A molding for mounting the head rod of a stationary or patio awning. The molding may be an extrusion of aluminum or the like having a flat rear surface, an overhanging rainproof lip at its upper end and a guideway or track on its front side below said lip.

The rafters, or supporting rods, of the awning are pivotally attached to jaw ends with carriage bolts riding laterally in the same track or guideway on which the finger clips are mounted.

The rafters, or supporting rods, of the awning are pivotally attached to jaw ends which are adjustably mounted in the track or guideway and can be moved laterally to adjust the rafter width. Both the jaw ends and the finger clips are provided with carriage bolts, the heads of which ride in the track or guideway.

At the top of the molding, behind the rainproof lip, is formed an elongated substantially V-shaped recess adapted for applying a bead of caulking compound to the top length of the molding to prevent water from leaking behind the molding and down the wall.

An object of the invention is to provide an awning head rod molding of the character referred to which affords a leakproof installation at the head end of stationary or patio awnings.

Another object of the invention is to provide such a head rod molding which eliminates the disadvantages and difficulties of prior constructions and provides a simple, readily adjustable means for securing the head rod in the molding.

A further object of the invention is to provide a molding of this type which affords simple, strong installation and adjustment of the rafters of patio awnings.

A still further object of the invention is to provide a head rod molding of the character set forth in the application which is simple in construction and operation, inexpensive to manufacture and effective and efficient in use.

The above objects together with others which will be apparent from the drawing and following description, or which may be later referred to, may be attained by constructing the improved awning head rod molding in the manner hereinafter described in detail and illustrated in the accompanying drawing.

The rafters, or supporting rods, of the awning are pivotally attached to jaw ends which are adjustably mounted in the same track or guideway and can be moved laterally to adjust the rafter width. Both the jaw ends and the finger clips are provided with carriage bolts, the heads of which ride in the track or guideway.

At the top of the molding, behind the rainproof lip, is formed an elongated substantially V-shaped recess adapted for applying a bead of caulking compound to the top length of the molding to prevent water from leaking behind the molding and down the wall.

An object of the invention is to provide an awning head rod molding of the character referred to which affords a leakproof installation at the head end of stationary or patio awnings.

Another object of the invention is to provide such a head rod molding which eliminates the disadvantages and difficulties of prior constructions and provides a simple, readily adjustable means for securing the head rod in the molding.

A further object of the invention is to provide a molding of this type which affords simple, strong installation and adjustment of the rafters of patio awnings.

A still further object of the invention is to provide a head rod molding of the character set forth in the application which is simple in construction and operation, inexpensive to manufacture and effective and efficient in use.

The above objects together with others which will be apparent from the drawing and following description, or which may be later referred to, may be attained by constructing the improved awning head rod molding in the manner hereinafter described in detail and illustrated in the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING

FIGURE 1 is a front elevation of a portion of a head rod molding embodying the invention with parts broken away for the purpose of illustration;

FIG. 2 is a transverse sectional view through the same taken on the line 2—2, FIG. 1, showing one of the finger clips and the manner in which it clamps the head rod under the overhanging rainproof lip;

FIG. 3 is a transverse section on the line 3—3, FIG. 1, showing the manner in which the rafters or awning supporting rods are pivotally connected to adjustably mounted jaw ends; and

FIG. 4 is a view similar to FIG. 3 showing the head rod molding mounted horizontally beneath an eaves trough.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring now more particularly to the embodiment illustrated, in which similar parts are designated by similar reference numerals, the head rod molding to which the invention pertains is indicated generally at 5, and is shown as an elongated extrusion formed of aluminum or similar metal.

The rear surface 6 is flat and smooth, and at the upper edge of the molding is provided an overhanging rainproof lip, indicated generally at 7, having the upwardly and forwardly curved portion 8 and the downwardly and forwardly inclined portion 9 with enlarged head 10 at its forward edge. This forms a longitudinal recess 11 at the top of the molding, the full length thereof, between the rear portion of the rainproof lip 7 and the wall 12 of the building.

Spaced below the overhanging lip 7, on the front face of the molding 5, is formed a track or guideway 13 for adjustably mounting finger clips for clamping the head rod in the molding and also jaw ends for pivotally con-
necting the upper ends of the rafters or awning supporting rods.

The awning, indicated at 14, has a head hem or casing 15 formed at its upper end within which is located the head rod 16. As best shown in FIG. 2, the head rod is held clamped beneath the overhanging lip 7 by means of finger clips 17 which are located at spaced intervals throughout the length of the molding. A carriage bolt 18 is located through an aperture 19 in the lower portion of each finger clip 17.

The head 20 of the carriage bolt is located within the track or guideway 13 and when the same is properly adjusted laterally within the guideway 13 the wing nut 21 may be tightened upon the washer 22 clamping the finger clip 17 in position, as shown in FIG. 2, to clamp the head rod 16 against the curved under portion 23 of the lip 7.

Special jaw ends 24 are laterally adjustably mounted upon the molding by means of carriage bolts 25 the heads 26 of which are located in the track or guideway 13. Caps 27 are fixed upon the upper ends of the rafters, or awning supporting rods 28, as by set screws 29, and each has an ear 30 pivotally mounted between the jaw ends 24 as by bolt 31. It is noted that in FIG. 1, for the purpose of illustration, the cap 27 is removed from the jaw ends.

The molding may be mounted upon a side wall 12, as shown in FIGS. 1 to 3 inclusive, by screws 32 which may be placed at desired intervals throughout the length of the molding. In order to prevent any leakage of moisture between the back of the molding and the wall 12, a bead 33 of caulking compound may be located in the longitudinal recess 11, as best shown in FIGS. 2 and 3. As shown in FIG. 4, the molding may be located horizontally beneath an eaves trough and attached to the horizontal board 34 by the spaced screws 32.

From the above it will be obvious that a leakproof installation is provided at the head of a stationary or patio awning which affords simple, strong installation and adjustment of the rafters or awning supporting rods as well as quick and easy installation of the head rod.

This construction eliminates the awkward job of "threading" a rope or rod filled head hem of an awning through a slot in the molding. The head rod is merely placed in position beneath the rainproof lip 7, and the finger clips 17 are tightened to clamp the head of the awning under the rainproof lip 7 of the molding. The same track or guideway 13 serves for adjustably mounting the finger clips and the jaw ends for the rafters.

I claim:
1. A horizontally extending head rod molding having a forwardly disposed overhanging rainproof lip at its upper end, a guideway formed on the front side of the molding beneath said overhanging rainproof lip, jaw ends having means slidable in said guideway, rafters pivotally connected to said jaw ends, an awning having a hem at its upper edge, a head rod in said hem, and finger clips having means slidable in said guideway, said finger clips clamping said head rod beneath said overhanging rainproof lip.
2. A head rod molding as defined in claim 1 in which both of said means slidable in said guideway are headed bolts.
3. A head rod molding as defined in claim 1 in which said overhanging rainproof lip is curved forwardly and upwardly and then inclined forwardly and downwardly.
4. A head rod molding as defined in claim 1 in which both of said means slidable in said guideway are headed bolts and in which said overhanging rainproof lip is curved forwardly and upwardly and then inclined forwardly and downwardly.
5. A head rod molding as defined in claim 2 in which each finger clip has an upwardly and rearwardly disposed upper portion for engaging the head rod and has an aperture in its lower portion for receiving the corresponding headed bolt, and a nut upon said bolt for clamping the finger clip in adjusted position.
6. A head rod molding as defined in claim 5 in which the upper end of each finger clip is rounded.

References Cited

UNITED STATES PATENTS
1,940,958 12/1933 Lewis 160—370
2,752,992 7/1956 D'Azco 160—46 X
2,787,321 4/1957 Dietz 160—47

FOREIGN PATENTS
204,449 11/1936 Australia.
J. KARL BELL, Primary Examiner
U.S. Cl. X.R.
160—370; 248—273