
W. M. RUGGLES. FENCE POST. APPLICATION FILED FEB. 7, 1907.

2 SHEETS-SHEET 1.

W. M. RUGGLES. FENCE POST.

2 SHEETS-SHEET 2.

THE HORRIS PETERS CO., WASHINGTON, D. C.

UNITED STATES PATENT OFFICE.

WELLS M. RUGGLES, OF MELLEN, WISCONSIN.

FENCE-POST.

No. 857,835.

Specification of Letters Patent.

Patented June 25, 1907.

Application filed February 7, 1907. Serial No. 356,207.

To all whom it may concern:

Be it known that I, Wells M. Ruggles, a citizen of the United States, residing at Mellen, in the county of Ashland and State of Wisconsin, have invented certain new and useful Improvements in Fence-Posts, of which the following is a specification.

This invention relates to fence posts.

One object is to provide a fence post emto bodying such characteristics as to embody a maximum of strength and a minimum of material.

A strand wire stretched tight and made fast to the top of fence posts contracts in cold weather to such an extent as to break the wire or pull the fence post over bodily in the direction of the strain upon the wire. If the strain of the wires were equal between the posts, this would not happen on a line of 20 posts. But these strains are never equal, resulting in one post being subjected to greater strain than another. Consequently, unless the posts of a fence are elastic or resilient enough to equalize the strain from the strand wires that are made fast to and stretched upon them, the strand wires will break or the posts must give bodily. The result is that either the fence wires are broken or the posts are loosened in the ground. In either case 30 the result is disastrous to the fence.

It is therefore another object of my invention to provide each post with an elastic top so as to prevent breaking of the top wire of the fence on account of expansion or contrac-35 tion incident to climatic conditions.

A still further object of my invention is to provide a fence post rigid and solid at its base, and from its base line to its top possessing resiliency or elasticity enough to equalize the 40 strain of the fence wires attached to it.

With the above and other objects in view, my invention consists in the combination and arrangement of parts hereinafter more fully described, illustrated in the accompany-45 ing drawings, and particularly pointed out in the appended claims, it being understood that changes may be made in the form, proportion, size and minor details without departing from the spirit or sacrificing any of 50 the advantages thereof.

In the drawings:— Figure 1 is a front elevation of one form of my invention. Fig. 2 modified form of invention. Fig. 5 is a detail 55 view of the inner member of the modified form. Fig. 6 is a detail view of one of the post tensioning members; and Fig. 7 is a perspective view of another form of my inven-

Referring now to the accompanying drawings and more particularly to Figs. 1 to 3, inclusive, it will be seen that in one embodiment of my invention the post comprises an upright member 1 composed preferably of 65 steel wire bent intermediate its ends to form the upwardly converging members 2 and 3 twisted together at their upper ends as at 4, and terminating in the short diverging elements 5 to which latter the top line wire 6 70 may be secured in any suitable manner. This upright constitutes the outer member of one form of my improved post and it is so formed that it may receive between its upwardly diverging portions 2 and 3 the wood 75 or other panel 7 having each end provided with a recess 8, the upper recess fitting in the crotch at the base of the twisted portion 4, and the lower recess embracing or fitting over the lower end or bight portion of the 80 outer member 1. By reason of the material employed in the formation of this outer member the post embodies considerable elasticity and may yield longitudinally or laterally.

To permit of the insertion of the panel or 85 other inner member 7 within the outer member of the post, the latter must possess more or less slack, and the filling or base material of the post, to be hereinafter described, is not capable of taking up the slack entirely nor would 90 the filling stay in place were it not for the fact that I employ the tension rings 9 which are of different size and embrace the converging members 2 and 3 of the outer member. These tension rings 9 differ in size ac- 95 cording to the diameter between the converging bars 2 and 3 of the outer member. When the tension rings are slipped upon the outer member and made tight thereupon the post is in tension and the filling material is 100 held in place. Thus the tension rings perform a dual function.

The top wire is the principal wire of the fence and the one that causes the most trouble incident to contraction and expansion, 105 and for this reason I provide for increased is a side elevation. Fig. 3 is a detail view of the panel. Fig. 4 is a perspective view of a outer or top end of the post. The top line

wire 6 may be secured to the diverging elements 5 of the twisted portion 4, as already explained, or if preferred it may be secured in any suitable manner to the twisted por-5 tion below the diverging elements 5. The remaining or lower line wires may be secured to the panel or other inner member 7 in any suitable manner, or if preferred, the lower line wires may be secured to the converging parts 2 and 3 or to the tension rings 9, as may be desired. No matter how the line wires are secured to the posts, the latter return to their upright positions as soon as relieved of strain incident to contraction and expansion 15 of the line wires. It will thus be apparent that the post will be more or less elastic from its base line to its top. The panel board is made of such material and of such thickness as to give it a chance to spring. The top 20 wire being fastened to the top of the post independently of the other wires on the post, it is free to pull one way or the other without interfering with the center panel or other inner member to any great extent. If the 25 fence is made of a single strand of wire on top and a woven wire fence fastened to the panel part of the post, the top strand or line wire would be free and independent of the woven A post of my improved conwire material. 30 struction may be sprung out of line six inches more or less at the top without breaking it and without moving its base. This elasticity at the upper end of the post is facilitated by reason of the fact that the top line 35 wire is preferably wrapped around the diverging elements 5, as clearly shown in the drawings.

Makers of wire fences caution users of their products not to staple the wire too tight 40 so that they may be free to expand and contract. It is not practical to follow such in-structions in all cases, and the result is that the posts give bodily, or the line wires break. My posts are elastic, resilient or yieldable at 45 their upper ends, or from the base line to their upper end, overcoming bodily movement of the posts or the breaking of the line wires incident to climatic conditions or too tight engagement of the line wires with the

50 posts.

The base of the hereinbefore described post is formed preferably by disposing the longitudinal bars 10 upon opposite sides of the panel 7. Between the longitudinal bars 55 10 and the lower portions 2 and 3 of the outer member I prefer to dispose the filling blocks 11, and if desired, I may key up the bottom of the post by the insertion of one or more wedges a between the longitudinal bars and 60 the filling blocks as best shown in Fig. 1. These longitudinal bars may terminate at the base line or they may extend thereabove, as may be desired, the bars and filling blocks being obviously formed of wood, concrete, 65 or any suitable material.

In Figs. 4 to 6, inclusive, 2 illustrates another form of my invention, in which the outer member 12 instead of having a panel arranged within it, has disposed therewithin the wire inner member 13 formed in exactly 70 the same manner as the outer member 12, except for the formation of a depression to provide a recess 14 at its lower end to embrace the lower or bight portion of the outer The upper end of the inner mem- 75 ber is twisted, as is the outer member, and has the diverging elements or prongs 15 resulting in a recess designed to fit in the crotch at the base of the twisted portion 16 of the outer member. Arranged upon opposite 80 sides of the inner member 13 are the longitudinal strips 17 and the filling blocks 18, suitable wedges (not shown) being used, if desired, to key the base portion of the post, as in the first form described. In this second 85 form of invention, I employ tension members 9.

From the foregoing it will be understood that in either form of invention described I provide an inner member adapted to be 90 sprung or otherwise fitted into engagement with the outer member, either inner member having a recess or its equivalent at each end.

In Fig. 7, I illustrate still another form of invention. In this view I illustrate the form 95 first described embedded in a concrete base 20, and obviously the second form of invention may be embedded in a similar base. deem it unnecessary to illustrate it, but if desired, either form of invention could be 100 embedded in a concrete base without the longitudinal bars or filling blocks, the bars of the outer member of the post above the base line converging toward the upper end and tensioned by means of the aforesaid ten- 105 sioning members or rings.

As shown in Fig. 1 it is not necessary to fasten the top strand wire to the top of each post, the top strand wire being held in its seat formed by the prongs 5 by twisting a 110 short piece of wire 21 around the prongs after the wire has been stretched from one stretching post to another; so therefore, the top strand is free to expand or contract with regard to the stretching or other posts. Thus, 115 the top strand wires may be fixedly secured to the top of some of the posts or loosely to

others as just explained.

What is claimed is:

1. A fence post comprising inner and outer 120 members, the inner member embracing the outer member at its upper and lower ends.

2. A fence post comprising inner and outer members, the outer member being composed of wire and bent intermediate its ends with 125 its upper ends twisted to provide a resilient upper end.

3. A fence post comprising a member formed of wire bent intermediate its ends and twisted together at its free end, an inner 130

member sprung into engagement with the outer member, and a filling for the lower end

of the post constituting a base.

4. A fence post comprising a member formed of wire bent intermediate its ends and twisted together at its free ends, an inner member sprung into engagement with the outer member, a filling for the lower end of the post constituting a base, and fence wire supporting elements removably secured to the post.

5. A fence post comprising a single piece of wire bent intermediate its ends and twisted together at its upper ends, and an inner 15 member detachably fitted within the outer

member.

6. A fence post comprising an inner and an outer member fitted together at opposite points, said members being flexible whereby 20 they may yield only above the base line.

7. A fence post comprising an inner and an outer member fitted together at opposite points, one of said members being flexible whereby the post may yield only above the 25 base line, and fence wire elements constructed for engagement with the post.

8. A resilient fence post comprising inner and outer members, a filling between the inner and outer members at their lower ends 30 to form a base, and fence wire elements detachably mounted upon the fence post.

9. A resilient fence post including inner and outer members, a filling between the inner and outer members to form a base and to 35 maintain its symmetry of proportion from the bottom to the top of the post.

10. A resilient fence post including inner and outer members, a filling between the inner and outer members to form a base and to maintain its symmetry of proportion from 40 the bottom to the top of the post, and means for tensioning the post above the base line.

11. A resilient fence post composed of yieldable material, and means constructed to embrace the post, said means comprising 45 elements of different size to correspond to the size of the post and adapted to render its base rigid to create a tension on the post from its top down to its base line.

12. A resilient fence post constructed and 50 arranged to provide a rigid base and a post portion embodying resiliency from its base line to its top to prevent breaking of the top strand wires attached thereto and stretched thereon on account of expansion and con- 55 traction of the wires incident to climatic conditions.

13. A fence post including a base portion and a post portion, the post portion including a member formed of a single piece of 60 flexible material bent intermediate its ends with portions thereof near its free ends twisted together and terminating in a seat above the twisted portions.

14. A fence post including a base portion 65 and a post portion, the post portion including a member formed of a single piece of flexible material bent intermediate its ends with portions thereof near its free ends twisted together and terminating in a seat above the 70 twisted portions, and an inner member fitted within the aforesaid member.

In testimony whereof I affix my signature,

in presence of two witnesses.

WELLS M. RUGGLES.

Witnesses:

ROBT. JOHNSON, CELL McVick.