PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97726608
17130 Al

GO6F (43) International Publication Date: 24 July 1997 (24.07.97)

(21) International Application Number: PCT/CA97/00039 (CA). REDDY, Praveen [CA/CA]; 4020 - 105B Street, Ed-

(22) International Filing Date: 20 January 1997 (20.01.97)

(30) Priority Data:
60/010,214
08/597,087

us
Us

18 January 1996 (18.01.96)
S February 1996 (05.02.96)

(60) Parent Application or Grant
(63) Related by Continuation
Us 08/597,087 (CON)

Filed on 5 February 1996 (05.02.96)

(71) Applicant (for ali designated States except US): VICOM MUL-
TIMEDIA INC. [CA/CA]; 11603 - 165th Street, Edmonton,
Alberta TSM 3Z1 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LIGHTHEART, Michael,
A. [CA/CA], 70 Glenwood Crescent, St. Albert, Alberta
T8N 1X5 (CA). HENDERSON, Scott, R. [CA/CA}; 6624
- 187 Street, Edmonton, Alberta TST 2N2 (CA). DURN-
FORD, James, Donald [CA/CA]; 210 Lilac Drive, Sher-
woed Park, Alberta T8SH 1W2 (CA). HEUPEL, Johannes
[DE/CA]; P.O. Box 2609, Stony Plain, Alberta T7Z 1Y2

monton, Alberta TST 1V2 (CA).

(74) Agent: BAILEY, Thomas, W.; Oyen Wiggs Green & Mutala,
480 - 601 West Cordova Street, Vancouver, British Colum-
bia V6B 1G1 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL,
PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA,
UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ,
UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: AUTHORING AND PUBLISHING SYSTEM FOR INTERACTIVE MULTIMEDIA COMPUTER APPLICATIONS

(57) Abstract

A system for authoring and publishing multimedia works
has an integrated project management system which controls
and tracks the operation of media input, database management,
authoring, and output subsystems. The database management
subsystem stores all of the elements of an application in a database
which eliminates the need to track path names for media elements.
Media elements and program elements for multimedia works are
stored in the same database and can be made available to all users
on a computer network. Multiple authors can simultaneously
author a single work.

120

P '

f

PROJECT MANAGEMENT

122

[.128

T

132

AUTHORING OUTPUT

Voo
[

MANAGEMENT

126

DATABASE

applications under the PCT.
AM Armenia

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CG Congo

CH Switzerland

CI Coie d'Ivoire
CcM Cameroon

CN China

cs Czechoslovakia
CZ Czech Republic
DE Germany

DK Denmark

EE Estonia

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

KR
Kz
LI
LK
LR
LT
LU
LV
MC
MD
MG
ML
MN
MR

United Kingdom
Georgia

Guinea

Greece

Hungary

freland

haly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG
St
SK
SN
Sz
TD
TG
TJ
TT
UA
uG
us
vz
VN

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Sencgal

Swaziland

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

UTHORING AND PUBLISHING SYS R INTERACTIVE
MULTIMEDIA COMPUTER APPLICATIONS

This application relates to a system, including apparatus and
computer implemented methods, for authoring, publishing and running
computer applications. The invention has particular application to authoring,
publishing and running interactive multimedia works, such as interactive
tutorials. The system includes a database for storing elements of computer
applications and preferably has an integrated project management system which
controls and tracks the operation of media input, database management,

authoring, and output subsystems.

Background of the Inventio

Multimedia works are becoming standard tools for educational,
entertainment and business purposes. In the business field, paper-based technical
service and training manuals are being replaced by interactive CD-ROM based
products. Electronic manuals enable users to access technical information more
quickly and efficiently than paper-based materials, while providing enhanced
facilities for user-driven training and skills development. While interactive
manuals and other CD-ROM based multimedia works offer obvious benefits,
producing an interactive multimedia work is time intensive. This makes the cost

of production high as compared to paper-based resources.

There is a need for systems for streamlining the multimedia

production and post-production process.

1

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
The traditional process for authoring and producing multimedia
works, such as interactive training manuals, is time-consuming and labour-
intensive. The usual first step in such a project is to design the general
framework of the desired multimedia application, including scope, content

structure and instructional and learning strategies.

The next step is to collect the various physical media elements which
will comprise the content of the application. Depending upon the application,
the media elements may include text, graphic images, sound clips, film clips and
the like. Some media elements may have to be created specifically for the
application. The proposed interactions between the various media elements

must also be plotted.

Management of media elements is often a severe bottleneck in
multimedia production. Before media elements can be combined into a
multimedia work they must be made accessible, in computer readable form, to
a computer system where they can be combined. Some graphic, text and
animation elements may already be available in digital form. Other media
elements must be converted to compatible digital files, which must be identified,

stored, and then brought individually to the authoring process.

Current methods of multimédia production require users to
manually manage media elements both before and after they have been stored
in a computer system. Computer readable media elements are typically stored
in "file-based" systems which require an operator to assign a file name to each
media element. In many computer systems the file names are limited to short,
cryptic, combinations of letters and /or numbers. A user can only access a media

element in such methods by recalling and using the assigned file name. Further,

2

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
the structures and contents of the media elements are often not clear from the file
name or from the media elements themselves. This information must be tracked
manually. Usually the collection, inventorying, input and digitization of media

elements is performed by skilled technicians which inflates production costs.

Traditional authoring systems require a single author (at a single
site) to manually link various media elements in order to create a desired
multimedia application. The author requires a detailed knowledge of the
authoring system which may take months, or years, to acquire. Typically the
author is trained in computer programming but is not an expert in the subject
matter in question. For example, if the work under development relates to an
interactive service manual for use by electronics repair technicians, the author
may lack a detailed understanding of the electronic system to which the manual
relates. Conversely, repair technicians or other subject matter experts ordinarily
lack the training and background necessary to effectively author multimedia
applications using existing software. While some simplified authoring tools are
available for use by lay persons, they lack the power and flexibility needed to

create a full range of multimedia works.

The final step in the production process is to create a run-time
application of the work for use by end-users. The program may be stored on a
CD-ROM or loaded directly onto a file server hard drive or some other computer-

readable medium, depending upon the end-user's requirements.

Post-production revisions and updates often pose a problem.
Changes to the interactive storyboard can have a "ripple effect" through the entire

work which may necessitate a large amount of re-authoring. If the work is

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
"media-dense", location and replacement of specific media objects is often a time-

consuming and expensive exercise.

The traditional multimedia authoring and publishing process
described above suffers from several inherent disadvantages. The linear "one-
off" production process is expensive and time-consuming, requiring the
cooperation of many specialized people. Although subject matter experts may
be involved in the project in an advisory role, they are usually not skilled enough
in the use of currently available multimedia authoring software to take part
directly in the authoring process. The shareability of media elements and
authoring sequences between different projects and applications is restricted. In
the case of media dense, intensively interactive applications, file-based media

elements can become unmanageable.

Moreover, in the traditional approach, if any project management
controls or schedulers are used, they are usually not fully integrated with the
production process. This makes it more difficult to eliminate workflow
bottlenecks or fast track selected projects. The external, non-integrated project
management tools currently available do not effectively allocate personnel and
resources between different multimedia projects to enable a true "production-

line" approach to creating multimedia works.

Some systems are known in the prior art which are designed to
streamline the process of multimedia production. United States Patent No.
5,307,456, MacKay, issued 26 April, 1994 relates to an integrated studio for
producing multimedia works such as films or studio for producing videos. The
studio includes various multimedia production resources coupled to real-time

local area networks. The system provides multiple users with control of a

4

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
plurality of dynamically allocated shared resources using a common user
interface. The real-time nature of the production system makes it particularly
well suited for use in the media production of "live" events such as news events,
concerts and sporting events. The user interface enables multimedia elements
to be created, edited, bundled, integrated and rearranged by multiple authors.
The system includes databases to store some media elements. Data elements may
be stored and managed by an object-oriented database which also stores the

current state of production resources and routing information.

The MacKay et al system is not tailored for producing interactive
multimedia computer applications. It does not provide facilities for assembling
or managing computer software. Further, it is not adapted for creating
interactive technical manuals and the like. It lacks a scheduling system which

is capable of prioritizing different projects.

The use of an object-oriented database to store media elements as
disclosed in the MacKay patent is an improvement over traditional file-based
storage systems. Other multimedia applications have adopted a similar
approach. United States patent No. 5,412,774, Agrawal et al, issued 2 May, 1995
discloses an apparatus and method for storing and retrieving multimedia objects,
such as pictorial, textual or audio data, in an object-oriented database. The
system includes a display function for displaying objects in each object class. The
display functions are also stored in the database. When a user at a system
terminal selects a media object for display in a graphical interface, the system
processes the media object or object class using the display function associated
with the object or object class. An object manager controls access to the database.
Objects may include embedded references to other objects which are accessed via

the object manager.

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
The Agrawal et al. system is designed for accessing and displaying
media elements from a central database according to a predetermined format
which is determined by the design of the database. Agrawal et al do not include
an authoring system for creating multimedia works. Users cannot establish an

unrestricted number of links or associations between selected media objects.

United States patent No. 5,349,648, Handley, issued 20 September,
1994 relates to an automatic high speed publishing system for creating printed
works comprising both text and graphics. The Handley system allows textual
data to be entered by unskilled personnel in “assembly-line” fashion. The data
entry personnel do not need to concern themselves with text formatting but need
only specify the general type of information being entered. The way that different
elements in the finished work will be formatted is handled later by a skilled
operator. The Handley system is primarily file-based and requires the operator
to specify text to be included in a publication by providing computer path
names. The Handley system is not well suited to importing diverse media types

and is not able to create interactive, media dense, multimedia applications.

There are some systems which enable users of the Internet to
download computer programs which are run on their local computer from a

server on the Internet. An example of this is Sun’s JAVA which is a system for

_ creating applets that can be downloaded to a web browser program running on

a local computer. Some disadvantages of these systems are that there is no
simple system for creating new applications. The applications are written by
computer programmers in traditional ways. Further, if a user wishes to run an
application, the entire application is transmitted to the user, not just the part of
the application that the user wants to run. These systems can, therefore, cause

a lot of network traffic.

T 10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Summary of the Invention

An object of this invention is to provide methods and apparatus for
creating computer applications which overcome some of the deficiencies of prior

art systems.

Another object of this invention is to provide methods and
apparatus for authoring interactive multimedia works which overcome some of

the deficiencies of prior art systems.

Another object of the invention is to provide a multimedia
publishing system having a centralized database for storing media elements and
integrated media input, object management, authoring, project management, and
output subsystems associated with the database for authoring multimedia works

in a production-line manner

Brief Description of the Drawi

In drawings which illustrate embodiments of the invention, but
which should not be construed as restricting the spirit or scope of the invention

In any way,

Figure 1 is a data-flow diagram of a multimedia publishing system
according to the invention;

Figure 2 is a schematic diagram showing a computer network which
may be used in the invention;

Figure 3 is a flow chart showing the overall sequence of steps in

authoring a multimedia work according to the invention;

7

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Figure 4 is a screen print showing a partial list of tasks required to
create a typical multimedia work;

Figure 5 is a block diagram of an input subsystem according to the
invention;

Figure 6 is a diagram showing the structure of a media element;

Figures 7A through 7D illustrate the components of four types
of program elements which are used to provide program logic in applications
created according to this invention;

Figure 8 is a block diagram illustrating the interrelationship between
the classes of elements according to a preferred embodiment of the invention;

Figure 9 is a block diagram showing links between elements in a
simple exemplary application;

Figure 10 is a view of a computer screen illustrating the appearance
of the application of Figure 9 to an end user;

Figure 11A is a schematic illustration showing the relationship of
run-time interpreter software to a workstation and Figure 11B is a schematic
illustration showing a possible architecture for a run-time interpreter for use in
the invention,;

Figure 12 is a flow diagram illustrating a sequence of steps
performed by a run-time interpreter in running an application;

Figure 13 is a flow diagram illustrating a sequence of steps
performed by a run-time interpreter in interpreting process elements in an
application;

Figure 14 is a schematic diagram illustrating the relationship of an
authoring program to application elements stored in a central database;

Figure 15 is a simplified view of a screen illustrating a user interface

in the system of the invention;

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Figure 16 is a view of a screen showing the appearance of the user
interface of the invention for a newly started application;

Figures 17A through 17D are flow charts illustrating the sequence
of steps involved in authoring a simple example application according to the
invention;

Figure 18 is a view showing an exemplary properties window for a
control element of type button;

Figure 19 is a schematic illustration showing the organization of
information in a database containing application elements for use in the
invention; and

Figures 20A and 20B are views showing screens of a user interface

of an exemplary application.

Detailed Description of Preferred Embodiments of the Invention

Computer systems may be implemented using many different
combinations of computer hardware and software. It will be apparent to those
skilled in the art that the detailed implementation of the invention will vary
depending upon the hardware and software tools used to practise the invention.
To avoid confusion and to enable those skilled in the art to practise this
invention, the invention is described using illustrative flow charts, screen
displays, and algorithmic descriptions. Things which are well known to those
skilled in the art, such as programming techniques and details of computer
hardware and software are generally not described in detail in the following

description to avoid obscuring the invention.

In the following description, the first part of each reference numeral

indicates the drawing on which the element identified by the reference numeral

9

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
first appears. So, for example, element 120 is shown first in Figure 1. Element

1400 is shown first in Figure 14.

GLOSSARY

Application - an application is a set of computer instructions that causes a

computer to behave in a desired way.

Application Element - an element of an application. Application elements
include media elements and program elements. All application elements include

a field containing a unique descriptor.

App Set - an “App Set” is a set of application elements that are stored together

so that they may be retrieved and reused in the authoring of applications.

Author - an author is a person who uses the methods and apparatus of the

invention to create new applications.

Media data - media data is a representation in computer readable form, of
information which can be perceived by a person playing back a multimedia
application. For example, media data could be: a body of data representing an
image in a format, such as TIFF, GIF, JPEG etc.; alphanumeric data; a document
in a particular word processing format; an animation file; etc. Media data is not
meaningful until one understands its content and structure. For example, a user
could consider a file containing the data representing a 24-bit scan of a painting
to be a meaning]less string of ones and zeroes. If a user attempted to play such

data as an audio clip then the result would likely be meaningless white noise.

10

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Media element - A media element is media data combined with information
which identifies the content and structure of the media data and/ or gives other

information about the media data or its relationships to other information.

Physical Media - Physical media are any physical items which contain
information which can be perceived by a person which can be captured and
stored in a computer storage device as media data. For example, physical media
include photographs, negatives, sound recordings, video recordings, text
documents etc. Physical media can be anything which is not already stored in

digital form.

Program Element - those elements of an application that are not media elements.
Program elements typically include one or more fields containing instructions
instructing a computer to do something in a desired way, information describing
the relationship of the program element to other elements in an application and

fields which contain information about the program element.

Subroutine - a set of one or more linked application elements which are invoked
by a gosub process element and which, when completed, chain to the element

pointed to by the gosub process element that invoked the subroutine.
User - a user is a person who runs applications according to the invention.
verview
This invention relates to a system 120 for creating computer

applications such as multimedia works and to methods for creating and playing

back computer applications. As shown in Figure 1, an exemplary system 120

11

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

includes: a media input system 122 for capturing physical media in computer
readable form and cooperating with other systems for associating information
with the resulting media data to make media elements; a database management
system 124 for cataloguing the elements of multimedia works; an object-oriented
database 126 for storing media elements and other elements of multimedia
works (as is described in detail below); an authoring system 128, for linking
elements together to create multimedia works; a project management system 130
to control, track and coordinate the operation of other parts of system 120; and,
an output system 132 for outputting finished multimedia works. System 120
facilitates rapid efficient development of highly sophisticated multimedia works.

As shown in Figure 2, system 120 typically includes a number of
computer workstations connected to a computer network 270 such as a local area
network (LAN) or a Wide Area Network (WAN). Network 270 includes one or
more input stations 255 having displays 257, one or more server computers, 260,
262 and one or more workstation computers, 272 all connected by network 270.
Typically database management system 124 and its associated database 126
reside in a database server 262. Project management system 130 may comprise
a process running on a separate server 260. Network 270 may be a peer-to-peer
network in which case the functions of servers 260, 262 are carried out by one or

more of workstations 255.

The steps in a method for developing a multimedia work using
system 120 are outlined in Figure 3. When a new project is initiated, basic
information about the project, such as the name of the client who the project is
for, the working title of the project, the name of the project manager, etc. is input

into project management system 130. If it is known at the outset that certain

12

" 10

15

20

25

30

WO 97/26608 PCT/CA97/00039

physical media will need to be digitized for the project, then the mput tasks
necessary to digitize these physical media may be scheduled in project

management system 130.

After the project has been commenced, the work is designed. The
design phase includes selecting the subject matter of the work, planning the way
in which the subject matter will be presented and choosing media content that
will be included in the work. Physical media or information which is already in
computer readable form and contains the desired media content must then be
located and collected. For example, if the work is about travel in Canada then the
designer may want to include as media content maps of various Canadian cities,
interesting photographs of Canadian scenes, sound clips of Canadian nightlife,
text describing places to go and things to do in Canada and video clips. These
materials must all be procured. As another example, the project might be to
create a multimedia technical service manual for a piece of electronic equipment.
The proposed service manual will include a wide variety of media elements
including text, technical drawings, video clips, audio and electronic

Ineasurements.

After a multimedia project has been designed, the project manager
may enter further details about the project into project management system 130
(step 340). In step 340 additional physical media that need to be digitized and
other tasks that need to be completed to finish the project are entered into project
management system 130. The information includes details of the steps which
need to be completed to finish the multimedia work being created, and the
deadlines for completing those steps. For example, if the project will include two
video segments from a videotape, then the start and stop points of each segment

are entered into the system. Preferably in step 340 the physical materials, such

13

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

as paper drawings, sound recordings, videotapes etc. which will be digitized to
obtain the media elements for a project are individually identified by marking

them with bar codes or other machine-readable tags.

Figure 4 shows a computer screen display 402 showing a partial list
of tasks to be completed for a typical project. Many of the tasks involving
digitizing physical media to create media data for inclusion in media elements.
Project management system 130 may also be used to request that additional
media elements be input through input system 122 after a project has been

started.

Next, input system 122 is used to capture the media elements
required for the project from the physical media which have been collected and
labelled. The captured media elements are stored in database 126 (step 342).
Project management system 130 coordinates data acquisition step 342 and
ensures that the resources required to complete the work are made available in
time to meet the project’s deadlines. In data storage step 344 the digitized data
acquired in step 342 is stored in database 126, together with additional
information from project management system 130, in the form of media elements
680. Each media element 680 consists of digital data 682 together with a header
684 containing identification and indexing information. After a media element
has been registered in database 126, users of system 120 can locate and retrieve
the element by querying database 126. It is unnecessary for users to know or
remember a path name for the media element as is necessary in many prior art

systems.

14

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

In authoring step 346 and program storage step 348 an author links
stored media elements together with program elements to make a multimedia
work. The author may be a subject matter expert, or may be a subject matter
expert assisted by a technician. As described below, system 120 preferably
incorporates an authoring system which has a user interface which simplifies
creation of multimedia applications. New elements generated by the author are
stored in database 126 in step 348. As discussed further below, each program
element contains one or more fields containing information which can serve as
computer instructions and a header containing identification and indexing

information.

Finally, when the work has been completed, the finished work is
output through output system 132. Output system 132 may optimize the
arrangement of the work to suit the medium in which the finished work will be

output.

2. Detailed Descrinti

. Media t Subsyste

Input subsystem 122, shown in detail in Figure 5, is designed to
facilitate the automation of media input tasks so that they may be undertaken by
non-skilled technicians. Input subsystem 122 comprises a plurality of computer
workstations 255 connected to computer network 270. Each workstation has a

display 257 and a bar code reader 558.

Each input workstation 255 is also connected to one or more input

devices such as a scanner 560, an audio digitizer 561, a digital oscilloscope 562,

15

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

a videotape player 563, digital camera 564. The input devices capture the
information content of physical items, such as a videotape, audiotape, or a sheet

of paper as media data for storage in database 126.

The operation of input system 122 is controlled by project
management system 130. Project management system 130 prioritizes pending
information capture tasks, identifies which one(s) of workstations 255 are
equipped with the input devices needed for each input task and directs each
input task to a specific workstation. Input tasks may be routed depending upon
what workstations and devices are already in use. Project management system
130 may also allocate certain input tasks to specific human technicians. For
example, some technicians accessing the system may be authorized to perform

only simple input tasks, but not other more complicated tasks.

When an operator logs into system 120 at one of workstations 255,
project management system 130 prompts the operator to commence the next
input task scheduled for that workstation (and that operator). The operator
locates the appropriate physical medium and scans its bar code with bar code
reader 558. System 120 verifies from the scanned bar code that the operator has
selected the correct physical medium. The operator then inserts the physical
medium into the appropriate input device and the system captures the required
information in digital form. Preferably technical details, such as the desired
output file format, scanning resolution, scanning colour depth, audio sampling
rates etc. are set by software under the control of project management system
130 (either according to default values set in project management system 130 or
according to specific values selected for that input task by the person who

scheduled the task) so that the operator need not be skilled in such matters.

16

" 10

15

20

WO 97/26608 PCT/CA97/00039

Input subsystem 122 forwards the captured information to database 126 where
it is catalogued using information about the structure and content of the media

data from project management system 130 and stored as a media element 680.

System 120 may generate images for display on icons representing
media elements 680. The images may be standard icons representing various
types of media element but are preferably low resolution “thumbnail” views of
the image represented by media data in each media element. Data representing
the “thumbnail” view of a media element may be stored in the record for the

media element in database 126.

B. Database Management Subsystem

System 120 includes a database management subsystem 124 for
retrieving, displaying and categorizing elements stored in database 126. Figure
6 is a block diagram showing the various components of a media element. Each
media element 680 includes media data 682, and a header containing several
information fields 684. The header 684 contain information about media element

682. Header fields 684 preferably include, at least, the fields shown in Table 1.

17

10

15

20

25

WO 97/26608 PCT/CA97/00039
TABLE I - FIELDS IN RECORD REPRESENTING A MEDIA ELEMENT
Field Name [Description of Contents Ref.
Numera
1
Element A unique number (or character sequence) which 685
Descriptor | identifies this element and can be used as a pointer
Field to identify the element. The element descriptor is
preferably automatically allocated by database
management system 124. An element can be
retrieved from database 126 by requesting the
element by its descriptor.
Media Type | indicates what kind of media data 682 represents 686
and the format in which the data is stored
Project indicates the name of the project 687
Index a group of fields that identify the subject matter 688
represented by media data 682, the author etc.
Media a group of fields that identify technical details 689
Description | about data 682. For example, for a media element
which represents an image, these fields specify
things such as the resolution, colour depth, file
format, size etc.
Media Additional properties which describe the 690
Properties | characteristics of the media elements.

Database management subsystem 124 manages the contents of

database 126 which includes both media elements 680 and program elements 700

for the creation and playback of multimedia works. Media elements 680 are

initially registered in database 126 when they are captured by input subsystem

122 as described above. In the alternative, previously digitized information may

be directly imported into database 126. For example, database 126 can accept a

previously digitized bitmap image and store it as a media element 680 for use in

authoring. When previously digitized information is imported into database 126,

18

" 10

15

20

25

30

WO 97/26608 PCT/CA97/00039

database management system 124 requires the user to input at least a minimum
amount of information for information fields 684 so that the information can be
stored as a media element 680. System 120 can determine some information
about a file containing previously digitized media data, such as the file format,

the size of a digitized image etc. by studying the contents of the file.

Database management system 124 ensures that required fields are
filled in before an element can be stored in database 126. Additional elements
may be created and automatically stored in database 126 during the authoring

process, which is described further below.

Some advantages of storing all media elements 680 in database 126
are that database 126 relieves users from manually tracking media elements.
Database 126 and database management system 124 make it completely
unnecessary for a user to remember cryptic path names to retrieve, play or create
links to media elements. A user can locate and retrieve media elements 680 by
querying database 126. Further advantages of storing media elements in database
126 are that the media elements are available to all users on network 270 and that
multimedia applications which use the media elements do not need instructions
from a user about the content and structure of the media elements because the

necessary information is contained in each media element.

Database 126 may be any suitable existing available database.
Database 126 may be a relational database or may be built on some other data
model. For example, database 126 could be an object oriented database
management systems (OODBMS) database, a flat file database, or an indexed

sequential access method (ISAM) database. In the currently preferred

19

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

embodiment of the invention database 126 is managed by a relational database
management system. For example, database management system 124 may
comprise Oracle™ or Sybase™ database software. Database 126 may reside
entirely on one storage device, or an array of storage devices in one server
computer, or may even be distributed across a computer network. While it is not
preferable, database 126 could comprise two or more separate databases, each

separate database containing different types of elements.

Preferably database 126 contains library elements 1930 as well as the
elements of individual applications. Library elements are elements which may
be reused across several applications. Combinations of program elements (App
Sets) which may be inserted as a unit, into new applications may also be stored

as library elements 1930.

Another advantage of storing the elements of applications in a
database 126 is that it is very easy to patch applications which are found to
include errors. This can be done by simply replacing any defective elements in
database 126 For example, avlarge application distributed on CD-ROM may
contain errors in one or two program elements. The problem can be corrected by |
supplying users with corrected copies of the defective elements together with a
small utility for replacing the defective elements in database 126 with the
corrected elements. In most cases the corrected replacement elements will fit on
a cheap low capacity storage medium, such as a floppy diskette. Program
elements do not need to be stored in any particular order in database 126. The
structure of an application is determined by links between the elements of the
application and not by the order in which they are stored. This is very different

form conventional computer programs in which the order in which individual

20

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

computer instructions are stored can determine the order in which the
instructions are processed. Patching an application, as described above, is much
easier and much more inexpensive than replacing the entire application by
creating a new corrected CD-ROM as might be required with a traditional

monolithic computer application.

icati tructure

A multimedia application is built by linking together media
elements 680 with program elements 700 which control how an end user will be
able to traverse the media elements. Program elements 700 are stored in database
126, with media elements 680. A completed application consists of a series of
media elements 680 linked together by one or more program elements 700. Each
element in an application points to, or is pointed to by, one or more of the other

elements of the application.

According to a preferred embodiment of the invention a multimedia
application is created by combining five different types of elements, media
elements 680, and four different types of program elements 700, namely, control
elements 702, process elements 704, action elements 706 and hyperlink elements
708. The elements of an application are retrieved, as they are needed, and
interpreted by a run-time interpreter 1130 comprising software running on a

user’s computer.
Program elements 700 define the flow of a finished application and

define the ways that an end user can interact with the completed application. A

process element 704 is an element that includes one or more computer

21

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

instructions that provide procedural logic for applications. For example, a
process element 104 could start an application running, create a control element,
delete a control element, change the properties of a control element, call a
subroutine, create a loop or a branch, etc. A control element 702 specifies the
characteristics for a control, which is something that provides interaction with a
user, either by providing a way for a user to provide input to the application
and/ or by providing a way for the application to provide information to a user.
A contro] element 702 can act as a trigger for an event to occur in an application.
For example, control elements 702 of different types may be provided to specify
a button, a panel, a hot spot, a certain frame of a video clip etc. An action
element 706 defines an action which can be performed when a control element
is triggered. A single control element may provide several different triggers. For
example, a control element of type button may be associated, or “linked”, with:
a “Click” action element, which responds when a user uses a pointing device,
such as a mouse, to place a cursor on the button and then presses a switch on the
pointing device; a “DoubleClick” action element, which responds when a user
places a cursor on the button and presses twice in quick succession on a switch
on the pointing device; a “MouseEnter” action element which responds
whenever the cursor is moved into the area occupied by the button control in
question; etc. Finally, hyperlink elements 708 relate other elements to each other
as is described in more detail below. For example, a hyperlink element 708 of
type NEXTPREVIOUSPAGE could be defined to relate sequentially ordered
pages to each other, as described below. Illustrative sample of specific types of

process elements 704, action elements 706, and control elements 702 are given in

Tables II, III and IV below.

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

As shown in Figures 7A through 7D, the structures of the various
types of program element 700 are somewhat different from the structure of a
media element. Program elements 700 each include a DESCRIPTOR field
containing a descriptor 685 which is unique to that element. Each program
element 700 also includes pointer fields that identify other elements to which the

program element is linked.

A process element 704 (Fig 7A) typically comprises a TYPE field 710,
which contains the type of process that the process element relates to, a
CHILD_ID field 712 which contains a pointer to the next process element in an
application, a group of fields 714 which contain operands, such as pointers to
media elements, which the process element will affect, a CONTROL_ID field 716
which indicates the control element that the process element affects (if any), and

a label 718 which contains a name for the process.

A control element 702 (Fig 7B) typically includes a LABEL field 720
which names the control to which it relates, a TYPE field 722 which specifies the
type of control to which control element 102 relates, a group of fields 724 which
contain operands which determine various properties associated with the control
(For example, if a control element 702 is of type “button” then the properties
specified in fields 724 may specify the button’s size, position, caption, color, an
image to display on the button, and so on). A control element may also have a
PARENT_ID field 726 which contains the descriptor 685 for another control on
which the control in question is located; an APPVEW_ID field 728 which
identifies a record in an external database with which the control is associated,
and a NEXT_ID field 730 which can be used to create multiple controls in a single

operation, as described below.

23

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

An action element 706 (Fig 7C) typically includes a field 740
containing a pointer to a control element to which the action element relates, a
TYPE field 742 which specifies the action that will trigger the action element 706,
an operands field 744 containing parameters that affect the operation of the
action element, such as a parameter which defines specific frames of a video clip
which, when played, will trigger the associated action, and a field 746 containing
a pointer to a process element which will be executed when action element 104

is triggered.

A hyperlink element 708 (Fig 7D) includes a TYPE field 750 that
contains information that identifies what the hyperlink does, and two or more,
and preferably three or more, pointer fields 752, 754, and 756 which include the
unique descriptor for elements (of any type) being linked. First pointer field 752,
ID1, contains the information used to locate the desired hyperlink element. A
field 758 may be provided to keep additional information about the hyperlink
element 708. Each type of hyperlink element 708 has an associated type of
process element that is designed with knowledge of the structure and

organization of the hyperlink element.

In the most preferred embodiment of the invention the various
elements of a multimedia application are related to one another by means of a
model (the “MAJJIS model”) which governs what classes of elements an element
in any particular class can point to. Figure 8 illustrates the MAJJIS model. As
shown in Figure 8, a process element 704 can point to another process element
704 (link 810) by means of a CHILD_ID pointer, a media element 680 (link 811)
by means of a MEDIA_ID pointer and/or a control element 702 (link 812) by
means of a CONTROL_ID pointer. A control element 702 can point to another

24

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

control element 702 (link 814), or an action element 706 (link 815), An action
element 706 can only point to a process element 704 (link 817) and a hyperlink

element 708 can point to two or more other elements of any type.

Figure 9 shows the elements which make up a short multimedia
application 900. When application 900 is run it displays a form 1000 (Figure 10)
bearing an image control 1002 and a button control 1004. A portion of the image
of image control 1002 is defined as a hot spot control 1006. When the user clicks
on hot spot 1006 an audio clip is played by an audio control 1008 (which does not
necessarily have any visible manifestation on the user’s screen) and the image
displayed in image control 1002 changes to a different image. When the user
clicks on button 1004 a subroutine is run which plays a video clip and then

terminates application 900.

The first element 920 in application 900 is a start process element
901. A start process element 901 begins every application. The record for a start
process element 901 may contain fields which contain information such as the
name of the application, the project that the application belongs to, the name(s)
of the author(s) of the application, and so on. The primary function of a start
process element 901 is to point to the first program element in an application. A
list of the applications in database 126 can be readily obtained by querying
database management system 124 for a list of all start process elements 901 in

database 126.

The elements in an application according to the invention can be
subdivided into process chains. Every application has a “start” process chain 970

which consists of a start process element 901 and a series of other process

25

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

elements which are linked to start process element 901 either directly, or through
other process elements 704. Each process element has a pointer (CHILD_ID) 712
which contains the descriptor 685 for the process element which will be executed
next. In Figure 9, the flow of execution of process chains is indicated by solid
lines. Other links between elements of application 900 are indicated by dashed
lines.

Each process element in a process chain has a CHILD_ID pointer 712
that points to one subsequent process element (unless it is the last process
element in a process chain in which case the CHILD_ID pointer 712 contains a
value which indicates that there is no subsequent process element). Other
process chains are initiated by action elements. For example, the sequence of
elements which causes sound clip 954 to play when hot spot control 936 is clicked
is a process chain 972 associated with the CLICK action 950 associated with hot
spot control 1006. There can also be stand-alone process chains (or “subroutines”)
which are invoked by a process element of type GOSUB and which begin with

a process element of a type which starts a subroutine.

When an application is executed on a computer, such as one of
workstations 272, then the computer instructions contained in the process
elements 704 in the start process chain are executed in sequence. The particular
actions that the computer performs in executing these instructions are
determined, in part, by the contents of control elements 702 which are also linked

to the process elements 704.

In application 900, the first element 920 is a start process element 901

which simply points to another process element 922 of a type which creates a

26

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

form. Create control process element 922 contains the instruction
CREATE_CONTROL which causes the computer on which application 900 is
running to create form 1000 within which other controls for application 900 will

be displayed.

Process element 922 creates a form control, rather than some other
kind of control, because it includes a pointer to control element 924 which is of
type “form”. Properties of form 1000, such as its size and color are stored in form
control element 924. It can be appreciated that form control element 924 modifies
the effect of the CREATE_CONTROL instruction which is stored in create control

process element 922.

Process element 922 contains a CHILD_ID pointer 712 to another
process element 926. Element 926 is also of the create control type. Element 926
has a CHILD_ID pointer to image control element 928. When the
CREATE_CONTROL instruction contained in process element 926 is executed
then image control 1002 is drawn on form 1000. Properties of image control 1002,
such as its size, position, whether or nor it initially displays an image and, if so,

what image are contained in image control element 928.

Process element 926 points to another process element 930. Process
element 930 is of a type which sets properties for an already existing control.
Process element 930 has a pointer 931 to image control 928 (which indicates that
it is the properties of image control 1002 as set by image control element 928 that
process element 930 will affect) and a pointer to media element 932. In example
application 900 process element 930 sets image control element 928 so that the

image of media element 932 will be displayed in image control 1002. A process

27

10

15

20

25

30

WO 97/26608 PCT/CA97/60039

element of type “set property” such as process element 930 could change any

properties of image control element 928.

Process element 930 points to a process element 934 of type “create
control” which points to hot spot control element 936 and therefore creates hot
spot control 1006. Process elements 938 and 942 are chained, in turn, to process
element 934. Process element 938 points to audio control element 940 and
therefore creates audio control 1008, which permits playback to a user of sound
clips. Process element 942 points to button control element 944 and therefore

creates button control 1004.

When application 900 is run on a computer, as described below, the
computer instructions in each of the process elements of start process chain 970
are executed in sequence, with the result that form 1000 and controls 1002, 1004,
and 1006, as shown in Figure 10, are displayed on a user’s computer screen and
audio control 1008 is created to permit sound to be played to a user. Application

900 then simply waits for input from a user.

A user can interact with application 900 by clicking on hot spot
control 1006 or by clicking on button 1004. Hot spot control element 936, which
creates hot spot control 1006 contains a pointer to an action element 950 of a type
which responds to clicks. If a user clicks on hot spot control 1006 then process
chain 972 is triggered. Process chain 972 begins with a process element 952 of
type “set property” which contains a pointer 953 to audio control element 940.
Process element 952 also contains a pointer to media element 954 which contains
as media data 682 a sound file that can be played back by audio control 1008.

When process element 952 is executed then the “playstate” property of audio

28

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

control 1008 is set to play and the “media_id” property of audio control 1008 is
set to point to media element 954. The result is that the media data of media

element 954 is played back to the user.

Process chain 972 continues with a second set property process
which changes the properties of image control 1002 (as indicated by pointer 957
to image control element 928) to display the image represented by the media

data of media element 958 instead of the image of media element 932.

When a user clicks on button control 1004 then process chain 974 is
performed. The first process element 962 in process chain 974 calls a subroutine
966 which, in this example, plays back a video clip to a user. Process element 962
contains a pointer to process element 964 which is of a type that starts a
subroutine 966. Subroutine start process element 964 contains a pointer to further
process elements (not shown) which make up subroutine 966. When subroutine
966 is over then execution of process chain 974 continues with process element

968 which terminates application 900.

It can be appreciated that application 900 links together four media
elements 932, 954, 958 and the video media element of subroutine 966 by means

of a number of process elements.

Preferably the pointers which constitute the links between elements
in an application, such as application 900, are the same as the unique descriptors
685 which identify the elements being linked. That is, each process element has
a CHILD_ID field 712 which contains the descriptor 685 for the next process

element in the process chain. Each process element which interacts with a control

29

10

15

20

25

30

WO 97/26608 PCT/CA97/60039

has a CONTROL_ID field which contains the descriptor 685 for the control
element which defines the properties of the control etc. This allows the run-time
interpreter software 1130 on a workstation 272 which plays back a multimedia
application to request the next process element in a multimedia application, (or
an element which contains information which is needed by a process element)
by querying database 126 using the unique descriptor 685 for the requested

element.

Storing applications in a database 126 provides concurrency, security
and integrity within a set of elements and allows simultaneous authoring and

playback of applications.

The system described herein also can minimize traffic across a
computer network. When an application is played back, elements need only be
loaded from database 126 as they are required. Only those parts of an application
which a user traverses need to be sent across network 270. It is possible, but not
usually necessary on a fast network 270, to pre-fetch additional elements from
database 126 and to store the additional elements in a buffer until they are
needed. Buffering elements of an application may be desirable to increase the
performance of the application if network 270 is a slow network. Network 270
may be, for example, the Internet, in which case it is preferable to buffer the
elements of applications before playback. Further, as described below, the
information contained in program elements is preferably in the form of short
higher level commands, rather than relatively very large blocks of compiled

computer code.

30

" 10

15

20

25

30

WO 97/26608 PCT/CA97/00039

D. Method for Running Applications

Preferably applications created by authoring system 128 are run by
a run-time interpreter 1130. The run-time interpreter 1130 preferably comprises
software running on a workstation 272. Run-time interpreter 1130 has access to

database 126.

Figure 12 shows the general sequence of steps that take place when
run-time interpreter 1130 runs an application. Figure 13 illustrates the general
sequence of steps associated with performing a process (step 1220 from Fig 12).
It must be emphasized that these diagrams are not meant to definitively illustrate
the actual flow of control in run-time interpreter 1130 Those skilled in the art will
realize that run-time interpreter 1130 may be implemented in many possible
ways in many different programming styles and languages. Figures 12 and 13 are
included to aid in understanding the steps involved in running an application
according to the invention but should not be construed so as to limit the scope

of the invention.

Run-time interpreter 1130 allows a user to select an application to‘
run (step 1212). Selection step 1212 typically involves querying database 126 to
identify start process elements 901 in database 126 which start applications, to
which the user has access rights, and which meet other criteria selected by the
user. The user can select the desired application by identifying it from the results
returned by the query. If the workstation is running the Microsoft Windows™
operating system this is typically done by double-clicking on an icon
representing the desired application.

31

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Run-time interpreter 1130 then retrieves the process element 901 that
starts the selected application (step 1214). When it retrieves starting process
element 901, run-time interpreter 1130 retrieves from the CHILD_ID pointer field
712 of starting process element 901 the descriptor 685 for the next process
element in the application (step 1216). Run-time interpreter 1130 then retrieves
the next process element in the application by querying database 126 using
descriptor 685 (step 1218), and so-on, until the end of the start process chain for
the application has been reached (the last element in the starting process chain
is identified by the fact that it does not include a pointer to any subsequent

process element).

Run-time interpreter 1130 may perform the actions specified by
process elements as the process elements are retrieved from database 126 (as
shown in Fig 12). In the alternative, run-time interpreter 1130 may retrieve all of
the process elements in a process chain first and perform the actions specified by
process elements after the entire chain has been retrieved. Where the latter
approach is taken then run-time interpreter 1130 may optionally perform pre-
processing steps before the process chain is run. For example, pre-processing
steps may include loading media elements into the memory of workstation 72

ready for playback or doing mathematical calculations etc.

As it retrieves each process element, run-time interpreter 1130 reads
the TYPE field 710, which indicates what type of process element has been
retrieved, and reads the element’s properties and computer commands from the
appropriate fields. The computer commands (or “instructions”) are preferably
subsumed in the element type (i.e. the actions performed by run-time interpreter

1130 are determined by the element type. A separate field for computer

32

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

commands is unnecessary). Run-time interpreter 1130 then causes the computer
on which it is running (e.g. workstation 272) to perform the actions indicated by

the process element being interpreted.

The TYPE field of a process element can be very short. For example,
a TYPE field may be 50 bytes or less in size and can typically be about 10 bytes
in size. Preferably run-type interpreter 1130 causes the computer on which it is
running to perform many operations in response to each instruction (i.e. the
TYPE fields in the process elements 704 serve as high level instructions akin to
instructions in a scripting language). This provides advantages over systems in
which large volumes of low level computer code must be transferred over a

network.

Figure 11 shows one possible architecture for run-time interpreter
1130. Run time interpreter 1130 includes a process handler 1131 which
coordinates running applications and retrieving process elements from database
126. Process handler 1131 reads type information from each process element
which is retrieved from database 126 and then calls a process function 1132 to
perform the actions specified by the process element. A separate process function
is provided for each type of process element. Some types of process element may
instruct the computer to perform different actions depending upon the type of
media element that is being pointed to. For example, a create control process
behaves very differently depending upon whether it is creating an audio control,
an image control, or some other control type. Consequently, the process function
1132 associated with the “create control” process determines what kind of control
is to be created (by parsing the TYPE field 722 of the control element 702 pointed
to by the CONTROL,_ID pointer of the process element 704 being processed) and

33

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

calls the appropriate one of a number of control functions 1133 to create a control

of the type required.

Preferably run-time interpreter 1130 builds a data structure such as
control table 1140 (Fig. 11A) in the computer’s memory. Control table 1140
contains a record 1142 for each control which has been created in running an
application. For each control, record 1142 contains a list of the control’s current
properties. When the control is first created run-time interpreter 1130 calls the
handler functions 1150 necessary to implement the control (step 1316). Functions
1150 may be part of run-time interpreter 1130 or may be provided, in part, by the
operating system 1120 of the computer on which run-time interpreter 1130 is

running.

In the example described above, a separate “create control” process
element was provided to create each control in application 900. Run-time
interpreter 1130 may be constructed so that a single create control process
element can create multiple controls. This may be done by means of NEXT_ID

fields 730.

For example, an application to create three controls having
properties defined by control elements CONTROL1, CONTROL2 and
CONTROLS3 contains a “CreateControl” process element PROCESS1 having a
CONTROL_ID field containing a pointer to CONTROL1. The NEXT_ID field of
CONTROLL is set to point to CONTROL2 and the NEXT_ID field of CONTROL2
is set to point to CONTROL3. The NEXT_ID field of CONTROL3 is blank. When
run-time interpreter 1130 interprets Create Control process PROCESS] it first
retrieves CONTROL1 using the pointer in the CONTROL_ID field of PROCESSI.

34

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Run-time interpreter 1130 then creates the control defined by CONTROLI. Next,
run-time interpreter 1130 retrieves the contents of the NEXT_ID field from
CONTROLI1 and uses those contents as a pointer to retrieve CONTROL2. Run-
time interpreter 1130 then creates the control defined by CONTROL2. Next, run-
time interpreter 1130 retrieves the contents of the NEXT_ID field from
CONTROL2 and uses those contents as a pointer to retrieve CONTROLS3. Finally,
run-time interpreter 1130 creates the control defined by CONTROL3. As the
NEXT_ID field of CONTROL3 does not contain a pointer to any other control
element then run-time interpreter 1130 continues by processing the process

element following PROCESS].

In many applications several controls are created at about the same
time. Creating several controls with a single process element reduces the number
of records required to instruct run-time interpreter 1130 to perform a desired
function. This, in turn, reduces the traffic on network 272 and increases the speed

at which the application can be played back.

If a control is later modified by a set property process, the set
property process causes run-time interpreter 1130 to change the record 1142 in
table 1140 which relates to the control being modified. Whenever the properties
of an existing control are modified, run-time interpreter 1130 runs the control
handler function 1150 associated with that control so that the behaviour of the
control is updated. For example, if the “playstate” property of the record for a
video control in table 1140 is changed from “STOP” to “PLAY” then run-time
interpreter 1130 causes the handler function 1150 for that video control to begin
playing the video data associated with the media element currently associated

with the video control.

35

10

15

20

25

30

WO 97/26608 PCT/CA97/60039

Preferably the computer commands in a process element are
symbols or tokens which are interpreted by run-time interpreter 1130 in light of
the element’s properties and the properties of other program elements to which
the process element points. For example, if a process element is a process element
of type “create control” then run-time interpreter 1130 retrieves the control
element which is pointed to by the process element. If the control element is of
type “button” then run-time interpreter proceeds to create a button control by
causing a button to be drawn on the computer’s screen and by setting up a
handler to detect and pass on events caused by a user interacting with the
control. Run-time interpreter 1130 preferably includes within itself, or can access
by making calls to functions of the operating system on the computer, the
computer code necessary to do this. For example, for a button control, run-time
interpreter 1130 preferably has the capacity to draw a button on the screen of
workstation 272 and to animate the button as a user “clicks” the button using a
mouse or other pointing device. Run-time interpreter 1130 preferably does not
need to retrieve from database 126 the specific computer code needed to
implement these features. The size, shape, position, colour, title, and other
aspects of the button are determined by the properties fields of the control
element which is pointed to by the process element and which is retrieved from

database 126 and read by run-time interpreter 1130.

For example, when application 900 of Figure 9 is run by a run-time
interpreter 1130, run time interpreter 1130 begins by sequentially retrieving the
process elements in start process chain 970 from database 126. Run-time
interpreter 1130 then interprets the process elements in process chain 970
beginning with create control process 922. Run-time interpreter 1130 first

determines that process element 922 is a create control process. Run-time

36

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

interpreter 1130 then retrieves form control element 924 and determines that
element 924 specifies a form control. Run-time interpreter 1130 then writes the
properties from element 924 in a record 1142 in table 1140 and creates and runs
a handler function 1150 for the form control. The handler function 1150 displays
a form on the screen of the user’s computer having the properties defined by
form control element 924. In the Microsoft Windows™ operating environment
a handler for a form control may be created, for example by calling the
CreateWindow() system function. Run-time interpreter 1130 then proceeds to
interpret process elements 926, 930, 934, 938, and 942. After this has been done,
table 1140 contains 5 records, one record corresponding to each of form 1000,
image control 1002, button control 1004, and hot spot control 1006. The fifth
record corresponds to audio control 1008. The user’s screen appears as shown in

Figure 10.

After run-time interpreter 1130 has interpreted element 942 then it
simply waits because the CHILD_ID field 712 of element 942 does not point to
any other process element. If a user then clicks on hot spot control 936 run time
interpreter loads and interprets process chain 972. When run-time interpreter
1130 receives set property process element 952 from database 126 it first
determines that it has received a process of type “set property” and then
determines, by reading the CONTROL_ID field of element 952 (indicated by link
953),that process element 952 sets properties of the audio 1008 control associated

with audio control element 940.

Process element 952 causes run-time interpreter 1130 to set two
properties of the control. First it sets the control to point to media element 954,

which contains media data representing a sound clip to be played. Process

37

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
element 952 also sets the “playstate” property of the control to “PLAY”. It does
this by changing the properties for the control in the appropriate record in table
1140. When run-time interpreter 1130 changes table 1140 it automatically runs
the handlers 1150 for any controls affected by the changes so that the changes
manifest themselves. Process element 956 causes run-time interpreter 1130 to

change the image displayed in image control 1002 in a similar fashion.

It can be appreciated that process chains 972 and 974 do not need to
be retrieved from database 126 until a user has initiated execution of those
process chains by clicking on hot spot control 1006 or button control 1004
respectively. If a user never initiates execution of a process chain then the
elements of that process chain do not need to be retrieved from database 126,
sent across network 270 or processed by run-time interpreter 272 at the user’s

workstation 272.

A subroutine may be handled, for example, by preserving the state
of run-time interpreter 1130 and then calling another instance of run-time
interpreter 1130 to process the subroutine. After the subroutine ends the original

instance of run-time interpreter 1130 continues where it left off.

An advantage of the arrangement described herein is that a single
application can run on any computer as long as there is a suitable run-time
interpreter 1130 running on the computer. For example, some workstations 272
might be PC computers running Microsoft Windows95. Other ones of
workstations 272 might be Apple Macintosh computers running the Apple
System 7.0 operating system. Still other ones of workstations 272 might be UNIX

workstations. The same application could be run on any of workstations 272 as

38

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

long as each workstation is running a version of run-time interpreter 1130 which
is compatible with the operating system and hardware of the workstation. The
run-time interpreter software can readily be customized so that elements agree
with the customs of the user interface for the operating system in which run-time
interpreter 1130 is running. For example, an Apple Macintosh run-time
interpreter 1130 could display button control elements so that they look like the
buttons commonly used in Apple Macintosh applications. A run-time interpreter
1130 for the Windows NT operating system could display button control
elements so that they look like the buttons commonly used in the Windows NT

user interface, and so on.

A further advantage of this arrangement is that the amount of
network traffic is minimized. Only those elements of an application which the
user plays back are sent across network 270. The elements are very small because
they can contain short higher level instructions instead of blocks of object code
or other low level code. Furthermore, run-time interpreter 1130 does not require
all of the fields in the elements of an application to play back the application.
Traffic across network 270 can be further limited by sending to run-time
interpreter 1130 only the contents of those fields from the elements of an
application which run-time interpreter 1130 requires to play back the application.
Traffic across network 270 can be reduced further still by providing some
processing in database management system 124. For example, if database
management system 124 is a client-server database management system then
run-time interpreter 1130 can send a single query (in a suitable query language
such as SQL in a manner which is well understood to those skilled in the art)
which will result in database management system 124 returning the essential

fields from all of the elements in a process chain of an application.

39

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

The ability to transmit applications to a remote computer on a
network with a minimum of network traffic gives the methods of the invention
a great advantage over prior art methods known to the inventors. Preferably,
where network 270 transmits information in packets of a given size, the essential
information form each element of an application is smaller than a network
packet. For example, information sent over the Internet using the TCP/IP
protocol is typically broken into packets of 1024 bytes. A single TCP/IP packet
could, carry four process elements of record size 256 bytes. Other systems which
transmit computer code across a network typically require large blocks of code

to be transmitted.

E. Hyperlink Elements

Hyperlink elements provide a means for substituting one set of
media elements for another set of media elements during execution of an
application. Hyperlink elements also provide a means to control the flow of
execution of an application and/or to alter the media elements that are played
back to a user of an application on the basis of the state of the application.

Hyperlink elements can best be explained by means of a simple example.

Suppose an author wants to digitize a printed technical manual and
to write an application that simply displays the pages of the manual one at a
time. The application will provide two button controls on each page. One button
control will change the display to show the next page of the manual. The other
button control will change the display to show the previous page of the manual.
Such an application could readily be written using the methods described above.
However, it would be tedious to do so. The author’s starting materials are a large

number of media elements, each of which represents one digitized page. For each

40

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

page, the author would need to create links to the correct media elements for the
next and previous pages. Creating the links might involve creating new button
controls for each page. The button controls would point to “click” type action
elements which would, in turn, point to process elements of type “set property”
which would, in turn, point to the appropriate image element. The authoring
could be somewhat simplified with the use of suitable subroutines but would

still be unnecessarily complicated.

Many of these tedious steps can be avoided through the use of an
appropriate hyperlink element. For example, a “NEXTPREVIOUS PAGE” type
of hyperlink element 708 having the structure shown in Figure 7D can be
defined. A NEXTPAGE type of process element and a PREVIOUSPAGE type of
process element are also created (typically the creation of a new type of process
element involves defining a new process function for incorporation into run-time

interpreter 1130 and would not be done by an author).

A separate NEXTPREVIOUSPAGE hyperlink element is then created
for each page of the technical manual. Each NEXTPREVIOUSPAGE hyperlink
element has a field containing a pointer (e.g. the unique descriptor 685) for the
media element containing the previous page, a pointer to the media element
containing the current page, and a pointer to the media element containing the
next page. These hyperlink elements are stored in database 126. The preparation
of these hyperlink elements can generally be automated as the media elements
which contain media data representing the pages of the technical manual

generally include an index field containing the page number.

The NEXTPAGE process element operates as follows (the
PREVIOUSPAGE process element functions in an analogous manner). The

41

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

NEXTPAGE process element contains a pointer to a control element. In this case
the pointer is to the image control which displays the page images for a user.
When the NEXTPAGE process element is run, run-time interpreter 1130
determines from table 1140 what is the MEDIA_ID property for the image
control which is displaying the current page on a user’s screen. The MEDIA_ID
property points to the media element which is currently being displayed. Run-
time interpreter 1130 then queries database 126 for a hyperlink element for
which the “current page” pointer is the same as the retrieved MEDIA_ID
property. Database 126 returns the appropriate hyperlink element from which
the run-time interpreter 1130 extracts the “next page” pointer. Run-time
interpreter 1130 then sets the MEDIA_ID property of the image control in table
1140 to point to the media element identified by the retrieved “next page”
pointer. When the MEDIA_ID property changes, then run-time interpreter 1130
updates the image displayed by the image control so that the user sees the next

page displayed.

With the hyperlink elements described above, authoring the sample
application described herein becomes almost trivially easy. The author need only
define an image control and two button controls, one having a click action
element pointing to a NEXTPAGE process element, the other having an action

element pointing to a PREVIOUS PAGE process element.

A difference between hyperlink elements and other types of
program elements is that hyperlink elements are generally retrieved by
conducting a query against database 126 wherein the form of the query is
determined by the state of the application being run. The query preferably
searches for hyperlinks which are of a desired type and which contain a desired

42

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

value in ID1 field 750. The searched for value in the ID1 field could, for example,
be the current property of a control or the descriptor 685 for a control. If
hyperlink elements 708 are always searched for by searching the same fields, e.g.
their TYPE and ID1 fields, then a generic query can be defined for locating any
hyperlink 708. Other types of program elements are retrieved from database 126
by requesting them according to their unique descriptors 685.

Those skilled in the art will readily understand from the foregoing
example that hyperlink elements 708 may be used in many contexts. As another
example, an application may be a multimedia technical manual. The application
may, for example, be a service manual for a piece of electronic equipment which
displays a schematic diagram 2030 and/ or an image of a circuit board 2014. The
application allows a user to click on any component 2018 shown on the circuit
board 2014 or schematic diagram 2030 to produce a pop up menu which allows
the user to select various types of information about the selected component
2018. The application may, for example have the options: “What is?” - which
opens a window 2050 (Figure 20B) containing information about selected
component 2018; “Where is?” - which highlights the selected component on
schematic diagram 2030 or circuit board image 2014; “Measure” - which opens4
a window displaying information about measurements that can be made to that

component; and so on.

This functionality can be achieved through the use of hyperlink
elements. As an example, the application may create an image control containing
schematic diagram 2030 and create hot spot controls 2036 corresponding to
components 2018 on the schematic diagram. Each of hot spot controls 2036 is
linked to a “Click” action element which link to a chain of process elements. The

43

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

process chains include a process element which produces a pop-up window for
receiving the user’s selection and calls a subroutine which depends upon the

users choice.

For example, if the user picks “What Is? from the pop-up menu, a
subroutine is called which includes a process element which queries database 126
for hyperlink elements of type “Whatls” which contain the descriptor for the
selected hot spot control. Database management system 124 searches database
126 and returns the requested hyperlink element which also contains a pointer
to a process element which begins a process chain for displaying the information

that the user requested.

If a user picks “Where Is? from the pop-up menu, a subroutine is
called which includes a process element which queries database 126 for
hyperlink elements of type “Wherels” which contain a field containing the
component name which is stored in an index field for the selected hot spot
control. Database management system 124 then queries database 126 for
hyperlink elements of type “Wherels” which contain the desired component
name. Database management system 124 then returns a hyperlink element
containing a pointer to a process element chain which highlights the component
of interest in another image control. Analogous processes may be used to

display other information.

Hyperlink elements may also be used to create applications which
can be played back in any one of several languages. For example, an application
may be created in which control captions and media elements may be presented
in either the English language or the German language. This can be done by
referencing all language-specific captions and media through hyperlinks. Two

44

" 10

15

20

25

30

WO 97/26608 PCT/CA97/00039

types of hyperlink would be provided, the a hyperlink of type
ENGLISH LANGUAGE would contain an identifier in its ID1 field and the
unique descriptor 685 for a media element containing the desired English
language text (or audio or video) in a second pointer field. A hyperlink of type
GERMAN_LANGUAGE would contain the same identifier in its ID1 field and
the unique descriptor 685 for a media element containing the equivalent desired
German language text (or audio or video) in a second pointer field. A pair of
such hyperlink elements would be included for each different language-specific
caption and each language specific media element. The identifiers would be
different for hyperlink elements specifying different language-specific captions

or language specific media elements.

All language-specific captions and media would be included
through the use of a “SELECT_LANGUAGE” set properties process element
which operates as follows. The SELECT_LANGUAGE process element comprises
a field containing the identifier contained in the ID1 fields of the pair of
hyperlink elements containing references to the appropriate language-specific
media elements. Prior to running the application run-time interpreter 1130 would
receive language selection information from a user. The language selection
information would cause run-time interpreter 1130 to either always retrieve the
ENGLISH_LANGUAGE type hyperlink element or to always retrieve the
GERMAN_LANGUAGE type of hyperlink element depending upon whether the
language selection information specified that the user wished to view the
application in English or German. After this has been done, when run-time
interpreter 1130 encounters a SELECT_LANGUAGE process element then it
queries database management system 124 for the appropriate type of hyperlink
element (i.e. ENGLISH_LANGUAGE or GERMAN_LANGUAGE) for which the
ID1 field contains the identifier stored in the SELECT_LANGUAGE process

45

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

element. Run-time interpreter 1130 then extracts a pointer to the media element
(in the desired language) and sets the MEDIA_ID for the control in question to
point to that media element. If a control caption is being set then the text for the
caption may optionally be stored in the hyperlink element itself. This method can
be used to play back applications in any of many languages.

thori o d Authori tem User Interface

System 120 has a graphical user interface which allows users to
author even sophisticated multimedia works without typing scripts or lines of
computer code a hyperlink of type ENGLISH_LANGUAGE would contain the
descriptor for a control in its ID1 field and the descriptor for a media element
containing the desired English language text (or audio or video) in a second
pointer field. or doing other tasks which are traditionally associated with
computer programming and which require substantial knowledge about
computer programming. The interface allows users to author applications by
graphically manipulating icons which represent media elements 680 and

program elements 700.

Multimedia applications are written in a manner somewhat similar
to programming in Microsoft™ Visual Basic. The elements of a multimedia
application are created by creating new program elements 700 by copying
prototype program elements, setting properties of the copies of the prototype
program elements, storing the resulting program elements 700 in database 126
and linking the resulting program elements 700 to each other and to media
elements 680 from database 126. Elements are selected by the author(s) from tool

boxes or other displays and then are combined in the graphical user interface.

46

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Thus high-level multimedia works can be intuitively created using a visually-
driven "point and click" approach. The authoring subsystem is simultaneously

accessible by multiple authors located at multiple workstations.

Because authoring system 128 can identify the kind of media stored
in a media element, the authoring system can prevent authors from mistakenly
linking the wrong type of media element to a process element. For example, the
authoring system can prevent an author from trying to display an image in TIFF

format using an audio playback process element.

As all of the elements which make up multimedia applications being
authored on system 120 are stored in database 126 the elements can be made
accessible to all users on network 270. This makes it possible for two or more
authors to simultaneously author a single multimedia application, something

which is impractical on prior art systems.

As shown in Figure 14, when an application is being authored on
system 120, a user at one of workstations 272 runs authoring software 1400 on
workstation 272. Authoring software 1400 interfaces with database management
system 124 through network 270. Authoring software 1400 allows a user to
record, catalogue and play back new applications. Preferably authoring software
1400 plays back applications by means of run-time interpreter 1130. All of the
elements of the applications are automatically stored in database 126 by
authoring software 1400 as the application is being authored. These elements can

therefore be made available to other users who have access to database 126.

47

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Figure 15 shows a screen 1500 from an exemplary user interface for
an authoring system for use in the invention. Figure 15 is somewhat simplified
for clarity. For example, the icons, which are represented as featureless boxes in
Figure 15, preferably bear images so that they can be readily identified and
distinguished from one another. In Figure 15, the simple multimedia application
900 of Figure 9 is in the process of being created. Multimedia application 900 is
created in an "application area" 1512. In Figure 15, application area 1512 is a
small area on the computer screen. However, an application area can also fill up
the entire screen. Application 900 includes the four visible controls which are

shown in Figure 10.

The authoring system interface shown in Figure 15 comprises three
tool bars, 1520, 1522 and 1524. Tool bar 1520 contains icons representing control
elements which a user may select for inclusion in a multimedia application, tool
bar 1522 contains icons representing a number of media elements, and tool bar
1524 contains icons representing a number of process elements for selection by
an author. The tool bars are movable and sizable. The tool bars may optionally
be turned off so that the entire application area is visible. Users may also create

new tool bars which contain combinations of elements of their choice.

An authoring navigation control bar 1526 allows an author to switch
between record and playback modes and to control other aspects of the operation
of the authoring system. The user interface also preferably provides a flow
diagram window 1528 which illustrates the interrelationship of the various

elements of the multimedia application 900 under construction.

48

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

When application 900 is loaded by authoring system 1400, the
authoring system reads the start process chain 970 for the application from
database 126. This is done by requesting from database management system 124
the element pointed to by the pointer field of start process element 901 and then
requesting the element(s) pointed to by the pointer field(s) of that element, and
so on, until database management system 124 has sent all process elements
pointed to, directly or indirectly by start process element 901 to authoring
software 1400. Authoring software 1400 maintains a data structure such as table
1402 which lists all of the links between elements in the start process chain 970
for the application. Table 1402 may be the same as, or a superset of, the table 1140

which is used by run-time interpreter 1130.

When a user begins authoring or editing elements in a process chain
in an application then the author can cause authoring software 1400 to send a
message to database management system 124 requesting that the records relating
to elements in that process chain be locked. This may be done, for example, by
writing a value to a field in the first process element in a process chain to signify
that the process chain is “locked”. When authoring software 1400 retrieves a new
process chain from database 126 it éhecks this field. If the process chain is
“locked” then the authoring software will allow the author to display, but not
modify, the process chain. This prevents other users from changing that process
chain while it is being edited simultaneously by another user. Locking functions
may also be provided by database management system 124 in ways which are

known in the art.

As an author adds new elements to a the process chain and/ or edits

elements in the process chain, authoring software 1400 updates table 1402 and,

49

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

when new elements are added or existing elements are changed, writes the new
elements and/ or changes to database 126. The user can cause authoring software
1400 to refresh table 1402 by rereading from database 126 the process chain
which is being edited. In this manner changes which have been made by other
authors (if the author has decided not to lock the process chain) can be displayed
in flow diagram 1528.

Tool bars 1520 and 1522 show either a complete set, or a subset, of
prototype control elements, prototype process elements and media elements
which are stored in authoring software 1400 and/ or in database 126. Users may
query database 126 to select elements which may not be displayed on the tool
bars. For example, a user could query database 126 to find all hot-spot type
control elements for a particular project. The set of control elements 702 of type
“HotSpot”in database 126 which match the query are returned in a new tool bar.
These control elements may be moved into other tool bars by dragging and

dropping them onto the other tool bars.

Tool bar 1524 is a window into a media element management
program. The media element management program may be a separate program
from authoring software 1400. Authoring software 1400 runs the media element
management program when an author requests media elements. The author can
use media elements located by the media element management program by
dragging an icon representing a desired media element from the media element
management program window 1524 and dropping the icon on the control where
the author wishes to use the media element. Media element management
program and authoring software 1400 can communicate by exchanging messages

between themselves in ways which are well known in the art. For example, when

50

10

15

20

25

WO 97/26608 PCT/CA97/00039

authoring software 1400 and the media element management program are
running under the Microsoft WINDOWST™ operating system then they may
communicate by using Windows messaging functions to exchange messages
containing the descriptors 685 for media elements selected by a user for

incorporation in an application.

Preferably, prototypes for program elements 700 are stored on
workstation 272, where they can be accessed locally by authoring software 1400.
Each prototype has a preset type and a selected set of default properties which
may be set to selected values. Preferably authoring software 1400 contains a set
of allowed values for each property of each type of program element. Authoring
software 1400 prevents an author from setting any property of an element to an
illegal value. Tables II, IIl and IV contain an exemplary list of the types of

prototype elements that are available for authoring purposes.

TABLE II - LIST OF PROTOTYPE CONTROL ELEMENTS
TYPE DESCRIPTION

Audio Player plays audio clips

Image displays images

MPEG Player plays MPG, AV], Video data

System Allows system settings properties and methods to be
accessed

Button A control button

Check Box A box that can be toggled between checked and

unchecked states

Combo Box a box into which a user can enter text or select
predefined text from a pull-down list

Form a form for placing other controls on

51

10

15

20

25

WO 97/26608

PCT/CA97/00039

Frame

a frame for placing around other controls

Group Button

a group of buttons only one of which can be depressed at
once

Rectangular Hot | an area which is responsive to mouse clicks. A hot spot

Spot may be superimposed over an image control or a portion
thereof - rectangular

Elliptical Hot an elliptical hot spot

Spot

Polygon Hot a polygonal hot spot

Spot

Poly Line Spot an area on a computer screen that a user can interact
with

List Box a containing a number of items which may be selected

Option Button

a group of check boxes, only one of which can be
checked at once

Panel used to group things together on a form or ornament a
form

Scroll Bar a scroll bar

Text Box a box for accepting and/ or displaying text

Table (for window into a database table

database access)

Timer a timer

TABLE III - ACTION ELEMENTS

Activate occurs when a form is activated

Change occurs when the text property of a text control is changed
or the IMAGE_ID property of an image control changes

Click occurs when a mouse button is clicked with the cursor
on the control

Close Media occurs when media is closed on an image control

52

10

15

20

PCT/CA97/00039

WO 97/26608

Deactivate occurs when another form is activated

DoubleClick occurs when mouse button is double clicked with cursor
on control

Drop Down occurs when a list drops down

ExternClick occurs when a user clicks the mouse with the cursor
outside of the control

GotFocus occurs when a control becomes the current control

KeyDown occurs when a keyboard key is pressed |

KeyPress occurs when a keyboard key is pressed and relesed

KeyUp occurs when a keyboard key is released

Load occurs when a control is loaded

LostFocus occurs when a control ceases to be the currently selected
control

MouseDown occurs when user pushes a mouse button down

MouseEnter occurs when the mouse cursor enters the active area for
the control

MouseLeave occurs when the mouse cursor leaves the active area for
the control

MouseMove occurs when the mouse cursor is moved

MouseUp occurs when a user releases a mouse button

Move occurs when a control is moved

OpenMedia occurs when a control opens a new media element

Paint occurs when an image control redraws its display

QueryUnload occurs before a form unloads (this element can be used

to run a process chain to check to ensure that any
information from a form that needs to be saved has been

saved before the form is closed)

53

10

15

20

25

PCT/CA97/00039

WO 97/26608

Resize occurs when a control is resized

Scroll occurs when the position of a scroll bar is changed
ScrollStart occurs when a user starts to move a scroll bar
ScrollEnd occurs when a user stops moving a scroll bar
Select occurs when text is selected in a text control
Timer occurs at a set time relative to a trigger event
Unload occurs when a form is unloaded

TABLE IV - LIST OF PROTOTYPE PROCESS ELEMENTS

AddProperty adds a property to a control element

Break stops execution (for debugging)

CreateControl Creates one or more new controls based upon one or
more control elements

CreateTable creates a table.

DeleteControl deletes a control

DeleteProperty | resets a property for a control

Delay waits for an interval

DoEnd end of a do loop

DoOnAllControl | performs an action in respect of all controls (e.g. moves

s or scales all controls by a certain amount)

Else else - branch instruction

Elself else if -branch instruction

Endlf end if - branch instruction

Execute runs an external program

Function calls a function

If if - branch instruction

54

10

15

20

25

30

PCT/CA97/00039

WO 97/26608

Gosub VPO runs a subroutine

GotoVPO branches to a specified process element

Label a label

Method performs an action against a control i.e. zooms an image
in a specified way, moves the control etc.

NOP no operation

Peek looks at an entry on a user-defined stack

Pop pops one entry off of a user defined stack

Push pushes an entry onto a user defined stack

ProgEnd ends an application

SetProperty sets a property of a control

StartPrj a start element 901

StartSub a start element for a subroutine

TypeDef define a user defined type

TypeUnDef deletes a user defined type

While while - branch instruction

Wend ends a while loop - branch instruction

As shown in Figure 16, when an application is first started,
application area 1512 is blank and flow diagram window 1528 shows only a
single process element which represents the start process element 901 of the new
application. An author can add controls to the application to permit end users to

interact with the completed application.

The user interface preferably allows a user to create and place a new
control by dragging a desired new control from tool bar 1520 onto application

area 1512. Typically a user would begin by creating a new control element by

55

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
clicking on a desired control type from toolbar 1520 and then using the mouse to
drag out an area in application area 1512 where a control will be placed. After the
control has been placed in application area 1512, the authoring system displays
a window which shows the properties for the control, which the author can set.
Initially the properties window shows default properties which are possessed by

a prototype element for a control of the type which is being created.

For example, an author could begin to author application 900 of
Figure 9 by opening a new application and creating a form control in application
area 1512 . The author does this by clicking on a form control icon in toolbar 1520
and then dragging out a rectangular area inside application area 1512. The
position and size properties of the control are set according to the area defined
by the user in application area 1512. The author can set other properties of the
form control 1000 by opening a properties window which lists all properties
available for form control 1000. Preferably authoring software 1400 automatically

opens a properties window whenever a new control is created.

When the author has completed setting the properties for the control
then authoring software 1400 automatically generates “Create Control” process
element 922 and form control element 924 and sends these elements to database

management system 124 for storage in database 126.

As each element is saved in database 126 then database management
system 124 creates and returns to authoring software 1400 a unique descriptor
685 which unambiguously identifies the record in database 126 which constitutes
that element. Authoring software 1400 uses this information to update table 1402.

Also, as each new process element is added to an application, authoring software

56

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

1400 sets the CHILD_ID pointer field 712 of the process element which chains to
the new element to the descriptor 685 for the new element. This is done by

sending a message to database management system 124.

Figures 17A and 17B illustrate, by way of example, the sequence of
steps which take place when an author begins to create the application 900 of
Figure 9 by creating a form control and an image control. These steps produce

elements 920 through 932 of Figure 9.

An author may load an application which has been previously
created for editing. For example, an author may start and begin to author an
application 900 as described above. After completing the steps illustrated in
Figures 17A and 17B the auhor could save the application. At a later date the
author could select the partially completed application 900 and proceed to add

the remaining elements of application 900.

To do this, the author first causes authoring software 1400 to query
database management system 124 for a list of the applications which are stored
in database 126. The query returns the start process element for each application
in database 126 which matches the query. Authoring software 1400 displays the
results of the query in a window. The author can limit the number of applications
which are located by the query by restricting the query to applications for a

particular project, or applications which are associated with a selected key word.

When the author locates the application which is to be edited the
author selects that application by, for example, clicking on the name of the

application in the query results window. When an application has been selected,

57

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

authoring software 1400 first retrieves all of the elements in the starting process
chain for the application and recreates table 1402. Authoring software 1400 does
this by reading the pointer field of start process element 901 (which contains the
descriptor 685 for the next element in the application) and requesting the next
element in the application using descriptor 685, as described above, and so on.
When table 1402 and flow diagram 1528 have been recreated then the author can
continue to author the application or edit properties of the elements which are
already present in the application. For example, the author can proceed to add
hot spot control 1006, an audio control 1008, and button control 1004 to

application 900.

Figure 18 shows a typical properties window for a button control
element. By changing properties for a control element the user can change the
shape, size, text and other characteristics of the associated control as it will

appear to a person running the ultimate multimedia application.

After an author has created controls which will react to user input
the author must specify how the controls will react. In the preferred user
interface, a user clicks on the control for which he or she wishes to specify an'
action element. For example, the user could click on control button 1004 of
Figure 15. Flow diagram 1528 would then show the action elements associated
by default with button 1004. The user could then select, for example, the CLICK
action element for button 1004. A CLICK action is typically associated with all
button control elements. When the CLICK action has been selected then
authoring system 1400 clears application area 1512 and the author can author a
new process chain which will be executed when a user clicks on button 1004, as

described above.

58

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

A distinction between the methods of the invention and other
graphical programming tools, such as Microsoft™ Visual Basic, is that, this
invention permits all application elements to be recorded in a shared database
126 as an author creates a multimedia application such as application 900. This
means that the partially authored application is available to other users on the
network who can be simultaneously authoring the application. An author who
is authoring a multimedia application may, at any time, play back the
application, to the extent that it has been completed, by selecting the playback
button from navigation tool bar 1526. Preferably authoring software 1400
incorporates run-time interpreter software 1130 so that an author can play back
an application and see exactly what a user would see when the application is

played back by run-time interpreter 1130.

It can be appreciated that the user interface described above hides
much of the complexity of writing a multimedia application from the user. Also
since elements of a multimedia application are all stored in the same database
126 they are accessible by other users. Application elements which have been
combined may be reused many times either within the same multimedia
application or by other multimedia applications. When a user wishes to reuse
components of a multimedia application the user only needs to change the
properties of the program elements and/or add or remove program elements to
change the functionality of the application. A user can also change the media
content of an application, without changing the overall way that the application
functions, by simply pointing those elements of the application that point to

media elements to alternative media elements.

59

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

L. Reusable Elements

At any given time, database 126 may contain several different
applications. For example, Figure 19 is a schematic illustration showing the

organization of database 126.

A completed application 1910 (Application A) already authored by
a user is recorded in database 126. Application 1910 comprises a collection of
interlinked program elements 700 and media elements 680. Also recorded in
database 126 is a partially completed application 1920 (Application B). Database
126 also contains an element library 1930. Library 1930 contains commonly
available predefined sets of application elements (App Sets) and subroutines

which can be used by authors in the authoring of new applications.

Elements from library 1930 can be retrieved by the author of new
application 1920 by querying database management system 124 for the
descriptors 685 of elements in library 1930 which meet specified criteria. An
author may also manually insert the descriptor 685 for an application element to
be linked to another application element into the property window for the other

application element.

New application 1920 may be made up of newly created application
elements, application elements from old application 1910, elements from library
1930, or a combination of all of these. New application 1920 may also contain
references to external media 1940 such as files stored within a file management
system and/or data in an external database 1950. Unnecessary references to

external media should generally be avoided. Database management system 124

60

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
ensures the concurrency and integrity of elements stored in database 126. The
system cannot prevent the problems that can occur if external elements are
deleted or renamed and the records of those external elements in database 126

are not updated.

Project management system 130 tracks the status of all of the projects
which are taking place on system 120. At any given time several applications,
at various stages of completion, may be on system 120. These applications
between them may comprise hundreds or thousands of media elements as well
as hundreds or thousands of program elements. Project management system 130
tracks the amount of work done on each project, including statistics such as the
number of images digitized, the amount of time spent by authors in authoring

the application, etc.

The progress of scheduled tasks such as the routine digitization of
physical media is automatically tracked by project management system 130.
Unscheduled tasks, such as cropping or editing images are preferably also
monitored by project management system 130. This may be done, for example,
by providing acces to the software tools and/ or computer hardware needed to
complete each unscheduled task through the project management system. Before
the project management makes available the software tools and/or computer
hardware needed to perform a task it runs a “start task” function. The start task
function records information about who is performing the task, what time the
task is being started, and other project management information and then makes

the resources necessary to perform the task available to the person performing

61

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
the task. The start task function may also check to ensure that the necessary
resources are available for use. After the task has been completed (or after the
task is aborted) project management system 130 runs an end task function. The
end task function stores a record in database 126 which contains information
about whether or not the task was completed, how much time the task took,
what person did the task, on what workstation was the task done, what devices

were used etc.

The end task function may also store accounting information in
database 126. Tasks may have associated costs which vary from task to task.
Project management system 130 can calculate the cost of completing a task from
the time taken, the type of task, and/or other project management information.
Project management system 130 can therefore keep an up-to-date running tally
of the costs incurred in respect of any project as the project is progressing. This
can be impossible with other systems in which there is no good way to keep track

of all of the work that is being done on a project.

H. Output Subsystem

After an application has been authored then it is immediately
available to all users on computer network 270 who have the necessary
permissions to access the application. The application may be played back by
such users either by running the authoring system, which is described above, or
by using a stand alone program which simply runs the application and does not
provide any authoring tools. In most cases multimedia applications authored on

system 120 will be exported for use on other computer systems or networks.

62

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

Typically, for example, a multimedia application will be written to a CD-ROM.

Output system 132 retrieves all of the elements necessary to run the
application from database 126, optimizes the arrangement of those elements for
inclusion on a particular output media, and writes the completed application to
the desired output media. Optimization includes excluding elements which were
needed solely for authoring and managing the production of the work being
output, compressing and/ or palletizing media elements for efficient retrieval,
and removing redundant logic and/or consolidating repeated logic within an
application. Output system 132 may also write ancillary files which can be used
to install the application on a different computer system and a program for

running the installed application.

One field in which it is becoming increasingly important to prepare
complicated multimedia works quickly and effectively is the field of providing
service manuals for complicated equipment. Currently some attempts are being
made to create hyper text service manuals through the use of SGML (Standard
Generalized Mark-up Language). The process of creating an SGML manual is
very labour intensive and requires persons trained in authoring SGML
documents. Furthermore, after an SGML document has been created a user

cannot view small sections of the document as efficiently as might be desired.

In an exemplary application of this invention, the invention is used
to prepare a service manual for a piece of equipment, such as a piece of electronic

equipment. The application includes an image control which displays an image

63

10

15

20

25

30

WO 97/26608 PCT/CA97/00039
showing components of the part being serviced. For example, as shown in Figure
20, An application may produce a screen display 2000 which includes an image
control 2010 showing a picture of a circuit board 2014. Circuit board2014 has a
number of components 2018 mounted on it. A hot spot control 2020 is associated
with each component 2018. By clicking on hot spots 2020, a user can view
information about corresponding components 2018. Each component 2018 has
a name, such as a part number or other reference number. The hot spot control
2020 associated with each component 2018 includes index fields which include
the name of the component so that a program author can easily associate the hot

spot controls 2020 with the components 2018 to which they relate.

Screen display 2000includes a nother image control 2030 which
displays a schematic diagram 2032 for the circuit of circuit board 2014. The
components represented on schematic diagram 2032 also have hot spots 2036.
Hot spots 2036 also include index fields which include the names of the
components to which they relate.

An author can readily author an application which, when a user
clicks on one of hot spots 2020 on circuit board 2014, highlights the hot spot 2036
on schematic diagram 2032 which corresponds to the same component 2018, or
vice-versa. This may be done by linking the “Click” action of hot spot controls
2036, 2020 with a process which runs a method which retrieves the component
name from the hot spot control and then locates all other hot spot controls which
are indexed as belonging to the same component by scanning table 1140. The
method then highlights all hot spot controls 2036, 2020 which are associated with
that component 2018 (by setting the appropriate properties in table 1140) and
makes all other hot spot controls non-highlighted.

64

10

15

20

WO 97/26608 PCT/CA97/00039

Unlike many traditional authoring systems the author does not need
to create a separate process or define separate links for every component. A
single process can be reused without modification for any number of
components. All that is required is that the control elements which define the hot
spot controls contain a field accessible to the process which identifies the

components to which the hot spot controls relate.

It can readily be appreciated by those skilled in the art that while
this invention has particular application to interactive multimedia applications,
the methods and apparatus of this invention may be used to create and play back

computer applications of any type.

As will be apparent to those skilled in the art in the light of the
foregoing disclosure, many alterations and modifications are possible in the
practice of this invention without departing from the spirit or scope thereof.
Accordingly, the scope of the invention is to be construed in accordance with the

substance defined by the following claims.

65

wn

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

WHAT IS CLAIMED IS:

An authoring system comprising a computer workstation for authoring a
computer application by creating program elements and storing said
program elements in a database accessible to said authoring system, said
authoring system comprising:

(a) means for creating said program elements, said program elements
each comprising an instruction for processing by a computer;

(b) means for setting properties of said program elements;

(c) means for storing each of said program elements in said database as
a database record and receiving from said database a descriptor
uniquely identifying said database record corresponding to each of
said program elements; and

(d) linking means for creating links between said program elements to
create said application by storing in a pointer field of each of said
program elements said descriptor for one or more other ones of said

program elements.

The authoring system of claim 1, wherein said database stores a plurality
of media elements, each of said media elements having a unique
descriptor, and wherein said linking means comprises means for linking
said program and media elements by storing in a media identification field
in selected ones of said program elements said descriptor of selected ones

of said media elements.

The authoring system of claim 2, comprising play-back means for running

said application, said play-back means comprising:

66

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

(a) means for querying said database to retrieve elements belonging to
said application;

(b) means for retrieving from said database a program element of said
application;

(c) means for interpreting and performing said computer instruction in
said program element;

(d) means for extracting information from said pointer field of said
program element to identify a next-in-sequence program element in
said application; and,

(e) means for querying said database to retrieve said next-in-sequence

program element from said database.

The authoring system of claim 3, wherein said workstation and said
database are connected via a computer network, said computer network
comprising means for exchanging information between said workstation
and said database in data packets, said data packets having a packet size,
and wherein a record size of each of said program elements retrievable

from said database is less than said packet size.

The authoring system of claim 1, comprising means for creating and
updating a data structure accessible to said authoring system, said data
structure containing records of the descriptor, properties and pointer fields

of each of said program elements comprising said application.

The authoring system of claim 5, further comprising a graphical display
means for graphically displaying the contents of said table.

67

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

7.

10.

11.

12.

The authoring system of claim 6, comprising a graphical interface, said
graphical interface comprising a first toolbar comprising icons

representative of available types of program elements.

The authoring system of claim 7, wherein said authoring system further
comprises means for displaying a window containing icons representative

of said media elements stored in said database or a subset thereof.

The authoring system of claim 1, wherein said program elements comprise
process elements, said computer instruction in each of said process

elements providing procedural logic for said application.

The authoring system of claim 9 wherein said process elements comprise
create control process elements for which said computer instructions
instruct a computer to create or activate control means for providing

interaction with a user.

The authoring system of claim 10 wherein said program elements
comprise control elements, each of said control elements specifying
properties for one or more of said control means created or activated by
said create control process elements, and wherein each of said create
control process elements comprises a control identification field containing

said descriptor for one of said control elements.

The authoring system of claim 11, comprising input means for receiving
from a user information about a control to create or activate, said
information including control type information and control properties

information, and means coupled to said input means for: creating and

68

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

13.

14.

15.

16.

17.

storing in said database a create control process element comprising said
control type information and a control element comprising said control
properties information; receiving from said database identification
information about said control element; and storing said identification

information in said create control process element in said database.

The authoring system of claim 12, wherein said program elements
comprise action elements, said action elements linked to one or more of
said control elements, each of said action elements comprising a field
containing said unique descriptor for a process element to be executed

upon the occurrence of a specified trigger event.

The authoring system of claim 13, wherein said application comprises one
or more discrete process chains each of said process chains comprising a
series of one or more linked program elements, each of process chains

commencing with one of said process elements or action elements.

The authoring system of claim 14, comprising graphical display means for
graphically displaying said process chains during authoring or playback

of said application or portion thereof.

The authoring system of claim 9, wherein said program elements are each
selected from the group consisting of process elements, control elements,

action elements and hyperlink elements.

The authoring system of claim 16, wherein the permitted links between
said process, control, action and hyperlink elements are governed by the

rules illustrated in Figure 8.

69

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

18.

19.

20.

(a)

(b)

(c)

The authoring system of claim 5 comprising means for extracting
information representing a current property of a control; means for
querying said database for hyperlink elements which have a specified type
and which contain a field containing said current property of said control;
means for retrieving a hyperlink element located by said query; means for
extracting a pointer to a process element from said retrieved hyperlink
element; and means for retrieving said process element from said database

using said pointer.

The authoring system of claim 5 comprising means for extracting
information representing a current property of a control; means for
querying said database for hyperlink elements which have a specified type
and which contain a field containing said current property of said control;
means for retrieving a hyperlink element located by said query; means for
extracting a pointer to a media element from said retrieved hyperlink
element; and means for retrieving said media element from said database

using said pointer.

A computer system for authoring a multimedia application, said
computer system comprising:

a computer network comprising a plurality of computer workstations and
a database accessible from said workstations;

a plurality of media elements stored as records in said database, each of
said media elements comprising media data; and

an authoring subsystem running on at least one of said workstations for
creating program elements and storing said program elements as records

in said database,

70

5

10

15

20

25

30

WO 97/26608

PCT/CA97/00039

wherein each of said records in said database comprises a unique descriptor and

said authoring subsystem comprises;

21.

(i)

(i)
(1)

(iv)

means for creating program elements said program elements each
comprising an instruction for processing by a computer;

means for setting properties of said program elements;

means for storing each of said program elements in said database as
a database record and receiving from said database a descriptor
uniquely identifying said database record corresponding to each of
said program elements; and,

linking means for creating said application by creating links
between said program elements and said media elements by storing
in a pointer field of each of said program elements said descriptor
for one or more other ones of said program elements or one of said

media elements.

The computer system of claim 20, wherein said authoring subsystem

comprises play-back means for running said application or a portion

thereof, said play-back means comprising;:

(a)

(b)

(©)

(d)

means for querying said database to locate said application or
portion thereof;

means for retrieving from said database a program element of said
application;

means for interpreting and performing said computer instruction in
said program element;

means for extracting pointer information from said pointer field of
said program element, said pointer field information identifying a
next-in-sequence program element or media element in said
application; and

71

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

23.

24.

26.

(e) means for retrieving said next-in-sequence program element or
media element from said database by querying said database with

said pointer information.

The computer system of claim 21, wherein said computer network
comprises means for exchanging information between said workstations
and said database in data packets, said data packets having a packet size,
and wherein a record size of each of said program elements retrievable

from said database is less than said packet size.

The computer system of claim 21, wherein said authoring subsystem
comprises means for creating and updating a data structure accessible to
said authoring subsystem, said data structure containing records of the
descriptor, properties and pointer fields of each of said program elements

comprising said application.

The computer system of claim 21, comprising authoring subsystem
software running simultaneously on two or more of said workstations
thereby allowing concurrent authoring of said application by two or more

users.

The computer system of claim 20, further comprising an output subsystem
for retrieving said media elements and said program elements comprising
said application from said database and storing said media and program

elements on a computer readable storage medium.

The computer system of claim 20, further comprising a program

management subsystem comprising:

72

10

15

20

25

30

WO 97/26608

27.

28.

(@

(b)

(©)

PCT/CA97/00039

means for storing a list of said media elements required for a
multimedia authoring project;

means for querying said database to determine which of said media
elements are stored in said database; and

means for scheduling the input of any of said media elements not

present in said database.

The computer system of claim 26, further comprising an input subsystem

comprising:

(a)

(b)

(©

(d)

(e)

(e)

an input device connected to at least one of said workstations for
digitizing physical media or a portion thereof;

means for applying a machine readable identifier containing an
identification code to said physical media or a portion thereof;
means at said one of said workstations for reading said
identification code from machine readable identifier;

said program management subsystem comprising means for
requesting said input subsystem to digitize a- specific item of
physical media identified by a specific identification code;

means for reading said machine readable identifier on an item of
physical media and, if said identification code in said machine
readable identifier matches said specific identification code,
digitizing said physical media or portion thereof using said input
device to create a computer readable media data record; and
means for storing said media data record and said identification

code in said database as a media element.

The computer system of claim 27, wherein said input subsystem further

comprises means for automatically generating type information about said

73

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

29.

30.

media data record and storing said type information in said media element

in said database.

The computer system of claim 20, further comprising an input subsystem
for digitally capturing media elements from external devices,
automatically generating type information about said media elements,
associating index information with said media elements, and storing said
media elements together with said type information and index information

as media elements in said database.

A computer implemented method for authoring a computer application
on a computer workstation by creating program elements to link media
elements stored in a database, said method comprising the steps of:

(@) processing author provided information, said information
specifying instructions to include in said application, and using
said information to create new program elements said program
elements each comprising an instruction for processing by a
computer;

(b) storing said program elements in a database as database records
and receiving from said database a descriptor uniquely identifying
each said database record corresponding to each of said program
elements; and

() linking said program elements to each other by storing in said
program elements said descriptors for one or more other ones of
said program elements;

(d) linking one or more of said media elements to one or more of said
program elements by storing in said one or more program elements

said descriptors for said one or more media elements.

74

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

31.

32.

33.

34.

35.

The method of claim 30, further comprising the step of creating and
storing in a memory means accessible to said workstation a data structure
containing a record of the identity, properties and pointer fields of each of

said program elements and media elements of said application.

The method of claim 31, further comprising the step of visually displaying

the contents of said data structure at said workstation.

The method of claim 32, further comprising the step of automatically
updating said data structure when said program elements or said media

elements comprising said application are altered.

The method of claim 30 wherein said instruction is an instruction for

execution by a run-time interpreter.

A computer implemented method for authoring and storing computer

applications, said method comprising the steps of:

(a) providing a plurality of computer workstations and a database;

(b) storing a start element in said database, said start element
containing a pointer field;

(c) creating a new element for said application, said new element
comprising a computer instruction and information specifying one
or more properties;

(d) saving said new element in said database;

(e) generating a unique descriptor for said new element;

() linking said new element to said start element by setting said
pointer field for said start element to said descriptor for said new

element;

75

10

15

20

25

30

WO 97/26608

36.

(8)

(h)

PCT/CA97/00039

creating subsequent elements for said application, saving said
subsequent elements in said database, and generating a unique
descriptor for each said subsequent element; and

linking said subsequent elements to other elements in said
application by setting pointer fields in said other elements to point
to said unique descriptor for at least one of said subsequent

elements.

A computer implemented method for running a computer application at

a workstation connected to a computer network, said method comprising

the steps of:

(a)

(b)

providing a computer application stored in a database connected to
said computer network, said application comprising a plurality of
elements stored as records in said database, each of said elements
comprising: a unique descriptor, a pointer field containing a pointer
to a subsequent element, and one or more instructions to be
performed by a computer;

in a computer processor in a computer connected to said network,

running said application by the steps of:

() requesting from said database a first element of said
application;

(i) extracting said pointer from said pointer field of said first
element;

(i) requesting from said database, using said pointer, a
subsequent element pointed to by said pointer of said first
element;

(iv) extracting from said subsequent element a pointer to another

subsequent element and extracting from said subsequent

76

10

15

20

25

30

WO 97/26608

37.

38.

39.

40.

PCT/CA97/00039

element said one or more computer instructions of said
subsequent element;

(v) interpreting and performing said instructions from said one
or more subsequent elements;

(vi) requesting from said database, using said pointer from said
subsequent element, another subsequent element pointed to
by said pointer of said subsequent element; and

(vil) repeating said steps (iv) through (vi) for each of said

subsequent elements.

The method of claim 36 wherein, for one or more of said elements, said
step of interpreting and performing said instructions comprises creating
or activating a control, said control comprising means for presenting
information to a user of said application and/or receiving information

from a user of said application.

The method of claim 37 wherein said control comprises control properties,

said control properties affecting behaviour for said control.

The method of claim 38 wherein, for one or more of said elements, said
step of interpreting and performing said instructions comprises, querying
said database for a hyperlink element having a specified type, said
hyperlink element comprising a field containing a current control property
for said control and a field containing a pointer to an element in said

database.

The method of claim 39 further including the step of receiving language

selection information in said computer, said language selection

77

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

41.

43.

information indicating whether to run language-specific parts of said

application in a first language or a second language.

The method of claim 40 wherein said database contains first and second’
types of language selection hyperlink elements, said first type of language
selection hyperlink elements comprising a pointer to a media element in
a first language, and a second type of language selection hyperlink
element comprising a pointer to a media element in a second language,
wherein, for said one or more of said elements, said step of interpreting
and performing said instructions comprises, querying said database for a
language selection hyperlink element of said first type if said language
selection information indicates said first language and querying said
database for a language selection hyperlink element of said second type if

said language selection information indicates said second language.

The method of claim 37 wherein said instructions are not more than 50

bytes in length.

A method for running an application on a computer, said application

comprising a plurality of process elements stored in a database, said

process elements each comprising a computer instruction, a unique

descriptor, and a pointer to a next in sequence process element, said

method comprising the steps of:

(@) querying a database to retrieve a first process element;

(b) retrieving from said retrieved process element said unique
descriptor for a next in sequence process element in said

application;

78

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

45.

46.

47.

(c) querying said database using said unique descriptor for said next in
sequence process element to retrieve said next in sequence process
element;

(d) repeating said steps (b) and (c) for subsequent process elements in
said application; and,

(e) extracting and performing said computer instructions from said

retrieved process elements.

The method of claim 43 wherein, for one or more of said process elements,
said step of extracting and performing said computer instructions
comprises creating or activating a control, said control comprising means
for presenting information to a user of said application and/or receiving

information from a user of said application.

The method of claim 44 wherein said control comprises control properties,

said control properties affecting a behaviour of said control.

The method of claim 45 wherein, for one or more of said elements, said
step of extracting and performing said computer instructions comprises,
querying said database for a hyperlink element having a specified type,
said hyperlink element comprising a field containing a current control
property for said control and a field containing a pointer to an element in

said database.

The method of claim 46 comprising the step of maintaining a data
structure accessible to said computer processor, said data structure
comprising a record of said current control property, wherein said step of

querying said database for a hyperlink element having a specified type

79

10

15

20

25

30

WO 97/26608 PCT/CA97/00039

48.

49.

51.

comprises reading said current property for said control from said data

structure.

The method of claim 47 further including the step of receiving language
selection information in said computer, said language selection
information indicating whether to run language-specific parts of said

application in a first language or a second language.

The method of claim 48 wherein said database contains first and second
types of language selection hyperlink elements, said first type of language
selection hyperlink elements comprising a pointer to a media element in
a first language, and said second type of language selection hyperlink
element comprising a pointer to a media element in a second language,
wherein, for said one or more of said elements, said step of extracting and
performing said computer instructions comprises, querying said database
for a language selection hyperlink element of said first type if said
language selection information indicates said first language and querying
said database for a language selection hyperlink element of said second

type if said language selection information indicates said second language.

The method of claim 49 wherein said instructions are not more than 50

bytes in length.

A system for playing back a computer application in one of two or more

languages, said system comprising:

(@) a database containing a computer application, said computer
application comprising a plurality of elements stored as records in

said database, said elements comprising at least a plurality of first

80

- 10

15

20

25

30

WO 97/26608

PCT/CA97/00039

language language-specific media elements, a corresponding
plurality of second language language-specific media elements, a
plurality language selection hyperlink elements comprising a
plurality of first language selection hyperlink elements each
comprising information for retrieving one of said first language
language-specific media elements, and a corresponding plurality of
second language selection hyperlink elements, each comprising
information for retrieving a corresponding one of said second
language language-specific media elements from said database;
a computer connected to said database, said computer comprising:
(i) control means for playing media data in said media elements
to a user;
(i) means for receiving language selection information from a
user; and; |
(iii) means for running an application, said application
comprising computer instructions to cause said control means
to play said language specific media elements to a user by the
steps of:

(1) querying said database for a language selection
hyperlink elements of a type specified by said
language selection information and having an
identifier specified in said application;

(2) receiving from said database information from said
hyperlink element, said information including at least
information for retrieving one of said first or second

language language-specific media elements;

81

10

15

20

25

30

WO 97/26608

52.

53.

PCT/CA97/00039

(3) querying said database using said information to
retrieve said one of said first or second language
language-specific media elements; and,

(4) playing media data from said media element on said

control means.

A computer readable storage medium containing computer readable

instructions for causing a general purpose computer to run a computer

application stored in a database accessible from said general purpose

computer, by the steps of:

(a)

(b)

(c)

(d)

(e)

querying said database to retrieve a first process element from said
database;

retrieving from said retrieved process element a unique descriptor
for a next in sequence process element in said application;
querying said database using said unique descriptor for said next in
sequence process element to retrieve said next in sequence process
element;

repeating said steps (b) and (c) for subsequent process elements in
said application; and,

extracting and performing said computer instructions from said

retrieved process elements.

A method of generating and storing media elements in a database

connected to a computer network, said method comprising the steps of:

(a)

storing in a computer a list of items of physical media to be
digitized together with indexing information relating to said items

of physical media;

82

10

15

20

25

WO 97/26608

54.

(b)

(©)

(d)

(e)

®

(8)

(h)

PCT/CA97/00039

generating a unique identification code for each said item of
physical media;

creating a machine-readable tag containing said unique
identification code for attachment to each of said items of physical
media;

scheduling an input task for digitizing each said item of physical
media;

sending an instruction to an input workstation connected to said
network to perform said input task;

reading said machine readable tag at said input workstation and
verifying that said unique identification code matches said item of
physical media for said input task;

if said unique identification code matches said item of physical
media for said input task, performing said input task by digitizing
said physical media or selected portion thereof to create computer
readable media data; and,

storing said media data, and said unique identification code in said

database as a media element.

The method of claim 53, comprising the step of automatically storing in

each of said media elements said indexing information.

83

WO 97/26608 PCT/CA97/00039

PROJECT MANAGEMENT

122 128
(S RV — 132

INPUT AUTHORING OUTPUT

h

‘ /1 24
(

DATABASE
MANAGEMENT

é1)
DATABASE

>

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/CA97/00039

WO 97/26608

2/28

¢cle

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

PCT/CA97/00039

3/28

340
|
INPUT PROJECT
REQUIREMENTS
/
INPUT MEDIA DATA FOR
MEDIA ELEMENTS

/—-344

STORE MEDIA /
ELEMENTSIN |
DATABASE

346

AUTHOR WORK BY
CREATING PROGRAM
ELEMENTS TO LINK
MEDIA ELEMENTS

348

STORE PROGRAM
ELEMENTS IN
DATABASE

350

—

/
OUTPUT FINISHED

WORK THROUGH
OUTPUT SUBSYSTEM

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/CA97/00039

WO 97/26608

4/28

VIVO LionV SHSVL MIIA | 313130 | dOIS 39NVHD aQv
G6/ce/ 11 c6/1¢/01 G6/L/9 | 3131dN0D oS |nsvan ININUNSVIN ONV 1S3L] Z-ON 3S¥N0D ANOS
ce/zz/9 | S6/92/01] <6/1/9 c6/1/9 ALV (8 | 39vd VNNV ONINIVHL TVINVN NVOS | z-OM 3S¥N0J ANOS

¢6/92/01 | ce6/0c/6 6/6/9 ALV 67 | 39vd 30IA43S 00¥-XGK WONVN NvDS| Z~-ON 3S¥N0J ANOS
66/tz/01 | s6/oc/6 | S6/6/9| LW BT | 39Vd DIA3S 00¥-XON ANV NVOS| Z-ON 3SMN0J ANOS
c6/az/o1 | se/oc/6 66/6/9 LWV 19 | 39vd IANIS 00¥-XON TWANVW NvDS| Z-ON 3S¥N0D ANOS
c6/9z/01 [S6/6/9 | 56/6/9 ALV | 3ovd "HO3N_00P-XON TVONVA NvdS| Z-ON 3SHN0J ANOS
g6/L1/01 | S6/21/01 | S6/11/01 [3131dN0D T | 39vq 3L 504 SIRIOLVIOBVT WNNVN NVOS | Z-ON 3S8N0D ANOS
c6/zz/9 | ss/ti/ov | S6/1/9 | S6/1/9 NIV 61 | 39Vd 3DIAN3S Z8-ZN IVNNVN NvOS| C-ON 353N0J ANOS
cs/zz/o | oe/Lrfor | S6/1/9 | S6/L/9] NIV (9 | 39vd DINIS Z-ZN TVINVN NvOS| Z-ON 3SHN0D ANOS
c6/zz/a | s6/L1/0t] s6/1/9 | S6/1/9 ALV 01 | 39vd [3HL 304 SIMOLVIOBYT VANV NVOS | Z-ON 3S8N0J ANOS
66/1/9 | g6/1/9 AQV3Y 0 [39vd ALALLOV DNVNIINIVM WH3N39 | Z-ON 3S¥N0D ANOS
G6/11/01 c6/1c/01 | s6/9/01 | 3131dNOD 00S |NSV3N SINIOd ONINNSYIN 3IV3¥D | Z-ON 3S¥N0J ANOS
ON3LV | LviSLov [ON3HOS | 1MvISHIS snivis | AID | LINN INVN ALIALLOY 1030084
A NOLLJRISI0/103r0ud | A8 1¥0S SILLAILY (FINQ3HIS
TR0 LA SINddNS ¥IMOd 300N INTHOLIMS AL % HIAANOS
W0 | IWH) | OV [1-OM 35n02] OSIGININ ST SIHL ANOS
G6/c1/11 ON3 G6/1/9 LIS QIINAIHIS ZU-ZNZ-0N_358N0J ANOS
X - 00%-XONZ—-ON 3S¥N0J ANOS
~ZN Z-ON 3S4N0D ANOS | :
A cu-In 2on ks [V 90-Wwwg ISUN0D ANOS
103r08d IN3H4NI 5193r04d JTBVIVAY
g WY Z0OSNd NVALNG 13WNSI
d13A S1Y0d3Y NSVL ALUALDY 103r0¥d 6

ONIINQ3HOS 103r0dd

v Ol

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

5/28

/1 22

560
561
270
TOREST —
OF NETWORK
562
563
257
/]
5 \—255

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

6/28

o

-685-

-686- > 684

-687-

-688-

-689-

-690-

-682-

FIG. 6
SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

7/28

/ 70?04
S

-685-

-710-

712-

-714-

-716-

-718-

FIG. 7A

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

8/28

700
[

-685-

-720-

-722-

_724-

-726-

-728-

-730-

FIG. 7B

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

9/28

-685-

-740-

-742-

_744-

-746-

FIG. 7C

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CAY97/00039

10/28

700
% 708

-685-

-750-

-752-

-754-

-756-

-758-

FIG. 7D

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

11/28

704

PCT/CA97/00039

PROCESS
ELEMENT

=

/__812

702

_—

CONTROL

»
>

(,817
706
\
ACTION
811

ELEMENT

815

\ 814

ELEMENT

MEDIA
ELEMENT

_, 680

FIG. 8

HYPERLINK

ELEMENT

/

708 -/

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039
/901 /__920 /_900
/o 7
START PROCESS
922 l
924
CREATE CONTROL | -—--»| FORM CONTROL
926
\\: T 931 / 28
REATE CONTROL
wos] IMAGE CONTROL M-m—m———m e e
970< PROCESS 2
¢ |
930 ~ | 7] 932 957 i
ss"r:ggggggw " .. s MEDIAIMAGE !
t
8 36 50 k/
34\ T /3 !
treatEconTROL | ___,| HOTsPOT MOUSE CLICK |
PROCESS CONTROL ACTION 5 54 !
938 T P /9 /9 !
7 SET !
CREQL%ggggRO" - AUDIOCONTROL jv—- PROPERTY / (g{(f&'g) |
| PROCESS |
953 JL f TTTTTTTTTTTTT "'
972 SET MEDIA
PROPERTY >
PROCESS (IMAGE 2)
942 944 _
; — \956 958
K CREATE CONTROL |- --~-#{ BUTTON CONTROL |- MOUSE oL 960
/962 94
SUBROUTINE
ngcszggs START
974 PROCESS
968 !
END PROCESS __ 066

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

1006

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 9726608 PCT/CA97/00039
14/28
/1120 / 1130 (- 272

|

1130

1150 1150

1142 1142 1142 1142

DATA TABLE 1140

FIG. 11A
SUBSTITUTE SHEET (RULE 26)

PCT/CA97/00039

WO 97/26608

ecl

15/28

dLlL 'Oid

Ll

SNOILONNG
TOH1NOD

SNOILONNA
SS300dd

YT TANVH
ek —" 1ELL $S320Yd

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

PCT/CA97/00039

16/28

Ve
START
Y _—1212
SELECT APPLICATION
v

REQUEST START PROCESS /1214
ELEMENT 201 FROM
DATABASE 26 /

RETRIEVE CHILD_ID 1216
POINTER FROM START el
PROCESS ELEMENT 201

L >

RETRIEVE NEXT PROCESS 1218
ELEMENT FROM DATABASE /—
26 USING CHILD_ID FROM
IMMEDIATELY PREVIOUS
PROCESS ELEMENT

y

PERFORM PROCESS /-1 220
DETERMINED BY PROCESS /
ELEMENT TYPE

y

EXTRACT CHILD_ID POINTER /—-1 222
FROM PROCESS ELEMENT

224

DOES CHILD_ID
INDICATE END OF
CHAIN?

<«—No

Yes 1230

WAIT

FIG. 12

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

START

IS PROCESS A
CREATE CONTROL
PROCESS ?

17/28

Yes 1314
RETRIEVE
CONTROL
ELEMENT CONTROL
POINTED TO BY PROPERTIES
PROCESS ROCESS
ELEMENT
¢ Yes 1332
1316 ¥ /
CREATE CONTROL CHANGE
HANDLER] PROPERTIES
FOR
1 1318 | CONTROL IN
/ CONTROL
WRITE CONTROL _| TABLE
PROPERTIES TO
CONTROL TABLE
RUN
1334
y 1320\\ CONTROL
R
UPDATE DISPLAY HANDLE
WITH NEW
(IF CONTROL HAS PROPERTIES
VISUAL
MANIFESTATION) 1336\
\ 1322)
Vi END
END
FIG. 13

SUBSTITUTE SHEET (RULE 26)

PCT/CA97/00039

No»

/1 340

Y

PERFORM
PROCESS

END

T

1342

WO 97/26608

/’ 900

18/28

PCT/CA97/00039

704

702

A 4

706

v

680

v

1402

708

v

v

1130

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

19/28

PCT/CA97/00039

e 1524 1526
PROCESS ELEMENTS ,/ FLOW
AUTHORING DIAGRAM
NAVIGATION —920
TOOLS 7
926
: 930
Vo34
1512
1520—__ 1002 — f 1000 ¥ a8
CONTROL\ N\
ELEMENTS \ \
1528\
1006
r
MEDIA
ELEMENTS
\1004
//
/ 1500
1522

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

20/28

PCT/CA97/00039

1528
pd

1524 1526
V- il ,
: / FLOW
PROCESS ELEMENTS AUTHORING | | DIAGRAM
NAVIGATION 1
TOOLS *\
901

/’1512

1520\
CONTROL
ELEMENTS
MEDIA
ELEMENTS
\
| \
/ \1500
1522
FIG. 16

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

PCT/CA97/00039

21/28

START

Y

AUTHOR SELECTS NEW
APPLICATION

Yy

Y

SYSTEM CREATES NEW
APPLICATION BY
CREATING START

PROCESS ELEMENT 901

BASED UPON START
PROCESS ELEMENT
PROTOTYPE AND
SAVING IN DATABASE
126 AS ELEMENT 920

A
SYSTEM OPENS PROPERTIES
WINDOW FOR NEW FORM
CONTROL 1000 AND AUTHOR
SETS PROPERTIES FOR NEW
FORM CONTROL ELEMENT 924

y

SYSTEM GENERATES CREATE
CONTROL PROCESS ELEMENT 922
AND A FORM CONTROL ELEMENT

924

v

v

SYSTEM ADDS START
ELEMENT 920 TO TABLE
1400 AND DISPLAYS
ICON REPRESENTING
START PROCESS
ELEMENT 920 IN FLOW
DIAGRAM 1528

SYSTEM FORMATS AND SENDS
RECORD OF NEW FORM CONTROL
ELEMENT 924 TO DATABASE
MANAGEMENT SYSTEM 124

v

y
SYSTEM POSITIONS
INSERTION POINT IN
FLOW DIAGRAM 1528
AFTER ICON FOR
START PROCESS
ELEMENT 920

DATABASE MANAGEMENT
SYSTEM 124 STORES RECORD
FOR CONTROL ELEMENT 924 IN
DATABASE 126 AND RETURNS
DESCRIPTOR FOR NEW FORM

CONTROL ELEMENT 924

Y

¥
AUTHOR SELECTS

FORM CONTROL FROM

TOOLBAR 1520 AND
' DEFINES AREA THAT

FORM 1000 WILL

OCCUPY BY DRAWING
OUT A RECTANGLE IN

APPLICATION AREA

1512

SYSTEM FORMATS RECORD FOR
NEW CREATE CONTROL
PROCESS ELEMENT 922,

INCLUDING DESCRIPTOR FOR
CONTROL ELEMENT 924 IN
CONTROL_ID FIELD

v

DATABASE MANAGEMENT
SYSTEM 124 RETURNS
DESCRIPTOR FOR PROCESS
ELEMENT 922

v

[CONTINUE-FIG17B |

FIG. 17A

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

22/28

CONTINUE

FROM FIG 17A
v

SYSTEM UPDATES DATABASE 126 BY SENDING MESSAGE TO
DATABASE MANAGEMENT SYSTEM 124 REQUESTING THAT
CHILD_ID POINTER FOR START PROCESS ELEMENT 901 BE

CHANGED TO POINT TO NEW PROCESS ELEMENT 922

¥
SYSTEM UPDATES TABLE 1400 TO INCLUDE RECORDS FOR
NEW PROCESS ELEMENT 922 AND NEW CONTROL ELEMENT
924 AND REFRESHES FLOW DIAGRAM 1528 BY ADDING ICON
REPRESENTING PROCESS ELEMENT 922

—
SYSTEM POSITIONS INSERTION MARKER ON FLOW DIAGRAM
1528 AFTER THE ICON REPRESENTING NEW PROCESS
ELEMENT 922

y

AUTHOR CREATES IMAGE CONTROL 1002 ON FORM 1000 BY

SELECTING THE IMAGE CONTROL FROM TOOLBOX 1520 AND
MARKING A RECTANGLE ON FORM 1000 IN APPLICATION AREA

1512
— ¥

SYSTEM OPENS A PROPERTIES WINDOW WHICH LISTS ALL OF

THE PROPERTIES AVAILABLE FOR AN IMAGE TYPE CONTROL

— Y
AUTHOR CHANGES PROPERTIES AS NECESSARY AND/OR
ACCEPTS DEFAULT VALUES FOR PROPERTIES AND CLICKS
"OK" IN PROPERTIES WINDOW WHEN DONE

S 2
SYSTEM FORMATS AND SENDS RECORD OF NEW IMAGE
CONTROL ELEMENT 928 TO DATABASE MANAGEMENT SYSTEM
124 FOR STORAGE IN DATABASE 126

—
DATABASE MANAGEMENT SYSTEM 124 RETURNS DESCRIPTOR
FOR NEW IMAGE CONTROL ELEMENT 928

¥
SYSTEM FORMATS RECORD FOR NEW CREATE CONTROL
PROCESS ELEMENT 926, INCLUDING DESCRIPTOR FOR
CONTROL ELEMENT 928 IN CONTROL_ID FIELD, AND SENDS
FOR STORAGE IN DATABASE 126
. 2

CONTINUE - FIG 17C

FIG. 17B

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

23/28

CONTINUE FROM FIG 17B

y

DATABASE MANAGEMENT SYSTEM 124 SAVES RECORD
FOR PROCESS ELEMENT 926 IN DATABASE 126 AND
RETURNS DESCRIPTOR FOR PROCESS ELEMENT 926

y

SYSTEM UPDATES DATABASE 126 BY SENDING MESSAGE

TO DATABASE MANAGEMENT SYSTEM 124 REQUESTING

THAT CHILD_ID POINTER FOR PROCESS ELEMENT 922 BE
CHANGED TO POINT TO NEW PROCESS ELEMENT 926

y

SYSTEM UPDATES TABLE 1400 TO INCLUDE RECORDS
FOR NEW PROCESS ELEMENT 926 AND NEW CONTROL
ELEMENT 928 AND REFRESHES FLOW DIAGRAM 1528 BY
ADDING ICON REPRESENTING PROCESS ELEMENT 926

y

AUTHOR SELECTS A MEDIA ELEMENT 932 FROM TOOLBAR
1522 AND DRAGS AND DROPS IT ONTO THE IMAGE
CONTROL DISPLAYED IN APPLICATION AREA 1512

y

SYSTEM FORMATS RECORD FOR NEW SET PROPERTY
PROCESS ELEMENT 930 CONTAINING A MEDIA_ID
POINTER TO MEDIA ELEMENT 932 AND A CONTROL_ID
POINTER TO CONTROL ELEMENT 928

y

CONTINUE - FIG 17D

FIG. 17C

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

24/28

CONTINUE FROM FIG 17C

y

SYSTEM SENDS RECORD FOR PROCESS ELEMENT 930 TO
DATABASE MANAGEMENT SYSTEM 124 FOR STORAGE IN
DATABASE 126 AND RECEIVES DESCRIPTOR 685 FOR
NEW PROCESS ELEMENT 930 IN RETURN

y

SYSTEM UPDATES DATABASE 126 BY SENDING MESSAGE

TO DATABASE MANAGEMENT SYSTEM 124 REQUESTING

THAT CHILD_ID POINTER FOR PROCESS ELEMENT 126 BE
CHANGED TO POINT TO NEW PROCESS ELEMENT 930

SYSTEM UPDATES TABLE 1402 TO INCLUDE RECORDS
FOR NEW PROCESS ELEMENT 930 AND MEDIA ELEMENT
932 AND REFRESHES FLOW DIAGRAM 1528 BY ADDING
ICON REPRESENTING PROCESS ELEMENT 930

v
SYSTEM PLACES INSERTION POINT AFTER ICON
REPRESENTING PROCESS ELEMENT 930 IN FLOW
DIAGRAM 1528

y

AUTHOR CONTINUES TO AUTHOR APPLICATION 900

FIG. 17D

SUBSTITUTE SHEET (RULE 26)

WO 97/26608

25/28

PCT/CA97/00039

= CONTROL PROPERTIES
CONTROLS PARAMETERS
v v
btnCHDIALOG
PROPERTY VALUE g
AUTO SIZE ADIUST PICTURE SIZE TO BUTTON
BEVELWIDTH 2
CAPTION SCHEMATIC
ENABLED TRUE
EVENTS
FONT3D FALSE
FONTBOLD TRUE
FONTITALIC FALSE
FONTNAME TINES NEW ROMAN
FONTSIZE 105
FONTSTRIKE THRU FALSE
FONTUNDERLINE FALSE
FORECOLOR ~2147483640 g
ADD PROPERTY oK
MATH CANCEL
DIRTY PROPERTY
SCHEMATIC BOARD APPENDIX ToC
FIG. 18

SUBSTITUTE SHEET (RULE 26)

WO 97/26608 PCT/CA97/00039

26/28

126

18 APPLICATION A

[~ PROCESS ELEMENTS |

[CONTROL ELEMENTS || [APPLICATIONB
[__ACTIONELEMENTS ||| —5R5GESS ELEMENTS |
[HYPERLINK ELEMENTS || |==5rRoL ELEMENTS |
[MEDIAELEMENTS ||\ ™&TioN ELEMENTS |
e LoRARY [HYPERLINK ELEMENTS |
[~ PROCESS ELEMENTS || [__MEDIAELEMENTS |

[CONTROL ELEMENTS || 1940
[ACTION ELEMENTS |
[HYPERLINK ELEMENTS |

[MEDIA ELEMENTS |

MEDIA: TEXT, AUDIO,
IMAGES, VIDEO ETC.

SYBASE, EXT ERNAL
LINKS ETC.

FIG. 19

SUBSTITUTE SHEET (RULE 25)

PCT/CA97/00039

WO 97/26608

27/28

%ove 09

-Ilv

¥sig 10813

&

020¢-~
810¢—
71007
0102—

xipuaddy
15

papoyde3

=i

3InpoN

12oig

NOWIRS

10}0307

ey

SINININSY3R 30H

0O

“INI VIQINLLINN NOJIA ¥661 (0)
XV 56 00Y T3L0¥

osigAe L

SAIIA

Jquass05|(

g

Joday

2

ino[P3|

<

/o

10LON L

0002 ™ e VOZ "SI
§] d34m :o::m _ — _ ; -
OO | | mo P %
S| J0UR " “ “ T =" s J- < SONILLES
@ m# % g _.l 1 = i =)
5 :_m dBOLOHYL
< oLin
b ININOANOD

SUBSTITUTE SHEET (RULE 26)

d0¢ "Old

PCT/CA97/00039

S — | | I | , _ 1 _. ﬁ _ _ ___ 1 _ m:
TR | == mm - kil T ﬂﬂﬂm%m} SONILIES
@ TJOOSYNIN H %Hu

28/28

o .n n.n
g u

h-N ‘g
wo.boiy uondauu0)

| e

%0
YN 0L=89 ‘YW €%=9] 'GP 06=YUND
'qQPO0 | =AY
‘swyonbapy G=uy ‘YU G=0] ‘AWGQ=OIA
'SUO1}D2103dS

gl [cossynen][scosy 880
:Spoa :9p07) NI tJaqWINN JBpIQ

WO 97/26608

_ 09GYAIN I |
¥ 02 :uoyduosaq
x] y0LN SI 1oyM
w0 PN
\N/ — B sivanaunsyan 3aM] [300w | i ; #oday ino] 23]
S) a0 ISION® | M|_ MV
Q NI sazzsxa mmws a.m. d_umv_ QoL | BT A

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT |Int onal Application No

PCT/CA 97/00039

A. CLASSIFICATION OF SUBJECT MATTER

TP RO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

see the whole document

Category * | Citation of document, with indication, where appropnate, of the relevant passages Rejevant to claim No.
X WO 94 28480 A (IMAGINE MULTIMEDIA INC) 8 1,20,30,
December 1994 35,36,
43,51-53
see the whole document
A EP 0 578 391 A (WNM VENTURES INC) 12 1,20,30,
January 1994 35,36,
43,51-53
see the whole document
A EP O 669 587 A (AT & T CORP) 30 August 1,20,30,
1995 35,36,
43,51-53

Further documents are listed in the continuation of box C.

m Patent family members are listed in annex.

* Special categories of ated documents :

*A" documemt defining the general state of the art which is not
connidered to be of particular relevance

*E° ecarlier document but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
ataton or other special as specified)

‘0" document referring to an oral disclosure, use, exhibition or
other means

“P* document published prior to the international filing date but
later than the priority date claimed

24

“T* later document published after the internatonal filing date
or prionty date and not i conflict with the application but
cited to understand the principle or theory underlying the
invention

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

“Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to 3 person skilled
in the art.

*&° document member of the same patent family

Date of the actual completion of the international search

4 June 1997

Date of mailing of the international search report

12. 06 97

Name and mailing address of the ISA

European Patent Office, P.B. 5812 Patentiaan 2
NL - 2280 HV Rijswikk

Tel. {+31-70) 340-2048, Tx. 31 651 ¢po nl,
Fax (+ 31-70) 340-3016

Authonized officer

Katerbau, R

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

I

ational Application No

PCT/CA 97/00039

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

see page 1, line 1 - page 10, line 17

Category * | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A WO 94 08310 A (QUARK INC) 14 April 1994 1,20,30,
35,36,
43,51,53

Form PCT/ISA/310 {continuation of second shest) (July 1992)

page 2 of 2

INTEBNATIONAL SEARCH REPORT I jational Application No

Informazen on patent family mem® PCT/CA 97/00039
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9428480 A 08-12-94 AU 7093394 A 20-12-94
EP 0578391 A 12-01-94 US 5440677 A 08-08-95
JP 7006565 A 10-01-95
EP 0669587 A 30-08-95 CA 2140850 A 25-08-95
WO 9408310 A 14-04-94 AU 5294293 A 26-04-94
CA 2145765 A 14-04-94
EP 0663090 A 19-07-95

-------------_-—---—..--———--—--—----_-------_---—---—---—----—---—_--.

Form PCT/1SA/210 (patant family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

