponding to
the programming language code s available in a precompiled code repository comprises:

generating a token representing the generated computer programming language
code, wherein the token mncludes a result of a hash function of one or more attributes of the
computer prograniming language code;

comparing the token to one or more repository tokens in the precomptled code
repository corresponding to precompiled code units; and

based on the comparing, determining whether the token matches any of the

repository tokens.

6. The system of claim 1, wherein the inserting includes inserting references to data objecis

and variables that have been made available to the query language code.

7. The system of claim 1, wherein the operations further include repeating the resolving and

mserting until any unresolved columns or variables have been resolved.

8. A method for parsing, generating code and compiling computer data system query

21

WO 2016/183547 PCT/US2016/032589

language code, the method comprising:

obtaining, at a hardware processor, computer data system guery language code
from an electronic computer readable data storage;

parsing, at the hardware processor, the computer data system query language code
to generate a computer data system query language parsed code structure;

resolving, at the hardware processor, a type of one or more columns represented
in the parsed code structure;

inserting, at the hardware processor, resolved types into the parsed code structure;

generating, at the hardware processor, computer programming language code
from the computer data system query language parsed code structure;

determining, at the hardware processor, whether precompiled code corresponding
to the generated computer programming language code ts available in a precompiled code
repository stored in the electronic computer readable data storage;

when precompiled code 1s available in the precompiled code repository, loading,
at the hardware processor, the precompiled code;

when precompiled code is not available in the precompiled code repository:

compiling, at the hardware processor, the computer programming
fanguage code to generate compiled computer programming language code; and
lpading, at the hardware processor, the compiled computer programming

language code;

mstantiating, at the hardware processor, the loaded precompiled code or the
compiled computer programming language code; and

executing, at the hardware processor, the instantiated code to perform a query

operation corresponding to the computer data system query language code.

9. The method of claim 8, wherein the computer data system query language code includes

one or more instructions of a data system query language.

10. The method of claim §, further comprising 1dentifying a source of columns or

query scope variables for substitution and use in computer programming language code.

22

WO 2016/183547 PCT/US2016/032589

11 The method of claim 8, further comprising persisting the compiled computer
programming language code by storing the precompiled code in the precompiled code

repository.

12. The method of claim &, wherein determining whether precompiled code
corresponding to the programming language code 15 available in a precompiled code repository
comprises:

generating a token representing the generated computer programming language
code, wherein the token 1ncludes a result of a hash function of one or more attributes of the
computer programming language code;

comparing the token to one or more reposttory tokens in the precompiled code
repository corresponding to precompiled code units; and

based on the comparing, determining whether the token matches any of the

repository tokens.

13 The method of claim &, wherein the mserting includes inserting references to data objects

and variables that have been made available to the query language code.

14, The method of claim 8, further comprising repeating the resolving and inserting until any

unresolved columns or variables have been resolved.

15. A nontransitory computer readable mediom having stored thereon software instructions
that, when executed by one or more processors, cause the one or more processors to perform
operations including:

obtaining, at the one or more hardware processors, computer data system query
language code from an electronic computer readable data storage;

parsing, at the one or more hardware processors, the computer data system query
language code to generate a computer data system query language parsed code structure;

resolving, at the one or more hardware processors, a type of one or more columns
represented in the parsed code structure;

mnserting, at the one or more hardware processors, resolved types into the parsed

23

WO 2016/183547 PCT/US2016/032589

code structure,;
generating, at the one or more hardware processors, computer programming
language code from the computer data system query language parsed code structure;
determining, at the one or more hardware processors, whether precompiled code
corresponding to the generated computer programming language code 1s available ina
precompiled code repository stored in the electronic computer readable data storage;
when precompiled code s available in the precompiled code repository, loading,
at the one or more hardware processors, the precompiled code;
when precompiled code 13 not avatlable in the precompiled code repository:
compiling, at the one or more hardware processors, the computer
programming language code to generate compiled computer programming language code; and
loading, at the one or more hardware processors, the compiled computer
programiming language code;
mstantiating, at the one or more hardware processors, the loaded precompiled
code or the compiled computer programming language code; and
executing, at the one or more hardware processors, the instantiated code to

perform a query operation corresponding to the computer data system query language code.

16, The nontransitory computer readable medium of claim 15, wherein the computer data

system query language code includes one or more instructions of a data system query language.

17. The nontransitory computer readable medium of claim 15, wherein the operations further
include identifying a source of columns or query scope variables for substitution and use in

computer programming language code.
18, The nontransitory computer readable medium of claim 15, wherein the operations further
include persisting the compiled computer programming language code by storing the

precompiled code in the precompiled code repository.

19, The nontransitory computer readable medium of claim 15, wherein determining whether

precompiled code corresponding to the programming language code 1s available ina

24

WO 2016/183547 PCT/US2016/032589

precompiled code reposttory comprises:

generating a token representing the generated computer programming language
code, wherein the token includes a result of a hash function of one or more atiributes of the
computer programming language code;

comparing the token to one or more repository tokens in the precomptled code
repository corresponding to precompiled code units; and

based on the comparing, determining whether the token matches any of the

repository tokens.

20 The nontransitory computer readable medium of claim 15, wherein the inserting includes
inserting references to data objects and variables that have been made available to the query
language code, and wherein the operations further include repeating the resolving and mserting

until any unresolved columns or variables have been resolved.

1/5

WO 2016/183547 PCT/US2016/032589
100
|~~~ 7 7 ApplicationHost 102~ — — — T~ T T T 'i
| I v
—— . . I
| Application : I : Multicast key-
| Process — Log1l?él1e(s) g Data L10196Taller value publisher I
| 112 118 I
- |
- - - - Y- Q- —_—— | —_ 1 — =
| = = T T T TPeriodic Data Import Host 104~ ~ |~ T~ 1
I P I
| ————— |
| | Local Table " Data Import | |
| Data Server |€— Periodic Data € Server |
124 122 120
I I
I I
—_—_—— e e N L f] ——+ — 9
I \ 4 \ 4 |
ulticast key-value
I Multicast key-val |
| subscriber
I
| 126
| Remote Query Remote Query I
| Processor Processor Performance Table |
| 132 . s . 134 —> Logger |
I Table 136 Table 138 128 |
I
I x > I
| oca |
| Table Data
I 130 |
L —) A D — — A\ __Muery server ost |
| > L
| [——— | I
| | | Remote User
Long-term Data | Table Server
| 140 | | 142
I I

WO 2016/183547

Production Client Host (202)

Batch Query
Application

<

2/5

PCT/US2016/032589

212

Real time
Query Data

Remote Query
Dispatcher 1

222

v

L 4

Remote Query
»| Processor 1-1

Consumer
214

224

Remote Query
Processor 1-m
226

|
|
|
|
1 |
|
|
|
|

Query Server Host 2 (21 O)I

Remote Query

Remote Query

or Console
220

User Query Application

I
—|—|—> Processor 2-1 |= = =| Processor 2-n I
| | 228 230 I
Persistent Query x yY
Controller I | 1 ¥ 4 :
216 |
| | Remote Query |
[M| Dispatcher 2 |
4 | | 232 |
___________ | _—— - A
——————————— .
\ 4
Persistent Query
Console M
218

3/5
WO 2016/183547 PCT/US2016/032589

Computing Device 300

Computer Readable Medium 306

Operating System
304
Processor(s)
302
Parsing/Compiling
Application
310
Network
Interface
308 Data
312

FIG. 3

4/5

WO 2016/183547 PCT/US2016/032589
400
Data 402
System
Query /
Language
String

404

Parser/ /

Generator

406

Computer
Language /

Code

l P

408

\ Compiled
Compiler p——»{ Programming
Language Code

Precompiled
Code
Reposito

FIG. 4

5/5

WO 2016/183547

502

00

AN

Obtain data system query string
(e.g., query language code for filter,
update view, etc.)

504

'

AN

Identify Optimized Query Patterns
(0QP)
(When OQP Branch to 530)

'

506

AN

Parse expressions/sub-expressions
into abstract syntax tree (AST)

'

508

AN

Substitute Variables and/or Column
References into AST

'

510

AN

Identify Matching Method or Library
Calls for AST

512

'

AN

Infer Column Types

514

'

AN

Generate Programming Language
Code from AST

516

'

AN

Check for availability of precompiled| |

code

518

520

PCT/US2016/032589

Yes

Precompiled Code
Available?

Compile programming
language code

522

!

Persist Compiled Code

524

!

Load Compiled Code <

526

!

Instantiate Compiled Code

528

!

Use Instantiated Code in
Query

Process OQP in
Performance Tuned OQP
Processing Section

FIG. 5

7

530

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2016/032589

A CLASSIFICATION OF SUBJECT MATTER

GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F 7/00, 17/22, 17/27, 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), USPTO, PAJ, K-PION, Esp@cenet, Information Retrieval System of FIPS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2003/0167261 A1 (INTERNATIONAL BUSINESS MACHINES 1-20
CORPORATION) 04.09.2003, abstract, [0024], [0069]
Y US 5504885 A (TEXAS INSTRUMENTS INCORPORATED) 02.04.1996, 1-20
col. 5, lines 9-12, col. 9, lines 2-10
Y US 6985904 B1 (ORACLE INTERNATIONAL CORPORATION) 10.01.2006, 1-20
col. 3, lines 39-64, col. 5, lines 39-40
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “T” later document published after the international filing date or priority

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier document but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other

special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means
“P” document published prior to the international filing date but later than

the priority date claimed

date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

20 July 2016 (20.07.2016)

Date of mailing of the international search report

28 July 2016 (28.07.2016)

Name and mailing address of the [SA/RU:

Federal Institute of Industrial Property,
Berezhkovskaya nab., 30-1, Moscow, G-59,

GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Authorized officer
A. Tokarev

Telephone No. 499-240-25-91

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report

