3/044665 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

T O

(10) International Publication Number

WO 03/044665 Al

(43) International Publication Date
30 May 2003 (30.05.2003)

(51) International Patent Classification’: GO6F 9/46 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/36765 CZ, DE, DK, DM, DZ, EC, EE, ES, H, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(22) International Filing Date: LK, LR, LS, L'L, LU, LV, MA, MD, MG, MK, MN, MW,
13 November 2002 (13.11.2002) MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

YU, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English &9 gg"gi';te&\,séaﬁsz’(’gg]’)‘fngi ?;H;%pﬁgjt SIH ZGV%
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
(30) Priority Data: European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
10/011,233 15 November 2001 (15.11.2001) US ES, FL FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
(71) Applicant: INTEL CORPORATION [US/US]; (a GW, ML, MR, NE, SN, TD, TG).
Delaware Corporation), 2200 Mission College Boulevard,
Santa Clara, CA 95052 (US). Published:
— with international search report
(72) Inventors: ZIMMER, Vincent; 1937 South 369th Street, — before the expiration of the time limit for amending the
Federal Way, WA 98003 (US). DATTA, Samanna; 532 NE claims and to be republished in the event of receipt of
Lenox Street, Hillsboro, OR 97124 (US). amendments

(74) Agent: MALLIE, Michael, J.; Blakely, Sokoloff, Taylor For two-letter codes and other abbreviations, refer to the "Guid-
& Zafman, 7th Floor, 12400 Wilshire Boulevard, Los An- ance Notes on Codes and Abbreviations" appearing at the begin-
geles, CA 90025 (US). ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND SYSTEM FOR CONCURRENT HANDLER EXECUTION IN AN SMI AND PMI-BASED DIS-
PATCH-EXECUTION FRAMEWORK

TN ‘ INSTANTIATE SMM SMM-ONLY MEMORY
e A (SVRAM)

10~ EXTENSIBILITY

2
DRIVER 1 FRAMEWORK LEGACY 1A32
(LEGACY) EFT SMM BASE j HANDLER(S) - 47
PROTOCOL 36 1 EVENT
DRIVER HEAP x
DRIV 2
INSTALLATION LIST OF
d 434 HANDLERS

SMM LIBRARY HANDLER
307 VO SERVICES MP QUEVE

3 MEMORY

ALLOC SVCS SEMAPHORES T}
CONFIG

TABLE REG.
J = SMM NUB
28 24

HANDLER 2 H

EFI SYSTEM 7
PARTITION 12

16

|

BIOS FLASH CHIP

FILE TYPE =
"SMMHANDLER"

REGISTER SMM 1
EG. TGAD
R s | SERVICE HANDLERS E. RTERCATON]
= [v A Hanoier 2 |-H
L 25 = \22 44 .
FIRMWARE VOLUME sror 1/ :
T2 = HANDLERS | S
N 1
:> DRIVER 6 4271334 5,687 HANDLERN
< 20 %

(57) Abstract: A method and system that enables concurrent event handler execution in a system management interrupt (SMI) and
processor management interrupt (PMI)-based dispatch-execution framework to service an SMI or PMI event. A plurality of event
handlers are loaded into a hidden memory space that is accessible to a hidden execution mode supported by each of a plurality
of processors in a multiprocessor computer system but is not accessible to other operating modes of those processors. The event
handlers are then dispatched to two or more processors in response to the hidden execution mode event and concurrently executed
to service the event. Various embodiments include use of a single event handler to service the event, multiple event handlers that
perform different tasks, and multiple event handler instances that concurrently perform a single task. The invention also provides a
resource locking mechanism to prevent resource access conflicts.

WO 03/044665 PCT/US02/36765

10

15

20

25

METHOD AND SYSTEM FOR CONCURRENT HANDLER EXECUTION IN AN
SMI AND PMI-BASED DISPATCH-EXECUTION FRAMEWORK

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention concerns computer systems in general, and a
mechanism for extending the functionality of the System Management Mode
(SMM) and other similar hidden execution modes of processors in particular.

Backaround Information

Since the 386SL processor was introduced by the Intel Corporation,
SMM has been available on IA32 processors as an execution mode hidden to
operating systems that executes code loaded by BIOS or firmware. SMM is a
special-purpose operating mode provided for handling system-wide functions
like power management, system hardware control, or proprietary OEM-
designed code. The execution mode is deemed ‘hidden” because the
operating system (OS) and software applications cannot see it, or even
access it.

IA32 processors are enabled to enter SMM via activation of an SMi
(System Management Interrupt) signal. A similar signal called the PMi
(Processor Management Interrupt) signal that is roughly analogous to the SMI
signal is used for ltanium™-class processors. For simplicity, both SMI and
PMI signals are sometimes referred to as xMl signals herein. There is also
an interrupt message type called “SM!” or “PMI” that use the APIC/XAPIC
IA32 memory-mapped delivery mechanism or the IPF SAPIC delivery
mechanism.

To date, most BIOS implementations that leverage the SMM capability

of the foregoing Intel processors simply register a monolithic section of code

WO 03/044665 PCT/US02/36765

10

15

20

25

that is created during the build of the BIOS to support a specific function or
set of functions particular to systems that use the BIOS. This code comprises
16-bit assembly in 1A32 and 64-bit assembly for Itanium processors. The
monolithic code segments for these legacy implementations runs from
beginning to completion in response to all xMI activations.

There is no provision in today’'s systems for the registration or
execution of third-party SMM code, thus allowing no extensibility to the SMM
framework. Such extensibility is often desired. For example, if the functions
provided by the SMM code provided by the original equipment manufacturer
(OEM) or the BIOS vendor for a given platform is insufficient, a developer or
value-added reseller (VAR) has to either license the existing code from the
BIOS vendor or OEM and attempt to graft their own logic into their
implementation of SMM code, or live with the insufficiency, since the present
SMM framework does not provide an alternative way to modify or extend the
functions provided by the monolithic code segment. In addition, today’s
implementations on IA32 processors are restricted to the 16-bit mode of the
processor, thus limiting the size of the code and the possible leveraging of
32-bit or 64-bit software engineering techniques. Also, in that SMM is often
used for chipset work-arounds (e.g., CPU or chipset errata that produces an
erroneous and/or unpredictable result due to a design or manufacturing flaw
in the chipset or CPU), the ability to get this key software update is gated by
the monolithic BIOS implementation of the BIOS vendor or OEM.

In today’s environment, most chipset vendors opt for having the
operating system vendor integrate such work-arounds using an OS-driver. In
general, BIOS updates for SMM functions are problematic to effect and since

the OS already has a hardware extensibility mechanism via its own driver

10

15

20

25

WO 03/044665 PCT/US02/36765

model, BIOS vendors and OEMs are less motivated to provide these types of

BIOS updates.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advantages of this
invention will become more readily appreciated as the same becomes better
understood by reference to the following detailed description, when taken in.
conjunction with the accompanying drawings, wherein:

FIGURE 1 is a schematic diagram illustrating an exemplary implementation
of the present invention that enables various event handlers to be loaded into a
hidden memory space and concurrently executed in response to a system
management interrupt (SMI) or processor management interrupt (PMI)
(collectively, xMi) event;

FIGURE 2A comprises a first portion of a flowchart illustrating the logic
used by the present invention when handling an xMI event in accordance with the
architecture of FIGURE 1;

FIGURE 2B comprises a second portion of the flowchart of FIGURE 2A
illustrating the logic used by the invention in accordance with an embodiment in
which a piurality of event handlers are dispatched to multiple processors and
checked to see if they are appropriate for handling the xMl event;

FIGURE 2C comprises a second portion of the flowchart of FIGURE 2A
illustrating the logic used by the invention in accordance with an embodiment in
which a plurality of event handlers are dispatched to multiple processors and
executed to completion to service the xMl event;

FIGURE 3 is a schematic diagram illustrating a timeline corresponding to

dispatch and execution of a plurality of event handlers in a two-processor

10

15

20

25

WO 03/044665 PCT/US02/36765

computer system in accordance with the embodiment corresponding to the
flowcharts of FIGURES 2A and 2C.

FIGURE 4A is a schematic diagram illustrating a first exemplary set of data
stored in a hidden memory space heap that is used during dispatch and execution
of event handlers, including a semaphore table that is used for resource locking;

FIGURE 4B is a schematic diagram illustrating a second exemplary set of
data stored in the hidden memory space heap corresponding to a use case in
which a plurality of handler instances are concurrently executed to service an
error correction code (ECC) memory fault event;

FIGURE 5 is a schematic diagram illustrating a timeline corresponding to
dispatch and execution of a plurality of event handlers and event handler
instances used when concurrently servicing the ECC memory fault event;

FIGURE 6 is a flowchart illustrating the logic used by the present invention
when loading and launching execution of an System Management Mode (SMM)
Nub that is used to manage event handling when a processor is operating in
SMM;

FIGURE 7 is a block diagram illustrating various function and service
components of the SMM Nub;

FIGURE 8 is a flowchart illustrating the logic used by the invention when
registering an event handler,

FIGURE 9 is a flowchart illustrating the logic used by the invention when
registering and installing event handlers that are stored in firmware volumes that
are scanned during a pre-boot process;

FIGURE 10 is a flowchart illustrating operations performed by the invention
when registering event handler for servicing processor management interrupt

(PMI) event with an ltanium™ processor;

WO 03/044665 PCT/US02/36765

FIGURE 11A comprises a first portion of a flowchart illustrating the logic
used by the present invention when handling a PMI event;
FIGURE 11B comprises a second portion of the flowchart of FIGURE 11A
5 illustrating the logic used by the invention in accordance with an embodiment in
which a plurality of event handlers are dispatched to multiple processors and
checked to see if they are appropriate for handling the PMI event;
FIGURE 11C comprises a second portion of the flowchart of FIGURE 11A
illustrating the logic used by the invention in accordance with an embodiment in
10 which a plurality of event handlers are dispatched to multiple processors and
executed to completion to service the PMI event; and
FIGURE 12 is a schematic diagram of a multiprocessor computer system

suitable for implementing the present invention.

10

15

20

25

WO 03/044665 PCT/US02/36765

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

In the following description, numerous specific details are provided to
provide a thorough understanding of embodiments of the invention. One skilled in
the relevant art will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other methods, components,
etc. In other instances, well-known structures or operations are not shown or
described in detail to avoid obscuring aspects of various embodiments of the
invention.

Reference throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in one embodiment” or
“in an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment. Furthermore, the particular
features, structures, or characteristics may be combined in any suitable manner in
one or more embodiments.

The present invention provides a mechanism that enables executable
content in the form of a plurality of software drivers to be loaded into the
System Management Mode (SMM) of an Intel 32-bit family of microprocessor
(i.e., 1A-32 processors), or the native mode of an ltanium-based processor
with a PMI signal activation, and concurrently executed on multiprocessor
computer systems that employ 1A-32 and Itanium-based processors. The
state of execution of code in 1A32 SMM is initiated by an SMi signal and that
in Itanium™ processors is initiated by a PMI signal activation; for simplicity,
these will generally be referred to as SMM. The mechanism allows for
multiple drivers, possibly written by different parties, to be installed for SMM

operation. An agent that registers the drivers runs in the EFI (Extensible
6

10

15

20

25

WO 03/044665

PCT/US02/36765

Firmware Interface) boot-services mode (i.e., the mode prior to operating
system launch) and is composed of a CPU-specific component that binds the
drivers and a platform component that abstracts chipset control of the xMl
(PMI or SMI) signals. The API's (application program interfaces) providing
these sets of functionality are referred to as the SMM Base and SMM Access
Protocol, respectively.

In conventional SMM implementations, SMM space is often locked by
the platform software/firmware/BIOS via hardware mechanisms before
handing off control; this grants firmware the ability to abstract the control and
security of this binding. In contrast, the software abstraction via the SMM
Access protocol provided by the invention obviates the need of users of this
facility to know and understand the exact hardware mechanism, thus allowing
drivers to be portable across many platforms.

As provided in further detail below, the present invention includes the
following features: a library in SMM for the drivers’ usage, including an 1/O
access abstraction and memory allocation services; a means to communicate
with drivers and applications executing in non-SMM mode; an optional
parameter for periodic activation at a given frequency; a means to
authenticate the drivers on load into SMM,; the ability to close the registration
capability; the ability to run in a multi-processor environment where many
processors receive the xMl activation; and finally, the capability to run legacy
IA32 SMM code as a distinguished registered event handler. A characteristic
of the system is that all event handlers run in the native processor mode of
ltanium™ or in the case of 1A32, the framework will put the processor into flat
32 mode prior to invoking the event handlers, while running the optional

legacy 1A32 handler(s) in real-mode (i.e., 16-bit mode).

10

15

20

25

WO 03/044665

PCT/US02/36765

A high-level view of an exemplary implementation of the invention is
depicted in FIGURE 1. The implementation is enabled through use of the EFI
framework, which defines a new model for the interface between operating
systems and platform firmware. The interface consists of data tables that contain
platform-related information, plus boot and runtime service calls that are available
to the operating system and its loader. Together, these provide a standard
environment for booting an operating system and running pre-boot applications.

‘The process for producing the SMM extensibility framework is initiated
in a block 10, wherein The SMM extensibility framework is instantiated. This
includes installing an EFl SMM base protocol driver in a block 12. The EFI
SMM base protocol, SMM_BASE, is a CPU-specific protocol that is published

_ by the CPU driver or another agency that can abstract the ISA-specific details

of an IA32 or Itanium processor. Once installed, SMM_BASE publishes an
SMM handler register service in a block 14. Publication of the handler
register service enables legacy and add-on drivers that are stored on various
storage devices, including an EFI system partition 16, a BIOS flash chip 18
and on a storage device accessed via a network 20 to register SMM event
handlers in a block 22. In addition to these types of storage devices, the
drivers may be stored on other persistent storage devices that are accessible
to the computer system in which the invention is implemented, including
motherboard-based ROMSs, optioh-ROMs contained on add-on peripheral
cards, local hard disks and CD ROMs, which are collectively depicted by a
firmware volume 23. (It is noted that EFI system partition 16, BIOS flash
chip 18 and the remote storage device on which driver 6 resides also may
comprise firmware volumes.) As depicted in FIGURE 1, these drivers include
a legacy driver 1 and an add-on driver 2 stored in EFI system partition 16,

add-on drivers 3, 4, and 5, which are stored on BIOS flash chip 18, and an
8

10

15

20

25

WO 03/044665 PCT/US02/36765

add-on driver 6 that is accessed from a remote storage device (e.g., file
server) via network 20. As used herein, the term *add-on” corresponds to
drivers and firmware files that were not provided with the original firmware of
the computer system as provided by the original equipment manufacture
(OEM) of that system.

In an optional mode, the EFI SMM base protocol driver may scan
various firmware volumes to identify any drivers that are designated for
servicing xMI events via SMM. In one embodiment, these drivers are
identified by their file type, such as exemplified by a "DRIVER7.SMH" file 25
corresponding to an add-on driver 7.

During the installation of the EFl SMM base protocol driver, an SMM
Nub 24 is loaded into SMRAM 26, which comprises an SMM-only memory
space. As explained in further detail below, SMM Nub 24 is responsible for
coordinating all activities while control is transferred to SMM, inciuding
providing an SMM library 28 to event handlers that includes PCI and /O
services 30, memory allocation services 32, and configuration table
registration 34.

Registration of an SMM event handler is the first step in enabling the
handler to perform a particular xMI event servicing function it is designed to
perform. An SMM event handler comprises a set of code (i.e., coded
machine instructions) that when executed by a system processor (CPU)
performs an event service function in a manner similar to an interrupt service
routine. Typically, each SMM event handler will contain code to service a
particular hardware component or subsystem, or a particular class of
hardware. For example, SMM event handlers may be provided for servicing
errors cause by the system’s real time clock, 1/0 port errors, PCl device

errors, etc. In general, there may be some correspondence between a given
9

10

15

20

25

WO 03/044665 PCT/US02/36765

driver and an SMM event handler. However, this is not a strict requirement,
as the handlers may comprise a set of functional blocks extracted from a
single driver file or object.

When the event handler for legacy driver 1 is registered, it is loaded
into SMRAM 26 as a legacy handler 36. A legacy handler is an event handler
that is generally provided with the original system firmware and represents
the conventional mechanism for handling an xMI event. As each add-on
SMM event handler is registered in block 22, it is loaded into an add-on SMM
event handler portion 38 of SMRAM 26; once all of add-on event handlers are
loaded, add-on SMM event handler portion 28 comprises a set of event
handlers corresponding to add-on drivers 2-7, as depicted by a block 42. In
addition, as each SMM event handler is registered, it may optionally be
authenticated in a block 44 to ensure that the event handler is valid for use
with the particular processor and/or firmware for the computer system. For
example, an encryption method that implements a digital signature and public
key may be used. As SMM event handlers are registered, they are added to
a list of handlers 46 stored in a heap 47 maintained by SMM Nub 24.

Once all of the legacy and add-on SMM event handlers have been
registered and loaded into SMRAM 26 and proper configuration data
(metadata) is written to SMM Nub 24, the SMRAM is locked, precluding
registration of additional SMM event handlers. The list of handlers is also
copied to a handler queue 48, which may be stored in heap 47 and accessed
by SMM Nub 24 or stored directly in SMM Nub 24. The system is now ready
to handle various xMl events via SMM.

With reference to FIGURES 1, 2A and 2B, the process for handling an
xMI event with an IA32 processor in accordance with a first embodiment of

the invention proceeds as follows: In a block 54, an xMI event signal 49 is
10

10

15

20

25

WO 03/044665 PCT/US02/36765

received by all of the processors in a multiprocessor system, as exemplified
by a processor 50 (CPU 1) and a processor 51 (CPU 2) in the illustrated
embodiment. In general, for IA32 processors, an xMi (SMl) event may be
generated in response to activation of a pin on the system chipset, bus cycle
type, or inter-processor interrupt (IPI) that cause an IA32 processor to enter
SMM. For Itanium™ processors, an xM! (PMI) event may be generated in
response to activation of a pin on the system chipset, bus cycle type, or an
IPl that causes an Itanium™ processor to return to Physical Mode and
execute code registered with the PAL (Processor Abstraction layer) for
servicing PMI events.

In response to the xMI event, processor 50 switches to SMM mode and
redirects the instruction pointer to the first instruction in SMM Nub 24,
wherein the SMM Nub begins executing, as provided by a biock 56. The
machine state for each processor is then saved in a block 58 through
operations performed by each processor’s built-in hardware register handling
and control operations performed by the SMM Nub.

Next, in a decision block 60, a determination is made to whether there
are any legacy 16-bit handlers that have been registered and loaded. |[f the
answer is yes, all of the processors are synchronized in a block 62, whereby
all but a selected processor (e.g., the first processor that is identified during
the system’s pre-boot process) are halted while the 16-bit handler(s) is/are
executed by the selected processor in a block 64. For convenience, it will be
assumed that processor 50 is the selected processor in this example.
Accordingly, any 16-bit handlers would be executed by processor 50, while
any other processors (e.g., processor 51) would be halted during execution of
these 16-bit handlers. The halted processors are then freed in a block 66,

and their machine execution modes are switched to a Flat32 protected mode.
11

10

15

20

25

WO 03/044665 PCT/US02/36765

This protected mode comprises a flat 32-bit mode with non-paged 32-bit, zero-
based addressing.

Once the execution mode switch has been completed, native 32-bit
handlers are dispatched in their order stored in handler queue 48 to the next
available processor, until an appropriate event handler is executed to
completion to service the xMI event, as provided by start loop and end loop
blocks 68 and 70 in FIGURE 2B. In one embodiment, the event handlers are'
stored as a linked list that is traversed in order from top to bottom, wherein a
first event handler is dispatched to a first processor and additional event
handlers are dispatched to a next available processor until an appropriate
event handler has been executed on one of the system’s processors. A
handler can be marked to be “Single-processor” if it wishes to execute
exclusively; this is the case for legacy code or a module optimized for a uni-
processor desktop. In this latter case, all other processors will be held in a
wait service until the “Single-Processor” handler completes execution. As the
native 32-bit handlers are dispatched, handler queue 48 is updated in a
block 72, which includes incrementing the position of a next-to-dispatch
pointer and identifying which processor the event handler is dispatched to.

Each event handler contains a early portion of code that is used to
determine if that handler is the proper handler for servicing the xMI event. A
typical determination of this sort comprises interrogating the hardware
component, subsystem, etc. corresponding to the event handler to see if an
error has occurred for that object. In some instances, there is a possibility
that more than one processor could execute handler code that attempts to
access the same resource concurrently during execution of this initial code
portion or other code portions of the native event handlers. For example,

many devices, including both built-in peripheral and driver components (e.g.,
12

10

15

20

25

WO 03/044665 PCT/US02/36765

sound chips, video chips, network interface chips, etc) and add-on peripherals
(e.g., sound cards, video cards, network interface cards, etc.) operate under
the PCI (Peripheral Component Interface) architecture. Under this
architecture, a PCI device may be interrogated by send a request string that
includes information pertaining to the device and the register that holds the
data the interrogation concerns to the PCI CF8h 1/O (input/output) port. A
typical request string will have the format “Bus/Device/Function/Register,”
wherein “Bus” specifies the enumerated PCI bus the device is connected to,
“/Device” specifies the enumerated device # assigned to the device during
PCI initialization, “/Function” specifies a PCl function performed by the
device, and “/Register’; specifies a register that stores information, such as
error codes, pertaining to the device that might be of interest to the event
handler submitting the request. To check for various PCI requesfs, the PCI
controller “listens” for request submitted to the CF8h 1/O port. Accordingly,
upon submission of such a request to the PCI controller, the PCI controller
and/or devices will check to see if the request concerns those devices.
Devices for which the request does not concern simply ignore the request. In
contrast, the device specified by “/Device” portion of the string will respond by
copying the value specified by the “/Function/Register’ register to the PCI
CFCh I/0 port, which enables the interrogation code of the handler to read
the value stored in the specified register.

One potential problem with this conventional PCI device query scheme
would occur if a first processor submitted a request at about the same time as
a second processor and the data written to the CFC I/O port pertained to the
wrong request. In order to prevent this, the invention employs a resource

locking scheme in which semaphores 55 are used to ensure that a given

13

10

15

20

25

WO 03/044665

PCT/US02/36765

resource o-r set of resources (e.g., /0 port or set of I/O ports, memory ranges,
etc.) can only be accessed by only one event handler at a time.

In general, this resource locking scheme involves storing semaphore
data that tracks resource usage (e.g., /O ports, memory), and checking this
data prior to executing handler code portions that access such resources,
wherein execution of such code portions are delayed until the semaphore(s)
corresponding to the resources are cleared (indicating the resources are
available for use). Accordingly, resource semaphore(s) 55 corresponding to
the dispatched event handler are checked in a block 74 to verify access to
relevant 1/O ports used by those event handlers is available. As provided by
a decision block 76, if the result of the check is FALSE (NO), the event
handler performs a predefined wait in a block 78, and the logic loops back to
decision block 76. This wait/check process is repeated until the result of the
resource semaphore(s) clear check is TRUE (YES).

Upon verifying that the resources corresponding to the resource
semaphore(s) check are available, corresponding semaphore data is updated
or written in a block 80, as depicted by semaphores St, S,, Sa, and Sy in
FIGURE 1. In effect, this “locks” the resource by indicating that it is not
available for any other event handler to use. In accordance with a decision
block 82, the code portion that determines whether the event handler is the
proper event handler is then allowed to execute. If the code portion
determines that the event handler is not the proper handler (i.e., it determines
that its corresponding device did not cause the error), it returns a code to the
SMM Nub indicating such, and the SMM Nub clears the 1/O semaphore(s) that
were written or updated above in block 80 in a block 84. The logic then
proceeds to end loop block 70, whereupon it loops back to start loop block 68,

wherein the SMM Nub dispatches the next handler in handler queue 48 to a
14

10

15

20

25

WO 03/044665 PCT/US02/36765

next available processor and the foregoing operations are repeated for this
event handler.

If the event handler is the appropriate handler to service the xMl event,
the answer to decision block 82 is TRUE, and the logic proceeds to a
block 86 in which the handler code is executed to completion, whereupon the
handler code returns data to the processor it is running on that identifies
whether or not the xMl event was successfully handled. Upon
acknowledgment of the xMl event being handled, the SMM Nub clears the
resource semaphore(s) corresponding to the handler (i.e., written or updated
above in block 80) in a block 88, and restores the machine state and
executes an appropriate instruction (RSM for 1A32, Return on bO into PAL
PMI code) for all processors to return the processors to their previous
execution mode in a block 90. This completes handling the xMI event. The
core needs to ensure that all processors check-in and have returned from
their handlers in order have a single point in the SMM Nub to return machine
control to the various processors.

Prior to executing the handlers, the SMM Nub needs to save certain
machine and platform resources prior to executing any handlers. These
stores include the contents of registers such as PCl Configuration space
address port OCF8h in case the SMI or PMI occurred while foreground code
was in the middle of a PCI configuration access to 0CF8h and OCFCh. This is
the same scenario with SIO configuration ports 22h/23h, RTC port 70h/71h,
etc. A platform personality “State Save” Module shall be used to affect this
end.

For the case of supporting legacy 16-bit handlers and 32-bit handlers
on IA32, the SMM Nub shall go into protected mode prior to running the

legacy handlers in order to save the math co-processor and floating-point
15

10

15

20

25

WO 03/044665 PCT/US02/36765

state. It goes into protected mode first because more of the FP state is
exposed in protected mode than in real mode.

It is noted that the timing of the resource semaphore checks shown in
FIGURE 2B and discussed above relative to the overall process are merely
exemplary. In addition to I/O ports, semaphores may be used for any
resource that might be shared by two or more event handlers. Furthermore,
resource semaphore checks may be performed during operations other than
those shown in FIGURE 2B. For example, the use of semaphores might be
applied to any I/O access portions of a given handler, wherein more than one
semaphore check might be performed during execution of a single handler.

in the foregoing embodiment, various event handlers were dispatched
to a next available processor and an early portion of each handler was
executed to determine if it was the appropriate handler for the xMl event.
This was repeated until and appropriate event handler was identified, which
was then allowed to continue to completion to service the event. In another
embodiment, multiple event handlers may be executed to completion to
perform a single service operation or a set of related operations pertaining to
an xMI event. The logic for this framework is shown in FIGURES 2A and 2C,
wherein the process portion of FIGURE 2A is the same as that discussed
above, and various operation blocks in FIGURE 2C sharing the same
reference number of corresponding blocks in FIGURE 2B perform
substantially similar operations. Accordingly, the details of these like-
numbered blocks will not be discussed further.

Generally, each event handler will be dispatched based on its order in
handler queue 48 in a manner similar to that described above. The handler is
then executed to completion, as shown by a block 86A. In this instance,

semaphore check, waits, and locks may be performed in a manner similar to
16

10

15

20

25

WO 03/044665

PCT/US02/36765

that described above during execution of the event handler code, as provided
by blocks 74A, 76A, 78A, and 80A. Once the handler code has completed
executing, any corresponding resource semaphores are cleared in a block 88,
and a determination is made in a decision block 92 to whether there are any
more handlers to execute. If there are, they are dispatched in their queue
order. Once all of the event handlers have been dispatched, the
determination of decision blbck 92 will be TRUE, and the system will wait until
all handlers have executed to completion in a block 94. The machine state
and prior execution mode are then restored in a block 90, completing the xMI
event handling process.

An exemplary handiing of an xMI event in accordance with the present
embodiment is depicted in FIGURE 3. In response to an xMl event 49A,
operations are performed using CPU’s 50 and 51 corresponding to the
flowchart portion of FIGURE 2A, as before. The dispatching of handlers then
begins, wherein handler 2 is dispatched to processor 50 and handler 3 is
dispatched to processor 51. During execution of handler 2, a semaphore Sz
is created to lock resources used by the handler. Likewise, a semaphore S3
is created to lock resources used by handler 3. Both handlers 2 and 3 are
executed to completion, and their respective semaphores are cleared.

Upon completion of handler 3, handler 4 is dispatched to processor 51,
which immediately creates a semaphore S. Shortly thereafter, handler 5 is
dispatched to processor 50. Handler 5 needs access to a shared resource
that is locked by semaphore Sq. Accordingly, handler 5 must wait for this
resource to become available, as indicated by a wait segment 96. Upon
completion of its use of the shared resource, handler 4 clears semaphore S4,
thereby releasing the corresponding resource for use by handler 5.

Immediately thereafter, handler 5 creates a semaphore Ss to lock the
17

10

15

20

25

WO 03/044665 PCT/US02/36765

resource. Both handlers4 and 5 continue to execute to completion,
whereupon subsequent handlers are dispatched to the next available
processor based on the handler order in handler queue 48.

Eventually, the last two handlers M and N are dispatched. In the case
of handler N, the handler includes code portions that access different
resources at different points in time. Accordingly, two semaphores are
created, namely semaphores Syi and Sn2. Both handlers M and N continue
execution until completion, with handler M completing first. Processor 50
then waits until handler N has completed executing, whereupon the
processors are restored to the prior machine state and execution modes in a
block 90.

Exemplary data stored in heap 47 corresponding to the foregoing
example are shown in FIGURE 4A. Heap 47 will typically comprise a
reserved portion of SMRAM 26. As discussed above, it will include data
pertaining to a list of handlers 46, and handler queue 48, and semaphores 55.
In the illustrated embodiment, the list of handlers includes a handler
identifier 98 that is used to identifying each handler 98 and a corresponding
starting address 100 that provides for the first instruction of the code for that
handler. Handler queue 48 comprises a table that includes three columns: a
handler identifier 102, a handler status 104, and a CPU identifier 106 that
identifies what CPU the handler is executing or was executed on.

In general, semaphores 55 may be stored in a variety of data
structures. Typically, a semaphore will comprise a resource-value pair from
which a handler can determine whether a given resource is locked by another
handler. In the embodiment illustrated in FIGURE 4A, semaphores 55 include
a semaphore table 108 that includes various /O ports and their

corresponding availabilities, which are marked using a Boolean semaphore
18

10

15

20

25

WO 03/044665

PCT/US02/36765

comprising a “0” to indicate the resource is available (i.e., the semaphore is
cleared), and a “1” to indicate the resource is locked. In one embodiment, a
I/O port “bitmap” is used, wherein the bitmap comprises a sequence of 1-bit
storage locations corresponding to respective I/O ports with each the identity
of each 1/0O port being derived from a /O port base address and an offset
from that base address for which each respective bit corresponds. Set bits
indicate corresponding resources are locked, while cleared bits indicate
corresponding resources are free. Accordingly, semaphore table 108
indicates that 1/0 ports 70h, 71h, CF8h, CFCh, D06h, and DA1h are locked.

In another embodiment, handlers (or code portions thereof)
corresponding to resources that support concurrent access are dispatch to
different processors and allowed to execute concurrently. A timeline
corresponding to an exemplary use case of this embodiment is shown in
FIGURE 5, while corresponding data stored in a heap 47A are shown in
FIGURE 4B. In this example, an xMl signal corresponding to an error
correction code (ECC) event is sent to each of four processors 50, 51, 52,
and 53. The initial operations for handling the xMlI event are performed in a
similar manner to that discussed above with reference to FIGURE 2A.
Subsequently, a handler H2 is dispatched to processor 50, while handlers H3,
H4, and H5 are dispatched to processors 51, 52, and 53, respectively. In this
instance, it is assumed that handler H2 is an appropriate handler for handling
the ECC event, while handlefs H3, H4, and H5 are inappropriate handlers.
Accordingly, early portions of these inappropriate handlers are allowed to
execute and return information to SMM Nub 24 indicating they are
inappropriate handlers for the event.

In one embodiment, a concurrency type column 110 is added to list of

handlers 46 to indicate whether a handler can support concurrent execution.
19

10

15

20

25

WO 03/044665 PCT/US02/36765

Optionally, this information can be determined by an early portion of the
handler code. Based on one of the foregoing schemes, it is recognized that
the resource supported by handler H2 (i.e., memory in the case of an ECC
event handler) can support concurrent access. Accordingly, an early code
portion of handler H2 updates list of handlers 46 and handler queue 48 such
that the next code portions to be dispatched to processors 51, 52, and 53 are
either additional instances of handler H2, or a core portion of handler H2 that
services the ECC event. These handlers or handler core portions are
depicted as handlers H2A, H2C, and H2D, which are dispatched to
processors 51, 53, and 52, respectively, upon completion of handlers H3, H5,
and H4.

ECC events are enunciated by system memory that provides error
correction code support. Essentially, an ECC event is enunciated when the
memory detects a potential error condition. In one embodiment, the response
to such an event is to have a processor read data stored in one or more
blocks of the memory identified by an ECC code and write back to these
blocks of memory. In the present example, it will be assumed that the ECC
capabilities of the memory are fairly coarse, whereby the memory can only
detect an error for an entire DIMM (dual inline memory module), and wherein
there are four 64 megabyte (M) DIMMs (256M total) installed in the system.
Furthermore, it is assumed that the second DIMM, corresponding to memory
blocks from 64M to 128M generated the ECC event.

in accordance with the foregoing scenario, handler H2 or code in SMM
library 28 determines that since there is 64M of memory to correct (i.e., read
and write back to in order to implement the “software-based” scrub of
memory), and there are four processors to perform the task, each processor

is assigned to correct 16M of memory. In one embodiment, resource locking
20

10

15

20

25

WO 03/044665 PCT/US02/36765

data (e.g., semaphores) may be stored in semaphore table 55 to identify
which memory blocks are assigned to which processor to correct, as shown in
FIGURE 4B. As illustrated in FIGURE 4B, there are four sets of
semaphores 112, 114, 116, and 118, each comprising data corresponding to
16 1M memory blocks, wherein each set of semaphores locks its
corresponding memory blocks such that those blocks may only be accessed
by the processor identified by the semaphores. For example,
semaphores 112 lock memory blocks from 64M to 80M such that they may
only be accessed by processor 50 (CPU 1), semaphores 114 lock memory
blocks from 80M to 96M such that they may only be accessed by
processor 51 (CPU 2), etc. In addition to the semaphore-based locking
scheme shown, other resource locking schemes may be used, such as
identifying ranges of memory locked by each processor.

Each of handlers or handler core portions H2, H2A, H2B, and H2C
continue to execute until their corresponding memory blocks have been
corrected. Upon completion of there respective handlers, each of
processors 50, 51, 52, and 53 wait until any remaining handler code is
executed, whereupon all of the processors are restored to their respective
machine states and prior execution modes in a block 90B.

In order to use event handlers, the EFI SMM base protocol driver must first
be installed. With reference to FIGURE 6, the EFI SMM base protocol driver
(SMM_BASE) for 1A32 processors is installed through the following process.
First, an SMM_BASE:Initialize service is called in a block 120. This is
implemented with a DXE (Driver Execution Environment) Boot-Service driver that
loads and exports this constructor.

In response to instantiating the driver, the startup code for SMM Nub 24 is

loaded into SMRAM at the CPU default SMRAM address (0x3000-segment, offset
21

10

15

20

25

WO 03/044665

PCT/US02/36765

0x8000) while operating in protected mode. The processor mode is then
transferred to real-mode at the execution address 0x38000p in a block 122. Next,
in a block 124, the permissible address ranges for the platform’s SMRAM
implementation is ascertained and allocated. This information may be obtained by
calling the SMM_ACCESS::GetCapabilities and
SMM_ACCESS::AcquireSmramRange methods with the SMM_BASE::Initialize
driver, as described below. If this driver doesn’t exist, then the default policy will
be OxA000-seg for 1A32 processors (or top-of-memory for T-SEG and near 4GB
for H-SEG chipset implementations) and runtime-data for Itanium™ processors,
with a default size of (128 Kbyte for IA32 A-segment and 256 Kbyte for ltanium™).

After the address range has been allocated, the SMM_ACCESS::Open
service is invoked in a block 126 and the initial address for the SMRAM is
relocated from the default CPU address (0x38000p) to the platform address in a
block 128 for I1A32. The relocated code will include a real-mode component and a
protected mode component. The real-mode component will comprise the
SMMEntry into the SMRAM relocation address. In a block 130, this code is
executed to perform any legacy services, as necessary, and switch the processor
to protected mode operation. Control is then handed off the SMM core in a
block 132.

As discussed above, SMM Nub 24 is responsible for coordinating activities
while the processors are operating in SMM. The various functions and services
provided by one embodiment of SMM Nub 24 are graphically depicted in FIGURE
7 These functions and services include synchronizing all of the processors for
multiprocessor configurations, saving the machine state, including floating point
registers, if required, and flushing the cache, as provided by function blocks 134,
136, and 138. The SMM Nub also provides a mode switching function 140 that

switches the processor mode from real mode to protected mode, as discussed
22

WO 03/044665 PCT/US02/36765

10

15

20

25

above with reference to block 130. Mode switching function 140 also enables the
processor’s internal cache. Other functions provided by SMM Nub 24 include
setting up a call-stack in SMRAM 26, maintaining list of handlers 46, and
maintaining handler queue 48, as depicted by function blocks 142, 144, and 146.

SMM Nub 24 provides a set of services to the various event handlers
through SMM library 28, including PCl and I/O services 30, memory allocation
services 32, and configuration table registration services 34. In addition, SMM
Nub 24 provides several functions that are performed after the xMl event is
serviced. If the computer system implements a multiprocessor configuration,
these processors are freed by a function 148. A function 150 restores the
machine state of the processor(s), including floating point registers, if required.
Finally, a function 152 is used to execute RMS instructions on all of the
processors in a system.

As discussed above, the invention provides two mechanisms for loading
event handlers: (1) driver-based installation; and (2) autonomous load from the
firmware volumes. '

For driver-based installations, the SMM_BASE protocol shall be installed
by a driver that is loaded by the DXE dispatcher. After the SMM_BASE protocol is
installed, it publishes an interface that enables event handlers to be registered
and loaded. The protocol for registration is described by the EFI1.0 specification,
which defines a mechanism for publishing new callable interfaces in the EFI
environment. The SMM_BASE protocol publication essentially comprises
exposing the API described in the SMM-CIS (the SMM “Component Interface
Interface Specification,” or EFI2.0 document describing the EF12.0 Protocol or AP
set that abstracts this registration mechanism in the pre-boot space) with the EFlI
core. The EFI core maintains a protocol database of GUID/interface pointer pairs.

The GUID comprises a 128-bit globally-unique 1D of the interface.
23

10

15

20

25

WO 03/044665

PCT/US02/36765

Through this mechanism, any driver that wishes to install event handlers,
wherein in one embodiment an event handler is some code that can be PE32+
binary in the 1A32 or ltanium™ instruction set, or legacy 16-bit handlers for 1A32,
can use the standard mechanism of EFI1.0 to discover the SMM_BASE protocol
instance (via the core service “| ocateProtocol”) or register a notification with the
EF| core to be alerted when the SMM_BASE protocol is installed. In either case,
once the SMM_BASE protocol is installed, various drivers can marshall the
interface pointer to the SMM_BASE instance (via the EFI1.0 “HandleProtocol
service”) and then invoke the SMM_BASE::Register service. The binary code that
the driver consuming the SMM_BASE service uses can be ascertaining from its
own driver image, a file from disk or network. The file can be in the firmware
volume or on the FAT disk partition.

Registration of event handlers is further facilitated by an
SMM_BASE::Register service. This service comprises a DXE Boot-Service driver
that permits registration of an event handler. With reference to FIGURE 8, the
process for registering an event handler begins in a block 154, wherein a request
to register an event handler is received by the SMM_BASE protocol driver from
another boot service driver or application (i.e., drivers 1-7). Inresponse, an SMl is
generated in a block 156, using an IPl or SMM_CONTROL protocol. The
argument is passed on the memory stack using the ESP memory stack pointer as
if calling another handler. The handlers can be written in C and the generated
image PE32+. Next, in a block 158, memory relocation is performed and the ST
(System Table from EFI1.0) pointer is replaced with a pointer to the SMST
(System Management System Table).

Next, the SMRAM is opened in a block 160 using the
SMM_ACCESS::Open service, which is access through the SMM_ACCESS

protocol. Further details of SMM_ACCESS protocol are provided in the
24

10

15

20

25

WO 03/044665

PCT/US02/36765

APPENDIX that follows. The SMM_ACCESS::Open service abstracts
programming of the memory controller to enable visibility of the SMRAM from non-
SMRAM based code. This enables the SMM_BASE protocol to copy and install
code, such as the SMM Nub, into SMRAM.

Next, in a decision block 162 a determination is made to whether enough
SMRAM is available to hold the event handler routine. If not enough SMRAM
memory space is available, the logic proceeds to a block 164 in which the caller is
alerted. As an option, in response to being alerted, the caller may use the
SMM_ACCESS::GetCapabilities and SMM_ACCESS::AcquireSmramRange
method to acquire additional memory space within the SMRAM, as provided by a
block 166. If there is not enough SMRAM memory space available, the SMRAM
is closed by calling the SMM_ACCESS::Close method and an error code is
returned to the caller in an error return block 168.

If it is determined that there is enough SMRAM memory space available, a
memory buffer for the SMRAM image of the handler is allocated in a block 170. A
determination to whether the allocation succeeded is made in a decision
block 172. If the allocation wasn't successful, the logic proceeds to error return
block 168. If the allocation is successful, an image of the event handler is loaded
into the SMRAM memory space that had been previously allocated in a block 174.
A determination is then made to whether the image is good in a decision
block 176. If not, the logic proceeds to error return block 168. If the image is
verified to be good, SMM Nub 24 registers the new event handler by adding it its
list of handlers 46 in a block 178, and the SMRAM is closed and the process
returns to the caller in a return block 180.

The mechanism for autonomously loading event handlers from firmware
volumes does not rely on having another driver consume the SMM_BASE

interface and SMM_BASE::Register service. Rather than have drivers initiate the
25

WO 03/044665
PCT/US02/36765

registration process, the various firmware volumes (FV) that are materialized
during the pre-boot are scanned for suitable driver files that contain event
handlers that may be loaded by the SMM_BASE driver.

A firmware volume is a collection of firmware files. Each firmware file in the
firmware volume has a TYPE field among other metadata in a firmware file
header. Included among the enumeration of type fields within a firmware file
header is a new TYPE called «gmmHandler.” Understanding of the firmware
volume and firmware file system ReadFile services and this new type shall be
known by all drivers that implement and publish the SMM_BASE interface.

With reference to FIGURESY, the mechanism begins in a block 182,
wherein the SMM_BASE driver searches all firmware volumes that are
materialized in the system during pre-boot. As defined by start and end loop
blocks 184 and 186, the following logic is applied to each of these firmware
volumes. In a decision block 188 a determination is made to whether the firmware
volume contains any firmware files conformant with the firmware file system. If
the answer is no, the logic loops back to examine the next firmware volume. If
one or more conformant firmware files are found, each of these files are examined
using the following process, as defined by start and end loop blocks 190 and 192.
In a decision block 194, the SMM_BASE drive examines the file type of the
current file to determine with it is an »SMMHandler’ file. If it is not, the logic loops
back to begin examination of the next file. If the file type is “SmmHandler,” the
SMM_BASE driver decomposes the Sections of the firmware file in a block 196; a
section is the internal packing mechanism within a firmware file. As provided by a
block 198, if a section contains a PE32+ executable image, wherein PE32+ is a
Portable Executable image type described by Microsoft in the Portable Image
specification (posted on the Internet at wyww.microsoft.com/hwdev/efi”) that is of

the same machine type as which the SMM_BASE is implemented (e.9., the
2

WO 03/044665 PCT/US02/36765

10

15

20

25

computer system is an 1A32 machine and the handler is an IA32 PE32+ image) or
if the SMM_BASE implementation is on an IA32 system that supports loading
legacy 16-bit handlers, the SMM_BASE driver shall install the executable image
or legacy 16-bit handler contained in the section. The logic then proceeds to
process subsequent firmware files and firmware volumes in a similar manner.

In general, the SMM_BASE shall assume that arguments presented above
for the SMM_BASE::Register will have default values, such as floating-point save
and MakeFirst == FALSE, when loading the handler autonomously from a
Firmware File. '

In general, the handling of an SMI with an IA-32 processor and a PMI with
an Iltanium-class processor encompasses similar processes. However, there are
some differences. A primary difference between is that the Itanium™
processors do not have a special CPU mode entered upon activation of its
xMI signal. Rather, Itanium™ processors only provide a mechanism to bind a
handler into the processor to handle a PMI event. This binding is affected via
a registration call into the Processor Abstraction Layer (PAL), which is
firmware provided by Intel for all Itanium platform builders, and comprises
part of the Itanium architecture that is used to provide a consistent firmware
interface to abstract processor implementation-specific features.

Details of registering a handler and handling a PMI event with an
[tanium™ processor are shown in FIGURES 10 and 11. The registration
process begins in a block 200, in which the EFI2.0 SMM_BASE driver loads a 64-
bit version of the SMM Nub. Upon loading the SMM Nub, the EF! calls the
PAL_PMi_ENTRYPOINT service with the loaded image of the Nub in memory ina
block 202, which creates an ent‘ry point into the Nub code.

During initialization, the PAL publishes a set of services called

PAL_PROCS. One of these PAL_PROCS is then used to register the entrypoint
27

10

15

20

25

WO 03/044665 PCT/US02/36765

with an appropriate processor-specific resource, such as the processor's model-
specific registers (MSR), in a block 204. Registration of the entrypoint thereby
creates a binding between the processor and the set of PMI event handlers that
are accessed via the SMM Nub.

With reference to FIGURE 11A, PMI event handling may then be
performed as follows. In a block 206, a PAL_PMI event handler receives a PMI
event. The PAL_PMI event handler then calls SMM Nub 24 in a block 208, which
causes the processing of a processor that is selected to perform extensible PMI
event handling to be vectored to the Nub entry point that was registered above.
Next, all of the processors are rendezvoused in a block 210, whereby all but a
selected processor (e.g., the first processor that is identified during the pre-
boot process) are halted while the SMM Nub in the selected processor is
executed. The machine state of each CPU is then saved by both the CPU
hardware and the SMM Nub 24 in a block 212.

in one embodiment, in accordance with FIGURE 11B, once the
machine states of the processors have been saved, native 64-bit handlers are
dispatched in handler queue order to a next available processor until an
appropriate event handler is executed to completion to service the PMI event,
as provided by start loop and end loop blocks 68A and 70A. In this
embodiment, the operations performed in blocks 68A, 70A, 72A, T4A, T6A,
78A, 80A, 82A, 84A, 88A, and 90A mirror the operations performed by the
blocks shown in FIGURE 2B that share the same root reference number
except that in this instance 64-bit handlers are dispatched and executed
instead of 32-bit handlers. For example, handler queue 48 is updated in a
block 72A upon dispatch of each handler in a manner similar to the updating
of handler queue 48 discussed above with reference to block 72 in

FIGURE 2B. Upon acknowledgment of the PMI event being handled, SMM
28

10

15

20

25

WO 03/044665 PCT/US02/36765

Nub restores the machine state and executes an appropriate instruction (RSM
on 1A32 and return on b0 for IPF) for the processor/all processors to return
the processor(s) to its/their previous processing mode in a block 90A.

In another embodiment shown in FIGURE 11C, muitiple event handlers
are dispatched to available processors and executed to completion in a
manner similar to that discussed above with reference to FIGURE 2C,
wherein similar operations are performed in blocks having reference numbers
with common roots. In addition to the embodiments, PMI event handling may
also include dispatch and execution of concurrent event handlers in a manner
similar to that described above with reference to FIGURES 4B and 5.

The frame also provides for servicing interrupts while in SMM mode. In
addition to dispatching handlers in the synchronous fashion in response to the
SMI or PMI activation described above, a mechanism is provided for period
activation of handlers. This is supported, in part, by means of a software xMl
Timer Service Handler. The service handler can program a platform resource
to engender a periodic activation of the SMI/PMI with some given time
interval. The associated handler can also publish this capability to other peer
handlers that want to be listeners or agents to respond to these periodic
events. As such, a GUID-based service from the software xMI Timer Service
Handler may be used by other handlers and allow them to be invoked on a
time-sliced basis. The framework also provides a service for canceling the
periodic activation.

An exemplary use for this periodic service capability concerns software
memory scrubbing handlers. Memory scrubbing is often used to correct
memory errors, and involves reading memory and writing back to it
Generally, this duty is automatically handled via a system’s chipset (e.g.,

memory controller) and/or built-in functionality provided by a memory
29

10

15

20

25

WO 03/044665 PCT/US02/36765

component (e.g., a DRAM DIMM). However, in some instances in which the
memory controller or built-in _functionality is less sophisticated, this task must
be performed by software through a service handler. For example, assume
that a given chipset is only able to report a SBE (Single-Bit Error) at a DRAM
bank level, and the bank could be up to one-gigabyte in size. If the SMI or
PMI handler were to attempt the software scrub the memory during a single
activation, the read/write access to each of the one-billion memory locations
would have an extended latency, especially since the access needs to be a
write-back to actual DRAM. This loss of foreground operating system control
would likely have adverse effects on the operating system, at least causing an
apparent system “freeze” and possibly crashing the OS. As such, one
solution would be for the memory scrubbing handlers to use the parallel
dispatch mechanism of the invention described above to do phased
concurrent memory scrubbing, wherein the handlers are executed in phases
such that only a portion of the memory scrubbing is handled during each
phase (e.g., 10MB or 100MB chunks). For instance, in one embodiment the
handlers would invoke the xMI Timer Handler to request activation on
successive intervals, (e.g., 100ms, 1 second, etc.) wherein a predefined
chunk of memory is scrubbed during each interval until all of the memory has
been scrubbed.
Exemplary Machine for Implementing the Invention

With reference to FIGURE 12, a generally conventional multiprocessor
computer system 300 is illustrated, which is suitable for use in connection with
practicing the present invention. Multiprocessor computer system 300 includes a
processor chassis 302 in which are mounted a floppy disk drive 304, a hard
drive 306, a motherboard 308 populated with appropriate integrated circuits

including a plurality of processors (depicted as processors 309A and 309B), one
30

WO 03/044665 PCT/US02/36765

10

15

20

25

or more memory modules 310, and a power supply (not shown), as are generally
well known to those of ordinary skill in the art. Motherboard 308 also includes a
local firmware storage device 311 (e.g., flash EPROM — Eraseable Programmable
Read-Only Memory) on which the base portion of the BIOS firmware is stored. To
facilitate access to the portion of the BIOS firmware that is retrieved from a remote
firmware storage device 312 via a network 314, personal computer 300 includes a
network interface card 316 or equivalent circuitry built into motherboard 308.
Network 314 may comprise a LAN, WAN, and/or the Internet, and may provide a
wired or wireless connection between personal computer 300 and remote
firmware storage device 312.

A monitor 318 is included for displaying graphics and text generated by
software programs that are run by the personal computer and which may
generally be displayed during the POST (Power-On Self Test) and other aspect of
firmware load/execution. A mouse 320 (or other pointing device) is connected to
a serial port (or to a bus port) on the rear of processor chassis 302, and signals
from mouse 320 are conveyed to motherboard 308 to control a cursor on the
display and to select text, menu options, and graphic components displayed on
monitor 318 by software programs executing on the personal computer. In
addition, a keyboard 322 is coupled to the motherboard for user entry of text and
commands that affect the running of software programs executing on the personal
computer.

Personal computer 300 also optionally includes a compact disk-read only
memory (CD-ROM) drive 324 into which a CD-ROM disk may be inserted so that
executable files and data on the disk can be read for transfer into the merﬁory
and/or into storage on hard drive 306 of personal computer 300. If the base BIOS
firmware is stored on a re-writeable device, such as a flash EPROM, machine

instructions for updating the base portion of the BIOS firmware may be stored on
31

10

15

20

25

WO 03/044665 PCT/US02/36765

a CD-ROM disk or a floppy disk and read and processed by the computer’s
processor to rewrite the BIOS firmware stored on the flash EPROM. Updateable
BIOS firmware may also be loaded via network 314.

Although the present invention has been described in connection with a
preferred form of practicing it and modifications thereto, those of ordinary skill in
the art will understand that many other modifications can be made to the invention
within the scope of the claims that follow. Accordingly, it is not intended that the
scope of the invention in any way be limited by the above description, but instead

be determined entirely by reference to the claims that follow.

APPENDIX

SMM_ACCESS Protocol for IA32

The SMM_ACCESS protocol is published by a chipset driver, namely the
MCH driver for the 82815 chipset. This driver abstracts the capabilities of the
memory controller for opening, closing, and locking SMRAM. It also describes
the possible regions for the SMRAM, including the location of the legacy frame
buffer at 0XA0000, and memory near the top of the physical DRAM (T-SEG).

The SMM_ACCESS protocol constructor should register a call-back on
ExitBootServices. The SMM_ACCESS protocol provides the following functions:
SMM_ACCESS::Open

This service abstracts programming of the memory controller to enable
visibility of the SMRAM from non-SMRAM based code. This enables the
SMM_BASE protocol to copy and install code, such as the SMM Nub, into
SMRAM.

32

10

15

20

25

30

WO 03/044665 PCT/US02/36765

SMM_ACCESS::Close

This service abstracts programming of the memory controller to disable the
visibility of the SMRAM from non-SMRAM based code. This enables the
SMM_BASE protocol to inhibit other pre-boot agents from viewing the SMRAM-

based contents.

SMM_ACCESS::Lock
This service abstracts the hardware capability of securing the SMRAM

such that no future attempts can succeed in opening the visibility of this region.

SMM_ACCESS::GetCapabilities

This call provides the caller, which is most likely the SMM_BASE driver, the
available regions of memory for use as SMRAM. This is a read-only reporting
service that publishes information. The claiming of the region and programming of
the chipset to effect the decode of this store in SMRAM is effected by acquiring

the region in question (see next service).

SMM_ACCESS::AcquireSmramRange

This service provides two types of functionality. The first is that it is the
resource management database visible to the EFI2.0 boot-service caller. The
possible ranges of available SMRAM in the platform are published by the
GetCapabilities’ service SMRAM Map, and a region is the map can be requested
for enable by this service. This request minimally includes an update to the driver
of ownership, but the call will also entail chipset programming that actually

enables the request regime.
SMM_ACCESS::ReleaseSmramRange

This service provides two types of functionality. This request minimally
inciudes an update to the driver of releasing ownership of a range, but the call will

also entail chipset programming that actually disables the request regime.

33

10

15

20

25

WO 03/044665

PCT/US02/36765

What is claimed is:

1. A method for servicing a hidden execution mode event in a multiprocessor
computer system, comprising:

loading a plurality of event handlers into a hidden memory space that is
accessible to a hidden execution mode supported by each of a plurality of
processors in the multiprocessor computer system but is not accessible to other
operating modes of those processors;

dispatching event handlers from among said plurality of event handlers to
different processors from among said plurality of processors in response to the
hidden execution mode event; and

concurrently executing the event handlers that are dispatched on the

different processors to service the hidden execution mode event.

2. The method of claim 1, wherein the hidden execution mode comprises a
System Management Mode (SMM) of a microprocessor, and the hidden execution

mode event comprises a System Management Interrupt (SMI) event.

3. The method of claim 1, wherein the hidden execution mode event

comprises a Processor Management Interrupt (PMI) event.

4. The method of claim 1, further comprising:
creating a handler queue comprising an ordered list of said plurality of

event handlers;

34

10

15

20

25

WO 03/044665 PCT/US02/36765

dispatching event handlers to a next available processor for execution

based on a relative position of each event handler in the ordered list.

5. The method of claim 1, further comprising:

dispatching a first set of event handlers to respective processors from
among said plurality of processors;

for each event handler that is dispatched, determining if that handler is an
appropriate event handler for servicing the hidden execution mode event and, if it
is, executing that event handler to completion to service the hidden execution
mode event; otherwise

stopping execution of any event handler that is determined to not be an
appropriate event handler; and

dispatching a next event handler in the list to a next available processor
and determining whether that event handler is an appropriate event handler and
repeating this operation until an appropriate event handler has been dispatched,

whereupon that event handler is executed to completion to service the event.

6. The method of claim 5, wherein each of said plurality of event handlers
comprise a set of machine code that is executed by the processor to service an
error condition generated by a hardware component in the computer system that
causes the hidden execution mode event, and determining whether an event
handler is an appropriate event handler for servicing the hidden execution mode
event comprises:

executing a first portion of the set of machine code corresponding to a
dispatched event handler that queries the hardware component corresponding to
that event handler to determine if the error condition was caused by that hardware

component; and

35

10

15

20

25

WO 03/044665 PCT/US02/36765

completing execution of the set of machine code for the event handler if it is
determined that the error condition was caused by its corresponding hardware
component, otherwise returning a value to a calling software component indicating
that the event handler is not the appropriate event handler to service the error

condition.

7. The method of claim 1, further comprising:

loading an event handler management service into the hidden memory
space;

registering said plurality of event handlers with the event handling
management service;

redirecting an instruction pointer for a selected processor to begin
execution of the event handler management service is response to the hidden
execution mode event; and

dispatching event handlers from among said plurality of ah event handlers
via the event handler management service to at least two different processors to

service the event.

8. The method of claim 7, further comprising:

saving information pertaining to a processing mode and machine state for
each processor in the multiprocessor computer system prior to executing an event
handler on that processor; and

returning each processor to its previous processing mode and machine
state to resume execution of its respective operation after the event has been

serviced by (an) appropriate event handier(s).

9. The method of claim 1, further comprising:

36

10

15

20

25

WO 03/044665 PCT/US02/36765

providing a resource locking mechanism that enables a specified resource

to be accessed by only one event handler at a time.

10. The method of claim 9, wherein the resource locking mechanism comprises

the use of one or more semaphores.

11. The method of claim 9, further comprising:

storing resource lock information corresponding to one or more resources
accessed by any event handlers that has been dispatched,

checking resource lock information corresponding to a given resource or
set of resources prior to execution of any code portion of an event handler that
accesses that resource or set of resources to verify that resource or set of
resources are available for access; and

waiting for any resource locks corresponding to that resource or set of

resources to be cleared prior to executing the code portion of the event handler.

12. The method of claim 1, wherein the hidden execution mode event is
generated by a system resource that supports concurrent access, and wherein a
plurality of event handlers instances or event handler code portion instances are
dispatched to said plurality of processors and executed concurrently to service the

hidden execution mode event.
13. The method of claim 12, wherein said plurality of event handlers instances

or event handler code portion instances are dispatched repeatedly using a timer-

based mechanism to service the hidden execution mode event in phases.

37

10

15

20

25

WO 03/044665 PCT/US02/36765

14. A method for servicing a System Management Interrupt (SMI) eventina
multiprocessor computer system, comprising:

loading a plurality of event handlers into System Management Mode (SMM)
memory (SMRAM) that is accessible to a plurality of processors in the
multiprocessor computer system when those processors are executing in a SMM,;

switching said plurality of processors to SMM in response to the SMI event
event;

dispatching event handlers from among said plurality of event handlers to
different processors from among said plurality of processors; and

concurrently executing the event handlers that are dispatched on the

different processors to service the SMI event.

15. The method of claim 14, further comprising:

loading an event handler management service into SMRAM,;

registering said plurality of event handlers with the event handling
management service,

redirecting an instruction pointer for a selected processor to begin
execution of the event handler management service is response to the SMi event;
and

dispatching the event handlers via the event handler management service

to service the SMI event.

16. The method of claim 15, further comprising:

maintaining a handler queue via the event handler management service in
which an ordered list of event handlers are stored;

dispatching event handlers to a next available processor for execution

based on a relative position of each event handler in the ordered list.

38

10

15

20

25

WO 03/044665

PCT/US02/36765

17. The method of claim 14, further comprising:

.storing resource lock information corresponding to one or more resources
accessed by any event handlers that has been dispatched;

checking resource lock information corresponding to a given resource or
set of resources prior to execution of any code portion of an event handler that
accesses that resource or set of resources to verify that resource or set of
resources are available for access; and

waiting for any resource locks corresponding to that resource or set of

resources to be cleared prior to executing the code portion of the event handler.

18. The method of claim 14, wherein the SMI event is generated by a system
resource that supports concurrent access, and wherein a plurality of event
handlers instances or event handler code portion instances are dispatched to said

plurality of processors and executed concurrently to service the SMI event

19. The method of claim 18, wherein said plurality of event handlers instances
or event handler code portion instances are dispatched repeatedly using a timer-

based mechanism to service the SMI event in phases.

20. A method for handling a Platform Management Interrupt (PMI) eventin a
multiprocessor computer system, comprising:

loading a PMI event-handling management service into memory accessible
to a plurality of processors in the multiprocessor computer system;

registering an entry point for the PMI event-handling management service;

enabling a plurality of PMI event handlers to be made accessible to the

processor via the PMI event-handling management service; and

39

WO 03/044665 PCT/US02/36765

10

15

20

25

in response to the PMI event, vectoring a selected processor to begin
executing the PMI event-handling management service at its entry point to effect
the operations of:
dispatching at least two of said plurality of PMI event handlers to
different processors among said plurality of processors; and
executing said at least two PMI event handlers on the different

processors to service the PMI event.

21. The method of claim 20, wherein the said plurality of event handlers are
made accessible to the PMI event-handling management service by publishing a
registration interface that enables registration of PMI event handlers with the PMI

event-handling management service.

22, The method of claim 21, wherein a plurality of event handlers are
registered with the PMI event handling management service, further comprising:
maintaining a handler queue via the event handler management service in
which an ordered list of event handlers are stored;
dispatching event handlers to a next available processor for execution

based on a relative position of each event handler in the ordered list.

23. The method of claim 20, further comprising:

storing resource lock information corresponding to one or more resources
accessed by any event handlers that has been dispatched;

checking resource lock information corresponding to a given resource or
set of resources prior to execution of any code portion of an event handler that
accesses that resource or set of resources to verify that resource or set of
resources are available for access; and

40

WO 03/044665 PCT/US02/36765

10

15

20

25

waiting for any resource locks corresponding to that resource or set of

resources to be cleared prior to executing the code portion of the event handler.

24. The method of claim 20, wherein the PMI event is generated by a system
resource that supports concurrent access, and wherein a plurality of event
handlers instances or event handler code portion instances are dispatched to said

plurality of processors and executed concurrently to service the PMI event

25 The method of claim 24, wherein said plurality of event handlers instances
or event handler code portion instances are dispatched repeatedly using a timer-

based mechanism to service the PMI event in phases.

26. A machine-readable medium having a plurality of machine instructions
stored thereon that when executed by a processor in a multiprocessor computer
system performs the operations of:

loading a plurality of event handlers into a hidden memory space that is
accessible to a hidden execution mode supported by each of a plurality of
processors in the multiprocessor computer system but is not accessible to other
operating modes of those processors;

dispatching event handlers from among said plurality of event handlers to
selected processors from among a plurality of processors running in the
multiprocessor computer system in response to the hidden execution mode event
so that the event handlers can be concurrently executed on the selected

processors to service the hidden execution mode event.

27 The machine-readable medium of claim 26, wherein execution of said

plurality of machine instructions further performs the operations of:

41

WO 03/044665 PCT/US02/36765

10

15

20

25

dispatching a first set of event handlers to the selected processors, each
processor being dispatched a respective event handler in the first set of event
handlers;

for each event handler that is dispatched, determining if that handler is an
appropriate event handler for servicing the hidden execution mode event and, if it
is, executing that event handler to completion to service the hidden execution
mode event; otherwise

stopping execution of any event handler that is determined to not be an
appropriate event handler; and

dispatching a next event handler in the list to a next available processor
and determining whether that event handler is an appropriate event handler and
repeating this operation until an appropriate event handler has been dispatched,

whereupon that event handler is executed to completion to service the event.

28. The machine-readable medium of claim 26, wherein the hidden execution
mode event is generated by a system resource that supports concurrent access,
and wherein a plurality of event handlers instances or event handler code portion
instances are dispatched to the selected processors and executed concurrently to

service the hidden execution mode event.

29 The method of claim 28, wherein said plurality of event handlers instances
or event handler code portion instances are dispatched repeatedly using a timer-

based mechanism to service the hidden execution mode event in phases.

30. The machine-readable medium of claim 26, wherein execution of said

plurality of machine instructions further performs the operations of:

42

WO 03/044665 PCT/US02/36765

10

15

20

25

providing a resource locking mechanism that enables a specified resource
to be accessed by only one event handler at a time.

storing resource lock information corresponding to one or more resources
accessed by any event handlers that has been dispatched;

checking resource lock information corresponding to a given resource or
set of resources prior to execution of any code portion of an event handler that
accesses that resource or set of resources to verify that resource or set of
resources are available for access; and

waiting for any resource locks corresponding to that resource or set of

resources to be cleared prior to executing the code portion of the event handler.

31. A multiprocessor computer system comprising:
a motherboard;
a memory operatively coupled to the motherboard in which a plurality of
machine instructions are stored; and
a plurality of processors operatively coupled to the motherboard and linked
in communication with the memory, to execute the machine instructions to
perform the operation of:
loading a plurality of event handlers into a hidden memory space
that is accessible to a hidden execution mode supported by each of a
plurality of processors in the multiprocessor computer system but is not
accessible to other operating modes of those processors;
dispatching event handlers from among said plurality of event
handlers to selected processors from among said plurality of processors
running in the multiprocessor computer system in response to the hidden

execution mode event so that the event handlers can be concurrently

43

WO 03/044665 PCT/US02/36765

10

15

20

25

executed on the selected processors to service the hidden execution mode

event.

32. The multiprocessor computer system of claim 31, wherein execution of said
plurality of machine instructions by said plurality of processors further performs
the operations of:

dispatching a first set of event handlers to the selected processors, each
processor being dispatched a respective event handler in the first set of event
handlers;

for each event handler that is dispatched, determining if that handler is an
appropriate event handler for servicing the hidden execution mode event and, if it
is, executing that event handler to completion to service the hidden execution
mode event; otherwise

stopping execution of any event handler that is determined to not be an
appropriate event handler; and

dispatching a next event handler in the list to a next available processor
and determining whether that event handler is an appropriate event handler and
repeating this operation until an appropriate event handler has been dispatched,

whereupon that event handler is executed to completion to service the event.

33. The multiprocessor computer system of claim 31, wherein the hidden
execution mode event is generated by a system resource that supports concurrent
access, and wherein a plurality of event handlers instances or event handler code
portion instances are dispatched to the selected processors and executed

concurrently to service the hidden execution mode event.

WO 03/044665 PCT/US02/36765

10

15

34. The multiprocessor computer system of claim 31, wherein execution of said
plurality of machine instructions by said plurality of processors further performs
the operations of:

providing a resource locking mechanism that enables a specified resource
to be accessed by only one event handler at a time.

storing resource lock information corresponding to one or more resources
accessed by any event handlers that has been dispatched,

checking resource lock information corresponding to a given resource or
set of resources prior to execution of any code portion of an event handler that
accesses that resource or set of resources to verify that resource or set of
resources are available for access; and

waiting for any resource locks corresponding to that resource or set of

resources to be cleared prior to executing the code portion of the event handler.

45

PCT/US02/36765

WO 03/044665

1/16

I 'OIA

wm/ 0¢ >
i . L89'S'P'e T AU
Ng e N YT TANVH Ty 9 NI
SHITANVH I etn
: 10199 INNTOA THVMNYLS
- U A—
S p BT IANVH _zo_Eo;szmH/w_ A e o
- =0T~ | syTanvH 30IAuas | T HINS LY3ARMA
S e € WITANVH [+ | \— WINS H3LSIOTY ~N 9
31003X3 T TANVHINNS.,
Toeactes L Z YTTANVH [« < ™ _ = 3dAL 31
: : HOLVdSIA 1~29'19
2 naof ‘s 4l 5 dIHO HSV14 SOIg
wooooo)oow .VIN. \ 8¢ /
R Jw.l+_ anN NINS i 5 H3AlEd
ENERC 2]
| ouNGo mlve| Fomuas nvos\]y wanwa
31N03IX3 N H31SI193d
Il f STJOHdVYINSS N | sonsoo1iv [|| Hsinand ~yi 8L R ,
mooooooonou mm.\\ f U~ >mo</_m_>_ Nm ./‘W ;
E anano || s321IAN3s onhlog //9
Swopmt! o d3TaNVH AdvYErT NS 2 N\ NOLLILYVd
\og // a1 ey / WILSAS 143
/o T 40 1S NOILV TTVLSNI - sy
1IN3IAT IAX B dv3H HAAA
% 9e 1000.L0¥d
w4 ©uzanwe ||/ JSve WINS 143 (AOVOT)
1A m >
ZeVI AOVOIT oz SHOMINVA i L ¥3ANG
(INVHINS) i ALFIEISNALXE gy
AHOWIIN AINO-WINS ININS TLVILNV.LSNI

WO 03/044665 PCT/US02/36765

2/16

XMI EVENT RECEIVED BY CPU(S) N 54

\
VECTOR TO RELOCATED CODEENTRY IN 1 &g
SMRAM; BEGIN EXECUTION OF SMM NUB

: . »
SAVE MACHINE STATE WITH CPU H/W 58
AND SMM NUB FOR EACH PROCESSOR

YES—————¢
SYNCHRONIZE ALL 62
PROCESSORS

A
EXECUTE LEGACY |-
16-BIT HANDLER(S) {_ 64
ON SELECTED
PROCESSOR

]

FREE PROCESSORS; SWITCH THE GDT FOR | <
FLAT32 MODE FOR EACH PROCESSOR ~

NO

...........................

FIG. 24

WO 03/044665

3/16

PCT/US02/36765

®

‘/DISPATCH NATIVE 32-BIT HANDLERS IN QUEUE 68
"| ORDER TO NEXT AVAILABLE PROCESSOR

A 4

UPDATE HANDLER

CLEAR RESOURCE] o
SEMAPHORE(S)

QUEUE T
y FIG. 2B
CHECK RESOURCE) -,
SEMAPHORE(S)
|
\ &
CLEAR? NO—» WAIT 178
76
YES—
WRITE/UPDATE RESOURCE]
SEMAPHORE(S)

84

A

y

—L DISPATCH NEXT NATIVE 32-BIT HANDLER

\-70

YES
}

v

EXECUTE CODE TO COMPLETION OF
HANDLER

- 86

A

y

CLEAR RESOURC

E SEMAPHORE(S)

L ss

A

y

RESTORE PROCE

SSORS TO PRIOR

EXECUTION MODE AND MACHINE STATE

90

v
xMI EVENT HANDLING
COMPLETE

WO 03/044665 PCT/US02/36765

4/16

B (DISPATCH NATIVE 32-BIT HANDLERS IN QUEUE 68
"| ORDER TO NEXT AVAILABLE PROCESSOR

v
UPDATE HANDLER

QUEUE (B FIG. 2C

A
EXECUTE CODE TO COMPLETION OF HANDLER

CHECK RESOURCE | -4
SEMAPHORE(S)

1 86A

CLEAR? NO—» WAIT H-78A

WRITE/UPDATE RESOURCE

SEMAPHORE(S) -~ 80A

A 4
CLEAR RESOURCE SEMAPHORE 188

MORE

HANDLERS
2

YES
4

DISPATCH NEXT NATIVE 32-BIT HANDLER J NO
70 |
v

WAIT UNTIL ALL HANDLERS ARE 4
COMPLETED

\

— 94

y
RESTORE PROCESSORS TO PRIOR 90
EXECUTION MODE AND MACHINE STATE

v
xMI EVENT HANDLING
COMPLETE

WO 03/044665 PCT/US02/36765

5/16
xMli
OOOOOOiO (oo NoNe] 0+0
0000000 CQO DISP'ATCH 000000000 D'SPATCH
HANDLER 2 S, HANDLER 3 S,
COMPLETE
COMPLETE i
\
DISPATCH YT DISPATCH
HANDLER 5 V/l WAIT FOR Js
96 % ------------- SEMAPHORE 4
% TO CLEAR
S SHARED
5 RESOURCE l
PLETE
CoM v COMPLETE
DISPATCH l
H
HANDLER M DISPATCH
S]
M HANDLER N
SN1
!
COMPLETE
I SNZ
)
W’i"T COMPLETE
4
RESTORE PROCESSORS TO PRIOR EXECUTION } o
MODE AND MACHINE STATE

FIG. 3

WO 03/044665

6/16

HEAP

(LisT OF HANDLERS: /28 (TYF)
HANDLER: ADDRESS:

HANDLER 2 ADDRESS 2
HANDLER 3 ADDRESS 3

46 K HANDLER 4 ADDRESS 4
HANDLER 5 ADDRESS 5
HANDLER M ADDRESS M

L HANDLER N ADDRESS N

102 (TYP)

(HANDLER QUEUE:
HANDLER: STATUS:
HANDLER 2 © COMPLETED

HANDLER 3 COMPLETED
48X HANDLER4 EXECUTING
HANDLER 5 EXECUTING
HANDLERM WAITING
(_ HANDLERN WAITING
(SEMAPHORE TABLE:

j 100 (TYP)

104 (TYP)

CPU:
%
2

2
1

I/0 PORT BASE ADDRESS (E.G., 00h)

106 (TYP)

070 072] [o73] [o074] [o75] [o78] [077
55ﬁ cro| [cF1] [cF2| [cF3| [cF4| [cFs| |cFe| [CF7
crFo| [cral [cre| B8 [cFD| (cFEl [CFF
pool [Do1] [Do2] [Do3] [Do4| [Do5 @ D07
DAO DA2| [DA3| [DA4] [DAs| [DAs| [DA7

PCT/US02/36765

47

/108

XXX| CLEARED

SET

FIG. 44

WO 03/044665

7/16

PCT/US02/36765

‘ P
(LIST OF HANDLERS: =4 100 (TYP)
HANDLER: ADDRESS: \CONCURRENCY:
HANDLER 2 ADDRESS 2 Y 2
98-/ HANDLER 3 ADDRESS 3 N 1wl FIG. 4B
<(TYP) HANDLER 4 ADDRESS 4 N
46 HANDLER 5 ADDRESS 5 N
HANDLER 2A ADDRESS 2A Y
HANDLER 2B ADDRESS 2B Y
L HANDLER 2C ADDRESS 2C Y
(HANDLER QUEUE: 102 (TYP) 104 (TYP)
HANDLER: / STATUS: j CPU:I 106 (TYP)
HANDLER 2~ EXECUTING 1
HANDLER3 COMPLETED 2
48 HANDLER4 COMPLETED 3
\ HANDLER5 COMPLETED 4
HANDLER 2A EXECUTING 2
HANDLER 2B EXECUTING 4
L HANDLER 2C EXECUTING 3 1L a7a
(| SEMAPHORE TABLE:
I/O PORT BASE ADDRESS (E.G., 00h) 108
072| [o073] [o74| [075] [076] [077 /
. XXX | CLEARED
. _
ool SET
55 MEMORY PAGES [XXX |
64M-H-
fptf— =L L CPU 1
(77
BOM""’ FEFT %Wﬁ&//ﬂ//% ///IIZMJV ITTIZ 7777 4437/// LLLL //% CPU 2
W77 v v v 7 4//4 7777
4 / 7 Z ,/// AR CPU 3
06M - leeedeeezes \\@///:{«u/i«ga 4;(«,,/ fgf«/m{;’/
N NN Q N\ § N CPU 4
116,-_4\\\% \\§ \&\k*&% \\\\§ TR
A \\\\& S & § Qm\ \TY‘\\ S \ A ¢
1 12M }_‘ AR KK k
118 ~H-+ '
128ML ¢ DTS X

WO 03/044665 PCT/US02/36765

8/16
xMI (ECC EVENT)
000000 DOO 0O000000QCD0 000000000 000000000
o] (o] o] o [o] (e} o] [s]
o [o] o] o o o o (o]
(o] (e} el o [o] [¢] [o] [+]
J CPU 1 g‘\./50 J CPU 2 g‘\/51 JCPU 3 g’\/52 J CPU 4 g'\/53
(o] [(o] Qo o el [o] [o]
o o o o] o o o [+]
000000000 feReNoXeNoNoReNoNo} 00000DDOOO 000000000

DISPATCH DISPATCH DISPATCH DISPATCH

El H3| | He] | H5] | FIG. 5
rJ—UPDATE INAPPR. INAPPR. INAPPR.
/| QUEUE

DISPATCH ' DISPATCH
‘3 114 DISPATCH '
112~} 8 H2A -~ ' H2B
2 " Hzc) "_*\) 118
S, —d 116 / St
- S I
COMPLETE { . :
v | COMPLETE/ = | COMPLETE
L Y | COMPLETE \
v
. | RESTORE|PROCESSORS{TO PRIOR EXECUTION MODE] o5
AND MACHINE STATE
(LIBY b .) READ AND
WRITE BACK
,_ \ 80M | 96M 1 112M
Olvlil"-. '."-._‘ .I.'x.. :
ECC ERROR
BAM e e by BLOCK
: 4M-.k 4M 4M‘..| aM &l 4Nr] | 4M 4M‘-.j\ aMm |l #
Tav| [amlam] [am]&[am] [4m g am | | am
128M fe—ee e - o
192M

256M

WO 03/044665 PCT/US02/36765

9/16

INSTANTIATE SMM_BASE::Initialize;
LOAD STARTUP CODE FOR SMM NUB INTO 4120
SMRAM AT DEFAULT CPU ADDRESS

v

TRANSFER CONTROL TO REAL MODE AT~ } 455
DEFAULT CPU ADDRESS

A

ASCERTAIN AND ALLOCATE PERMISSIBLE § 104
ADDRESS RANGES

\ 4

INVOKE SMM_ACCESS::Open SERVICE 126

A

RELOCATE SMRAM FROM DEFAULT CPU 1 453
ADDRESS TO PLATFORM ADDRESS

A

EXECUTE REAL-MODE COMPONENT TO
SERVICE LEGACY FUNCTION AND SWITCH 4130
PROCESSOR TO PROTECTED MODE

4

HAND-OFF CONTROL TO SMM CORE 132

FIG. 6

WO 03/044665 PCT/US02/36765

10/16

SYNCHRONIZE ALL PROCESSORS IN 134
MULTIPROCESSOR CONFIG

SAVE MACHINE STATE (INCLUDING FP,

IF REQUIRED) 136
FLUSH CACHE 1138
SWITCH MODE TO PROTECTED MODE

- NO PAGING
- CACHE ENABLED

SET UP A CALL-STACK IN SMRAM \142

MAINTAIN LIST OF HANDLERS 144

DISPATCH HANDLERS IN QUEUE ORDER| }-146

1 v24
SMM LIBRARY
301 PCI & I/O SERVICES
| [MEMORY ALLOCATION
32 SERVICES 128

344 CONFIGURATION TABLE
REGISTRATION

FREE ALL PROCESSORS IN A MULTI- 148
PROCESSOR CONFIGURATION

RESTORE MACHINE STATE (INCLUDING | 1 45
FP, IF REQUIRED)

EXECUTE RSM INSTRUCTIONS ON ALL |] 152
PROCESSORS

SMM NUB

FIG. 7

WO 03/044665

11/16

PCT/US02/36765

RECEIVE REGISTER REQUEST FROM ANOTHER
BOOT SERVICE DRIVER OR APPLICATION

154

v

GENERATE AN SMI USING AN IPI OR SMM_CONTROL

PROTOCOL. PASS ARGUMENT ON MEMORY STACK
USING ESP AS IF CALLING ANOTHER C-MODE

f”ﬁ FIG. 8

A

PERFORM MEMORY RELOCATION; REPLACE ST
POINTER WITH A POINTER TO SMST

iv158

OPEN SMRAM |V160

ENOUGH

YES> " EOR IMAGE

ALLOCATE BUFFER } 470

LOAD IMAGE INTO
SMRAM

\ 174

GOOD
IMAGE?

|
NO |
l DID
ALLOCATION YES»
ALERT CALLER SUCCEED? 170
_164
NO
A
CLOSE SMRAM & NO
ERROR OUT
168

YES

v

SMM NUB
CLOSEE>S(II\4RAM & REGISTERS NEW
HANDLER

\-180

\-178

WO 03/044665 PCT/US02/36765

12/16
SEARCH ALL FIRMWARE VOLUMES THAT ARE 1182
MATERIALIZED DURING PRE-BOOT
A
N
> FOR EACH FIRMWARE VOLUME 1 184

/

A 4

FOR EACH FIRMWARE FILE IN FIRMWARE VOLUME \]v 190

FILETYPE =

"SMMHANDLER"
?

YES
v

N
DECOMPOSE THE SECTIONS OF THE FIRMWARE FILE |\/196

v

IF SECTION CONTAINS A PE32+ EXECUTABLE IMAGE THAT

IS OF THE SAME MECHANISM AS THE SMM_BASE 198

IMPLEMENTED OR SMM_BASE IS I1A32 AND 16-BIT LEGACY
HANDLER: INSTALL EXECUTABLE IMAGE OR HANDLER

A 4

EXAMINE NEXT FIRMWARE FILE IN FIRMWARE VOLUME

N\

l 192

EXAMINE NEXT FIRMWARE VOLUME
e
186

FIG. 9

WO 03/044665 PCT/US02/36765

13/16

EF12.0 SMM_BASE DRIVER LOADS 64-BIT 1200
VERSION OF SMM NUB

¥
EFI CALLS PAL_PMI_ENTRYPOINT SERVICE
WITH LOADED IMAGE OF EFI2.0 SMM NUB IN 202
MEMORY

y

PAL_PROC REGISTERS ENTRY WITH)
PROCESSOR-SPECIFIC RESOURCE (E.G., MSR)

204

FIG. 10

PAL_PMI HANDER RECEIVES PMI EVENT 'L206

y

PAL_PMI HANDER CALLS SSM NUB; 1208
PROCESSING VECTORED TO NUB ENTRY POINT

Y

RENDEZVOUS ALL PROCESSORS 1 L21 0

\
SAVE MACHINE STATE WITH CPU H/W AND SMM 212
NUB FOR EACH PROCESSOR

FIG. 114

WO 03/044665

14/18

PCT/US02/36765

©

_(DISPATCH NATIVE 64-BIT HANDLERS IN QUEUE
» ORDER TO NEXT AVAILABLE PROCESSOR 68A

A 4

UPDATE HANDLER
QUEUE 727
, FIG. 11B
CHECK RESOURCE] -4
SEMAPHORE(S)
|
Y
CLEAR? NO—>» WAIT +78A
76A
YES—)

WRITE/UPDATE RESOURCE |

SEMAPHORE(S)

_ 80A

CLEAR RESOURCE] g4n
SEMAPHORE(S)

A 4

DISPATCH NEXT NATIVE 64-BIT HANDLER J

_70A YIIES

v

EXECUTE CODE TO COMPLETION OF

HANDLER

’\./86A

A

CLEAR RESOURC

E SEMAPHORE(S) {-88A

A 4

RESTORE PROCESSORS TO PRIOR 1_90A
EXECUTION MODE AND MACHINE STATE

g

v
PMI EVENT HANDLING
COMPLETE

)

WO 03/044665 PCT/US02/36765

15/16

‘DISPATCH NATIVE 64-BIT HANDLERS IN QUEU

@

E
> ORDER TO NEXT AVAILABLE PROCESSOR }GSA

A

UPDATE HANDLER

QUEUE 2 FIG. 11C

v
EXECUTE CODE TO COMPLETION OF HANDLER

CHECK RESOURCE 1.74B
SEMAPHORE(S)

Y

- 86B

CLEAR? NO—>» WAIT P~78B

76B
YES 3

WRITE/UPDATE RESOURCE |
SEMAPHORE(S)

N~ 80B

y
CLEAR RESOURCE SEMAPHORE

_88A

hY

MORE

HANDLERS
?

92A

YES
v

———L DISPATCH NEXT NATIVE 64-BIT HANDLER J NO
_70A]

v

WAIT UNTIL ALL HANDLERS ARE 1. 94A
COMPLETED

v
RESTORE PROCESSORS TO PRIOR _ 90A
EXECUTION MODE AND MACHINE STATE

v
PMI EVENT HANDLING
COMPLETE

WO 03/044665 PCT/US02/36765

16/16

LAN/WAN/
INTERNET

REMOTE

318
_3(312

\//
/;}Mllnll“

Q00000000
o]

309A~13 S

=] o]
[oNeReNoReRoNeNeNo]

000

oo

0000000

CPU 2

0000000

309B~

0000V0C000

FIG. 12

INTERNATIONAL SEARCH REPORT

In tional Application No

PCT/US 02/36765

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 G06F9/46

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, COMPENDEX, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Interrupt Handling"

INTERNET, ‘OnTline! XP002232996
Retrieved from the Internet:
<URL:http://www.t1dp.org/guides.htm1>
‘retrieved on 2003-02-27!

section 7.2 "Initializing the Interrupt
Handling Data Structures”

section 7.3 "Interrupt Handling"

Y DAVID A. RUSLING: "The Linux Kernel, 1-34
pages 75-79, Chapter 7: Interrupts and

-

Further documents are listed in the continuation of box C.

Patent family membets are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as Specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X* document of patticular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y* document of patticular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

& document member of the same patent family

Date of the actual completion of the international search

10 March 2003

Date of mailing of the international search report

26/03/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Ebert, W

Fom PCT/ISA/210 (second sheet) {July 1892)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Int fonal Application No

PCT/US 02/36765

C.{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

GIROIR D ET AL: "Interrupt dispatching
method for multiprocessing system"

IBM TECHNICAL DISCLOSURE BULLETIN, SEPT.
1984, USA, ‘

vol. 27, no. 4B, pages 2356-2359,
XP002232995

ISSN: 0018-8689

the whole document

ANONYMOUS: "The Peripheral Component
Interconnect (PCI) Bus and vxWorks"
‘Online! .

April 1998 (1998-04) XP002232997
Retrieved from the Internet: <URL:
ece-www.colorado.edu/{ecen5633/vxworks_pci
.pdf> ‘retrieved on 2003-02-27!

page 49-2, section "PCI Interrupt
Handling"

US 5 437 039 A (YUEN DESMOND)

25 July 1995 (1995-07-25)

the whole document

US 5 560 019 A (NARAD CHARLES E)

24 September 1996 (1996-09-24)

the whole document

US 2001/016892 Al (KLEIN DEAN A)
23 August 2001 (2001-08-23)
the whole document

1-34

1-34

1-34

1-34

1-34

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Int

rional Application No

PCT/US 02/36765

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5437039 A 25-07-1995 NONE

US 5560019 A 24-09-1996 DE 69223303 D1 08-01-1998
DE 69223303 T2 18-06-1998
EP 0535821 Al 07-04-1993
JP 6266676 A 22-09-1994
KR 176262 Bl 15-05-1999

US 2001016892 Al 23-08-2001 US 6212592 Bl 03-04-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

