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MODIFIED EXECUTION USING CONTEXT
SENSITIVE AUXILIARY CODE

TECHNICAL FIELD

Embodiments described herein generally relate to proces-
sor microarchitecture, and in particular, to energy efficient
high performance microarchitecture.

BACKGROUND

In a conventional processor, instruction-generated control
signals are encoded as microcode and are produced in a
context-free manner. A conventional processor may, for
occurrences of a specific architected instruction, generate the
same microcode regardless of neighboring instructions or
patterns that may be exhibited by data associated with the
instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a computer system used in conjunction
with at least one embodiment;

FIG. 2A illustrates a processor used in conjunction with at
least one embodiment;

FIG. 2B illustrates a processor used in conjunction with at
least one embodiment;

FIG. 3 illustrates one embodiment of an execution archi-
tecture;

FIG. 4 illustrates an execution engine used in conjunction
with at least one embodiment;

FIG. 5 illustrates one embodiment of an auxiliary code
generation method; and

FIG. 6 illustrates one embodiment of an execution method
employing auxiliary code.

DESCRIPTION OF EMBODIMENTS

In at least one embodiment, existing microcode is
enhanced with auxiliary microcode, referred to herein simply
as auxiliary code, which provides additional control informa-
tion. The use of auxiliary code combines, in some embodi-
ments, certain advantages of both a hardware approach and a
software approach to context-based optimizations. A hard-
ware approach to context based optimization generally
includes the use of a hardware analyzer/predictor to recog-
nize repeating patterns in instructions and/or data, to perform
analysis in hardware, to predict when an optimization should
be enabled, and to produce the hardware control signals
which implement the given optimization. Generally, when a
hardware approach to context based optimization is under-
taken, some type of recovery/replay hardware may also be
required because the context predictor may not always be
correct. Issues generally associated with a hardware approach
to context based optimization arise as a result of the optimi-
zations being complex and the speculation involved being
relatively inaccurate. These issues may diminish any perfor-
mance benefits realized. A software approach to context
based optimization generally includes the use of a software
translator/optimizer to analyze context information in the
code and to generate new, optimized, context-sensitive code
using a different architected instruction set to achieve desired
improvements. Generally, the new instruction set and new
microcode may further need to be co-designed with the hard-
ware to implement the desired optimizations with a virtual
machine (VM). Issues generally associated with a software
approach or binary translation to context based optimization
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include the requirement to implement an entirely new instruc-
tion set and microarchitecture, including new microcode.
Additional issues may arise because of the requirement to
maintain architecture compatibility with the original instruc-
tion. Some of these issues may result in slow response times
due to interpretation or inefficient translation of the different
instruction set.

In some embodiments, auxiliary code may, as in a hard-
ware only approach, maintain an original architected instruc-
tion set and microcode for driving functional execution, and
may use the architected instruction pointer (IP) to fetch
instructions from the original architected instructions, which
can be executed upon startup without modification. Using the
architected IP, in some embodiments, also provides the
advantage that existing interrupt handling mechanisms may
be usable without modification with auxiliary code. Other
embodiments, using auxiliary code, may be able to rollback
and recover from an instruction-generated exception condi-
tion.

In some embodiments, the context information used to
improve microcode execution includes: (i) if a result pro-
duced by one instruction has only one consuming instruction,
the hardware may skip writing the result to a separate register
and then reading the result from the register and (ii) if a result
of an instruction has no consumers along a most frequently
taken execution path, the instruction may be removed or
converted to a no-op whenever the frequent execution path is
taken.

In at least one embodiment, a code optimization method
includes identifying, as a hotspot, code sequences in archi-
tected instructions appearing with a frequency exceeding a
hotspot threshold, and analyzing an execution context of the
hotspotto identify a potential optimization of base microcode
corresponding to the hotspot. At least one embodiment of the
method includes generating auxiliary code associated with
the potential optimization, and storing the auxiliary code.

Is some embodiments, the method includes retrieving aux-
iliary code associated with the potential optimization and
blending base microcode and the auxiliary code retrieved to
produce enhanced microcode. The base microcode for an
architected instruction may specify a base execution of an
architected instruction in some embodiments. In some
embodiments, the enhanced microcode may specify a modi-
fied execution for the architected instruction.

In at least one embodiment, the blending includes append-
ing auxiliary code to the base microcode. The auxiliary code
and the base microcode may be maintained in separate
memory regions in some embodiments. The blending may
include invoking a jump table to synchronize sequencing of
the auxiliary code in some embodiments. In at least one
embodiment, operands in the modified execution may differ
from operands in the base execution. In some embodiments,
a number of operands in the modified execution may differ
from a number of operands in the base execution; a function
performed by the modified execution may differ from a func-
tion performed by the base execution; and/or a number of
functions performed by the modified execution may differ
from a number of functions performed by the base execution.
The method operation of analyzing the execution context
may, in some embodiments, include storing contextual infor-
mation describing prior executions of the hotspot. In some
embodiments, the contextual information may include infor-
mation indicating a likelihood of a branch path, may include
information indicating a likelihood of an operand referencing
a hardware structure, may include information indicating a
likelihood of an operand referencing a memory address, may
include information indicating a likelihood of an operand
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storing a given value, and may include information indicating
a frequency of consumption of a result of an instruction.

In at least one embodiment, a processor includes a com-
puter readable storage medium accessible to the processor
and storing processor executable instructions. The processor
executable instructions may profile code sequences of archi-
tected instructions to detect hotspots appearing more fre-
quently than a hotspot threshold, and analyze an execution
context of a hotspot included in the hotspots detected to
identify a potential optimization corresponding to the
hotspot. The processor executable instructions may, in some
embodiments, further be to generate auxiliary code associ-
ated with the potential optimization, and store the auxiliary
code. In at least one embodiment, the instructions to analyze
the execution context may include instructions to store con-
textual information describing prior executions of the
hotspot.

In at least one embodiment, the processor executable
instructions may retrieve the auxiliary code associated with
the potential optimization, and blend base microcode with the
auxiliary code retrieved to produce enhanced microcode. The
base microcode for an architected instruction may, in some
embodiments, specify a base execution of the architected
instruction, while the enhanced microcode may specify an
enhanced execution for the architected instruction.

In some embodiments, the base execution may consumer
more power and/or operate slower compared to the enhanced
execution. In other embodiments, the processor may operate
at lower performance when implementing the base execution
compared to implementing the enhanced execution.

In at least one embodiment, a system includes a processor
including a first core and a memory accessible to the proces-
sor. In some embodiments, the first core may include instruc-
tions executable by the first core to profile code sequences of
architected instructions to detect hotspot code appearing
more frequently than a hotspot threshold, and analyze an
execution context of the hotspot code to identify a potential
optimization of the hotspot code. In some embodiments, the
first core may further include instructions executable by the
first core to generate auxiliary code associated with the poten-
tial optimization, and store the auxiliary code.

In at least one embodiment, the first core may retrieve the
auxiliary code associated with the potential optimization and
blend base microcode with the auxiliary code retrieved to
produce enhanced microcode. The base microcode for an
architected instruction may, in some embodiments, specify a
base execution of the architected instruction, while the
enhanced microcode may specify an enhanced execution for
the architected instruction.

In some embodiments, the first core may include a jump
table that indexes hotspot code to corresponding auxiliary
code, and a jump translation lookaside buffer to cache entries
in the jump table. In at least one embodiment, the first core
may include an auxiliary code handler to blend the base
microcode with the auxiliary code. The first core may, in
some embodiments, include a base microcode store and an
auxiliary code store.

In the following description, details are set forth in con-
junction with embodiments to facilitate discussion of the
disclosed subject matter. It should be apparent to a person of
ordinary skill in the field, however, that the disclosed embodi-
ments are exemplary and not exhaustive of all possible
embodiments.

Throughout this disclosure, a hyphenated form of a refer-
ence numeral refers to a specific instance of an element and
the un-hyphenated form of the reference numeral refers to the
element generically or collectively. Thus, widget 12-1 refers
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to an instance of a widget class, which may be referred to
collectively as widgets 12 and any one of which may be
referred to generically as a widget 12.

Embodiments may be implemented in many different sys-
tem types. FIG. 1 illustrates a computer system used in con-
junction with at least one embodiment. In at least one embodi-
ment, processors, memory, and input/output devices are
interconnected by a number of point-to-point (P-P) inter-
faces, as will be described in further detail. However, in other
embodiments the processor system may employ different bus
architectures, such as a front side bus, a multi-drop bus,
and/or another bus architecture. Although one processor is
included in some embodiments, other embodiments may
include two or more processors.

In at least one embodiment, processor system 100 is a
point-to-point interconnect system, and includes processor
170. In some embodiments, processor 170 is a multi-core
processor including a plurality of cores 174, which may vary
in number in individual implementations, as desired. In at
least one embodiment, a portion of processor 170 including
cores 174 may be referred to as core portion 178, while a
portion of processor 170 including other elements, yet
excluding cores 174, may be referred to as uncore portion
180. In some embodiments, a varying number of cores may be
present in a particular processor. Cores 174 may, in some
embodiments, comprise a number of sub-elements (not
shown in FIG. 1), also referred to as clusters, that provide
different aspects of overall functionality. In at least one
embodiment, cores 174 may each include a memory cluster
(notshown in FIG. 1) that may comprise one or more levels of
cache memory. Other clusters (not shown in FIG. 1) in cores
174 may include a front-end cluster and an execution cluster
in some embodiments.

In some embodiments, cores 174 may include internal
power monitoring and power regulation ability and may also
communicate directly with each other. In particular embodi-
ments, cores 174 within processor 170 may communicate
with each other via crossbar 171, which may include intelli-
gent functionality such as cache control, data queuing, P-P
protocols, and multi-core interfacing. Cache controller func-
tionality, whether located within crossbar 171 or elsewhere
may, in some embodiments, enable selective caching of data
within a cache hierarchy including LI.C 175 and/or one or
more caches present in cores 174.

In at least one embodiment, LL.C 175 may be coupled to
processor cores 174 respectively. In at least one embodiment,
LLC 175 may be shared by cores 174. In some embodiments,
LLC 175 may be fully shared such that any single one of cores
174 may fill or access the full storage capacity of LLC 175.
Additionally, in some embodiments, MCH 172 may provide
for direct access by processor 170 to memory 132 via memory
interface 182. In at least one embodiment, memory 132 may
be a double-data rate (DDR) type dynamic random-access
memory (DRAM) while memory interface 182 and MCH 172
comply with a DDR interface specification. Memory 132
may, in some embodiments, represent a bank of memory
interfaces (or slots) that may be populated with correspond-
ing memory circuits for a desired DRAM capacity.

In at least one embodiment, processor 170 may also com-
municate with other elements of processor system 100, such
as I/O hub 190 and 1/O controller hub 118, which are also
collectively referred to as a chipset that supports processor
170. P-P interface 176 may, in some embodiments, be used by
processor 170 to communicate with I/O hub 190 at P-P inter-
face 194 via interconnect link 152.

In at least one embodiment, I/O hub 190 includes interface
192 to couple I/O hub 190 with first bus 116, which may
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support high-performance graphics and/or video output to
corresponding bus devices, such as graphics 138. In some
embodiments, graphics 138 may represent a high-perfor-
mance graphics engine that outputs to a display device (not
shown in FIG. 1). In one embodiment, first bus 116 is a
Peripheral Component Interconnect (PCI) bus, such as a PCI
Express (PCle) bus and/or another computer expansion bus or
interface. I/O hub 190 may also be coupled to I/O controller
hub 118 at south bridge interface 196 via interconnect link
156 in some embodiments. In at least one embodiment, I/O
controller hub 118 may provide I/O interconnections for vari-
ous computer system peripheral devices and interfaces and
may provide backward compatibility with legacy computer
system peripheral devices and interfaces. In some embodi-
ments, [/O controller hub 118 is shown providing network
interface 130 and audio /O 132, as well as providing inter-
faces to second bus 120, third bus 122, and fourth bus 121, as
will be described in further detail.

In some embodiments, second bus 120 may support
expanded functionality for microprocessor system 100 with
1/0 devices 112, and may be a PCl-type computer bus. In
some embodiments, third bus 122 may be a peripheral bus for
end-user consumer devices, represented by desktop devices
124 and communication devices 126, which may include
various types of keyboards, computer mice, communication
devices, data storage devices, bus expansion devices, etc. In
certain embodiments, third bus 122 represents a Universal
Serial Bus (USB) or similar peripheral interconnect bus.
Fourth bus 121 may, in some embodiments, represent a com-
puter interface bus for connecting mass storage devices, such
as hard disk drives, optical drives, or disk arrays, which are
generically represented by data storage 128, shown including
code 139 that may be executable by processor 170.

Embodiments may be implemented in code and may be
stored on a storage medium having stored thereon instruc-
tions which can be used to program a system to perform the
instructions. The storage medium may include, but is not
limited to, any type of disk including floppy disks, optical
disks, compact disk read-only memories (CD-ROMs), com-
pact disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories (ROMs),
random access memories (RAMs) such as dynamic random
access memories (DRAMSs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMSs), magnetic or optical
cards, or any other type of media suitable for storing elec-
tronic instructions.

FIG. 2A illustrates a processor used in conjunction with at
least one embodiment. In at least one embodiment, processor
200 is a multi-core processor including a plurality of proces-
sor cores 202. In some embodiments, processor 200 includes
first core 202-1 and second core 202-2, whose internal com-
ponents are individually referenced in FIG. 2A using like
element numbers ending in -1 and -2, respectively. In some
embodiments, other elements of processor 200 besides cores
202 may be referred to as an uncore. In at least one embodi-
ment, two cores may be include. In other embodiments, a
different number of cores may be employed using elements of
the illustrated architecture. In some embodiments, cores 202
may comprise a number of sub-elements, also referred to as
clusters, that provide different aspects of overall functional-
ity. In at least one embodiment, cores 202 may each include
front-end 204, execution engine 206, and core memory 208.

In at least one embodiment, front-end 204 may be respon-
sible for fetching instruction bytes and decoding those
instruction bytes into micro-operations that execution engine

20

25

30

35

40

45

50

55

60

65

6

206 and/or core memory 208 consume in the form of micro-
code. Thus, front-end 204 may be responsible for ensuring
that a steady stream of microcode is fed to execution engine
206 and/or core memory 208 in some embodiments. Execu-
tion engine 206 may, in some embodiments, be responsible
for scheduling and executing microcode and may include
buffers for reordering micro-operations in microcode and a
number of execution ports (not shown in FIG. 2A). In at least
one embodiment, core memory 208 may include multiple
levels of a cache hierarchy. Specifically, in some embodi-
ments, core memory 208 may include first level cache 210. In
one embodiment, first level cache 210 may correspond to an
L1 cache. Core memory 208 may, in some embodiments,
further include mid-level cache 212. Mid-level cache 212
may correspond to an [.2 cache in some embodiments.

In particular embodiments, first core 202-1 and second
core 202-1 within processor 200 are not equipped with direct
means of communicating with each other, but rather, commu-
nicate via crossbar 214, which may include intelligent func-
tionality such as cache control, data queuing, P-P protocols,
and multi-core interfacing. Crossbar 214 may thus represent
an intelligent uncore controller that interconnects cores 202
with LL.C 216, among other elements (not shown) of proces-
sor 200 in some embodiments.

In at least one embodiment, processor 200 includes LI.C
216, which may be a higher-level cache that operates in
conjunction with first level cache 210 and mid-level cache
212. Thus, first level cache 210, mid-level cache 212, and
LLC 216 may represent a cache hierarchy in some embodi-
ments. During operation, memory requests from execution
engine 206-1 may first access first level cache 210 before
looking up any other caches within a system in some embodi-
ments. Accordingly, in some embodiments, for improved per-
formance, frequently accessed data may be present in the
lowest possible cache level, i.e., first level cache 210. When
the requested data is not present in first level cache 210,
mid-level cache 212 may, in some embodiments, next be
accessed to determine if the requested data is currently stored
in mid-level cache 212. In at least one embodiment, mid-level
cache 212 may be a final lookup point for each core 202
before a request is issued to LLLC 216, which is a shared cache
among cores 202.

FIG. 2B illustrates an out-of-order execution core. In one
embodiment, execution core 205 includes all or some of the
elements of front end 204 and execution engine 206 of pro-
cessing core 202. In at least one embodiment, pending loads
may be speculatively issued to a memory address before other
older pending store operations according to a prediction algo-
rithm, such as a hashing function. In at least one embodiment,
execution core 205 includes a fetch/prefetch unit 251, a
decoder unit 253, one or more rename Uunits 255 to assign
registers to appropriate instructions or micro-ops, and one or
more scheduling/reservation station units 260 to store micro-
ops corresponding to load and store operations (e.g., STA
micro-ops) until their corresponding target addresses source
operands are determined. In some embodiments an address
generation unit 262 to generate the target linear addresses
corresponding to the load and stores, and an execution unit
265 to generate a pointer to the next operation to be dis-
patched from the scheduler/reservation stations 260 based on
load data returned by dispatching load operations to memory/
cache are also included. In at least one embodiment, a
memory order buffer (MOB) 263, which may contain load
and store buffers to store loads and stores in program order
and to check for dependencies/conflicts between the loads
and stores is included. In one embodiment, loads may be
issued to memory/cache before older stores are issued to
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memory/cache without waiting to determine whether the
loads are dependent upon or otherwise conflict with older
pending stores. In other embodiments, processor 270 is an
in-order processor.

FIG. 3 illustrates one embodiment of an execution archi-
tecture. In at least one embodiment, enhanced execution
architecture 300 illustrates elements that may be used to
implement auxiliary code in a processor, as described herein.
In some embodiments, enhanced execution architecture 300
may leverage binary translation technology, but does not lit-
erally translate from one executable binary to another. Rather,
enhanced execution architecture 300 may, in some embodi-
ments, be usable to append optimization information con-
tained in auxiliary code to base microcode to generate
enhanced (or modified) microcode, as will be described in
further detail.

In at least one embodiment, enhanced execution architec-
ture 300 illustrates various regions within a processor, includ-
ing a first memory region referred to herein as architected
memory region 301, a second memory region referred to
herein as enhanced execution memory region 302, and a core
execution region 303. Architected memory region 301 may,
in some embodiments, represent a conventional memory
space to store system software 314 and application software
312, which represent a source of architected instructions for
execution. In certain embodiments, architected memory
region 301 may represent a physical memory space, such as
within a random-access memory. Enhanced execution
memory region 302 may, in some embodiments, represent
another memory space to store auxiliary code or to otherwise
implement functionality associated with auxiliary code, as
described herein. In certain embodiments, enhanced execu-
tion memory region 302 may be include a hidden and/or
concealed memory space, within a core of a processor, such
that functionality encompassed by enhanced execution
region 302 may be performed without external intervention.
Thus, auxiliary code in enhanced execution memory region
302 may, in some embodiments, be transparent to system
software 314 and/or application software 312, which may
remain unaware of optimizations realized using auxiliary
code.

Insome embodiments, enhanced execution memory region
302 includes auxiliary code handler 320, which may repre-
sent a runtime handler that is invoked when auxiliary code
optimizations are initiated by a micro-trap in profile table
330. Different from a runtime manager in a conventional VM,
however, auxiliary code handler 320 may not, in some
embodiments, be in complete control of instruction execution
processes and may act as a slave under command of archi-
tected instruction execution (i.e., base execution) rather than
a master. Accordingly, the instruction execution processes
may be configured to switch back and forth between base
execution (without auxiliary code) and enhanced (or modi-
fied) execution (with auxiliary code) without runtime inter-
vention in some embodiments. Since the instruction execu-
tion processes are compatible with the architected instruction
pointer, existing interrupt handling mechanisms may, in some
embodiments, be used without modification of underlying
hardware.

In some embodiments, in enhanced execution architecture
300, auxiliary code may be fetched in parallel with code for
the architected instruction set that is fetched from architected
memory region 301 and decoded to base microcode using
microcode store 338 in core execution region 303. However,
the auxiliary code may, in some embodiments, be fetched
from auxiliary code store 328 where the auxiliary code is held
in a logically separate memory space than architected
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memory region 301. Accordingly, jump table 329 and jump
translation lookaside bufter (TLB) 332 in enhanced execution
memory region 302 and in core execution region 303 may
represent structures for synchronizing the sequencing of aux-
iliary code with sequences of base microcode in some
embodiments. In some embodiments, auxiliary code and con-
ventional architected instruction set code may reside in two
different address spaces. In certain embodiments, auxiliary
code may reside in a concealed region of memory, while the
architected instructions are in an architected region of
memory. A direct correspondence may exist between a region
of auxiliary code and certain architected instructions in some
embodiments. During enhanced execution in some embodi-
ments, after the correspondence is established, execution
continues with the architected instruction control flow guid-
ing the corresponding flow of auxiliary code fetches. There
may be instances, however, when the correspondence is lost
and must be re-established in some embodiments. One such
instance may be when the architected instruction code takes
an indirect jump to an address held in a register. Another
instance may be when the architected instruction code is
executing in base execution, but then jumps to enhanced
execution when a region of architected instruction code for
which auxiliary code already exists is identified (see also F1G.
5).

Insome embodiments, jump table 329 may represent a data
structure held in memory under control of auxiliary code
handler 320. Jump table 329 may, in some embodiments,
contain entries for architected instruction sequences that may
be enhanced using auxiliary code. To reference entries, jump
table 329 may include pairs of architected IP and auxiliary IP
addresses in some embodiments. In at least one embodiment,
jump table 329 may be accessed using an architected IP value
to output a corresponding auxiliary IP. In some embodiments,
no auxiliary IP may be present for a given architected IP
value. In some embodiments, jump table 329 may be imple-
mented in software. However, a software embodiment of
jump table 329 may not be sufficiently fast for code execution
in a processor, where low latency operations are important for
performance. Therefore, jump TLB 332 in core execution
region 303 is used, in some embodiments, as a cache-like
hardware structure that contains recently used entries in jump
table 329 and is accessible from an instruction pipeline. The
contents of jump table 329 and/or jump TLB 332 may, in
some embodiments, be managed by auxiliary code handler
320.

In operation, during enhanced execution, indirect jump
targets may, in some embodiments, index into jump TLB 332.
In addition, during base execution, potential start point
addresses may also access the jump TLB 332 in some
embodiments. When a hit occurs in jump TLB 332, then the
auxiliary IP may be used to fetch corresponding auxiliary
code in some embodiments. In some embodiments, when a
miss occurs in jump TLB 332, execution may proceed in base
execution without using auxiliary code. Auxiliary code han-
dler 320 may update jump TLB 332 by copying entries from
jump table 329 to jump TLB 332 as needed, in some embodi-
ments, by replacing less recently used entries with newer
entries.

In atleast one embodiment, code profiler/analyzer 322 and
profile table 330 are included in enhanced execution memory
region 302. Profile table 330 may, in some embodiments,
represent a structure that supports dynamic profiling to iden-
tify hotspots in the architected instructions and may also
assist with managing jump TLB 332. As used herein, “pro-
filing” refers to analyzing architected instructions to detect
hotspots, which are regions of code that may be subject to



US 9,342,303 B2

9

optimization using auxiliary code. In some embodiments,
profile table 330 may store a counter value for each of a
respective plurality of architected IP addresses. In at least one
embodiment, it may be found that hotspot regions typically
start at jump destination addresses; therefore, architected 1P
addresses that correspond to targets of branch/jump instruc-
tions may be selected for storing in profile table 330, which
may be associatively addressed in a similar manner as a cache
memory. During base execution, as architected instructions
are retired, certain architected IP addresses (i.e., correspond-
ing to architected instructions that may be optimized using
auxiliary code) may be stored to profile table 330 in some
embodiments. When a profiled instruction results in a hit at a
previously stored location (i.e., entry or row) in profile table
330, then a counter value at the location in profile table 330
may be incremented in some embodiments. When a profiled
instruction results in a miss in profile table 330, a new entry
may be allocated into profile table 330 in some embodiments.
In some embodiments, a finite number of entries in profile
table 330 may be maintained by evicting one of the existing
entries using a least recently used algorithm. Other embodi-
ments of profile table 330, such as a multiple level cache
arrangement similar to using jump table 329 with jump TLB
332, may also be used. In at least one embodiment, blender
334 may synchronize a stream of base microcode with a
stream of auxiliary code to generate enhanced microcode.

FIG. 4 illustrates an execution engine used in conjunction
with at least one embodiment. In at least one embodiment,
enhanced execution system 400 illustrates elements that may
be used to generate and execute auxiliary code in a processor,
as described herein. In some embodiments, architected
instruction memory 412 holds architected instructions 414
for execution that are loaded into architected instruction
cache 416, where architected instructions 414 may be fetched
via the architected IP 420. In some embodiments, architected
instructions include Intel64 (Intel Corp.) and AMD64 (Ad-
vanced Micro Devices, Inc.), which are 64-bit versions of x86
processor instructions sets. Architected instructions 414, ref-
erenced by architected IP 420, may then, in some embodi-
ments, be decoded by accessing microcode store 438 to gen-
erate base microcode 432. Also, in some embodiments,
auxiliary IP 422 may access auxiliary code store 428 and
populate auxiliary instruction cache 418 with auxiliary code
434. In certain embodiments, auxiliary code store 428 may
reside in a concealed region of physical memory (not shown).
A stream of auxiliary code 434 may then, in some embodi-
ments, be synchronized at blender 430 with base microcode
432 to form enhanced microcode 436. In some embodiments,
blending, as performed by blender 430, may represent spe-
cific code-dependent operations rather than just a simple
merging of bits.

In at least one embodiment, blender 430 may be configured
to modify functions and/or operands, and to add new func-
tions and/or operands, as desired, which result in enhanced
microcode 436 that is optimized. Thus, optimizations per-
formed by blender 430 using base microcode 432 and auxil-
iary code 434 may, in some embodiments, be based on con-
textual information describing an execution context of
corresponding architected instructions 414. In some embodi-
ments, the contextual information may be gleaned by
dynamic profiling and software analysis of code sequences of
architected instructions 414 as they reside in architected
instruction memory 412. In at least one embodiment, the
contextual information may include: information indicating a
likelihood of a branch path; information indicating a likeli-
hood of an operand referencing a hardware structure; infor-
mation indicating a likelihood of an operand referencing a
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memory address; information indicating a likelihood of an
operand storing a given value; and/or information indicating
a frequency of consumption of a result of an instruction.

In some embodiments, blender 430 may further dispatch
enhanced microcode 436 to execution engine 406 for execu-
tion. Execution engine 406 may, in some embodiments, rep-
resent an embodiment of execution engine 206 in core 202
(see FIG. 2A). In some embodiments, a microarchitecture of
execution engine 406 may be specifically designed with spe-
cial hardware on which enhanced microcode 436 may be
executed, a form of execution referred to herein as an
enhanced (or a modified) execution of architected instruc-
tions 414. In the absence of auxiliary code 434 and/or
enhanced microcode 436, enhanced execution system 400,
including execution engine 406, may, in some embodiments,
be configured to execute base microcode 432 without modi-
fications, referred to herein as a base execution of architected
instructions 414.

In some embodiments, even though auxiliary code 434
may be capable of significantly transforming base microcode
432, auxiliary code 434 may require a relatively small number
of additional symbols (e.g., bits), because base microcode
432 may already include the necessary information to execute
functionality specified by architected instructions 414.
Therefore, in certain embodiments, auxiliary code 434 may
include additional optimization information for particular
instances of architected instructions 414. In some embodi-
ments, certain optimizations may involve a small number of
additional bits of auxiliary code 434. In at least one embodi-
ment, auxiliary code 434 requires a maximum of three addi-
tional bytes of data per operation of base microcode 432 to
support a desired optimization.

In certain embodiments, a one-one relationship may exist
between certain ones of architected instructions 414 and aux-
iliary code 434, in that an instance of architected instructions
414 may be decoded to a single operation in base microcode
432, to which a single operation in auxiliary code 434 corre-
sponds. In various embodiments, an instance of architected
instructions 414 may be decoded to multiple operations in
base microcode 432 so that multiple auxiliary codes 434 may
correspond to a single architectural instruction 414. Auxiliary
code 434 may conform to a desired encoding format in some
embodiments. In at least one embodiment, the encoding for-
mat may be a fixed-length encoding format to facilitate ease
of decoding in hardware. While auxiliary code 434 may
specify branch target addresses, in some embodiments,
branch outcomes and/or branch predictions may continue to
be generated by conventional microcode handling processes.
By including auxiliary code targets as well as instruction set
targets in a branch target buffer, sequencing of auxiliary code
434 may be further expedited in some embodiments.

In at least one embodiment, auxiliary code store 428 may
be held in memory and managed by corresponding software
(not shown). In some embodiments, auxiliary code store 428
may contain auxiliary code 434 organized into regions that
may correspond to basic blocks, superblocks, and/or another
type of code region that may be linked together by branch
operations. In at least one embodiment, region formation may
begin when a profiling mechanism (such as code profiler/
analyzer 322, see FIG. 3) identifies the beginning, or start
point, of a sequence of frequently executed code. In some
embodiments, code profiler/analyzer 322 and auxiliary code
generator 324 (see FIG. 3) may then produce auxiliary code
434 for the identified region.

In at least one embodiment, one advantage of enhanced
execution system 400 is the use of architected IP 420 for
referencing executed instructions, which is compatible with
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base execution and enhanced execution, thereby eliminating
a number of potential issues that arise with other methods,
such as binary translation, that use a non-architected IP. In
some embodiments, architected IP 420 is compatible with
architected handling of page faults, target addresses, return
addresses, relative addresses, and runtime exceptions, which
may not be the case for a non-architected IP.

FIG. 5 illustrates one embodiment of an auxiliary code
generation method. In at least one embodiment, method 500
may be executed, at least in part, by processor 170, 200
including cores 174, 202 (see FIGS. 1, 2). In some embodi-
ments, method 500 may begin by profiling (operation 502)
code sequences of architected instructions to detect hotspots
appearing with a frequency exceeding a hotspot threshold. In
at least one embodiment, the code sequences may be profiled
in operation 502 while being loaded onto a processor for
execution. In some embodiments, an execution context of the
hotspot code may be analyzed (operation 504) to identify a
potential optimization of the hotspot code. In some embodi-
ments, the architected instructions may be decoded (opera-
tion 506) to generate base microcode, which corresponds to a
base execution of an architected instruction. In in some
embodiments, a decision may then be made (operation 508)
whether a potential optimization is identified. In at least one
embodiment, when the result of operation 508 is NO, then
method 500 may loop back to operation 506. When the result
of operation 508 is YES, then auxiliary code associated with
the potential optimization may be generated (operation 512)
in some embodiments. In some embodiments, the auxiliary
code may be stored (operation 516) in an auxiliary code store
located within the core or concealed memory region.

FIG. 6 illustrates one embodiment of an execution method
employing auxiliary code. In at least one embodiment,
method 600 may be executed, at least in part, by processor
170, 200 including cores 174, 202 (see FIGS. 1, 2). In some
embodiments, method 600 may begin by a start operation
(operation 601). In some embodiments, operation 601 may
represent an initial power up of a processor or a re-start after
operation was previously interrupted. Upon startup, method
600 may, in some embodiments, proceed with base execution
602, representing an unmodified execution of architected
instructions that does not rely upon auxiliary code, but uses
base microcode. Accordingly, base execution 602 may, in
some embodiments, be associated with certain inefficiencies,
such as higher power consumption and/or suboptimal perfor-
mance characteristics. In some embodiments, during base
execution 602, profiling of architected instructions that are
executed by the processor may be performed along with
population of a profile table (see FIG. 3, profile table 330). In
some embodiments, from base execution 602, a decision may
be made (operation 606) whether a micro-trap in the profile
table has been activated. The micro-trap may, in some
embodiments, be indicative of a count value for an entry in the
profile table exceeding a specified threshold. In some
embodiments, when the result of operation 606 is NO,
method 600 may return to base execution 602. In some
embodiments, when the result of operation 606 is YES, a
determination may be made (operation 608) whether a
hotspot threshold was exceeded.

As illustrated by operations 606 and 608, in some embodi-
ments, there may be two count thresholds supported by the
profile table. The threshold in operation 608 may be a higher
value that is used to identify code hotspots. The threshold in
operation 606 may be a lower threshold for jump TLB man-
agement, as will be described in further detail below. In
certain embodiments, auxiliary code handler 320 (see FI1G. 3)
may be invoked by the micro-trap and may perform region
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optimization and/or jump TLB management. To identify
which threshold should be used for triggering the micro-trap
atany given time, a corresponding bit in the profile table may
be used in some embodiments.

In some embodiments, in method 600, when the result of
operation 608 is NO, a determination may be made (operation
610) whether the triggered micro-trap corresponds to an aux-
iliary code entry point. The determination in operation 610
may, in some embodiments, evaluate whether a current
instruction referenced by the architected IP is a jump instruc-
tion. In some embodiments, when the result of operation 610
is NO, then the profile table may be set (operation 612) to the
hotspot threshold and execution may return to base execution
602. When the result of operation 610 is YES, then the jump
TLB may, in some embodiments, be updated (operation 618)
from the jump table. In some embodiments, when operation
618 is reached, auxiliary code corresponding to architected
instructions currently being executed is available, and method
600 may proceed to enhanced execution 603.

In some embodiments, when the result of operation 608 is
YES, then an execution context of the architected instructions
currently being executed may be analyzed (operation 614)
and an auxiliary code block may be generated (operation
614). In at least one embodiment, the auxiliary code may then
be added (operation 616) to the auxiliary code store, a jump
table entry may be created (operation 616), and a jump TLB
entry may be updated (operation 616). Next, method 600
may, in some embodiments, proceed to enhanced execution
603 where the auxiliary code may be blended with base
microcode. In some embodiments, the base microcode and
the auxiliary code may be blended to produce enhanced
microcode that specifies enhanced execution 603 for the
architected instruction. In some embodiments, a number of
operands in enhanced execution 603 may difter from a num-
ber of operands in base execution 602 and a number of func-
tions performed by enhanced execution 603 may differ from
a number of functions performed by base execution 602.

In some embodiments, from base execution 602, a decision
may be made (operation 604) whether the architected IP
address results in a hit in the jump TLB. When the result of
operation 604 is NO, method 600 may, in some embodiments,
return to base execution 602. In at least one embodiment,
when the result of operation 604 is YES, auxiliary code cor-
responding to the architected IP address may be available, and
method 600 may proceed to enhanced execution 603. In some
embodiments, during enhanced execution 603, a decision
may be made (operation 620) whether an auxiliary IP address
refers to a null value. When the result of operation 620 is NO,
method 600 may, in some embodiments, return to enhanced
execution 603. In some embodiments, when the result of
operation 620 is YES, then no auxiliary code corresponding
to the currently executed architected instructions is available,
so method 600 may return to base execution 602. In some
embodiments, method 600 may be terminated or be inter-
rupted (not shown) from base execution 602 or enhanced
execution 603.

As described herein, enhanced (or modified) execution
using auxiliary code may be implemented in embodiments
having an out of order execution engine to achieve improved
performance. Enhanced execution using auxiliary code, as
presented herein, may also be used in low power applications
that may employ an in-order execution engine.

The following pertain to further embodiments:

Embodiment 1 is a method to enhance code execution
comprising: identifying, as a hotspot, a code sequence of
architected instructions executing with a frequency exceed-
ing a hotspot threshold; identifying an instance of an archi-
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tected instruction in the hotspot to optimize, wherein the
architected instruction corresponds to a set of base microcode
operations; generating a set of auxiliary code operations cor-
responding to the base microcode operations associated with
the architected instruction instance; and recording a mapping
between the auxiliary code generated and the architected
instruction instance.

In embodiment 2, the subject matter of embodiment 1 can
optionally include retrieving the auxiliary code operations
associated with the architected instruction instance; and
blending base microcode and the auxiliary code retrieved to
produce enhanced microcode, wherein the base microcode
for an architected instruction corresponds to a first operation,
and wherein the enhanced microcode corresponds to a second
operation.

In embodiment 3, the blending included in the subject
matter of embodiment 2 can optionally include appending
one auxiliary code operation to one corresponding base
microcode operation.

In embodiment 4, the auxiliary code and the base micro-
code included in the subject matter of embodiment 2 are
optionally maintained in separate memory regions, and the
blending included in the subject matter of embodiment 2 can
optionally include invoking a jump table to identify an aux-
iliary code operation corresponding to a base code operation.

In embodiment 5, the operands in the modified execution
included in the subject matter of embodiment 2 can optionally
differ from operands in the base execution.

In embodiment 6, the number of operands in the enhanced
microcode included in the subject matter of embodiment 5
can optionally differ from a number of operands in the base
microcode.

In embodiment 7, a function performed by the enhanced
microcode included in the subject matter of embodiment 2
can optionally differ from a function performed by the base
microcode.

In embodiment 8, the number of functions performed by
the enhanced microcode included in the subject matter of
embodiment 7 can optionally differ from a number of func-
tions performed by the base microcode.

In embodiment 9, the analyzing the execution context
included in the subject matter of embodiment 1 can optionally
include analyzing contextual information describing prior
executions of the hotspot.

In embodiment 10, the contextual information included in
the subject matter of embodiment 9 can optionally include at
least one of: information indicating a likelihood of a branch
path; information indicating a likelihood of an operand ref-
erencing a hardware structure; information indicating a like-
lihood of an operand referencing a memory address; infor-
mation indicating a likelihood of an operand storing a given
value; and information indicating a frequency of consump-
tion of a result of an instruction.

Embodiment 11 is a processor comprising: a computer
readable storage medium accessible to the processor, includ-
ing processor executable instructions to cause the processor
to: profile code sequences of architected instructions to detect
hotspots appearing more frequently than a hotspot threshold;
analyze an execution context of a hotspot included in the
hotspots detected to identify a potential optimization corre-
sponding to the hotspot; generate auxiliary code associated
with the potential optimization; and store the auxiliary code.

In embodiment 12, the instructions included in the subject
matter of embodiment 11 can optionally include instructions
to cause the processor to: retrieve the auxiliary code associ-
ated with the potential optimization; and blend base micro-
code with the auxiliary code retrieved to produce enhanced
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microcode, wherein the base microcode for an architected
instruction specifies a base execution of the architected
instruction, and wherein the enhanced microcode specifies an
enhanced execution for the architected instruction.

In embodiment 13, the executing the base execution
included in the subject matter of embodiment 12 can option-
ally consumer more power than executing the enhanced
execution.

In embodiment 14, performance of the base execution
included in the subject matter of embodiment 12 can option-
ally be lower than a performance of the enhanced execution.

In embodiment 15, the instructions to analyze the execu-
tion context included in the subject matter of embodiment 13
can optionally include instructions to store contextual infor-
mation describing prior executions of the hotspot.

In embodiment 16, the contextual information included in
the subject matter of embodiment 15 can optionally include at
least one of: information indicating a likelihood of a branch
path; information indicating a likelihood of an operand ref-
erencing a hardware structure; information indicating a like-
lihood of an operand referencing a memory address; infor-
mation indicating a likelihood of an operand storing a given
value; and information indicating a frequency of consump-
tion of a result of an instruction.

Embodiment 17 is a computer system comprising: a pro-
cessor comprising a first core; and a memory accessible to the
processor, wherein the first core includes instructions execut-
able by the first core to: profile code sequences of architected
instructions to detect hotspot code appearing more frequently
than a hotspot threshold; analyze an execution context of the
hotspot code to identify a potential optimization of the
hotspot code; generate auxiliary code associated with the
potential optimization; and store the auxiliary code.

In embodiment 18, the first core included in the subject
matter of embodiment 17 can optionally retrieve the auxiliary
code associated with the potential optimization; and blend
base microcode with the auxiliary code retrieved to produce
enhanced microcode, wherein the base microcode for an
architected instruction specifies a base execution of the archi-
tected instruction, and wherein the enhanced microcode
specifies an enhanced execution for the architected instruc-
tion.

In embodiment 19, the first core included in the subject
matter of embodiment 17 can optionally include a jump table
that indexes hotspot code to corresponding auxiliary code;
and a jump translation lookaside buffer to cache entries in the
jump table.

In embodiment 20, the first core included in the subject
matter of embodiment 17 can optionally include an auxiliary
code handler to blend the base microcode with the auxiliary
code.

In embodiment 21, the first core included in the subject
matter of embodiment 17 can optionally include: a base
microcode store; and an auxiliary code store.

In embodiment 22, the instructions to analyze the execu-
tion context included in the subject matter of embodiment 17
can optionally include instructions to store contextual infor-
mation describing prior executions of the hotspot.

In embodiment 23, the contextual information included in
the subject matter of embodiment 22 can optionally include at
least one of: information indicating a likelihood of a branch
path; information indicating a likelihood of an operand ref-
erencing a hardware structure; information indicating a like-
lihood of an operand referencing a memory address; infor-
mation indicating a likelihood of an operand storing a given
value; and information indicating a frequency of consump-
tion of a result of an instruction.
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In embodiment 24, the analyzing the execution context
included in the subject matter of any one of embodiments 1-8,
can optionally include analyzing contextual information
describing prior executions of the hotspot.

In embodiment 25, the first core included in the subject
matter of any one of embodiments 17-18 can optionally
include a jump table that indexes hotspot code to correspond-
ing auxiliary code; and a jump translation lookaside buffer to
cache entries in the jump table.

In embodiment 26, the first core included in the subject
matter of any one of embodiments 17-19 can optionally
include an auxiliary code handler to blend the base microcode
with the auxiliary code.

In embodiment 27, the instructions to analyze the execu-
tion context included in the subject matter of any one of
embodiments 17-21 can optionally include instructions to
store contextual information describing prior executions of
the hotspot.

To the maximum extent allowed by law, the scope of the
present disclosure is to be determined by the broadest per-
missible interpretation of the following claims and their
equivalents, and shall not be restricted or limited to the spe-
cific embodiments described in the foregoing detailed
description.

What is claimed is:

1. A method to enhance code execution, the method com-
prising:

identifying, as a hotspot, a code sequence of architected

instructions executing with a frequency exceeding a
hotspot threshold;
identifying an instance of an architected instruction in the
hotspot to optimize, wherein the architected instruction
corresponds to a set of base microcode operations;

generating a set of auxiliary code corresponding to the base
microcode operations associated with the architected
instruction instance, including blending base microcode
of the base microcode operations and auxiliary code
associated with the architected instruction instance to
produce enhanced microcode, including appending an
auxiliary code operation to a corresponding base micro-
code operation, wherein the base microcode for the
architected instruction instance corresponds to a first
operation and the enhanced microcode corresponds to a
second operation; and

recording a mapping between the set of auxiliary code and

the architected instruction instance.

2. The method of claim 1, wherein the auxiliary code and
the base microcode are maintained in separate memory
regions, and wherein blending includes invoking a jump table
to identify an auxiliary code operation corresponding to a
base code operation.

3. The method of claim 1, wherein operands in the modified
execution differ from operands in the base execution.

4. The method of claim 3, wherein a number of operands in
the enhanced microcode differs from a number of operands in
the base microcode.

5. The method of claim 1, wherein a function performed by
the enhanced microcode differs from a function performed by
the base microcode.

6. The method of claim 5, wherein a number of functions
performed by the enhanced microcode differs from a number
of functions performed by the base microcode.

7. The method of claim 1, further comprising analyzing the
code sequence of executed instructions to obtain contextual
information describing an execution context of the executed
instructions.

20

25

30

35

40

45

50

55

60

65

16

8. The method of claim 7, wherein the contextual informa-
tion includes at least one of:

information indicating a likelihood of a branch path;

information indicating a likelihood of an operand referenc-

ing a hardware structure;

information indicating a likelihood of an operand referenc-

ing a memory address;

information indicating a likelihood of an operand storing a

given value; and

information indicating a frequency of consumption of a

result of an instruction.

9. A processor, comprising:

a microcode storage to store base microcode;

an auxiliary code store to store auxiliary code, the auxiliary

code store concealed from and transparent to system
software;

a blender coupled to the auxiliary code store and the base

microcode storage to form enhanced microcode;

an execution unit to execute instructions stored in a non-

transitory computer readable storage medium accessible

to the processor, including processor executable instruc-

tions to cause the processor to:

profile code sequences of architected instructions to
detect hotspots appearing more frequently than a
hotspot threshold;

analyze an execution context of a hotspot included in the
hotspots detected to identify a potential optimization
corresponding to the hotspot;

generate auxiliary code associated with the potential
optimization, including to append an auxiliary code
operation to a corresponding base microcode opera-
tion to blend base microcode with auxiliary code to
form enhanced microcode, wherein the base micro-
code for an architected instruction of the hotspot cor-
responds to a first operation and the enhanced micro-
code corresponds to a second operation; and

store the auxiliary code.

10. The processor of claim 9, wherein the instructions
include instructions to cause the processor to:

retrieve the auxiliary code associated with the potential

optimization; and

wherein the base microcode for the architected instruction

specifies a base execution of the architected instruction,
and wherein the enhanced microcode specifies an
enhanced execution for the architected instruction.

11. The processor of claim 10, wherein execution of the
base microcode is to consume more power than execution of
the enhanced microcode.

12. The processor of claim 10, wherein a performance of
the base microcode is lower than a performance of the
enhanced execution.

13. The processor of claim 11, wherein the instructions to
analyze the execution context include instructions to:

store contextual information describing prior executions of

the hotspot.

14. The processor of claim 13, wherein the contextual
information includes at least one of:

information indicating a likelihood of a branch path;

information indicating a likelihood of an operand referenc-

ing a hardware structure;

information indicating a likelihood of an operand referenc-

ing a memory address;

information indicating a likelihood of an operand storing a

given value; and

information indicating a frequency of consumption of a

result of an instruction.



US 9,342,303 B2

17

15. A computer system comprising:
a processor comprising a first core; and
amemory accessible to the processor, wherein the first core
includes instructions executable by the first core to:
profile code sequences of architected instructions to
detect hotspot code appearing more frequently than a
hotspot threshold;
analyze an execution context of the hotspot code to
identify a potential optimization of the hotspot code;
generate auxiliary code associated with the potential
optimization, including to append an auxiliary code
operation to a corresponding base microcode opera-
tion to blend base microcode with auxiliary code to
form enhanced microcode, wherein the base micro-
code for an architected instruction of the hotspot code
corresponds to a first operation and the enhanced
microcode corresponds to a second operation; and
store the auxiliary code.
16. The system of claim 15, wherein the first core is to:
retrieve the auxiliary code associated with the potential
optimization; and
wherein the base microcode for an architected instruction
specifies a base execution of the architected instruction,
and wherein the enhanced microcode specifies an
enhanced execution for the architected instruction.
17. The system of claim 15, wherein the first core includes:
a jump table that indexes hotspot code to corresponding
auxiliary code; and
a jump translation lookaside buffer to cache entries in the
jump table.
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18. The system of claim 15, wherein the first core includes:

an auxiliary code handler to blend the base microcode with

the auxiliary code.

19. The system of claim 15, wherein the first core includes:

a base microcode store; and

an auxiliary code store.

20. The system of claim 15, wherein the instructions to
analyze the execution context include instructions to:

store contextual information describing prior executions of

the hotspot.

21. The system of claim 20, wherein the contextual infor-
mation includes at least one of:

information indicating a likelihood of a branch path;

information indicating a likelihood of an operand referenc-

ing a hardware structure;

information indicating a likelihood of an operand referenc-

ing a memory address;

information indicating a likelihood of an operand storing a

given value; and

information indicating a frequency of consumption of a

result of an instruction.

22. The method of claim 1, further comprising storing the
enhanced microcode in an enhanced execution memory
region, the enhanced execution memory region within a core
of'a processor and transparent to system software.

23. The processor of claim 9, wherein the blender is to
synchronize a stream of the auxiliary code with a stream of
the base microcode.



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,342,303 B2 Page 1of1
APPLICATION NO. : 13/843940

DATED :May 17, 2016

INVENTOR(S) : James E. Smith et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the claims,
Column 15, line 27, delete “to enhance code execution, the method™.

Signed and Sealed this
Twenty-sixth Day of July, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office



