
J. RAPP.



## UNITED STATES PATENT OFFICE.

JOSEPH RAPP, OF COLLINSVILLE, ILLINOIS, ASSIGNOR OF ONE-FOURTH TO LOUIS F. LUMAGHI, OF COLLINSVILLE, ILLINOIS, AND ONE-FOURTH TO JOSEPH D. LUMAGHI, OF ST. LOUIS, MISSOURI.

## COAL SCREENING AND GRADING APPARATUS.

No. 846,140.

Specification of Letters Patent.

Patented March 5, 1907.

Application filed October 22, 1906. Serial No. 339,932.

To all whom it may concern:

Be it known that I, Joseph Rapp, a citizen of the United States of America, residing in Collinsville, in the county of Madison and 5 State of Illinois, have invented certain new and useful Improvements in Coal Screening and Grading Apparatuses, of which the following is a full, clear, and exact description, reference being had to the accompanying 10 drawings, forming part of this specification.

My invention relates to an apparatus for screening and grading coal and depositing the various grades in distinct bins or recep-

tacles.

Figure I is a view, partly in side elevation and partly in vertical section, of my apparatus. Fig. II is an enlarged vertical crosssection taken on line II II, Fig. I. Fig. III is an enlarged longitudinal vertical section 20 taken through the refuse-receptacle of the

A, B, C, D, and E designate a series of bins into which the screened and graded coal is deposited, the bin A, as herein shown, being 25 designed to receive the largest coal, the bin E the smallest, and the bins B, C, and D the in-

termediate sizes of coal.

a, b, c, and d are chutes leading to the bins A, B, C, and D, respectively, these chutes 30 having preferably mounted therein flights on which the coal travels in its descent to the bins, as indicated at a' and b', Fig. I.

1, 2, 3, 4, and 5 designate open-ended rotary screens located at the top of the appara-35 tus and stepped downwardly relative to each other in the order named in order that they may successively receive the coal being screened and graded in such manner that the coal passing through the first screen will be 40 screened and the largest-sized coal delivered into the bin A through the chute a from the open end of the first screen and that passing through the mesh of the screen be delivered into the second screen, and so on throughout 45 the series of screens to provide for the largest coal being in such instance delivered to the bin to which the screen corresponds and the

smaller coal being delivered to the next-suc-ceeding screen. The screens are of gradu-50 ally-decreasing mesh from the first of the series to the last of the series. The coal discharged from the final screen 5 passes over a

chute at the location of this screen being unnecessary in view of the close proximity of 55 the screen to the bin E, into which the coal is delivered. Each of the screens is rotated by power applied thereto in any suitable manner, and the screens are preferably supported at their forward ends at least by rollers 7, 60 that are journaled to suitable supports—for instance, the chutes through which the coal descends to the bins and the guard-plate 6.

1', 2', 3', and 4' are runways located beneath the screens 1 to 4, inclusive, and onto 65 which the smaller-sized coal which passes through the meshes of these screens descends to be delivered into the succeeding screens. These runways extend through the various chutes of the apparatus through which the 70 larger-sized coaf is delivered to the bins, and for the purpose of preventing the larger-sized coal from entering into the runways while descending through the chutes I provide a hood 8 above each runway within the 75 chute through which the runway passes, as seen in Figs. I and II. The coal to be screened is first delivered through a trough 9 into a settling-tank 10, which is adapted to contain a quantity of water.

11 is an elevator, preferably of bucket type, which operates in the settling-tank 10 and is driven by power applied thereto in any suitable manner, this elevator extending upwardly to the top of the apparatus, and 85 the coal gathered thereby from the settlingtank is delivered from the elevator to the first or topmost rotary screen 1 through a runway 12, after which it follows the course through the screens, hereinbefore described, 90

to be screened and graded.

13 designates a water-conducting pipe, to which is connected a series of spray-pipes 14, that extend through the forward ends of the rotary screens in the opposite direction to 95 that in which the material travels for the purpose of spraying the interior of said screens and preventing clogging thereof by clay or other adhesive substance present in the coal.

15 designates a refuse-receiving receptacle, preferably having an inclined bottom, and having the highest portion of said bottom located at its rear end. The refuse which passes through the final rotary screen 105 guard-plate 6 instead of through a chute, a | 5 is delivered to the receptacle 15 through a

trough 16, located beneath said final screen. In the refuse-receptacle is a perforated screen-plate 17, onto which the fine lumps of coal which pass through the final screen are 5 delivered from the trough 16. These fine lumps of coal are flushed across said screenplate by the water delivered from the spraypipes 14 and descend to and through the final rotary screen, and from the refuse-re-10. ceptacle the fine lumps of coal are conducted to the settling-tank 10 through a return

19 is a conveyer that operates in the refuse-receptacle 15. This conveyer is driven by power suitably applied thereto and acts to discharge the clay or other refuse deposited in said receptacle over the high end of the bottom of the receptacle and onto a discharge-trough 20, which leads, preferably, to

20 one side of the apparatus.

I claim-

1. In an apparatus of the character described, the combination of a plurality of rotatable screens having open ends and ar-25 ranged in a stepped series and at varying elevations, means for delivering material to the uppermost of said screens, a vertical chute

for receiving the material discharged through the open end of the higher screen, and having 30 a runway-section extending across the chamber thereof and a hood covering the runwaysection for deflecting the material to opposite sides of the runway-section, a runway located beneath the higher screen for conduct-35 ing the screened material from the higher

screen to the runway-section within the vertical chute, and a runway conducting the material from the runway-section within the vertical chute to a screen located at a lower

level, substantially as set forth. 2. In an apparatus of the character described, the combination of a plurality of rotatable screens, means for delivering the

screened material from one to another of said screens, a refuse-receptacle, means for 45 conducting the refuse material discharged from the final one of said screens to said refuse-receptacle, a screen in said refuse-receptacle, a settling-tank, and a conducting member leading from said refuse-receptacle 50

screen to said settling-tank, substantially as

set forth.

3. In an apparatus of the character described, the combination of a plurality of rotatable screens, a settling-tank, a conveyer 55 for conducting the material to be screened from said settling-tank to the first of said screens, means for conducting screened material from one to another of said screens, means for conducting material discharged 60 through the mesh of the final one of said rotatable screens, a refuse-receptacle into which the material discharged from said final screen is conducted, and a trough leading from said receptacle to said settling-tank, 65 substantially as set forth. JOSEPH RAPP.

In presence of— BLANCHE HOGAN, NELLIE V. ALEXANDER.