发明名称
(1R, 4S) - 或 (1S, 4R) - 1 - 氨基 - 4 -(羟基) - 2 - 环戊烯衍生物的对映体的制备方法

摘要
本发明公开一种用通式 XV I 或 XV II 表示的 (1R, 4S) - 或 (1S, 4R) - 1 - 氨基 - 4 -(羟基) - 2 - 环戊烯衍生物的对映体的制备方法。在第一步中用能将通式 V 表示的环戊烯衍生物用作唯一的氮源、唯一的碳源或唯一的碳氢源的微生物，具有 N - 酮胺基醇水解酶活性的酶或青霉素 G 酶基转移酶将通式 V 表示的环戊烯衍生物转化成通式 VI 或 VII 表示的 (1R, 4S) - 或 (1S, 4R) - 1 - 氨基 - 4 -(羟基) - 2 - 环戊烯，第二步中将后者酰化产生用通式 XV II 或 XV II 表示的化合物。
1. 用通式 XVI 或 XVII 表示的 (1R, 4S)-或 (1S, 4R)-1-氨基-4-(羟甲基)-2-环戊烯衍生物的对映体的制备方法，

式中 R’ 表示 C_{1-4} 烷基、C_{5-8} 烷氧基、芳基或芳氧基，其特征在于在第一步中用博代特氏杆菌 DSM 11172、红串红球菌 DSM 10686、节细菌 DSM 10328、红球菌 DSM 11291、木糖氧化产碱菌反硝化亚种 DSM 10329、戈登氏菌 DSM 10687、具有 N-酰氨基酮水解酶活性的酶或青霉素 G 酶基转移酶将用通式 V 表示的环戊烯衍生物

式中 R’ 表示 C_{1-4} 烷基、C_{5-8} 烷氧基、芳基或芳氧基，转化成用式 VI 或 VII 表示的 (1R, 4S)-或 (1S, 4R)-1-氨基-4-(羟甲基)-2-环戊烯，

第二步中将后者酰化产生通式 XVI 或 XVII 表示的化合物。

2. 用式 XVIII 表示的 (1R, 4S)-1-丁酰氨基-4-(羟甲基)-2-环戊烯对映体，

其特征在于对映体过量大于 0%，可用权利要求 1 所述的方法制得。

3. 如权利要求 2 所述的对映体，其特征在于对映体过量至少为 80%，用权利要求 1 所述的方法制得。

4. 如权利要求 2 所述的对映体，其特征在于对映体过量至少为 90%，用权利要求 1 所述的方法制得。

5. 如权利要求 2 所述的对映体，其特征在于对映体过量至少为 95%，用权利要求 1 所述的方法制得。
6. 如权利要求 2 所述的对映体，其特征在于对映体过量至少为 98%，用权利要求 1 所述的方法制得。

7. 外消旋的 1-丁酰氨基-4-(羟甲基)-2-环戊烯。
(1R, 4S)-或(1S, 4R)-1-氨基-4-(羟甲基)-2-环戊烯衍生物的对映体的制备方法

本申请是申请号为 98108865.1，申请日为 1998 年 5 月 13 日，发明名称为“(1S, 4R)-或(1R, 4S)-4-(2-氨基-6-氯-9H-嘌呤-9-基)-2-环戊烯-1-甲醇或其盐的制备方法”的专利申请的分案申请。

技术领域

本发明涉及用式 I 或 II 表示的(1S, 4R)-或(1R, 4S)-4-(2-氨基-6-氯-9H-嘌呤-9-基)-2-环戊烯-1-甲醇或其盐的新颖制备方法，

![化学结构式](image1)

以及用通式 XVI 或 XVII 表示的光学活性化合物的新颖制备方法。

![化学结构式](image2)

背景技术

发明内容

本发明的目的是提供(1S, 4R)-或(1R, 4S)-4-(2-氨基-6-氯-9H-嘌呤-9-基)-2-环戊烯-1-甲醇或其盐的简单、低成本和更经济的制备方法。
本发明的目的已由权利要求书所述的新颖方法达到。

本新颖方法的第一步是将用式 III 表示的 (±)-2-氮杂-双环[2.2.1]庚-5-烯-3-酮酰化，

![化学结构式 III]

产生用通式 IV 表示的 (±)-2-氮杂-双环[2.2.1]庚-5-烯-3-酮的衍生物，

![化学结构式 IV]

式中 R' 表示 C_{1-4} 烷基、C_{1-4} 烷氧基、芳基或芳氧基。

C_{1-4} 烷基可被取代或未被取代。下文中，取代的 C_{1-4} 烷基是指被卤原子取代的 C_{1-4} 烷基。卤原子可用 F、Cl、Br 或 I。C_{1-4} 烷基的实例是甲基、乙基、丙基、丁基、异丁基、叔丁基、异丙基、氯甲基、溴甲基、二氯甲基、二溴甲基。用作 C_{1-4} 烷基的较好是甲基、乙基、丙基、丁基、异丁基或氯甲基。

可以用作 C_{1-4} 烷氧基的例如是甲氧基、乙氧基、丙氧基、丁氧基、叔丁氧基或异丁氧基。优选使用的 C_{1-4} 烷氧基是叔丁氧基。

可以用作芳基的例如是苯基或苯基，较好是苯基。苯氧基或苯氧基例如可用作芳氧基。

前体 (±)-2-氮杂-双环[2.2.1]庚-5-烯-3-酮可按 EP-A 0508352 中揭示的方法制备。

酰化可用通式 XI 表示的羰基卤化物 (carbonyl halide)

![化学结构式 XI]

或用通式 XII 表示的羧酸酯进行，

![化学结构式 XII]

式中 R' 具有上述的含义，X 表示卤原子。氯、氯、溴或碘可用作卤原子。较好使用氯和氟。
碳基卤化物的实例是：乙酰氯、氯乙酰氯、丁酰氯、异丁酰氯、苯基乙酰氯、氯甲酸苄酯(Cbz—Cl)、丙酰氯、苯甲酰氯、氯甲酸烯丙酯或叔丁氧羰基氯。羧酸酯的实例是：过二碳酸二叔丁酯(di-tert-butyl dicarbonate)、丁酸酯、乙酸酯或丙酸酯。

所述的酰化可在没有溶剂或加入非质子传递溶剂的条件下进行。

酰化宜在非质子传递溶剂中进行。合适的非质子传递溶剂的实例是二异丙醚、吡啶、乙腈、二甲基甲酰胺、三乙胺、四氢呋喃、甲苯、二氯甲烷、N-甲基吡咯烷酮或它们的混合物。

酰化宜在-80-50℃，较好0-25℃的温度下进行。

在本新颖方法的第二步中，将用通式 IV 表示的(±)-2-氮杂-双环[2.2.1.]庚-5-烯 3-酮的衍生物还原产生用通式 V 表示的环戊烯衍生物，

式中 R' 具有上述的含义。

还原宜用碱金属硼氢化物或碱土金属硼氢化物、碱金属铝氢化物或碱土金属铝氢化物或 Vitride(二(2-甲氧基乙氧基)二氢铝钠)进行。氢化铝钠或氢化铝钾可用作碱金属铝氢化物。硼氢化钠或钾可用作碱金属硼氢化物。硼氢化钙可用作碱土金属硼氢化物。氢化铝例如可用作氢化物。

还原宜在质子传递溶剂中进行。可以使用的质子传递溶剂是低级脂肪醇，如甲醇、乙醇、丙醇、异丙醇、丁醇、仲丁醇、叔丁醇或水，或这些醇与水的混合物。

还原宜在-40-40℃，较好为 0-20℃的温度下进行。

本新颖方法的第三步用微生物，具有 N-酰氨基酶水解酶活性的酶或青霉素 G 酰基转移酶将用通式 V 表示的环戊烯衍生物转化为用式 VI 或 VII 表示的(1R, 4S)-或 (1S, 4R)-1-氨基-4-(羟甲基)-2-环戊烯，

这种方法将酰化的(1S, 4R) 或 (1R, 4S)-氨基醇衍生物转化成 (1R, 4S)-或 (1S, 4R)-1-氨基-4-(羟甲基)-2-环戊烯(通式 VI、VII)。

所有能将通式 V 表示的环戊烯衍生物用作唯一的氮源、唯一的碳源或唯一的碳氮源的微生物都适合于该生物转化。这些微生物可用常规的微生物学技术从土壤样品、污泥或废水中分离。通过用常规方法在含用通式 V 表示的环戊烯衍生物
式中 R' 具有上述的含义，

- 作为唯一碳源和氮源
- 作为唯一氮源和合适碳源或
- 作为唯一碳源和合适氮源的营养培养基中培养这些微生物而进行分离。

具体实施方式

运用式 V 表示的合适环戊烯衍生物的实例是：N-乙酰-、N-丙酰-、N-异丁酰-、N-叔丁氧羰基-(N-BOC)、N-丁酰-或 N-苯基乙酰-1-氨基-4-羟甲基-2-环戊烯。

所述的微生物例如可将铵、硝酸盐、氨基酸或菌繁殖基质用作合适的氮源。所述的微生物例如可将糖、糖醇、C₂-C₆-羧酸或氨基酸繁殖基质用作合适的碳源。葡萄糖之类的碳糖或戊糖可用作糖。甘油例如可用作糖醇。乙酸或丙酸例如可用作 C₂-C₆-羧酸。亮氨酸、丙氨酸、天冬酰胺例如可用作氨基酸。

可以使用的选择基和培养基是本领域中普通技术人员常用的培养基（表 1 中所述的培养基）或完全培养基（含酵母提取液的培养基）（如营养酵母汤（NYB），较好使用表 1 中所述的酵母汤）。

在培养和选择过程中，方便地诱导了微生物的活性酶。运用式 V 表示的环戊烯衍生物可用作酶的诱导物。

培养和选择一般在 20-40℃，较好在 30-38℃ 的温度和在 5.5-8，较好在 6.8-7.8 的 pH 值的条件下进行。

该生物转化宜用将环戊烯衍生物的（1R，4S）异构体用作唯一的氮源、唯一的碳源或唯一的碳氮源的微生物进行。

该生物转化较好用产碱杆菌/博代特氏杆菌属、红球菌属、节细菌属、产碱杆菌属、土壤杆菌/根瘤菌属、芽胞杆菌属、假单胞菌属或戈登氏菌属微生物进行，特别是产碱杆菌/博代特氏杆菌属 FB 188 (DSM 11172)、红球菌 CB 101 (DSM 10686)、节细菌 HSZ5 (DSM 10328)、红球菌 FB 387 (DSM 11291)、木糖氧化产碱菌反硝化亚种 HSZ17 (DSM 10329)、土壤杆菌/根瘤菌属 HSZ30、单纯杆菌 K2、恶臭假单胞菌 K32 或戈登氏菌属 CB 100 (DSM 10687) 以及它们功能等同的变异体和突变体。按布达佩斯条约，微生物 DSM 10686 和 10687 于 20.05.1996 保存在德国微生物保藏和细胞培养股份公司 (Mascheroderweg 1b, D38124 Braunschweig)，微生物 DSM 10328 和 10329 于 06.11.1995 保存于该公司，微生
物 DSM 11291 于 08.10.1996 保藏于该公司，微生物 DSM 11172 于 20.09.1996 保
藏于该公司。

“功能等同的变异体和突变体” 是指具有与原微生物基本上相同的性质和功
能的微生物。这种变异体和突变体例如可用紫外辐射偶然产生。

产碱杆菌/博代特氏杆菌属 FB 188(DSM 11172)分类说明

<table>
<thead>
<tr>
<th>细胞形状</th>
<th>杆菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>宽度，微米</td>
<td>0.5-0.6</td>
</tr>
<tr>
<td>长度，微米</td>
<td>1.0-2.5</td>
</tr>
<tr>
<td>能动性</td>
<td>+</td>
</tr>
<tr>
<td>鞭毛突出</td>
<td>周毛的</td>
</tr>
<tr>
<td>革兰氏反应</td>
<td>-</td>
</tr>
<tr>
<td>被 3％KOH 溶解</td>
<td>+</td>
</tr>
<tr>
<td>氨肽酶(Cerny)</td>
<td>+</td>
</tr>
<tr>
<td>生孢</td>
<td>-</td>
</tr>
<tr>
<td>氧化酶</td>
<td>+</td>
</tr>
<tr>
<td>过氧化氢酶</td>
<td>+</td>
</tr>
<tr>
<td>ADH(醇脱氢酶)</td>
<td>-</td>
</tr>
<tr>
<td>来源于 NO₃ 的 NO₂</td>
<td>-</td>
</tr>
<tr>
<td>反硝化作用</td>
<td>-</td>
</tr>
<tr>
<td>脱氢酶</td>
<td>-</td>
</tr>
<tr>
<td>明胶的水解</td>
<td>-</td>
</tr>
<tr>
<td>由下列化合物产生的酸(OF 试验)</td>
<td></td>
</tr>
<tr>
<td>葡萄糖</td>
<td>-</td>
</tr>
<tr>
<td>果糖</td>
<td>-</td>
</tr>
<tr>
<td>阿拉伯糖</td>
<td>-</td>
</tr>
<tr>
<td>己二酸酯(盐)</td>
<td>+</td>
</tr>
<tr>
<td>己二酸酯(盐)</td>
<td>+</td>
</tr>
<tr>
<td>柠檬酸酯(盐)</td>
<td>+</td>
</tr>
<tr>
<td>苹果酸酯(盐)</td>
<td>+</td>
</tr>
<tr>
<td>甘露糖醇</td>
<td>-</td>
</tr>
</tbody>
</table>

红串红球菌 CB 101 (DSM 10686)的分类说明

1. 菌落的形态和颜色：短分支菌丝，老化时，它分裂成杆菌(rods)和球菌，
菌落闪光和部分融合，带淡粉红色的原色，RAL 1001；
2. 从肽聚糖中检出的氨基酸：内消旋-二氨基庚二酸；
3. 霉菌酸：红球菌属霉菌酸；测定霉菌酸的链长(C32-C44)和将该数据与DSM霉菌酸数据库中的数据登记项比较，发现与红球红球菌菌株图谱(pattern)有很大的相似性(相似性：0.588)。
4. 脂肪酸图谱：直链，饱和和不饱和脂肪酸和核酸硬脂酸。
5. 菌株的16S rDNA部分测序时，发现与红球红球菌特定区域的序列高度一致(100%)。

这种鉴定结果是明确的，因为三种相互独立的方法(霉菌酸、脂肪酸、16S rDNA)已确定该菌株是红球红球菌。

戈登氏菌属 sp. CB 100 (DSM 10687)的分类说明
1. 菌落的形态和颜色：短分支菌丝，老化时，它分裂成杆菌和球菌，菌落为淡橙黄色，(RAL 2008)；
2. 从肽聚糖中检出的氨基酸：内消旋-二氨基庚二酸；
3. 甲基萘醌类图谱：MK-9(H2)100%；
4. 霉菌酸：戈登氏菌属霉菌酸；用高温气相色谱测定霉菌酸的链长(C₃₀-C₆₀)。该图谱相当于在戈登氏菌属样本中发现的图谱。
5. 脂肪酸图谱：直链，饱和和不饱和脂肪酸和核酸硬脂酸。
6. 菌株的16S rDNA部分测序时，仅发现与深红戈登氏菌特定区域的序列较低的一致性(98.8%)。

根据这些可得的结果(甲基萘醌类图谱、霉菌酸、脂肪酸、16S rDNA)，虽然可明确地将此分离物确定为戈登氏菌属，但不能根据这些结果确定它是已知的戈登氏菌属。因此，将菌株DSM10687假定为新的，未曾描述过的戈登氏菌属物种。

木糖氧化产碱菌反硝化亚种 HSZ17 (DSM 10329)的分类说明
该菌株的性质
细胞形状：杆菌
宽度，微米：0.5-0.6
长度，微米：1.5-3.0
能动性：+
鞭毛突出：周毛的
革兰氏反应
<table>
<thead>
<tr>
<th>性质</th>
<th>评分</th>
</tr>
</thead>
<tbody>
<tr>
<td>被 3% KOH 溶解</td>
<td>+</td>
</tr>
<tr>
<td>氨肽酶 (Cerny)</td>
<td>+</td>
</tr>
<tr>
<td>芽胞</td>
<td>-</td>
</tr>
<tr>
<td>氧化酶</td>
<td>+</td>
</tr>
<tr>
<td>过氧化氢酶</td>
<td>+</td>
</tr>
<tr>
<td>厌氧生长</td>
<td>-</td>
</tr>
<tr>
<td>ADH (醇脱氢酶)</td>
<td>+</td>
</tr>
<tr>
<td>来源于 NO₃ 的 NO₂</td>
<td>+</td>
</tr>
<tr>
<td>反硝化作用</td>
<td>+</td>
</tr>
<tr>
<td>脲酶</td>
<td>-</td>
</tr>
<tr>
<td>明胶的水解</td>
<td>-</td>
</tr>
<tr>
<td>Tween 80 的水解</td>
<td>-</td>
</tr>
<tr>
<td>由下列化合物产生的酸 (OF 试验)</td>
<td></td>
</tr>
<tr>
<td>葡萄糖需氧</td>
<td>-</td>
</tr>
<tr>
<td>木糖 80</td>
<td>-</td>
</tr>
<tr>
<td>基质利用</td>
<td></td>
</tr>
<tr>
<td>葡萄糖</td>
<td>-</td>
</tr>
<tr>
<td>果糖</td>
<td>-</td>
</tr>
<tr>
<td>阿拉伯糖</td>
<td>-</td>
</tr>
<tr>
<td>柠檬酸酯 (盐)</td>
<td>+</td>
</tr>
<tr>
<td>苹果酸酯 (盐)</td>
<td>+</td>
</tr>
<tr>
<td>甘露糖醇</td>
<td>-</td>
</tr>
</tbody>
</table>

节细菌属 HSZ5 (DSM 10328) 的分类说明

表征鉴定: 具有显著杆菌-球菌生长循环的革兰氏阳性不规则杆菌；严格需氧；在葡萄糖中没有形成酸或气体。

<table>
<thead>
<tr>
<th>特征</th>
<th>评分</th>
</tr>
</thead>
<tbody>
<tr>
<td>能动性</td>
<td>-</td>
</tr>
<tr>
<td>芽胞</td>
<td>-</td>
</tr>
<tr>
<td>过氧化氢酶</td>
<td>+</td>
</tr>
<tr>
<td>细胞壁中的内消旋-二氨基庚二酸</td>
<td>无</td>
</tr>
<tr>
<td>肽聚糖类型</td>
<td>A3α, L-Lys-L-Ser-L-Thr-L-Ala</td>
</tr>
</tbody>
</table>
16S rDNA 序列相似性：用滋养节杆菌，分枝节杆菌和氧化节杆菌对变异性最大的区域进行测序时发现的最大值为 98.2 %

土壤杆菌/根瘤菌属 HSZ30 的分类说明

细胞形状 多型杆菌
宽度(微米) 0.6-1.0
长度(微米) 1.5-3.0
革兰氏反应 -
被 3 % KOH 溶解 +
氨肽酶 +
芽胞 -
氧化酶 +
过氧化氢酶 +
能动性 +
厌氧生长 -
由硝酸盐产生的亚硝酸盐 -
反硝化作用 -
脲酶 +
明胶的水解 -
从如下物质中产生酸：
L-阿拉伯糖 +
半乳糖 -
松三糖 -
岩藻糖 +
阿糖醇 -
甘露糖醇 -
赤藓醇 -
石蕊汁的碱化 +
酶乳糖 -

16S rDNA 的部分测序揭示与土壤杆菌属和根瘤菌属的样本具有较大的相似性，约为 96 %，明确地将其确定为这些属内物种是不可能的。
单纯杆菌 K2 的分类说明

<table>
<thead>
<tr>
<th>特性</th>
<th>标记</th>
</tr>
</thead>
<tbody>
<tr>
<td>细胞形状</td>
<td>杆菌</td>
</tr>
<tr>
<td>宽度(微米)</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>长度(微米)</td>
<td>3.0-5.0</td>
</tr>
<tr>
<td>荚膜</td>
<td>-</td>
</tr>
<tr>
<td>椭圆体</td>
<td>-</td>
</tr>
<tr>
<td>圆形体</td>
<td>-</td>
</tr>
<tr>
<td>孢子囊</td>
<td>-</td>
</tr>
<tr>
<td>过氧化氢酶</td>
<td>+</td>
</tr>
<tr>
<td>厌氧生长</td>
<td>-</td>
</tr>
<tr>
<td>VP 反应</td>
<td>n.g.</td>
</tr>
<tr>
<td>最大温度</td>
<td></td>
</tr>
<tr>
<td>正生长时温度，℃</td>
<td>40</td>
</tr>
<tr>
<td>负生长时温度，℃</td>
<td>45</td>
</tr>
<tr>
<td>在 pH 为 5.7 培养基中的生长</td>
<td>-</td>
</tr>
<tr>
<td>NaCl 2%</td>
<td>+</td>
</tr>
<tr>
<td>5 %</td>
<td>-</td>
</tr>
<tr>
<td>7 %</td>
<td>-</td>
</tr>
<tr>
<td>10 %</td>
<td>-</td>
</tr>
<tr>
<td>培养基</td>
<td>+</td>
</tr>
<tr>
<td>由下列物质产生酸(ASS)</td>
<td></td>
</tr>
<tr>
<td>D-葡萄糖</td>
<td>+</td>
</tr>
<tr>
<td>L-阿拉伯糖</td>
<td>+</td>
</tr>
<tr>
<td>D-木糖</td>
<td>-</td>
</tr>
<tr>
<td>D-甘露糖醇</td>
<td>+</td>
</tr>
<tr>
<td>D-果糖</td>
<td>+</td>
</tr>
<tr>
<td>由果糖产生的气体</td>
<td>-</td>
</tr>
<tr>
<td>卵磷脂酶</td>
<td>-</td>
</tr>
<tr>
<td>下列物质的水解</td>
<td></td>
</tr>
<tr>
<td>淀粉</td>
<td>+</td>
</tr>
<tr>
<td>明胶</td>
<td>+</td>
</tr>
<tr>
<td>酯蛋白</td>
<td>-</td>
</tr>
</tbody>
</table>
 Tween 80 +
七叶苷 -
利用下列物质
柠檬酸盐 +
丙酸盐 -
由硝酸盐产生的亚硝酸盐 +
吲哚 -
苯丙氨酸脱氨酶 -
精氨酸脱羧基酶 -
对细胞脂肪酸的分析确定它是芽胞杆菌属。
16S rDNA 部分测序表明与单纯芽胞杆菌的相似性为 100。
恶臭假单胞菌 K32 的分类说明

<table>
<thead>
<tr>
<th>性状</th>
<th>培养基</th>
</tr>
</thead>
<tbody>
<tr>
<td>细胞形状</td>
<td>杆菌</td>
</tr>
<tr>
<td>宽度(微米)</td>
<td>0.8-0.9</td>
</tr>
<tr>
<td>长度(微米)</td>
<td>1.5-4.0</td>
</tr>
<tr>
<td>能动性</td>
<td>+</td>
</tr>
<tr>
<td>鞭毛突出</td>
<td>极性>1</td>
</tr>
<tr>
<td>革兰氏反应</td>
<td>-</td>
</tr>
<tr>
<td>被 3 % KOH 溶解</td>
<td>+</td>
</tr>
<tr>
<td>肽酶(Cerny)</td>
<td>+</td>
</tr>
<tr>
<td>芽胞</td>
<td>-</td>
</tr>
<tr>
<td>氧化酶</td>
<td>+</td>
</tr>
<tr>
<td>过氧化氢酶</td>
<td>+</td>
</tr>
<tr>
<td>厌氧生长</td>
<td>-</td>
</tr>
<tr>
<td>色素</td>
<td></td>
</tr>
<tr>
<td>荧光性</td>
<td>+</td>
</tr>
<tr>
<td>胆汁酶</td>
<td>-</td>
</tr>
<tr>
<td>ADH</td>
<td>+</td>
</tr>
<tr>
<td>来源于硝酸盐的亚硝酸盐</td>
<td>-</td>
</tr>
<tr>
<td>反硝化</td>
<td>-</td>
</tr>
<tr>
<td>尿素</td>
<td>-</td>
</tr>
<tr>
<td>明胶的水解</td>
<td>-</td>
</tr>
</tbody>
</table>
基质利用
己二酸酯(或盐)
柠檬酸酯(或盐)
苹果酸酯(或盐)
D-扁桃酸酯(或盐)
苯基乙酸酯(或盐)
D-酒石酸酯(或盐)
D-葡萄糖
海藻糖酶
甘露糖醇
苯甲酸甲酸酯(或盐)
丙二醇
丁醇
苯胺
色胺
乙酰胺
马尿酸盐(或酯)

细胞脂肪酸的分布型是恶臭假单胞菌属特有的。
16S rDNA 的部分测序表明与门多萨假单胞菌和产碱假单胞菌的相似性约为 98 %，与恶臭假单胞菌的相似性为 97.4 %。

红球菌属 sp. FB 387(DSM 11291)的分类说明
1. 菌落的形态和颜色：短分支菌丝，老化时，它分裂成杆菌(rods)和球菌，菌落无光泽，淡粉橙红色 RAL 2008；
2. 从肽聚糖中检出的氨基酸：内消旋-二氨基庚二酸；
3. 毒菌酸：红球菌属毒菌酸；
测定毒菌酸的链长(C32-C44)和将该数据与 DSMZ 毒菌酸数据库中的数据登记项比较表明与红球菌属红菌株图谱仅有很小的相似性(相似性：0.019)，这个相关系数太小，不能用于物种鉴定。
4. 脂肪酸图谱：直链、饱和和不饱和脂肪酸和双键不饱和脂肪酸。
 该脂肪酸图谱对于所有红球菌属样本及其紧密相关物(如分支杆菌属、诺卡...
氏菌属和戈登氏菌属的判断是有价值的。为了区分到物种水平，通过计人脂肪酸的定性和定量差别作了尝试，用数值方法将红球菌属 sp. FB 387 的脂肪酸图谱与数据库中的数据登记项进行比较。由于与上述的红球菌属物种只有小的相似性（0.063），用这种方法无法确认红球菌属 sp. FB 387。

5. 菌株的 16S rDNA 部分测序时，96-818 由于相关性为 97.9% 而确认为混浊红球菌。这种顺序一致性低于分类时明确定种所需的 99.5%。

根据所得结果，可假定菌株红球菌属 sp. FB 387 是一种新的、未曾描述过的红球菌属物种。

在这些微生物的常规初始培养后，生物转化可用休眠细胞（不再需要碳源和能源的非生长细胞）或生长细胞进行，这种生物转化较好用休眠细胞进行。

适于这种生物转化的具有 N-酰氨基酶水解酶活性的酶例如可用本领域中常用的破壁法从上述的微生物细胞中分离出来。为此例如可用超声法或梯氏压榨法。较好从红串红球菌 CB101 (DSM 10686) 微生物中分离这些酶。

合适的青霉素 G 酰基转移酶可从许多微生物中得到，如细菌和放线菌纲；具体地可从如下微生物中得到：大肠杆菌 ATCC 9637、巨大芽孢杆菌、淡紫链霉菌 ATCC 13664、诺卡氏菌 sp. ATCC 13635、雷氏普罗威登斯菌 ATCC 9918、粘性节细菌属 ATCC 15294、藤黄红球菌 ATCC 12975、产褐色链霉菌 ATCC 21289、无色杆菌属 ATCC 23358 和玫瑰色微球菌 ATCC 416。特别地使用市售的青霉素 G 酰基转移酶，如来源于大肠杆菌(Boehringer Mannheim)或巨大芽孢杆菌的青霉素 G 酰基转移酶 EC 3.5.1.11。

在优选的实施方式中，使用固定化的青霉素 G 酰基转移酶。

所述的生物转化可在本领域中常用的培养基中进行，如低摩尔浓度的磷酸盐、柠檬酸盐或 Hepes 缓冲液、水、营养酵母汁之类或表中所示的完全培养基。该生物转化较好在表 1 所示的培养基或低摩尔浓度磷酸盐缓冲液中进行。

该生物转化宜在一次或连续加入环戊烯衍生物（式 V）使其浓度不超过 10% 重量，较好不超过 2% 重量的条件下进行。

生物转化时的 pH 为 5-9，较好为 6-8。该生物转化时的温度宜为 20-40℃，较好为 25-30℃。

在第四步中，用式 VIII 表示的 N-(2-氨基-4,6-二氯-5-嘧啶基)甲酰胺
将环戊烯衍生物(式 VI 或 VII)转化为通式 IX 或 X 表示的(1S,4R)-或(1R,4S)-4-[(2-氨基-6-氯-5-甲酰氨基-4-嘧啶基)-氨基]-2-环戊烯-1-甲醚。

N-(2-氨基-4,6-二氯-5-嘧啶基)甲酰胺可按 WO95/21161 中揭示的方法制备。

第四步的反应宜在碱的存在下进行，可以使用有机碱或无机碱。三烷基胺可用作有机碱。所用三烷基胺的实例是三乙胺、三丁胺、三苯胺、吡啶或 N-甲基吡啶酮。可用无机碱的实例是碱金属碳酸盐或碱土金属碳酸盐，或碱金属碳酸氢盐或碱金属碳酸氢盐，如碳酸钾和碳酸氢钠。

第四步中的反应宜在质子传递溶剂中进行。低级烷基醇可用作质子传递溶剂，如甲醇、乙醇、丙醇、异丙醇、丁醇或异丁醇。

进行第四步反应的温度宜为 0-150 ℃，较好为 20-100 ℃。

在第五步中，按 WO 95/21161 中揭示的已知方法将(1R,4S)-或(1S,4R)-4-[(2-氨基-6-氯-5-甲酰氨基-4-嘧啶基)-氨基]-2-环戊烯-1-甲醚(式 IX、X)环化，产生用式 I 或 II 表示的最终产物。

环化一般在浓的含水酸(aqueous acid)存在下溶解在原甲酸三烷基酯中进行。可以使用原甲酸三烷基酯是原甲酸三甲酯或原甲酸三乙酯，例如盐酸、硫酸或甲磺酸可用作含水酸。

本发明还涉及用通式 XVI 或 XVII 表示的光学活性化合物的制备方法。

式中 R¹具有上述的含义。这些化合物可通过用上述的微生物、N-酰氨基醇水解酶或青霉素 G 酰基转移酶将用通式 V 表示的环戊烯衍生物
式中 R' 具有上述的含义。转化成式 VI 或 VII 表示的 (1R,4S)-或 (1S,4R)-1-氨基-4-（羟甲基）-2-环戊烯，

后者被酰化成式 XVI 或 XVII 表示的化合物。

微生物转化和酰化都在与上述相同的条件下进行。

酰化时的温度宜为 20-100 ℃，较好为 0-80 ℃。

用本方法制备的光学活性化合物的实例是：对映体过量为 98 % 的 (1R,4S)-N-叔丁氧羰基-1-氨基-4-羟甲基-2-环戊烯，对映体过量为 98 % 的 (1R,4S)-N-乙酰基-1-氨基-4-羟甲基-2-环戊烯，对映体过量为 98 % 的 (1R,4S)-N-丁酰基-1-氨基-4-羟甲基-2-环戊烯以及光学活性的 (1S,4R)-N-乙酰基-1-氨基-4-羟甲基-2-环戊烯和光学活性的 (1S,4R)-N-丁酰基-1-氨基-4-羟甲基-2-环戊烯。

在这些化合物中，光学活性的 (1R,4S)-N-丁酰基-1-氨基-4-羟甲基-2-环戊烯是文献中还未报道过的化合物。因此，本发明也涉及对映体过量大于 0 %，较好至少为 80 %、90 % 或 95 %，特别至少为 98 % 的光学活性 N-丁酰基-1-氨基-4-羟甲基-2-环戊烯。这些光学活性的化合物可用本领域中普通技术人员已知的方法外消旋化，产生文献中还未报道过的外消旋-N-丁酰基-1-氨基-4-羟甲基-2-环戊烯。

用通式 XIII 表示的外消旋或光学活性的 4-(羟甲基)-2-环戊烯衍生物的制备方法如下

式中 R' 具有上述的含义。在第一步中用通式 XI 表示的酯基卤化物

$R' \text{C} \rightarrow X$
式中 R¹ 和 X 具有上述的含义，将通式 XIV 表示的环戊烯-4-羧酸外消旋体或其光学活性异构体之一

\[
\text{XIV}
\]

酰化形成通式 XV 表示的外消旋或光学活性的环戊烯-4-羧酸衍生物。

\[
\text{XV}
\]

第二步中将后者还原产生用通式 XIII 表示的所需产物。

光学活性的 4-(羟甲基)-2-环戊烯衍生物（通式 XIII）和光学活性的环戊烯-4-羧酸衍生物（通式 XV）是指相应的（1R,4S）或（1S, 4R）异构体。

本方法的第一步（酰化）用通式 XI 表示的羰基卤化物进行，可以使用的羰基卤化物与上述的相同，优选使用叔丁氧羰基氟。

进行第一步反应的 \(\text{pH} \) 宜为 8-14，较好为 12-14，温度宜为 0-50 °C，较好为 15-25 °C。

合适的溶剂是水与醚的混合物，可以使用的醚是二噁烷、四氢呋喃、乙醚、乙二醇二甲醚或乙二醇二乙醚。

本方法的第二步（还原）可用碱金属铝氢化物、硼烷/二 C₁₄烷基硫醚加成物或硼烷/四氢呋喃加成物进行。氢化铝锂、氢化铝钠或氢化铝钾可用作碱金属铝氢化物。优选使用氢化铝锂。硼烷/二甲硫、硼烷/二乙硫、硼烷/二丙硫或硼烷/二丁硫加成物可用作硼烷/二 C₁₄烷基硫醚。优选使用硼烷/二甲硫加成物。

第二步中，宜将上述无水醚之一用作溶剂。

第二步反应的温度可为 -50-5 °C，较好 -25 至 -10 °C。

实施例

实施例 1

(±)-2-乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮的制备

在氮气氛下将 100 克 (±)-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在乙腈 (800 毫升) 和吡啶 (161.26 毫升) 中。12 °C 时，滴加 104.5 克乙酰氯，历时 2 小时。然后在室温下将该混合物搅拌 4.5 小时。在此混合物中加入 800 毫升水，真空下蒸掉乙腈。
水相用乙酸乙酯萃取三次，每次 400 毫升，合并的有机相用 1N HCl(400 毫升)、水(400 毫升)、饱和氯化钠(400 毫升)洗涤，用硫酸镁干燥，蒸发至干。将残余物溶解在二氯甲烷中，用硅胶过滤。将滤液浓缩，蒸馏纯化产物。得到 107.76 克透明液体产物。产率为 71%。

沸点(0.07 m): 51 ℃

\(^1\)H-NMR(CDCl\(_3\)): \(\delta [\text{ppm}] 400\text{GHz}\)
2.25 (AB syst., 2H)
2.8 (s, 3H)
3.42 (m, 1H)
5.30 (m, 1H)
6.89 (m, 1H)
6.92 (m, 1H)

实施例 2

(±)-2-丁酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮的制备

在氮气氛围下将 100.3 克(±)-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在乙腈(720 毫升)和吡啶(142 毫升)中。12 ℃时，滴加 141.8 克丁酰氯，历时 1 小时。然后在室温下将该混合物搅拌 3 小时。在此混合物中加人 720 毫升水并分相，真空下蒸掉乙腈。水相用乙酸乙酯萃取三次，每次 300 毫升。合并的有机相用 1N HCl(350 毫升)、饱和氯化钠(500 毫升)和水(400 毫升)洗涤，用硫酸镁干燥，完全蒸发。蒸馏纯化产物。得到 107.76 克透明液体产物。产率为 85%。

沸点(0.05 m): 70 ℃

\(^1\)H-NMR(CDCl\(_3\)): \(\delta [\text{ppm}] 400\text{GHz}\)
0.98 (t, J=8.5 Hz, 3H)
1.58-1.65 (2H)
2.23 (AB syst., 2H)
2.82-2.90 (2H)
3.42 (m, 1H)
5.30 (m, 1H)
6.62 (m, 1H)
6.90 (m, 1H)

实施例 3

(±)-2-苯乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮的制备
在氮气氛下将 33.4 克 (±)-2-氯杂二环[2.2.1]庚-5-烯-3-酮溶解在乙腈 (240 毫升) 和吡啶 (48.3 毫升) 中。12 °C 时，滴加 68.6 克苯甲酰氯，历时 30 分钟。然后在室温下将该混合物搅拌 3.5 小时。在此混合物中加入 240 毫升水。真空下蒸掉乙腈。水相用乙酸乙酯萃取三次，每次 150 毫升。合并的有机相用 1N HCl (150 毫升)、饱和氯化钠 (150 毫升) 和水 (150 毫升) 洗涤，用硫酸镁干燥，完全蒸发。粗产物用硅胶过滤(己烷: 乙酸乙酯 = 1:1)。得到 78.34 克黄色油状产物。

实施例 4
(±)-2-丙酰基-2-氯杂二环[2.2.1]庚-5-烯-3-酮的制备

在氮气氛下将 47 克 (±)-2-氯杂二环[2.2.1]庚-5-烯-3-酮溶解在乙腈 (325 毫升) 和吡啶 (41 毫升) 中。12 °C 时，滴加 43.9 克丙酰氯，历时 1 小时。然后在室温下将该混合物搅拌 5 小时。在此混合物中加入 145 毫升水。真空下蒸掉乙腈。水相用乙酸乙酯萃取三次，每次 115 毫升。合并的有机相用 1N HCl (140 毫升)、饱和碳酸氢钠 (40 毫升) 和氯化钠溶液 (40 毫升) 洗涤，用硫酸钠干燥，完全蒸发。蒸馏纯化残余物。得到 55.8 克标题产物。放置时固化。产率为 81.6 %。

沸点 (2.8 毫巴): 75-80 °C
熔点: 54-56 °C

1H-NMR (DMSO-d$_6$): δ [ppm] 400 MHz
0.95 (t, 3H);
2.10 (quart. 1H);
2.28 (quart. 1H);
2.64 (m, 2H);
3.42 (s, 1H);
5.16 (s, 1H);
6.78 (m, 1H);
6.96 (m, 1H).

实施例 5
(±)-2-异丁酰基-2-氯杂二环[2.2.1]庚-5-烯-3-酮的制备

在氮气氛下将 45.1 克 (±)-2-氯杂二环[2.2.1]庚-5-烯-3-酮溶解在乙腈 (310 毫升) 和吡啶 (39 毫升) 中。10 °C 时，滴加 54.1 克异丁酰氯，历时 1 小时。然后在室温下将该混合物搅拌 5 小时。在此混合物中加入 140 毫升水并分相。真空下蒸掉乙
腈。水相用乙酸乙酯萃取四次，每次 120 毫升。合并的有机相用 1N HCl(50 毫升)、
碳酸氢钠饱和溶液(50 毫升)和氯化钠(50 毫升)洗涤，用硫酸镁干燥，完全蒸发。
将残余物放在已加入活性炭的正己烷(240 毫升)中回流沸腾，滤去活性炭。将滤
液冷却到 0 °C，过滤标题化合物。得到 54.5 克产物，产率为 76 %。

熔点：41-42 °C

1H-NMR(DMSO-d6): δ[ppm] 400Hz
0.92 (d, 3H)
1.06 (d, 3H)
2.10 (m, 1H)
2.28 (m, 1H)
3.40 (m, 2H)
5.16 (s, 1H)
6.78 (m, 1H)
7.92 (m, 1H)

实施例 6

(±)-2-氯乙酰基-2-氯杂二环[2.2.1]庚-5-烯-3-酮的制备

10 °C 时，在氮气氛下将 10.1 克(±)-2-氯杂二环[2.2.1]庚-5-烯-3-酮溶解在二氯
甲烷(10 毫升)、吡啶(8.4 毫升)和 0.22 克 4-N,N-二甲氨基吡啶的混合物中。滴加
13.5 克氯乙酰氯，历时 1 小时。将温度升至 44 °C。然后在室温下将该混合物再
搅拌 2 小时。在此溶液中加入 100 毫升水。分相后，水相用 100 毫升二氯甲烷萃
取。合并的有机相用硫酸镁干燥，完全蒸发。在 1 克活性炭存在下将残余物放在
100 毫升异丙醚中回流沸腾 10 分钟。热过滤后，将滤液冷却至室温，过滤出固体
并加以干燥。得到 10.35 克标题产物。产率为 60 %。

熔点为 86-88 °C

1H-NMR(CDCl3): δ[ppm] 400Hz
2.28 (d, 1H);
2.40 (d, 1H);
3.48 (s, 1H);
4.56 (d, 2H);
5.30 (s, 1H);
6.70 (d, 1H);
6.94 (m, 1H).
实施例7

(±)-1-乙酰氨基-4-羟甲基-2-环戊烯的制备

氮气氛围下将79.56 克(±)-2-乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在乙醇(450毫升)中，冷却到-10 ℃．分批加入19.8 克硼氢化钠，历时45分钟。在0 ℃搅拌反应3小时，然后用浓硫酸将pH调节到1.8。在此混合物中加入乙酸乙酯(200毫升)，过滤掉固体，然后完全蒸发，将残余物放在水中，用二氯甲烷洗涤，并蒸发，粗产物用硅胶过滤提纯，得到51.83 克白色固体产物，按所用的(±)-2-乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮计，产率为64%。

1H-NMR(DMSO-d$_6$): δ(ppm) 400MHz 1.18 (m, 1H);
1.78 (s, 3H);
2.29 (m, 1H);
2.66 (m, 1H);
3.25 (s, 2H);
4.58 (s, 1H);
4.72 (m, 1H);
5.61 (d, 1H);
5.85 (d, 1H);
7.83 (d, 1H).

实施例8

(±)-1-丁酰氨基-4-羟甲基-2-环戊烯的制备

氮气氛围下将73.87 克(±)-2-丁酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在乙醇(400毫升)中，冷却到-10 ℃．分批加入15.68 克硼氢化钠，历时45分钟。在0 ℃搅拌反应3小时，然后用浓硫酸将pH调节到1.5。在此混合物中加入乙酸乙酯(200毫升)，过滤掉固体，然后完全蒸发，将残余物放在水中，用二氯甲烷洗涤，并在真空下蒸发干燥，得到60.55 克产物，按所用的(±)-2-丁酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮计，产率为80%。熔点: 71-72 ℃

1H-NMR(CDCl$_3$): δ(ppm) 400MHz 0.98 (t, J=8.5 Hz, 3H);
1.40-1.50 (1H);
1.58-1.68 (2H);
2.10-2.18 (2H);
实施例 9
(±)-1-苯乙酰氨基-4-羟甲基-2-环戊烯的制备

氮气下，将 77 克粗的 (±)-2-苯乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在乙醇 (450 毫升) 中，冷却到 -10 ℃。分批加入 13.2 克氢化钠，历时 1 小时。室温下搅拌反应 3.5 小时，然后用浓硫酸将 pH 调节到 1.8。该混合物用硅胶过滤法纯化 (己烷：乙酸乙酯 = 2:8)。用乙酸乙酯重结晶，得到 15.89 克白色固体，按所用的 (±)-2-苯乙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮计，产率为 80 %。

\[\text{H-NMR(CDCl}_3): \delta[ppm] 400MHz \]

1.28-1.35 (1H);
1.40 (m, 1H);
2.38-2.45 (1H);
2.79 (m, 1H);
3.50 (AB syst., 2H);
3.52 (s, 3H);
4.98 (m, 1H);
5.75 (m, 2H);
5.98 (m, 1H);
7.20-7.38 (5H).

实施例 10
(±)-1-BOC-氨基-4-羟甲基-2-环戊烯的制备(BOC = 叔丁氧羰基)

室温时，在氮气下将 15 克粗的 (±)-1-氨基-4-羟甲基-2-环戊烯盐酸盐 (按 J. Org. Chem. 1981, 46, 3268 中所述的方法制备) 溶解在 150 毫升水和 150 毫升二嗯烷的混合物中。用 1N NaOH 将该溶液的 pH 调节到 14，然后加入叔丁氧羰基氯 (BOC-F，20 % 过量) 的乙醚溶液，让该混合物在室温下搅拌 3 小时 (BOC-F 按
Synthesis 1975, 599 中所述的方法制备)。用浓盐酸将 pH 调节到 2。蒸馏掉有机溶剂后，在残留物中加入 50 毫升水，用乙酸乙酯对该混合物萃取 3 次，每次 100 毫升。将合并的有机相完全蒸发。残留物放在 100 毫升二异丙醚和 80 毫升正己烷的混合物中结晶。得到 11.95 克标题产物，产率为 56%。熔点：68-70 ℃。

\[^1H-NMR(DMSO-d_6) \]: \(\delta [\text{ppm}] 400\text{MHz} \)

| 1.18 (m, 1H); |
| 1.38 (s, 9H); |
| 2.26 (m, 1H); |
| 2.65 (m, 1H); |
| 3.33 (t, 2H); |
| 4.45 (m, 1H); |
| 4.55 (t, 1H); |
| 5.62 (m, 1H); |
| 5.79 (m, 1H); |
| 6.73 (d, 1H). |

实施例 11

(±)-1-丙酰氨基-4-羟甲基-2-环戊烯的制备

在氮气下将 16.6 克(±)-2-丙酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在水(140 毫升)和 2-丁醇(66 毫升)中，冷却到 -5 ℃。分批加入 3 克硼氢化钠，历时 2 小时。在 10 ℃将此混合物搅拌 2.5 小时，然后用浓盐酸和水的混合物(1:1)将 pH 调节到 2.2。将此溶液蒸发至 40 克，用 2N NaOH 将 pH 调节至 6.2。该混合物用二氯甲烷萃取 5 次，每次 50 毫升，将合并的有机相完全蒸发，残留物放在甲苯(150 毫升)中重结晶。得到 11.1 克标题产物，产率为 65%。

熔点：67-68 ℃。

\[^1H-NMR(DMSO-d_6) \]: \(\delta [\text{ppm}] 400\text{MHz} \)

| 0.96 (t, 3H); |
| 1.16 (quint., 1H); |
| 2.04 (quart., 2H); |
| 2.26 (m, 1H); |
| 2.66 (m, 1H); |
| 3.34 (m, 2H); |
实施例 12

(±)-1-异丁酰氨基-4-羟甲基-2-环戊烯的制备

在氮气氛下将 9 克(±)-2-异丁酰基-2-氮杂二环[2.2.1]庚-5-烯-3-酮溶解在水(32毫升)和 2-丁醇(84 毫升)中，冷却到 0 ℃。分批加入 1.37 克磷酸氢钠，历时 3.5 小时。在 20 ℃将此混合物再搅拌 3 小时，然后用浓盐酸和水的混合物(1:1)将 pH 调节到 2.5，然后用 2N NaOH 中和，将此溶液蒸发至 40 克。残余物用二氯甲烷萃取 3 次，每次 80 毫升。将合并的有机相完全蒸发，将产生的固体放在甲苯(25 毫升)中结晶。得到 6.8 克标题产物。产率为 73.6 %。

熔点: 80-81 ℃。

1H-NMR(DMSO-d$_6$): δ(ppm) 400MHz

<table>
<thead>
<tr>
<th>化学位移</th>
<th>信号类型</th>
<th>强度</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.98</td>
<td>d, 3H</td>
<td></td>
</tr>
<tr>
<td>1.16</td>
<td>quint., 1H</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>m, 2H</td>
<td></td>
</tr>
<tr>
<td>2.68</td>
<td>m, 1H</td>
<td></td>
</tr>
<tr>
<td>3.32</td>
<td>t, 2H</td>
<td></td>
</tr>
<tr>
<td>4.58</td>
<td>t, 1H</td>
<td></td>
</tr>
<tr>
<td>4.70</td>
<td>m, 1H</td>
<td></td>
</tr>
<tr>
<td>5.61</td>
<td>m, 1H</td>
<td></td>
</tr>
<tr>
<td>5.82</td>
<td>m, 1H</td>
<td></td>
</tr>
<tr>
<td>7.68</td>
<td>d, 1H</td>
<td></td>
</tr>
</tbody>
</table>

实施例 13

用青霉素 G 酰基转移酶制备(1R,4S)-1-氨基-4-羟甲基-2-环戊烯

来源于大肠杆菌的青霉素 G 酰基转移酶 EC 3.5.1.11 (Boehringer Mannheim) 165 U (单位)/克或来源于巨大芽孢杆菌的青霉素 G 酰基转移酶 3.5.1.11 被用于生物转化。
为此，在 37 ℃用 1 % 重量非外消旋的 1-苯基乙酰氨基-4-羟甲基-2-环戊烯和 400 毫克合适的青霉素 G 酰基转移酶在 50 mM 磷酸钠缓冲溶液(pH 5-9，4 毫升)中温育.

在一定的时间间隔后取样，用薄层色谱(硅胶 60，丁醇：水：冰醋酸 = 3:1:1；茚三酮检测)、气相色谱(毛细管柱，HP-5，5 % 苯基甲基硅氧烷)或高压液相色谱(HPLC)进行分析，该酶高活性地除去苯基乙酰基，从而释放出高达 40 % 的相应氨基，得到对映体过量为 80 % 的游离氨基醇.

实施例 14.

用微生物制备(1R, 4S)-1-氨基-4-羟甲基-2-环戊烯

14.1 37 ℃和摇动下将来自 Visp 的 ASA 水处理厂的污泥培育在含 0.5 % 重量 1-乙酰、1-丙酰、1-异丁酰或 1-丁酰氨基-4-羟甲基-2-环戊烯的 A + N 培养基中(参见表 1)。用薄层色谱跟踪(1R, 4S)-1-氨基-4-羟甲基-2-环戊烯的生成。

用 1 % 的富集物进行 1-3 转移，在固体培养基(表 1 中所示培养基中的平板计数琼脂；20 克/升)上进行分离。用这种方法分离微生物产碱杆菌属/博代特氏杆菌属 FB 188 (DSM 1172)、红球菌属 erythropolis CB 101 (DSM 10686)、戈登氏菌属 sp. CB 100 (DSM 10687) 和红球菌属 sp. FB 387(DSM 11291)。

14.2 将用这种方法分离得到的微生物培养在含 0.5 % 重量 1-乙酰、1-丙酰、1-异丁酰或 1-丁酰氨基-4-羟甲基-2-环戊烯的培养基中(参见表 1)。在 24-36 小时内它们生长到光学密度(OD)为 2-3。将这种方法获得的细胞在后指数生长期中收集，并用 10 mM 磷酸盐缓冲溶液洗涤。

在含 1 % 重量 1-乙酰、1-异丁酰或 1-丁酰氨基-4-羟甲基-2-环戊烯的 50mM 磷酸盐缓冲溶液中(pH4.5-9)进行随后的生物转化。用薄层色谱检测发现，50 % 的底物被水解成(1R,4S)-1-氨基-4-羟甲基-2-环戊烯。高压液相色谱分析揭示的对映体过量为 80-93 %。

当 1-丁酰氨基-4-羟甲基-2-环戊烯用作底物时，并在 A + N 培养基上进行培养时，菌株 DSM 10686 的生物转化速率为 0.14 (g/l/h/OD)。当在含 1-丁酰氨基-4-羟甲基-2-环戊烯的 NYB(酵母营养液)培养基上进行培养时，其生物转化速率为 0.03 (g/l/h/OD)。

当在底物(1-丁酰氨基-4-羟甲基-2-环戊烯)浓度为 200 mM 的条件下用菌株 DSM 10687 进行相同的转化时，生物转化速率为 0.161 (g/l/h/OD)。

表 1 A + N 培养基
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MgCl₂</td>
<td>0.4 克/升</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.014 克/升</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>0.8 毫克/升</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0.1 克/升</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>1 克/升</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>2.5 克/升</td>
</tr>
<tr>
<td>NaCl</td>
<td>3 克/升</td>
</tr>
<tr>
<td>维生素溶液</td>
<td>1 毫升/升</td>
</tr>
<tr>
<td>微量元素溶液</td>
<td>1 毫升/升</td>
</tr>
<tr>
<td>pH7.5</td>
<td></td>
</tr>
</tbody>
</table>

14.3 30 ℃时，在6升发酵桶中的将乙酸铵（3 克/升）用作碳源和氮源的最低培养基（参见表2）上把红串球红球菌 DSM 10686 培养到 OD₆₅₀≥25 的细胞密度。在细胞生长过程中，连续加入 50 % 乙酸，作为附加碳源。然后为了诱导酶活性，加入 60 克（+/−）-1-乙酰氨基-4-羟甲基-2-环戊烯，继续培养几小时。最后再加入 40 克（+/−）-1-乙酰氨基-4-羟甲基-2-环戊烯，然后再培养 10 小时。生物转化过程用线上高压液相色谱跟踪。当按所用的外消旋底物计算分析产率为 40 %，对映体过量达 85 % 时，加入酸使发酵停止。

表 2

<table>
<thead>
<tr>
<th>培养基组成</th>
<th>浓度</th>
</tr>
</thead>
<tbody>
<tr>
<td>酵母萃取物</td>
<td>0.5 克/升</td>
</tr>
<tr>
<td>脂 M66</td>
<td>0.5 克/升</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>4.0 克/升</td>
</tr>
<tr>
<td>Na₂HPO₄·2H₂O</td>
<td>0.5 克/升</td>
</tr>
<tr>
<td>K₂SO₄</td>
<td>2.0 克/升</td>
</tr>
<tr>
<td>乙酸铵</td>
<td>3.0 克/升</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0.2 克/升</td>
</tr>
<tr>
<td>MgCl₂·6H₂O</td>
<td>1.0 克/升</td>
</tr>
<tr>
<td>微量元素溶液 (见下)</td>
<td>1.5 毫升/升</td>
</tr>
<tr>
<td>PPG (聚丙二醇)</td>
<td>0.1 克/升</td>
</tr>
</tbody>
</table>
微量元素溶液

KOH 15.1 克/升
EDTA · Na₂ · 2H₂O 100.0 克/升
ZnSO₄ · 7H₂O 9.0 克/升
MnCl₂ · 4H₂O 4.0 克/升
H₃BO₃ 2.7 克/升
CoCl₂ · 6H₂O 1.8 克/升
CuCl₂ · 2H₂O 1.5 克/升
NiCl₂ · 6H₂O 0.18 克/升
Na₂MoO₄ · 2H₂O 0.27 克/升

14.4 按类似于实施例 14.3 的方法，在含或不含 1-乙酰、1-丙酰、1-异丁酰或1-丁酰氨基-4-羟甲基-2-环戊烯(下文中缩写为氨基醇)的培养基(表 1)中的乙酸钠上培养微生物节细菌属 sp. HSZ 5 (DSM 10328)。红球菌属 sp. FB 387 (DSM 11291)、木糖氧化菌杆菌反硝化亚种 HSZ 17 (DSM 10329)、土壤杆菌/根瘤菌属 HSZ 30、单纯杆菌 K2 和恶臭假单胞菌 K32。

用没有氨基醇存在下培养的指数细胞得到如下结果(高压液相色谱分析):

<table>
<thead>
<tr>
<th>菌株</th>
<th>速度 [mmol/OD.h]</th>
<th>ee/转化 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSZ 5 (DSM 10328)</td>
<td>0.05</td>
<td>88.7/16</td>
</tr>
<tr>
<td>HSZ 17 (DSM 10329)</td>
<td>0.005</td>
<td>95/23</td>
</tr>
<tr>
<td>K32</td>
<td>0.05</td>
<td>54/1</td>
</tr>
<tr>
<td>CB101 (DSM 10686)</td>
<td>0.1</td>
<td>84/39</td>
</tr>
</tbody>
</table>

培养和收集菌株 K2 和 K17，并进行 60 小时生物转化。

<table>
<thead>
<tr>
<th>菌株</th>
<th>速度 [mmol/OD.h]</th>
<th>ee/转化</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
<td>-</td>
<td>92/10</td>
</tr>
<tr>
<td>HSZ 30</td>
<td>-</td>
<td>93/3.5</td>
</tr>
</tbody>
</table>

收集各批的指数细胞(exponential cell)和静态细胞(stationary cell)，并用作生物转化的休眠细胞(quietescent cell)。根据薄层色谱分析，用氨基醇诱导或不用氨基醇诱导的细胞的初始速度没有明显的区别。
实施例 15

从红黑球菌 CB 101 (DSM 10686) 中提纯 N-乙酰氨基-醇水解酶

按上述方法提纯酶，直到 SDS-PAGE（Pharmacia Phast 凝胶，10-15 % 梯度）只有一个分子量为 50 kD 的蛋白带为止。

红黑球菌 CB 101 (DSM 10686) 细胞用 50 mM 三羧甲基氨基甲烷缓冲液 (pH 6.2) 洗涤，然后浓缩到光学密度 OD_{650nm} 为 190。加入苯基甲磺酰氟 (PMSF) 到最后浓度为 1 mM 及 DNA 酶后，用弗氏压榨机处理细胞，以获得粗的提取液。离心产生蛋白浓度为 4.8 毫克毫升⁻¹ 的不含细胞的提取液。

将 960 毫克无细胞提取液装入一根 HiLoad 26/10 Q-Sepharose 离子交换色谱柱 (Pharmacia) 中。该色谱柱已用含 1 mM 二硫苏 糖醇 (DTT) 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 8.0) 平衡。

该柱用相同的缓冲液洗涤后，蛋白质用线性缓冲液梯度洗脱 (linear buffer gradient) (1500 毫升；梯度：含 1 mM DTT 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 8.0) - 含 1 mM DTT 和 1 M NaCl 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 7.0))。该酶在 370-430 mM NaCl 间和 pH 为 7.6 处从柱中洗脱。收集活性部分，并浓缩到 9 毫升。蛋白含量为 41 毫克。

为进一步提纯，将该蛋白溶液装在 HiLoad 26/60 Superdex 75 凝胶过滤色谱柱 (Pharmacia) 中。该柱已用含 50 mM NaCl 和 1 mM DTT 的 50 mM 三羧甲基氨基甲烷缓冲液平衡。合并活性部分，总的蛋白含量为 10.9 毫克。

将该蛋白溶液装在 Mono Q HR5/5 柱 (Pharmacia) 中。该柱已用含 1 mM DTT 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 8.5) 平衡。蛋白质用含 1 mM DTT 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 8.5) - 含 1 mM DTT 和 1 M NaCl 的 50 mM 三羧甲基氨基甲烷缓冲液 (pH 8.5) 线性梯度 (40 毫升) 洗脱。该酶在 390-440 mM NaCl 间洗脱。活性部分含 1.4 毫克蛋白。

在最后的提纯步骤中，使用用相同缓冲液平衡后的相同柱。所用的洗脱梯度是含 0-500 mM NaCl 和 pH 为 7.0-8.5 的相同缓冲液。用这种方法可以分离 430 微克纯酶。

从蛋白印迹直接确定酶的 N-末端顺序，得到如下 20 个氨基酸的顺序：Thr-Glu-Gln-Asn-Leu-His-Trp-Leu-Ser-Ala-Thr-Glu-Met-Ala-Ala-Ser-Val-Ala-Ser-Asn。

这种顺序与已知的蛋白没有同源性。
实施例 16
酶的表征

用纯化的酶和已用 Sephadex G-25 柱 (PD-10, Pharmacia) 脱盐的无细胞提取液进行酶特性表征。

无细胞提取液中蛋白浓度为 7.3 毫克毫升⁻¹，纯化酶中的蛋白浓度为 135 微克毫升⁻¹。在无细胞提取液中不加人 PMSF。

16.1 Kₘ 测定

在无细胞提取液中进行 Kₘ 测定。底物 1-乙酰氨基-4-羟甲基-2-环戊烯在 pH 为 7.0 和温度为 30 ℃ 的条件下的反应 Kₘ 为 22.5 mM。

16.2 最佳 pH 值

在如下缓冲溶液中，用纯化的酶和无细胞提取液在 pH 为 6.2-9.0 的范围内测定 1-乙酰氨基-4-羟甲基-2-环戊烯 (25 mM) 水解时的最佳 pH 值。

三羟甲基氨基丙烷缓冲液 100 mM pH 9.0; 8.5; 8.0; 7.5; 7.0
柠檬酸盐/磷酸盐缓冲液 100 mM pH 7.0; 6.55; 6.2
活性测量进行 24 小时。

制备 1R,4S 和 1S,4R 对映体的反应的最佳 pH 值为 pH 7.0-7.5。

无细胞提取液活性的最佳 pH 值为 pH 7.0。而在 pH 为 6.0 至 7.0 之间，选择性更好。

图 1 表示从红球菌 CB 101 (DSM 10686) 提取的 N-乙酰氨基酶水解酶 (无细胞的提取液) 的活性与 pH 的关系。实施例 16.2 所示的反应最佳温度为 25-30 ℃。

图 2 表示从红球菌 CB 101 (DSM 10686) 提取的 N-乙酰氨基酶水解酶 (无细胞的提取液) 的活性与温度的关系。

16.4 用 SDS-PAGE 测得的分子量为 50 kD。

16.5 将如下底物水解：1-乙酰氨基-4-羟甲基-2-环戊烯、1-丁酰氨基-4-羟甲基-2-环戊烯、1-丙酰氨基-4-羟甲基-2-环戊烯、1-异丁酰氨基-4-羟甲基-2-环戊烯。

实施例 17

制备(1R,4S)-1-氨基-4-羟甲基-2-环戊烯盐酸盐

将 374.1 克(1R,4S)-1-氨基-4-羟甲基-2-环戊烯溶液 (按与实施例 14 相似的方法制备) 蒸发至 123.7 克，用 30% 浓度的 NaOH 将含 60.2 毫摩尔上述化合物 (高压液相色谱) 的溶液从 pH2 调节到 pH11.7，然后用异丁醇萃取三次，每次 70 毫升。用
氯化氢气体将合并的异丁醇萃取液调节到 pH 为 1，浓缩到 65 克，过滤 (除去固体杂质)。20 ℃时，在激烈搅拌的滤液中滴加 60 毫升丙酮。在混浊的混合物中加入标题化合物的晶种，在 5 ℃ 搅拌 1 小时。过滤和干燥后得到 5.2 克产物，产率为 58 %。

熔点：125-127 ℃

对映体过量为 98 % (校准的手性高压液相色谱柱)

1H-NMR (DMSO-d$_6$): δ[ppm] 400Mhz

1.44 (m, 1H)

2.35 (m, 1H);

2.83 (m, 1H);

3.42 (m, 2H);

4.10 (s, 1H);

4.80 (d, 1H);

5.80 (d, 1H);

6.06 (d, 1H);

8.13 (s, 3H).

实施例 18

制备(1R, 4S)-1-BOC-氨基-4-羟甲基-2-环戊烯

用 30% 强度的 NaOH 将 75 克 (1R, 4S)-1-氨基-4-羟甲基-2-环戊烯 (按与实施例 14 相似的方法制备；44.6 毫摩尔化合物) 溶液调节至 pH 为 8，加入 6 克碳酸氢钠，将混合物加热至 52 ℃，激烈搅拌下，加入 60 毫升二异丙醚，然后在 2 小时内滴加 11.12 克叔丁氧羰基酸酐在 18.2 毫升二异丙醚中的溶液，用硅藻土 (Celite) 过滤该混合物，然后分离。水相用 65 毫升二异丙醚萃取，合并的有机相用 45 毫升水洗涤，然后蒸发至 37.5 克，加热至 50 ℃，在该溶液中滴加 31 毫升正己烷，然后慢慢冷却到 0 ℃ (2 小时)，过滤出标题产物，用 12 毫升正己烷/二异丙醚 (1/1) 洗涤，并干燥。得到 6.75 克产物，产率为 71 %。

熔点：70-71 ℃

对映体过量为 98 % (校准的手性高压液相色谱柱)

1H-NMR (DMSO-d$_6$): δ[ppm] 400Mhz

1.18 (m, 1H);

1.27 (s, 9H);

2.28 (m, 1H);

2.63 (m, 1H);
3.33 (q, 2H);
4.43 (m, 1H);
4.56 (t, 1H);
5.62 (m, 1H);
5.78 (m, 1H);
6.72 (d, 3H).

实施例 19
制备(1R,4S)-1-氨基-4-羟甲基-2-环戊烯盐酸盐
将 87.8 克(1R,4S)-1-BOC-氨基-4-羟甲基-2-环戊烯溶解在 270 毫升 2N 盐酸和 1340 毫升甲醇中。将此混合物加热回流 4.5 小时。蒸馏掉甲醇后，将残余物溶解在 800 毫升水中。该水溶液用乙酸乙酯萃取二次，每次 340 毫升。完 全蒸发水相 (50 ℃/60 毫巴)。50 ℃时将固体真空干燥，将其悬浮在 150 毫升乙醚中，过滤，并用 50 毫升乙醚洗涤二次。干燥后产生标题产物，产率为 95% (58.4 克)。产物的物理数据和光谱数据与实施例 17 中相同。

实施例 20
制备(1R,4S)-1-乙酰氨基-4-羟甲基-2-环戊烯
将 25 克(1R,4S)-1-氨基-4-羟甲基-2-环戊烯盐酸盐溶解在 182 毫升乙酸酐中，0 ℃时，加人 18.25 克三乙胺在 60 毫升乙酸酐中的溶液。80 ℃时，将此混合物搅拌 3 小时，然后冷却至室温。过滤掉三乙胺盐酸盐，用 120 毫升正己烷洗涤。将滤液蒸发。将余物与 300 毫升甲苯混合，加入 5.2 克活性炭和 13 硫酸土后，在室温下搅拌 20 分钟。过滤和洗涤滤饼后(3 × 40 毫升)甲苯，将溶剂完全蒸发掉。将余物与 180 毫升甲醇和 15.5 克碳酸钾混合，在室温下搅拌 10 小时。过滤悬浮液，将残余物悬浮在 750 毫升乙酸异丙酯中，加入 0.5 克活性炭后加热回流 1.5 小时。过滤掉活性炭后(70-80 ℃)，将滤液在 0 ℃冷却过夜。过滤出标题化合物，用 80 毫升冷的乙酸异丙酯洗涤，真空干燥，得到 17.2 克产物，产率为 66%。

熔点：77-80 ℃
对映体过量为 98% (校准的手性高压液相色谱柱)
1H-NMR (DMSO-d$_6$): δ[ppm] 400MHz
1.15 (m, 1H)
1.78 (s, 3H);
2.25 (m, 1H);
2.66 (m, 1H);
3.35 (m, 2H);
4.58 (t, 1H);
4.70 (m, 1H);
5.62 (m, 1H);
5.85 (m, 1H);
7.80 (d, 3H).

实施例 21

制备(1S,4R)-1-乙酰氨基-4-羟甲基-2-环戊烯

用 25 克(1S,4R)-1-氨基-4-羟甲基-2-环戊烯盐酸盐原料按实施例 18 的方法可以制备标题对映体(产率为 68 %)。产物的光谱数据和物理数据与实施例 20 相同。

实施例 22

制备(1R,4S)-1-丁酰氨基-4-羟甲基-2-环戊烯

将 34.7 克(1R,4S)-1-氨基-4-羟甲基-2-环戊烯盐酸盐和 2 克 4-N,N-二甲氨基吡啶溶解在 600 毫升二氯甲烷中，将溶液冷却至 0 ℃。然后滴加人 52 克三乙胺(5 分钟)。将此混合物再搅拌 30 分钟。0 ℃时，将 35.2 克丁酰氯溶解在 60 毫升二氯甲烷中，将此溶液滴加到该混合物中，历时 1 小时。在 0-20 ℃，将混合物再搅拌 1.5 小时，然后加入 600 毫升水。分相后，用 600 毫升二氯甲烷萃取水相。合并的有机相用 10 % 强度氢氧化钠洗三次，每次 500 毫升。然后将其完全蒸发。将干燥的固体溶解在 120 毫升甲醇中，将此溶液与 5 克碳酸钾混合，在室温下再搅拌 2 小时。过滤掉无机盐。用 20 毫升甲醇洗涤。滤液用 2N 盐酸中和，过滤悬浮液，滤饼用 20 毫升甲醇洗涤。将滤液完全蒸发。将固体残余物干燥，并放在 150 毫升甲苯中结晶，得到 28.5 克标题化合物，产率为 67 %。

熔点：71-72 ℃

对映体过量为 98 % (校准的手性高压液相色谱柱)
1H-NMR (DMSO-d_6): δ[ppm] 400MHz 0.85 (t, 3H);
 1.15 (m, 1H);
 1.50 (q, 2H);
 2.03 (d, 2H);
 2.28 (m, 1H);
 2.67 (m, 1H);
 3.35 (d, 2H);
 4.62 (s, 1H);
 4.76 (m, 1H);
 5.63 (m, 1H);
 5.85 (m, 1H);
 7.77 (d, 1H).

实施例 23
制备$(1S,4R)$-1-丁酰氨基-4-羟甲基-2-环戊烯

用34.7克$(1S,4R)$-1-氨基-4-羟甲基-2-环戊烯盐酸盐原料按实施例20的方法可以制备标题对映体(产率为63%)。产物的光谱数据和物理数据与实施例22相同。

实施例 24
制备$(1R,4S)$-1-[(2-氨基-6-氯-5-甲酰氨基-4-嘧啶基)氨基]-4-羟甲基-2-环戊烯

在40毫升异丁醇中将2.07克N-(2-氨基-4,6-二氯-5-嘧啶基)甲酰胺加热到80℃(白色悬浮液)。在此混合物中加入1.97克$(1R,4S)$-1-氨基-4-羟甲基-2-环戊烯盐酸盐、3.8克三乙胺和15毫升异丁醇的溶液。将此混合物在80℃再搅拌13小时。20℃时在此透明溶液中加入10毫升1N氢氧化钠。然后蒸发至干。对残余物进行闪蒸色谱(硅胶60柱、长度8厘米、直径为6.5厘米、洗脱剂为乙酸乙酯/甲醇95/5)。蒸发掉洗脱剂和干燥残余物后，得到2.1克标题产物，产率为74%。

熔点：174-176℃

对映体过量为98%(校准的手性高压液相色谱柱)
\(^1\)H-NMR (DMSO-\(d_6\)): \(\delta[ppm] 400MHz\)

1.37 (m, 1H);
2.35 (m, 1H);
2.73 (m, 1H);
3.38 (t, 2H);
4.68 (m, 1H);
5.08 (m, 1H);
5.70 (d, 1H);
5.85 (d, 1H);
6.40; 6.55 和 6.65 (s,dd,共 3H);
7.78 和 8.10 (d 和 s,共 1H);
8.55 和 8.95(d 和 s,共 1H).

实施例 25

制备(1R, 4S)-1-[(2-氨基-6-氯-5-甲酰氨基-4-嘧啶基)氨基]-4-羟甲基-2-环戊烯

将 145.2 毫升(1R,4S)-1-氨基-4-羟甲基-2-环戊烯的溶液(按与实施例 14 相似的方法制备)浓缩到 25.5 毫升，用硅藻土过滤。滤饼用 7.5 毫升水洗涤。用浓盐酸将含 17.7 毫摩尔上述的化合物(HPLC)的滤液的 pH 由 6.6 调节到 1，然后用异丁醇萃取三次，每次 20 毫升。丢弃有机相。用 30% 强度的氢氧化钠将水相的 pH 调节到 12，用异丁醇萃取 3 次，每次 10 毫升。将合并的有机相蒸至 15 毫升，加入 2.53 克三乙胺。按实施例 24 中的方法在此混合物中加入 2.07 克 N-(2-氨基-4,6-二氯-5-嘧啶基)甲酰胺在 40 毫升乙醇中的溶液。将此混合物在 80 ℃搅拌 16 小时。按实施例 22 的方法进行后处理，得到 2.4 克标题产物，产率为 85%。

产物的物理和光谱数据与实施例 24 相同。

实施例 26

制备(±)-1-BOC-氨基-2-环戊烯-4-羧酸

在氮气氛保护下，室温时将 16.4 克粗的(±)-1-氨基-2-环戊烯-4-羧酸盐酸盐(按J. Org. Chem. 1981, 46,3268 中所述的方法制备)溶解在 80 毫升水和 80 毫升二噁烷的混合物中。用 1N 氢氧化钠将此混合物的 pH 调节到 14，然后加入叔丁氧羰基氟(BOC-F, 20% 过量)的乙酰溶液(BOC-F 按 Synthesis 1975, 599 中所述的方法制备)。室温下将此混合物再搅拌 5 小时。用浓盐酸将 pH 调节至 2。蒸馏掉有机
溶剂后，在残余物中加入 50 毫升水。该混合物用乙酸乙酯萃取三次，每次 100 毫升。将有机相蒸发至 50 毫升，用 25 毫升甲苯稀释。冷却 (0-10 ℃) 后，过滤标题产物，并加以干燥，得到 14.3 克产物，产率为 63%。

熔点：126-127 ℃

\[^1 \text{H-NMR (DMSO-d$_6$): } \delta[\text{ppm}] \text{400MHz} \]
1.14 (s, 9H);
1.70 (m, 1H);
2.40 (m, 1H);
3.40 (m, 1H);
4.47 (m, 1H);
5.70 (t, 1H);
4.87 (t, 1H);
6.88 (d, 1H);
12.30 (d, 1H).

实施例 27

由(±)-1-BOC-氨基-2-环戊烯-4-羧酸制备(±)-1-BOC-氨基-4-羟甲基-2-环戊烯

将 250 毫升四氢呋喃和 10.02 克 (0.164 摩尔) LiAlH$_4$ 加入一个 500 毫升搅拌装置中，在 -10 ℃ 时，滴加 30.0 克 (0.132 摩尔) (±)-1-BOC-氨基-2-环戊烯-4-羧酸在 75 毫升四氢呋喃中的溶液，历时 1 小时。然后加入 10 克水，10 克 15% 强度氢氧化钠溶液和 20 克水，再进行过滤。残余物用叔丁基甲醚洗涤两次，每次 100 毫升，将合并的有机相蒸发至干。加入 80 毫升乙醇和实施例 10 化合物的晶种后，分离出标题化合物结晶固体，产率为 15.84 克 (56%)。物理数据和光谱数据与实施例 10 相同。

实施例 28

由(1R,4S)-1-BOC-氨基-2-环戊烯-4-羧酸制备(1R,4S)-1-BOC-氨基-4-羟甲基-2-环戊烯

将 80 毫升四氢呋喃和 11.38 克 (50.07 毫摩尔) (1R,4S)-1-BOC-氨基-2-环戊烯-4-羧酸 (按 Tetrahedron: Asymmetry 1993, 4, 1117 中所述的方法制备) 加入 500 毫升搅拌装置中，在 -15 ℃ 时，滴加 5 毫升硝酸/二甲硫加成物，历时 1 小时。然后将此混合物在这温度下搅拌 3 小时。加入 4 克氢氧化钠溶解在 60 毫升水中生成的溶
液，温热至室温，用甲苯萃取，用硅胶过滤并随后在乙酸乙酯/正己烷 1:1 中结晶产生 5.4 克标题产物白色结晶固体，相当于产率 57%。物理数据和光谱数据与实施例 10 中相同，对映体过量为 99%（相同的手性高压液相色谱柱）。