wO 2006/122201 A2 |10 0 OO0 0 O O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f A
International Bureau

(43) International Publication Date
16 November 2006 (16.11.2006)

) IO O T DO O

(10) International Publication Number

WO 2006/122201 A2

(51) International Patent Classification:

AG61B 5/04 (2006.01)
(21) International Application Number:
PCT/US2006/018120
(22) International Filing Date: 9 May 2006 (09.05.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/679,951 10 May 2005 (10.05.2005) US

(71) Applicant (for all designated States except US): THE
SALK INSTITUTE FOR BIOLOGICAL STUDIES
[US/US]; Intellectual Property and Technology Transfer,
P.O. Box 85800, San Diego, California 92186-5800 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LOW, Philip, S.
[US/US]; 8870 Villa La Jolla Dr., Apt. 214, La Jolla,
California 92037 (US). SEJNOWSKI, Terrence, J.
[US/US]; 672 San Mario Drive, Solana Beach, California
92075 (US).

(74) Agent: HARRIS, Scott, C.; FISH & RICHARDSON P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: AUTOMATED DETECTION OF SLEEP AND WAKING STATES

(57) Abstract: Determining low power frequency range information

- 4100 from spectral data. Raw signal data can be adjusted to increase dynamic
obtain range for power within low power frequency ranges as compared
data to higher-power frequency ranges to determine adjusted source data

valuable for acquiring low power frequency range information. Low
power frequency range information can be used in the analysis of a
variety of raw signal data. For example, low power frequency range
y information within electroencephalography data for a subject from
a period of sleep can be used to determine sleep states. Similarly,
automated full-frequency spectral electroencephalography signal
Normalize data 4110 analysis can be useful for customized analysis including assessing sleep
for sach frequency quality, detecting pathological conditions, and determining the effect
bin across time of medication on sleep states.
(NS)
y
Normalize data 4120
across frequencies
(2NS)
A
4130
clustering




WO 2006/122201 A2 |00 00 0T 0000 0O 0 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  without international search report and to be republished  ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.



WO 2006/122201 PCT/US2006/018120

AUTOMATED DETECTION OF SLEEP AND WAKING STATES

Cross-Reference to Related Applications

[0001] This application claims priority to U.S. Provisional
Application Serial No. 60/679,951, filed on May 10, 2005.

The disclosure of the prior application is considered part of
(and is incorporated by reference in) the disclosure of this

application.

Background

[0002] Sleep states and other brain activity have been
commonly analyzed via electroencephalography or EEG signals.
As a person falls asleep, the brain activity is modulated,
representing different depths and phases of sleep. 1In a
typical person, the sleep states transition over time;
starting at a first sleep state known as slow wave sleep or
SWS. SWS has low frequency high power EEG activity. The
sleep may lighten into so-called intermediate sleep states.
Other sleep states known as rapid eye movement sleep is
characterized by a lower power EEG activity.

[0003] EEG signals follow a distribution where higher
frequency signals have lower amplitudes and therefore lower
power. This so-called 1/f distribution means that the highest

amplitudes are present at the lowest frequencies.
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[0004] EEG signals for sleep stage determination are
conventionally analyzed using the Rechtschaffen-Kales method.
This method can rely on manually scoring sleep EEG signals due
to the low power frequency limitations of automated signal
analysis techniques. The Rechtschaffen-Kales method can be
both highly unreliable and time consuming because
statistically significant shifts at high frequencies are
usually not detectable by a human scorer due to the very low
amplitudes. Further, the Rechtschaffen-Kales method tends to
have poor temporal and spatial resolution, does not make all
of its variables known, and commonly leads to low inter-user
agreement rates across both manual as well as automated
scorers. Unfortunately, alternative sleep state determination
methods, including artificial neural network classifiers,
usually rely on multiple channels and tend to emulate human
performance, thereby improving the time of determination

without drastically improving quality.

Summary

[0005] The present application describes normalizing data
indicative of brainwave activity to increase the dynamic range
of information within the data.

[0006] The embodiments explain using this information to
determine sleep states automatically. Other applications are
described which automatically assess sleep quality,

pathological conditions, and medication effects.
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Brief description of the drawings

[0007] Figure 1 is a block diagram of an exemplary system
for determining low power frequency information from source
data with at least one low power frequency range;

[0008] Figure 2 is a flowchart showing an exemplary method
for adjusting source data;

[0009] Figure 3 is a flowchart showing an exemplary method
for adjusting source data to account for differences in power
over a spectrum of frequencies over time;

[0010] Figure 4 is a block diagram of an exemplary system
for determining sleep state information for a subject;

[0011] Figure 5 is a block diagram of another exemplary
system for determining sleep state information for a subject;
[0012] Figure 6 is a flowchart showing an exemplary method
for determining sleep states in a subject;

[0013] Figure 7 is a flowchart showing an exemplary method
for classifying sleep states in a subject;

[0014] Figure 8 is a block diagram of an exemplary system
for determining a pathological condition of a subject from
sleep states;

[0015] Figure 9 is a flowchart showing an exemplary
computer-implemented method for determining a pathological
condition for a subject based on sleep states;

[0016] Figure 10 is a block diagram of an exemplary system
for dynamically determining customized sleep scores for a

subject;
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[0017] Figure 11 is a screen shot of an exemplary whole
night EEG source data frequency power spectrogram;

[0018] Figure 12 is a screen shot of the exemplary whole
night EEG source data shown in Figure 11 after an exemplary
adjustment technique has been applied;

[0019] Figure 13 is a screen shot of a two hour time frame
of the exemplary adjusted whole night EEG source data shown in
Figure 12;

[0020] Figure 14 is a screen shot of an exemplary
visualization of high and low power frequency bands within the
whole night EEG spectrogram shown in Figure 12;

[0021] Figure 15 is a screen shot of a two hour and forty
minutes time frame of the exemplary visualization of high and
low power frequency bands within the whole night spectrogram
shown in Figure 14.

[0022] Figure 16 1s a screen shot of an exemplary five-
dimensional parameter space visualization of the whole night
EEG spectrogram of Figure 12;

[0023] Figure 17 is a screen shot of a two hour time frame
of the exemplary five-dimensional parameter space
visualization of the whole night EEG visualization shown in
Figure 16;

[0024] Figure 18 is a screen shot of an exemplary
visualization of classified sleep states based on EEG

spectrogram data;
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[0025] Figure 19 is a screen shot of another exemplary
visualization of classified sleep states based on EEG
spectrogram data;

[0026] Figure 20 is a screen shot of yet another exemplary
visualization of classified sleep states based on EEG
spectrogram data;

[0027] Figure 21 is a screen shot from another vantage
point of the exemplary visualization of classified sleep
states based on EEG spectrogram data of Figure 20;

[0028] Figures 22, 23, 24 and 25 are screen shots of
canonical spectra representative of frequency weighted epochs
designated as distinct sleep states in a subject for a period
of time;

[0029] Figure 26 is a screen shot of a canonical spectra
representative of a frequency weighted epoch that displays a
transient sleep state having characteristics of more than one
sleep state;

[0030] Figure 27 is a screen shot of an exemplary
visualization of the degree of sleep stager separation that
distinguishes representative canonical spectra of distinct
sleep state;

[0031] Figures 28, 29, 30, 31 and 32 are screen shots of
exemplary visualization of sleep state statistics for a
subject according to sleep state designations of one or more

epochs;
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[0032] Figures 33 is a screen shot of an exemplary
visualization of classified anesthesia states of an
anesthetized cat based on EEG spectrogram data;

[0033] Figure 34 is a screen shot of an exemplary
visualization of classified sleep states of a human subject
based on EEG spectrogram data;

[0034] Figure 35 is a flowchart showing yet another
exemplary method for classifying sleep states in a subject
that can be implemented with the described technologies;
[0035] Figure 36 1s an exemplary computer system that can
be implemented with the described technologies;

[0036] Figure 37 is a screen shot of an exemplary
visualization of independent component analysis applied on a
normalized spectrogram to further determine appropriate
frequency windows for extracting information;

[0037] Figure 38 is a screen shot of an exemplary
visualization of independent components of Figure 37
throughout time;

[0038] Figure 39 is a screen shot of a six and a half hour
time frame of an exemplary five-dimensional parameter space
visualization of frequency bands of the whole night EEG
visualization from a human subject with Alzheimer's;

[0039] Figure 40 is a screen shot of an exemplary
visualization of classified unihemispheric sleep from a bird;
[0040] Figure 41 illustrates a flowchart of operation of

another embodiment which uses a double normalization;
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[0041]  Figures 42a-42c show the raw spectrogram, single

normalized spectrogram, and double normalized spectrogram

respectively;
[0042] Figure 43
[0043] Figure 44
[0044] Figure 45
data; and

[0045] Figure 46

for the frequencies.

shows

shows

shows

shows

the preferred frequency over time;
a diagram of these frequencies;

a three-dimensional view of the

a graph of spectral fragmentation
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Detailed description

[0046] One important recognition of the present system is
that the low frequency ranges in EEG signals often have the
most energy, and hence have mistakenly led many researchers to
overanalyze that low frequency range. However, one reason
found for the increased power in those lower frequencies, was
found by the inventors to be the low-pass characteristic of
the skull. Other reasons may also contribute to the increased
power in lower frequencies.

[0047] Obtained EEG signals are low-power frequency signals
and follow a 1/f distribution, whereby the power in the signal
is inversely related, e.g., inversely proportional, to the
frequency.

[0048] EEG signals have typically been examined in time in
series increments called epochs. For example, when the EEG
signal is used for analyzing sleep, sleep may be segmented
into one or more epochs to use for analysis. The epochs can
be segmented into different sections using a scanning window,
where the scanning window defines different sections of the
time series increment. The scanning window can move via a
sliding window, where sections of the sliding window have
overlapping time series sequences. An epoch can alternatively

span an entire time series, for example.
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[0049] According to the present application, different
forms of sleep state may be monitored. A sleep state is
described as any distinguishable sleep or wakefulness that is
representative of behavioral, physical or signal
characteristics. Sleep states which are referred to in this
application include slow wave sleep or SWS, rapid eye movement
sleep or REM, intermediate sleep states also called inter or
IS states, and awake states. Awake states may actually be
part of the sleep state, and the awake states can be
characterized by vigilance into attentiveness or levels of
alertness. The intermediate sleep can also be characterized
as intermediate-1 sleep and intermediate-2 sleep.

[0050] An artifact may also be obtained during acquisition
of an EEG. An artifact is data that misrepresents the EEG.
For example, movement within a user that registers on the EEG
may be an artifact. Example artifacts include muscle twitches
and the like.

[0051] Example 1 — Exemplary Source Data

[0052] In any of the embodiments described herein, a
variety of source data can be analyzed including
electroencephalography (EEG) data, electrocardiography data
(EKG) , electrooculography data (EOG), electromyography data
(EMG), local field potential (LFP) data, spike train data,
wave data including sound and pressure waves, and any data
exhibiting where there are differences in dynamic range of

power for various frequencies across a frequency spectrum of
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the data e.g., a 1/f distribution. Source data can include
encoded data stored at low power frequency within source data.
[0053] Example 2 - Exemplary System for Determining Low
Power Frequency Information from Source Data with at Least One
Low Power Frequency Range

[0054] FIG. 1 shows an exemplary system 100 for determining
low power frequency information from source data with at least
one low power frequency range.

[0055] Source data with at least one low power frequency
range 102 is obtained and input into software 104 to determine
low power frequency information 106.

[0056] The software 104 can employ any combination of
technologies, such as those described herein, to determine low
power frequency information 106 for the source data.

[0057] Methods for determining low power frequency
information from source data with at least one low power

frequency range are described in detail below.

[0058] Example 3 - Exemplary Method for Adjusting Source
Data
[0059] FIG. 2 shows an exemplary method 200 for adjusting

source data. For example, the method 200 can be implemented

within system 100 of FIG. 1.

10
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[0060] At 202, source data with at least one low power
frequency range is received. For example,
electroencephalography source data for a subject can be
received. Source data can be received via a single channel or
multiple channels.

[0061] At 204, source data is adjusted to increase the
dynamic range for power within at least one low power
frequency range of the frequency spectrum of the source data
as compared to a second higher power frequency range. A number
of adjustment techniques described herein, including
normalization and frequency weighting can be used. In an
embodiment, electroencephalography source data is normalized
to increase the low power, higher frequency range data
relative to the higher power, lower frequency range data or,
more generally, to normalize the powers of the different
signal parts.

[0062] After the source data is adjusted, various other
processing can be done. For example, a visualization of the
adjusted source data can be presented. Further, low power
frequency information can be extracted from the adjusted
source data. For example, low power frequency information can
be extracted from adjusted electroencephalography source data.
Higher power frequency information can also be extracted from

the adjusted source data.
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[0063] The method described in this or any of the other
examples can be a computer-implemented method performed via
computer-executable instructions in one or more computer-
readable media. Any of the actions shown can be performed by
software incorporated within a signal processing system or any
other signal data analyzer system.

[0064] Example 4 -Exemplary Method for Adjusting Source
Data to Account for Differences in Power over a Spectrum of
Frequencies over Time

[0065] FIG. 3 shows an exemplary method 300 for adjusting
source data to account for differences in power over a
spectrum of frequencies over time. For example, the method 300
can be implemented within system 100 of FIG. 1.

[0066] At 302, source data with at least on low power
frequency range is received. For example,
electroencephalography data with iat least one low power
frequency range can be received. Artifacts in the data can be
removed from the source data. For example, artifact data can
be manually removed from the source data or automatically
filtered out of source data via a filtering (e.g., DC
filtering) or data smoothing technique. The source data can
also be pretreated with component analysis.

[0067] At 304, the source data is segmented into one or
more epochs; where each epoch is a portion of data from the
series. For example, the source data can be segmented into a

plurality of time segments via a variety of separating

12
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techniques. Scanning windows and sliding windows can be used
to separate the source data into time series increments.
[0068] At 306, the one or more epochs are normalized for
differences in power of the one or more epochs across time.
For example, the power of each epoch at one or more
frequencies can be normalized across time to determine
appropriate frequency windows for extracting information. Such
normalization can reveal low power, statistically significant
shifts in power at one or more frequencies (e.g., Delta,
Gamma, and the like). Any frequency range can be revealed and
utilized for analysis. Information can be calculated for each
of the one or more epochs after appropriate frequency windows
have been established. Such information can include low
frequency power (e.g., Delta power), high frequency power
(e.g., Gamma power), standard deviation, maximum amplitude
(e.g., maximum of the absolute value of peaks) and the sort.
Further calculations can be done on the information calculated
for each of the one or more epochs creating information such
as Gamma power/Delta power, time derivative of Delta, time
derivative of Gamma power/Delta power and the like. Time
derivatives can be computed over preceding and successive
epochs. After calculating the information, that information
can then be normalized across the one or more epochs. A
variety of data normalization techniques can be conducted

including z-scoring and other similar techniques.

13
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[0069] At 308, results of the adjustment of source data to
account for differences in power over a spectrum of
frequencies over time can be presented as one or more epochs
of data. For example, frequency weighted epochs can be

presented as adjusted source data.

[0070] Example 5 - Exemplary SYstem for Determining Sleep
State

[0071] Information for a Subject

[0072] FIG. 4 shows an exemplary system 400 for determining

sleep state information for a subject. Electroencephalography
data for a subject 402 is obtained and input into software 404
to determine sleep state information for the subject 406.
[0073] The software 404 can employ any combination of
technologies, such as those described herein, to determine
sleep state information for the subject 406.

[0074] Methods for determining sleep state information for
a subject are described in detail below.

[0075] Example 6 - Another Exemplary System for Determining
Sleep State Information for a Subject

[0076] FIG. 5 shows an exemplary system 500 for determining
sleep state information for a subject.

[0077] Electroencephalography data for a subject 502 is
obtained and input into segmenter 504 to segment the data into
one or more epochs. In practice, epochs are of similar (e.g.,
the same) length. Epoch length can be adjusted via a

configurable parameter. The one or more epochs, in turn, are
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input into normalizer 506 to normalize frequency data in the
one or more epochs across time, thereby frequency weighting
the one or more epochs of electroencephalography data. The one
or more frequency weighted epochs are then input into
classifier 508 to classify the data into sleep states, thereby
generating sleep state information for the subject 510.

[0078] Methods for determining sleep state information for
a subject are described in detail below.

[0079] Example 7 - Exemplary Method for Determining Sleep
States in a Subject

[0080] FIG. 6 shows an exemplary method 600 for determining
sleep states in a subject. For example, the method 600 can be
implemented within system 500 of FIG. 5 or system 400 of FIG.
4.

[0081] At 602, electroencephalography (EEG) data for a
subject is received. For example, electroencephalography data,
which exhibits lower dynamic range for power in at least one
low power first frequency range in a frequency spectrum as
compared to a second frequency range in the frequency
spectrum, can be received.

[0082] At 604, the electroencephalography data for the
subject is segmented into one or more epochs. For example, the
EEG data can be segmented into one or more epochs via a
variety of separating techniques. Scanning windows and sliding
windows can be used to separate the EEG data into one or more

epochs. The source data can also be filtered via direct
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current riltering during, prior to, or after segmenting. The
source data can also be pretreated with component analysis
(e.g., principle or independent component analysis).

[0083] FIG. 11 is a screen shot of an exemplary whole night
EEG source data frequency power spectrogram for a subject that
has been segmented over three second epochs spaced in 1 second
increments. Power range is indicated in the shading, where
white shaded regions are higher in power than dark shaded
regions. The higher frequencies (e.g., Gamma) therefore
exhibit lower power than the lower frequencies (e.g., Delta,
Theta and the like) in the whole night EEG data.

[0084] At 606, frequency power of the one or more epochs is
weighted across time. For example, the power of each epoch at
one or more frequencies can be normalized across time to
determine appropriate frequency windows for extracting
information. Such normalization can reveal low power,
statistically significant shifts in power at one or more
frequencies (e.g., Delta, Gamma, and the like). Additionally,
each epoch can be represented by the frequency with the
highest relative power over time to determine appropriate
frequency windows for extracting information. Alternatively,
component analysis (e.g., principle component analysis (PCA)
or independent component analysis (ICA)) can be utilized after
normalization to further determine appropriate frequency
windows for extracting information. For example, FIGS. 37 and

38 are screen shots of component analysis utilized after
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normalization to suggest filters (e.g., screen shot 3700) and
express independent components throughout time (e.g., screen
shot 3800). Any frequency range can be revealed and utilized
for analysis.

[0085] Information can be calculated for each of the one or
more epochs after appropriate frequency windows have been
established (e.g., after weighting frequency). Such
information can include low frequency power (e.g., Delta
power), high frequency power (e.g., Gamma power), standard
deviation, maximum amplitude (e.g., maximum of the absolute
value of peaks) and the sort. Further calculations can be done
on the information calculated for each of the one or more
epochs creating information such as Gamma power/Delta power,
time derivative of Delta, time derivative of Gamma power/Delta
power and the like. Time derivatives can be computed over
preceding and successive epochs. After calculating the
information, it can then be normalized across the one or more
epochs. A variety of data normalization techniques can be
conducted including z-scoring and the like.

[0086] FIG. 12 is a screen shot of the exemplary whole
night EEG source data shown in FIG.1ll after an exemplary
frequency power of the one or more epochs has been weighted
across time. The higher frequency data is now more clearly
visible. FIG. 13 is a screen shot of a two hour time frame of
the exemplary adjusted whole night EEG source data shown in

FIG.12. FIG. 14 is a screen shot of an exemplary visualization
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of high (e.g., Gamma) and low (e.g., Delta) power frequency
bands within the whole night EEG spectrogram shown in FIG. 12.
FIG. 15 is a screen shot of a two hour and forty minutes time
frame of the exemplary visualization of high and low power
frequency bands shown in FIG. 14.

[0087] FIG. 16 is a screen shot of an exemplary five-
dimensional parameter space visualization of the whole night
EEG spectrogram of FIG. 12. The five parameters (e.g.,
variables) are information calculated for each of the one or
more epochs after weighting frequency. FIG. 17 is a screen
shot 6f a two hour time frame of the exemplary five-
dimensional parameter space visualization of the whole night
EEG visualization shown in FIG.16.

[o088] At 608, sleep states in the subject are classified
based on the one or more frequency weighted epochs. For
example, the one or more frequency weighted epochs can be
clustered by any variety of clustering techniques including k-
means clustering. The clustering can be done on information
calculated from the epochs (e.g., Delta power, Gamma power,
standard deviation, maximum amplitude (Gamma/Delta), time
derivative of Delta, time derivative of (Gamma /Delta, and the
sort). Component analysis (e.g., PCA or ICA) can be used to
determine the parameter space (e.g., types of information

used) in the clustering.
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[0089] Subsequent to clustering, sleep state designations
can be assigned to the epochs. Sleep state designated epochs
can then be presented as representations of sleep states in
the subject for the period of time represented by the epoch.
Classification can also incorporate manually determined sleep
states (e.g., manually determined "awake" versus "sleeping"
sleep states). Additionally, artifact information (e.gq.
movement data, poor signal data, or the like) can be utilized

in the classification.

[0090] Example 8 - Exemplary Sleep State Classification
Techniques
[0091] Epochs can be classified according to the sleep

states they represent. An epoch can be classified according to
normalized variables (e.g., information calculated for an
epoch) based on high frequency information, low frequency
information, or both high and low frequency information. For
example, REM sleep state epochs can have higher relative power
than SWS at higher frequencies and lower relative power than
SWS at lower frequencies. Similarly, SWS sleep state epochs
can have lower relative power than REM at higher frequencies
and higher relative power than REM at lower frequencies.
Additionally, epochs initially classified as both NREM and
NSWS sleep (e.g., epochs having low relative power at both
higher and lower frequencies) can be classified as
intermediate sleep and epochs classified as both REM and SWS

sleep (e.g., epochs having high relative power at both higher
19
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and lower frequencies) can be classified as outliers. Further,
epochs initially classified as both NREM and NSWS sleep can be
classified as intermediate stage I sleep and epochs initially
classified as both REM and SWS sleep can be classified as
intermediate stage II sleep. Additionally, sleep states can be
split in the classifying to look for spindles, k-complexes,
and other parts. Any group of epochs initially classified as
one sleep state can be split into multiple sub-classified
sleep states according to increasing levels of classification
detail. For example, a group of epochs classified as SWS can

be reclassified as two distinct types of SWS.

[0092] Example 9 - Exemplary Artifact Classification
Techniques
[0093] Artifact data (e.g. movement data, poor signal data,

and the like) can also be used in sleep state classification.
For example, artifacts can be used to analyze whether epochs
initially assigned a sleep state designation should be
reassigned a new sleep state designation due to neighboring
artifact data. For example, an epoch assigned a sleep state
designation of REM that has a preceding movement artifact or
awake epoch can be reassigned a sleep state designation of
awake. Further, for example, an artifact epoch that has a
succeeding SWS epoch can be reassigned a sleep state
designation of SWS because there is a high likelihood that the
epoch represents a large SWS sleep epoch rather than a large

movement artifact which is more common during wakefulness. In
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such ways, for example, artifact data can be utilized in a
data smoothing technique.

[0094] Example 10 - Exemplary Smoothing Technigues

[0095] Any variety of data smoothing techniques can be used
during the assigning of sleep states. For example, numbers
(e.g., 0 and 1) can be used to represent designated sleep
states. Neighboring epochs' sleep state designation numbers
can then be averaged to determine if one of the epochs is
inaccurately assigned a sleep state designation. For example,
abrupt jumps from SWS-NSWS-SWS (and REM-NREM-REM) are rare in
sleep data. Therefore, should a group of epochs be assigned
sleep state designations representing abrupt jumps in sleep
states, smoothing techniques can be applied to improve the
accuracy of the assigning.

[0096] For example, in a scenario in which 0 represents
SWS, 1 represents NSWS and the following sleep state
designations existed for five neighboring epochs, 00100, then
an average of the five sleep states would be 0.2. In such an
instance, the middle epoch initially assigned a sleep
designation of 1 (SWS) would be reassigned a sleep state
designation of 0 (NSWS). The same technique could be used for
REM versus NREM where a second set of sleep designations for
the same five neighboring epochs is determined. For example, 1
can represent REM, 0 can represent NREM, and the following
designations can exit for the five neighboring epochs, 00100.

Again, the average of the five sleep states would be 0.2.
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Again, the middle epoch initially assigned a designation of 1
(REM) would be reassigned a sleep state designation of 0
(NREM) . Such smoothing techniques can improve the accuracy of
assigning sleep state designations.

[0097] Example 11 - Exemplary Method for Classifying Sleep
States in a Subject

[0o098] FIG. 7 shows in a flowchart an exemplary method 700
for classifying sleep states in a subject. For example, the
method 700 can be implemented within system 500 of FIG. 5,
system 400 of FIG. 4 or within the classifying 608 of method
600.

[0099] At 702, one or more frequency weighted epochs are
received. For example, frequency weighted epochs determined
from the weighting 606 of method 600 can be received.

[00100] At 704, the one or more frequency weighted epochs
are clustered. For example, the one or more frequency weighted
epochs can be clustered by any variety of clustering
techniques including k-means clustering. The clustering can be
done on information calculated from the epochs (e.g., Delta
power, Gamma power, standard deviation, maximum amplitude
(Gamma/Delta), time derivative of Delta, time derivative of
Gamma /Delta, and the sort). Exemplary visualizations of
clustered sleep states are shown in FIGS. 18 and 19. FIG. 18
shows epochs clustered via Delta, Gamma/Delta, and the time
derivative of Delta. In such a manner, REM-like epochs form a

visual spear point shape. FIG. 19 shows epochs clustered via
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Delta, Gamma/Delta, and the time derivative of (Gamma/Delta).
In such a manner, SWS-like epochs form a visual spear point
shape. Additional exemplary visualizations of clustered sleep
states are shown in FIGS. 20 and 21, in which clustering was
done using parameters (e.g., variables) derived via principle
component analysis.

[Odl01] At 706, the one or more clustered, frequency
weighted epochs are assigned sleep state designations. For
example, an epoch with significant relative power at low
frequency can be assigned a slow wave sleep designation and an
epoch with significant relative power at high frequency can be
assigned a rapid eye movement sleep designation. For example,
REM sleep can have higher Gamma/Delta and a higher absolute
value of the time derivative of (Gamma/Delta) compared to SWS,
whereas SWS can have higher delta and a higher absolute wvalue
of the time derivative of delta than REM sleep. Further, for
example, standard deviation can be used in assigning sleep
state designations. It is possible for the same epoch to be
assigned‘both a slow wave sleep designation and a rapid eye
movement sleep designation. In such cases, the epoch can be
reassigned a new sleep state designation of outlier or
intermediate stage II sleep. Alternatively, an epoch can be
assigned both a non-slow wave sleep designation and a non-
rapid eye movement sleep designation. In such cases, the epoch
can be reassigned a new sleep state designation of

intermediate sleep or intermediate stage I sleep. For example,
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when high frequency is expressed by dividing it by Delta and
the parameter space Delta, Gamma/Delta,

abs (derivative (Delta)), abs(derivative (Gamma/Delta)), and,
optionally, standard deviation, then intermediate sleep
designation can be the intersection between NREM and NSWS
while outlier designation can be the intersection between REM
and SWS. Alternatively, for example, if Delta alone or with
standard deviation is used to determine SWS from NSWS and
gamma alone or with abs(derivative(Delta)) alone or with
standard deviation is used to determine REM from NREM, then
intermediate stage I sleep designation can be the intersection
between NREM and NSWS while intermediate stage II sleep
designation can be the intersection between REM and SWS. Any
variety of data smoothing techniques can be used during the
assigning of sleep states. Artifact data can also be used
during the assigning of sleep states.

[00102] At 708, sleep state designations are presented as
indicative of sleep states for the period of time represented
by the one or more epochs. The sleep states can be presented
in the form of sleep statistics across time. For example,
FIGS. 28, 29, 30, 31, and 32 depict presentations of sleep
statistics for sleep state designated epochs as a function of
time. For example in FIG. 28, a screen shot 2800 depicts sleep
state density as a percentage for each sleep state type per
hour during a night of electroencephalography data for a

subject. In FIG. 29, a screen shot 2900 depicts average
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episode length for each sleep stage across every hour. In FIG.
30, a screen shot 3000 depicts number of episodes for each
sleep stage across every hour. In FIG. 31, a screen shot 3100
depicts average time intervals between successive REM sleep
state intervals for each hour. In FIG. 32, a screen shot 3200
depicts stage transitions across the night.

[00103] Additionally, one or more frequency weighted epochs
can be presented as canonical spectra representative of the
sleep state in the subject for the period of time represented
by the one or more epochs having similar sleep state
designations. For example, an epoch within the middle of a
group of epochs designated as having the same sleep state
designations can be selected and its spectra presented as
canonical spectra representative of the sleep state.
Alternatively, an epoch having a weighted power closest to the
average weighted power of one or more epochs having similar
sleep state designations can be selected and its spectra
presented as canonical spectra representative of the sleep
state. For example, FIGS. 22, 23, 24, 25, and 26 are screen
shots of exemplary visualizations of epochs for various sleep
states in a subject (e.g., screen shot 2200 is SWS, screen
shot 2300 is REM sleep, screen shot 2400 is Intermediate
sleep, screen shot 2500 is awake, and screen shot 2600 is

transient) based on EEG spectrogram data analysis.
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[00104] Additionally, sleep state designations can be
presented as a function of success versus manual scoring and
quality measures can be presented (e.g., sleep state
designation separation statistics including single variable
and multivariable one-way ANOVAs, regression coefficients
calculated for each stage for sleep densities, number of
episodes, average episode length, cycle time, and the like).
An exemplary visualization of presenting quality measures is
shown in FIG. 27. A screen shot 2700 depicts an exemplary
visualization of the degree of sleep stage separation that
distinguishes representative canonical spectra of distinct
sleep states. For example, independent component analysis
(ICA) can be used to establish the quality of sleep stage
separation in the presented sleep states by applying ICA to
canonical spectra or average spectra for each sleep state
presented. Any variety of classifying techniques can be used
to determine the quality of initially sleep stage
classification.

[00105] Example 12 - Exemplary System for Determining a
Pathological Condition of a Subject from Sleep States
[00106] FIG. 8 shows an exemplary system 800 for determining
a pathological condition of a subject from sleep states.
[00107] Electroencephalography data for a subject 802 is
obtained and input into sleep state analyzer 804 to determine

a pathological condition of the subject 806.
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[00108] Methods for determining a pathological condition of
a subject from sleep states exhibited by a subject, as
determined from analyzing electroencephalography data, are
described in detail below.

[00109] Example 13 - Exemplary Computer-Implemented Method
for Determining a Pathological Condition for a Subject from
Sleep States

[00110] FIG. 9 shows an exemplary computer—-implemented
method 900 for determining a pathological condition for a
subject from sleep states. The computer-implemented method 900
can be utilized in system 800 of FIG. 8.

[00111] At 902, electroencephalography data for a subject is
received. For example, electroencephalography data which
exhibits lower dynamic range for power in at least one low
power first frequency range in a frequency spectrum as
compared to a second frequency range in the frequency spectrum
can be received.

[00112] At 904, the electroencephalography data is analyzed
with frequency analysis. For example, fregquency analysis can
be the adjusting 204 of method 200.

[00113] At 906, sleep states in the subject are assigned
based on the frequency analysis. For example, method 700 for
classifying sleep states of FIG. 7.can be used to assign sleep

states in the subject.
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[00114] At 908, a pathological condition can be detected in
a subject based on the sleep states. For example, sleep states
can be acquired for an individual and analyzed to determine
whether the sleep states represent normal sleep or abnormal
sleep. Abnormal sleep could indicate a pathological condition.
For example, sleep states can be acquired from individuals
with pathological conditions and analyzed for common
attributes to generate an exemplary distinctive "pathological
condition" sleep state profile and/or sleep state statistics
representative of having the pathological condition. Such a
profile or statistics can be compared to sleep states
determined for a subject in order to detect whether the
subject has the pathological condition or any early indicators
of the pathological condition. Any variety of pathological
conditions can be detected and/or analyzed. For example, sleep
related pathological conditions can include epilepsy,
Alzheimer's disease, depression, brain trauma, insomnia,
restless leg syndrome, and sleep apneé. For example,
polysomnographically, subjects with Alzheimer's can show
decreased rapid eye movement sleep in proportion to the extent
of their dementia.

[00115] Example 14 - Exemplary System for Dynamically
Determining Customized Sleep Scores for a Subject

[00116] FIG. 10 shows an exemplary system for dynamically

determining customized sleep scores for a subject.
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[00117] A data collector 1002 can obtain
electroencephalography data for a subject from a period of
sleep.

[00118] A data normalizer 1004 can assess the
electroencephalography data to determine low power frequency
information.

[00119] A data presenter 1006 can present sleep states for
the subject based at least on the low power frequency
information.

[00120] Methods for dynamically determining customized sleep
scores for a subject are described herein, including method
500 of FIG. 5, method 600 of FIG. 6, and method 700 of FIG. 7.
[00121] Example 15 - Exemplary Pathological Conditions
[00122] In any of the technologies described herein, a
variety of pathological conditions can be determined from
source data obtained for a subject. For example, depression,
brain trauma, epilepsy, and Alzheimer's disease can be
pathological conditions determined from sleep states
determined from source data obtained for a subject. For
example, FIG. 39 is a screenshot 3900 of an application of the
technologies described herein to determine sleep states
indicative of characterizations of Alzheimer's disease from a

whole night EEG from a human subject with Alzheimer's.
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[00123] Example 16 — Exemplary Medications and Chemicals
that can Affect Sleep

[00124] In any of the technologies described herein, the
effect of medications and chemicals on sleep states of a
subject can be determined via analyzing source data obtained
for a subject. For example, sleep states can be modified by
alcohol, nicotine, and cocaine use. Exemplary medications that
affect sleep include steroids, theophylline, decongestants,
benzodiazepines, antidepressants, monoamine oxidase inhibitors
(e.g., Pheneizine and Moclobemide), selective serotonin
reuptake inhibitors (e.g., Fluoxetine (distributed under the
Prozac® name) and Sertralie (distributed under the Zoloft®
name), thyroxine, oral contraceptive pills, antihypertensives,
antihistamines, neuroleptics, amphetamines, barbiturates,
anesthetics, and the like.

[00125] Example 17 - Exemplary Sleep Statistics

[00126] In any of the technologies described herein, any
variety of statistics can be generated from adjusted source
data. For example, sleep statistics can be generated from
adjusted source EEG data that has been classified into sleep
states. Exemplary sleep statistics can include information
including sleep stage densities, number of sleep stage
episodes, sleep stage average duration, cycle time, interval
time between sleep stages, sleep stage separation statistics,

onset of sleep, rapid eye movement sleep latency, regression
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coefficients of trends, measures of statistical significance
of trends, and the like.

[00127] Example 18 - Exemplary Implementation of a Method of
Determining Sleep States in a Subject over a Period of Time
[00128] Sleep 1s common and may be ubiquitous in all major
taxa of the animal kingdom, but it is poorly understood. There
is growing evidence from human studies from a variety of low-
level psychophysical perceptual and motor tasks that sleep
helps to remediate performance loss that is otherwise observed
following task learning (Karni et al. 1994; Mednick et al.
2002; Mednick et at. 2003; Fenn et al. 2003). Animal studies
have provided evidence of 'replay' during sleep, which may be
a central component of the sleep process involved in
consolidation of performance.

[00129] Recently, it has been shown that during sleep,
robustus archistriatalis (RA) neurons of the zebra finch,
Taeniopygia guttata, song system rehearse song patterns
spontaneously and respond to playback of the bird's own song
(Dave & Margoliash, 2000). During song development in zebra
finches, juvenile birds start changing singing patterns the
day following exposure to new vocal material from tutors
(Tchernichovski et al. 2001). There is no conclusive evidence
though that song learning in juveniles or song maintenance in

adult birds requires or benefits from sleep.
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[00130] Investigation of the possible role of sleep in song
learning or maintenance is hampered by the limited knowledge
of sleep states in passerine birds. Previous studies have not
reported different phases of sleep in the zebra finch (Nick &
Konishi, 2002; Hahnloser et al., 2002). In contrast, studies
in other birds, including passerine birds (Ayala-Guerrero et
al., 1988; Szymczak et al., 1993; Rattenborg et al., 2004),
have reported REM sleep in this phylum. Moreover, in rat
hippocampus different patterns of neuronal replay are known to
take place during different phases of sleep (Buzsaki, 1989;
Wilson & McNaughton, 1994; Louie & Wilson, 2001). Therefore,
staging of sleep in zebra finches was investigated.

[00131] In order to determine the type, arrangement and
location of electrodes, a series of acute experiments with
birds anesthetized with urethane (20%, circa 90 1.1l over I
hr) was first conducted. Optimal EEG recordings, as judged by
amplitude and reliability of signals, were obtained using
differentially paired thick platinum electrodes (A-M systems,
WA) touching the dura mater, with an additional ground over
the cerebellum. The stereotaxic coordinates for the recording
and ground electrodes were respectively: (1.5R, 3L), (3R, 2L)

and (0.5C, OL).
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[00132] Five birds were then anesthetized and implanted with
3 mm long L-shaped platinum electrodes at the aforementioned
locations with the last 2 mm of the electrodes tangential to
the dura mater along the medial-lateral axis. The electrode
impedance was 0.15 Ohms. In order to assess unihemispheric
sleep, three birds were implanted with bilateral EEG
electrodes. Electrodes were secured at their base with dental
acrylic and attached with fine copper wire (A-M systems, WA)
to a head connector. Birds were given 3 days to recover from
the surgery and to habituate to the recording environment.
[00133] During recordings, a light cable was attached
linking the bird's head to an overhead mercury commutator
(Drangonfly Inc, WV). This setup allowed the bird relative
freedom of movement within the cage and is preferable to
restraining the animal since restraint-induced stress is known
to modify sleep architecture (Altman et al., 1972). During the
dark phase of the 16:8 light/dark cycle, electrophysiological
recordings with direct observation of sleeping birds were
combined. Birds were bathed in infrared (IR) light and
monitored with an IR camera (Ikegama, Japan). Strategically
placed mirrors facilitated detection of eye, head, and body
movements. EEGs were amplified by 1K, sampled at 1 kHz and
filtered at 1-100 Hz. In one bird, which exhibited low
frequency artifacts, the data was filtered at 2-100 Hz. A 60Hz
notch filter was also used to improve the signal-to-noise

ratio.
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[00134] In order to establish high confidence in the data
analysis, the data was scored both manually as well as
automatically. Manual scoring relied on visual inspection of 3
seconds EEG epochs in parallel with scoring of overt behaviors
such as eye, head and body movements. Manual scoring
classified each epoch as either REM, NREM (non-REM) or awake,
including the artifacts. Automated scoring was restricted to
the sleep data. The Sleep Parametric EEG Automated Recognition
System (SPEARS) for stage separation and quantification of
single channel EEG data was used. EEGs were downsampled to 200
Hz, DC filtered, and analyzed over 3 seconds epochs using a 1
second sliding window to combine high spectral, temporal and
statistical resolutions. In order to minimize spectral leakage
and to increase statistical resolution in the frequency
domain, EEG power spectra were computed over 2 orthogonal
tapers following a standard multi-taper estimation technique
(Thomson, 1982).

[00135] The 1-4 Hz (Delta) and 30-55 Hz (Gamma) frequency
bands were selected for the stage classification. Delta and
Gamma/Delta were respectively used to separate SWS from NSWS
(Non-SWS) and REM from NREM. The separation was done with a k-
means clustering algorithm and refined by the inclusion of
additional variables: the standard deviation and the absolute
values of the time derivative of Delta and of (Gamma/Delta).
For each epoch, the time derivative was computed over the

preceding and successive epochs, using the Matlab "gradient"
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function. The initial separation was done over the artifact
free sleep data. Thereafter, sleep artifacts were attributed
the same score as the first non-artifact epoch immediately
following it, unless it was an awake epoch in which case the
sleep artifact was given the score of the first preceding
artifact free epoch (which could not be an awake epoch for
otherwise the artifact would have been labeled as an awake
artifact by manual scoring). This convention did not
significantly reduce the agreement rate with manual scoring
(TABLE 1). It was important to include the sleep artifacts
since removing or not scoring them would respectively shrink
or puncture sleep episodes and thereby change the calculated
density, average number of epochs and length for each stage.
[00136] Following initial separation, the score of each
epoch was smoothed using a 5 second window in order to
minimize the score contamination by brief artifacts which
might not have been isolated by manual scoring. Epochs that
were scored neither as REM nor as SWS were labeled as
intermediate (INTER). Conversely, any epoch that had been
labeled as belonging to both REM and SWS was relabeled as an
outlier. There were very few outliers in the data (TABLE 1).
[00137] The REM, SWS and intermediate epochs can be
visualized in a 3-dimensional space (FIGS. 20-21) defined by
the principal components of the 5 dimensional space defined by
Delta, Gamma/Delta, the standard deviation and the derivatives

of Delta and (Gamma/Delta) (FIGS. 16-17). In each bird, a
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multivariate ANOVA on the 5-dimensional clustering space
yielded a P < 0.001 for the separation of REM, SWS and the
intermediate stage.

[00138] Using the MATLAB "silhouette" function, the most
rgpresentative examples for the SWS, REM, intermediate and
awake epochs were automatically generated (FIGS. 22, 23, 24,
25, and 26).

[00139] The agreement between manual and automated scoring
was calculated by classifying each epoch scored as REM by only
the manual or the automated scoring as an error. The general
agreement rate was remarkably high given the high temporal
resolution of the manual and automated scoring (TABLE 1).
[00140] Based on the automated analysis, the stage density
(FIG. 28), average episode number (FIG. 30) and duration (FIG.
29), inter REM interval (FIG. 31) and stage transitions (FIG.
32) were computed (TABLE 1). All analyses were conducted in
Matlab (MathWorks Inc, MA).

[00141] Table 1. Stage statistics for 5 nights of sleep in 5
birds.

[00142] Stage density, average episode duration and number
and stage transitions were determined. The percentage of
transitions out of each stage towards the intermediate stage
and the percentage of transitions out of the intermediate
stage towards the other stages are shown. For the
bihemispherically implanted birds (Animals 1-3),

unihemispheric sleep is reported and the other statistics were
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computed over the hemisphere with the most reliable data as
determined by visual inspection of the EEG and video and the
absence of outliers. The coefficient of regression was
computed over the stage densities and inter-REM intervals for
each hour and reflect the circadian distribution of SWS and
REM (* = [r®> 0.5 and p < 0.05], § = [r? > 0.5 and p = 0.05), £
for values calculated for hours 2-8, & for values calculated
for hours 1-7). The agreement rate between automated and
manual scoring was determined with and without artifact

rejection.
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[00143] The analysis of the recordings indicate that zebra
finches exhibit at least three distinct phases of sleep: SWS,
REM and intermediate sleep. SWS had a high amplitude EEG
signal with significant power in the Delta range (FIGS.14-17).
REM was characterized by a very low amplitude "awake-like" EEG
signal (FIG. 23), typically about *30 pV with higher power in
Gamma (FIGS. 14 and 15) than NREM, a feature that up to now
had only been detected in mammals (Maloney et al., 1997;
Cantero et al., 2004). The intermediate epochs had highly
&ariable amplitudes, centered around 50 pV and did not have
significant power in either the Delta or Gamma ranges (FIGS.
14, 15 and 24). The intermediate stage has previously only
been observed in mammals (Gottesmann et al., 1984; Glin et
al., 1991; Kirov & Moyanova, 2002). Both birds on normal
circadian patterns and shifted circadian schedules displayed
these three sleep stages.

[00144] SWS epochs were longer than REM and intermediate
episodes early in the night and would, following a mammalian-
like distribution, decrease in duration (FIG. 29) throughout
the night, leading to an overall decrease in stage density
(FIG. 28) (TABLE 1).

[00145] During NREM birds breathe slowly and regularly; eye
and head movements do not follow a stereotypical pattern and
are quite distinct from those in REM. We observed several
instances when one eye was open and the other was closed. The

hemisphere contralateral to the open eye displayed a low
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amplitude and high frequency EEG while the hemisphere
contralateral to the closed eye displayed SWS oscillations.
These instances of unihemispheric sleep would usually account
for less than 5% of the dark cycle (TABLE 1) and were more
frequent in the light cycle. Such patterns of unihemispheric
sleep have been previously detected in other species of birds,
cetaceans and other marine mammals (Mukhametov et al., 1984;
Mukhametov, 1987; Szymczak et al., 1996; Rattenborg et al.,
1999; Lyamin et al., 2002).

[00146] REM episodes were typically brief early in the night
and would become longer throughout the night (FIG. 29) as the
number of episodes would increase as well (FIG. 30), leading
the Inter-REM intervals to exhibit a downward "mammalian-like™
trend throughout the night (FIG. 31) (TABLE 1). REM occurred
reliably in conjunction with eye and subtle twitching head
movements, as seen in other species (Siegel et al., 1999). The
eye movements were on the order of one saccade per second. The
head movements were not as reliable, but tended to follow the
directional movement of the eyes when present. Head movements
were not the result of displacement of the head by the weight
of the attached cable during REM neck muscle atonia because
the head movements were observed in conjunction with eye

movements in intact, un-tethered animals.
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[00147] The intermediate epochs were brief and numerous. The
intermediate state was usually more stable throughout the
night, in term of density (FIG. 28), average epoch duration
(FIG. 29) and average number of episodes per hour (FIG.30)
than REM and SWS. As 1s the case in mammals, the intermediate
stage consistently acted as -but was not limited to- a
transition phase between SWS and REM (FIG. 32) (TABLE 1).
[00148] In all birds, large peak-to-peak EEG transients
lasting approximately 500 milliseconds were detected in NREM
(FIG. 26). These signals are reminiscent of the description of
mammalian K-complexes (Rowan & Tolunsky, 2003). K-complexes
have likely never been previously observed in a non-mammalian
species.

[00149] In previous studies of zebra finch sleep EEG, only
SWS has been reported. In addition to finding a suitable
location over which to implant EEG electrodes, this study was
successful in detecting NSWS (REM and the intermediate stage)
presumably because the nature of the chronic recording setup
did not restrain the animals and obviated the need of
pharmacological agents such as melatonin to induce sleep. In
one study (Mintz et al., 1998), infusion of melatonin was
shown to induce SWS in pigeons. It is possible that melatonin
might have a similar effect in zebra finches, thus reducing
the amount of observable NSWS at night (Hahnloser et al.

2002).
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[00150] The data analysis technique enabled resolving
changes in power at the lower power, high frequencies, which
was a key differentiating factor for REM sleep detection.
Moreover, the automated analysis restricted manual scoring to
the awake state and artifacts, which are easily detectable to
a human scorer. Additionally, automated EEG scoring relied on
whole night statistics (Gervasoni et al.) rather than on
arbitrarily defined threshold, maximum likelihood methods or
supervised nonlinear classifiers all of which tend to reflect
and impose a human bias on the data analysis.

[00151] The results imply that mammalian-like sleep features
have evolved in parallel in both mammals and birds. The basic
pattern of interdigitation between Delta and Gamma power
activation described herein (FIGS. 14 and 15) is highly
similar to the one observed in the mammalian cortex during
sleep (Destexhe, Contreras & Steriade, 1999). Furthermore,
some of the signals we have observed have been specifically
attributed to the mammalian cortex (Amzica & Steriade, 1998).
Birds are however devoid of a large laminar cortex, raising
the possibility that the cortex might be at best sufficient
but not necessary for the development of mammalian-like sleep
features. Conversely, it is conceivable that birds do indeed
possess a mammalian cortex homolog in a non-laminar form
(Karten, 1997). Future work at the cellular and molecular
levels will be needed to assess which of these highly

intriguing possibilities proves to be correct.
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[00165]

[00166] Example 19- Exemplary Method for Determining Sleep
States in a Subject over a Period of Time

[00167] FIG. 35 shows yet another exemplary method 3500 for
determining sleep states in a subject over a period of time.
The method 3500 incorporates a wide variety of techniques
described herein.

[00168] Example 20 - Exemplary Transformation Techniques
[00169] There are a wide variety of data transformation
methods used in signal processing to determine power for a
variety of frequencies in time series data. As described
herein, transformation methods can include multi-taper
transform, Fourier transform, wavelet transform. Any other
transformation method for measuring power for a variety of
frequencies represented in a plurality of time series or

epochs in a source signal can be used.
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[00170] Example 21 - Exemplary Computational Methods for
Differentiating Groups of Data

[00171] There are a wide variety of clustering and
'classification methods used in computational signal processing
to differentiate data into distinct classes. As described
herein, the clustering method used is k-means clustering but
any computational signal processing method for differentiating
groups of data could be used. Similarly, classification
methods such as component analysis (e.g., principle and

independent component analysis) are used as described herein.

[00172] An overview of computational methods is provided
below.
[00173] Clustering (or cluster analysis) is unsupervised

learning where the classes are unknown a priori and the goal
is to discover these classes from data. For example, the
identification of new tumor classes using gene expression
profiles is a form of unsupervised learning.

[00174] Classification (or class prediction) is a supervised
learning method where the classes are predefined and the goal
is to understand the basis for the classification from a set
of labeled objects and build a predictor for future unlabeled
observations. For example, the classification of malignancies
into known classes is a form of supervised learning.

[00175] CLUSTERING:

[00176] Clustering involves several distinct steps:

[00177] Defusing a suitable distance between objects
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[00178] Selecting a applying a clustering algorithm.

[00179] Clustering procedures commonly fall into two
categories: hierarchical methods and partitioning methods.
Hierarchical methods can be either divisive (top-down) or
agglomerative (bottom-up). Hierarchical clustering methods
produce a tree or dendrogram. Hierarchical methods provide a
hierarchy of clusters, from the smallest, where all objects
are in one cluster, through to the largest set, where each
observation is in its own cluster

[00180] Partitioning methods usually require the
specification of the number of clusters. Then, a mechanism for
apportioning objects to clusters must be determined. These
methods partition the data into a prespecified number k of
mutually exclusive and exhaustive groups. The method
iteratively reallocates the observations to clusters until
some criterion is met (e.g. minimize Within—cluster sumsof-
squares). Examples of partitioning methods include k-means
clustering, Partitioning around medoids (PAM), self organizing
maps (SOM), and model-based clustering.

[00181] Most methods used in practice are agglomerative
hierarchical methods, in a large part due to the availability
of efficient exact algorithms. However both clustering methods
have their advantages and disadvantages. Hierarchical
advantages include fast computation, at least for
agglomerative clustering, and disadvantages include that they

are rigid and cannot be corrected later for erroneous
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decisions made earlier in the method. Partitioning advantages
include that such methods can provide clusters that
(approximately) satisfy an optimality criterion, and
disadvantages include that one needs an initial k and the
methods can take long computation time.

[00182] In summary, clustering is a more difficult problem
than classifying for a variety of reasons including the
following:

[00183] there is no learning set of labeled observations
[00184] the number of groups is usually unknown

[00185] implicitly, one must have already selected both the
relevant features and distance measures used in clustering
methods.

[00186] CLASSIFICATION:

[00187] Techniques involving statistics, machine learning,
and psychometrics can be used. Examples of classifiers include
logistic regression, discriminant analysis (linear and
quadratic), principle component analysis (PCA), nearest
neighbor classifiers (k-nearest neighbor), classification and
regression trees (CART), prediction analysis for microarrays,
neural networks and multinomial log-linear models, support
vector machines, aggregated classifiers (bagging, boosting,
forests), and evolutionary algorithms.

[00188] Logistic regression:

[00189] Logistic regression is a variation of linear

regression which is used when the dependent (response)
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variable is a dichotomous variable (i.e., it takes only two
values, which usually represent the occurrence or non-
occurrence of some outcome event, usually coded as 0 or 1) and
the independent (input) variables are continuous, categorical,
or both. For example, in a medical study, the patient survives
or dies, or a clinical sample is positive or negative for a
certain viral antibody.

[00190] Unlike ordinary regression, logistic regression does
not directly model a dependent variable as a linear
combination of dependent variables, nor does it assume that
the dependent variable is normally distributed. Logistic
regression instead models a function of the probability of
event occurrence as a linear combination of the explanatory
variables. For logistic regression, the function relating the
probabilities to the explanatory variables in this way is the
logistic function, which has a sigmoid or S shape when plotted
against the values of the linear combination of the
explanatory variables.

[00191] Logistic regression is used in classification by
fitting the logistic regression model to data and classifying
the various explanatory variable patterns based on their
fitted probabilities. Classifications of subsequent data are
then based on their covariate patterns and estimated

probabilities.
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[00192] Discriminant analysis:

[00193] In summary discriminant analysis represents samples
as points in space and then classifies the points. Linear
discriminant analysis (LDA) fmds an optimal plane surface that
best separates points that belong to two classes. Quadratic
discriminant analysis (QDA) fmds an optimal curved (quadratic)
surface instead. Both methods seek to minimize some form of
classification error.

[00194] Fisher linear discriminant analysis (FLDA or LDA):
[00195] LDA fmds linear combinations (discriminant
variables) of data with large ratios of between-groups to
within-groups sums of squares and predicts the class of an
observation x by the class whose mean vector is closest to x
in terms of the discriminant variables. Advantages of LDA
include that it is simple and intuitive where the predicted
class of a test case is the class with the closest mean and it
is easy to implement with a good performance in practice.

Disadvantages of LDA include the following:

[00196] linear discriminant boundaries may not be flexible
enough

[00197] features may have different distributions within
classes

[00198] in the case of too many features, performance may

degrade rapidly due to over parameterization and high variance

of parameter estimates.
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[00199] Nearest neighbor classifiers:

[00200] Nearest neighbor methods are based on a measure of
distance between observations, such as the Euclidean distance
or one minus the correlation between two data sets. K-nearest
neighbor classifiers work by classifying an observation x as
follows:

[00201] - find the k observations in the learning set that
are closest to x.

[00202] - predict the class of x by majority vote, i.e.,
choose the class that is most common among these k neighbors.
Simple classifiers with k=1 can generally be quite successful.
A large number of irrelevant or noise variables with little or
no relevance can substantially degrade the performance of a
nearest neighbor classifier.

[00203] Classification trees:

[00204] Classification trees can be used, fir example, to
split a sample into two sub-samples according to some rule
(feature variable threshold). Each sub-sample can be further
split, and so on. Binary tree structured classifiers are
constructed by repeated splits of subsets (nodes) into two
descendant subsets. Each terminal subset of the tree is
assigned a class label and the resulting partition corresponds
to the classifier. The three main aspects of tree construction
include selection of splits (at each node, the split that
maximize the decrease in impurity is chosen), decision to

declare a node terminal or to continue splitting (to grow a
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large tree, the tree is selectively pruned upwards getting a
decreasing sequence of subtrees), and assignment of each
terminal node to a class (the class the minimizes the
resubstitution estimate of the misclassification probability
is chosen for each terminal node).

[00205] Prediction analysis for microarrays:

[00206] These methods utilize nearest shrunken centroid
methodology. First, a standardized centroid for each class is
computed. Then each class centroid is shrunk toward the
overall centroid for all classes by the so-called threshold
(chosen by the user). Shrinkage consists of moving the
centroid towards zero by threshold, setting it equal to zero
if it hits zero.

[00207] Artificial Neural Networks

[00208] The key element of the artificial neural network
(ANN) model is the novel structure of the information
processing system. It is composed of many highly
interconnected processing elements that are analogous to
neurons and are tied together with weighted connections that
are analogous to synapses. As with all classification methods,
once the ANN is trained on known samples, it will be able to
predict samples automatically.

[00209] Support Vector Machines:

[00210] Support Vector Machines are learning machines that
can perform binary classification (pattern recognition) and

real valued function approximation (regression estimation)
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tasks. Support Vector Machines non-linearly map their n-
dimensional input space into a higher dimensional feature
space. In this high dimensional feéture space a linear
classifier is constructed.

[00211] Aggregating classifiers:

[00212] This method works by aggregating predictors built
from perturbed versions of a learning set. In classification,
the multiple versions of the predictor are aggregated by
voting. Bootstrapping is the simplest form of bagging in which
perturbed learning sets of the same size as the original
learning set are non-parametric bootstrap replicates of the
learning set, i.e., drawn at random with replacement from the
learning set. Parametric bootstrapping involves perturbed
learning sets that are generated according to a mixture of
multivariate Gaussian distributions. Random Foresting is a
combination of tree classifiers (or other), where each tree
depends on the value of a random vector for all trees in the
forest. In boosting, classifiers are constructed on weighted
version the training set, which are dependent on previous
classification results. Initially, all objects have equal
weights, and the first classifier is constructed on this data
set. Then, weights are changed according to the performance of
the classifier. Erroneously classified objects get larger
weights, and the next classifier is boosted on the reweighted
training set. In this way, a sequence of training sets and

classifiers is obtained, which is then combined by simple
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majority voting or by weighted majority voting in the
decision.

[00213] Example 22 - Exemplary Sleep Data Presenter

[00214] In any of the examples herein, an electronic or
paper-based report based on sleep state data can be presented.
Such reports can include customized sleep state information,
sleep state statistics, pathological conditions, medication
and/or chemical effects on sleep, and the like for a subject.
Recommendations for screening tests, behavioral changes, and
the like can also be presented. Although particular sleep data
and low frequency information results are shown in some
examples, other sleep data presenters and visualizations of
data can be used.

[00215] Example 23 - Exemplary Sleep State Information for
Subjects

[00216] Exemplary sleep state information can be obtained
from a variety of subjects using any of the technologies
described herein. FIG. 33 includes a screenshot 3300 of an
exemplary visualization of classified anesthesized states of
an anesthetized cat based on analyzed EEG spectrogram data.
For example, in screenshot 3300, a SWS classification
corresponds to a deep anesthesized state, a REM sleep
classification corresponds to a light a:nesthesized state, and
an INTER sleep classification corresponds to an intermediate
anesthesized state. In such a manner, the technologies

described herein can be utilized to determine anesthesized
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states in a human or other mammalian subject. FIG. 34 includes
a screenshot 3400 of an exemplary visualization of classified
sleep states of a human subject based on analyzed EEG
spectrogram data.

[00217] Example 24 - Exemplary Advantages and Applications
of Technologies
[00218] The speed at which this data analysis can be
performed, the customized and unsupervised nature of analysis,
and the ability to extract previously disregarded or
unanalyzed low power frequency information make this
methodology particularly attractive to a variety of fields of
study. The technology can be highly adaptable using a variable
number of states, a variable number of identification rules,
adaptable calibration, variable time resolution, and variable
spectral resolution. Adjusting source data to generate
adjusted source data can be especially applicable to analyzing
animal signal data in testing for pathological conditions and
medicatioﬁ and chemical effects. In any of the examples
herein, low amplitude but highly variable frequency data can
be extracted and analyzed (e.g., discovering temporal patterns
in data). Applications can include diverse uses from analyzing
stock market data (e.g., analyzing fluctuations in penny
stocks to determine common variability otherwise disregarded
due to small price changes) to accessing encoded data (e.g.,
Morse code data stored in low power, very high or very low

frequencies within sound waves) to analyzing visual images
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with several spatial frequencies. Similarly, the technologies
described herein can be used to determine customized sleep
quality determinations for a subject via sleep state
information generated.

[00219] In any of the examples herein, the methods can be
applied to source data received from one channel or multiple
channels. The methods can be applied independently to source
data from multiple channels with comparison made between the
channels. For example, unihemispheric sleep can be determined
from independent EEG channel data received from each
hemisphere of a brain. FIG. 40 shows a screen shot 4000 of
unihernispheric sleep determined from independent EEG channel
data received from each hemisphere of a bird's brain.
Alternatively, the methods can be simultaneously applied to
source data from multiple channels, thereby analyzing combined
multiple channel source data. For example, EEG channel data
and EMG channel data for a subject can be simultaneously
analyzed to determine awake versus REM sleep states whereby a
REM designated sleep state from analysis of EEG data can be
reassigned as an awake sleep state if the EMG data falls into
a high amplitude cluster.

[00220] Further, in any of the examples herein, methods such
as denoising source separation (dss) and the like can be used
in combination with the methods described herein to determine
sleep states. For example, dss can use low frequency

information to determine REM sleep.
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[00221] While the techniques described herein can be
particularily valuable for analyzing low power frequency
information they can also be applied to clustering and
determining sleep stages from any variety of signals including
signals wherein the high and low frequencies have the same
power distributions. Additionally, techniques pertaining to
spectrogram analysis, stage classification and confidence
measures can be used independently of one another.

[00222] Example 25 - Exemplary Visualizations of Data
[00223] In any of the techniques described herein, exemplary
visualizations of data can utilize colors to depict different
aspects of that data. For example, classified data (e.g.,
sleep state classifications such as REM, SWS, and INTER) can
be color coded for each classification state for visualization
of the classified data. Alternatively, greyscale can be used
to code for each classification state for visualization of the
classified data.

[00224] Example 26 - Exemplary Computer System for
Conducting Analysis

[00225] FIG. 36 and the following discussion provide a
brief, general description of a suitable computing environment
for the software (for example, computer programs) described
above. The methods described above can be implemented in
compﬁter—executable instructions (for example, organized in
program modules). The program modules can include the

routines, programs, objects, components, and data structures
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that perform the tasks and implement the data types for
implementing the techniques described above.

[00226] While FIG. 36 shows a typical configuration of a
desktop computer, the technologies may be implemented in other
computer system configurations, including multiprocessor
systems, microprocessor-based or programmable consumer
electronics, minicomputers, mainframe computers, and the like.
The technologies may also be used in distributed computing
environments where tasks are performed in parallel by
processing devices to enhance performance. For example, tasks
can be performed simultaneously on multiple computers,
multiple processors in a single computer, or both. In a
distributed computing environment, program modules may be
located in both local and remote memory storage devices. For
example, code can be stored on a local machine/server for
access through the Internet, whereby data from assays can be
uploaded and processed by the local machine/server and the
results provided for printing and/or downloading.

[00227] The computer system shown in FIG. 36 is suitable for
implementing the technologies described herein and includes a
computer 3620, with a processing unit 3621, a system memory
3622, and a system bus 3623 that interconnects various system
components, including the system memory to the processing unit
3621. The system bus may comprise any 6f several types of bus
structures including a memory bus or memory controller, a

peripheral bus, and a local bus using a bus architecture. The
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system memory includes read only memory (ROM) 3624 and random
access memory (RAM) 3625. A nonvolatile system (for example,
BIOS) can be stored in ROM 3624 and contains the basic
routines for transferring information between elements within
the personal computer 3620, such as during start-up. The
personal computer 3620 can further include a hard disk drive
3627, a magnetic disk drive 3628, for example, to read from or
write to a removable disk 3629, and an optical disk drive
3630, for example, for reading a CD-ROM disk 3631 or to read
from or write to other optical media. The hard disk drive
3627, magnetic disk drive 3628, and optical disk 3630 are
connected to the system bus 3623 by a hard disk drive
interface 3632, a magnetic disk drive interface 3633, and an
optical drive interface 3634, respectively. The drives and
their associated computer-readable media provide nonvolatile
storage of data, data structures, computer-executable
instructions (including program code such as dynamic link
libraries and executable files), and the like for the personal
computer 3620. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic disk,
and a CD, it can also include other types of media that are
readable by a computer, such as magnetic cassettes, flash

memory cards, DVDs, and the like.
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[00228] A number of program modules may be stored in the
drives and RAM 3625, including an operating system 3635, one
or more application programs 3636, other program modules 3637,
and program data 3638. A user may enter commands and
information into the personal computer 3620 through a keyboard
3640 and pointing device, such as a mouse 3642. Other input
devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other
input devices are often connected to the processing unit 3621
through a serial port interface 3646 that is coupled to the
system bus, but may be connected by other interfaces, such as
a parallel port, game port, or a universal serial bus (USB). A
monitor 3647 or other type of display device is also connected
to the system bus 3623 via an interface, such as a display
controller or video adapter 3648. In addition to the monitor,
personal computers typically include other peripheral output
devices (not shown), such as speakers and printers.

[00229] The above computer system is provided merely as an
example. The technologies can be implemented in a wide variety
of other configurations. Further, a wide variety of approaches
for collecting and analyzing source data are possible. For
example, the data can be collected and analyzed, and the
results presented on different computer systems as
appropriate. In addition, various software aspects can be
implemented in hardware, and vice versa. Further, paper-based

approaches to the technologies are possible, including, for
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example, purely paper-based approaches that utilize
instructions for interpretation of algorithms, as well as
partially paper-based approaches that utilize scanning
technologies and data analysis software.

[00230] Example 27 - Exemplary Computer-Implemented Methods
[00231] Any of the computer-implemented methods described
herein can be performed by software executed by software in an
automated system (for example, a computer system). Fully-
automatic (for example, without human intervention) or semi-
automatic operation (for example, computer processing assisted
by human intervention) can be supported. User intervention may
be desired in some cases, such as to adjust parameters or
consider results.

[00232] Such software can be stored on one or more computer-
readable media comprising computer-executable instructions for
performing the described actions. Such media can be tangible
(e.g., physical) media.

[00233] Having illustrated and described the principles of
the invention in exemplary embodiments, it should be apparent
to those skilled in the art that the described examples are
illustrative embodiments and can be modified in arrangement
and detail without departing from such principles. Techniques
from any of the examples can be incorporated into one or more

of any of the other examples.
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[00234] Another embodiment uses a dual normalization for
even further dynamic range increase. This embodiment explains,
and relies on, data from human sleep subjects, rather than
birds as in some of the previous embodiments. Moreover, any
of the applications described above for the previous
embodiments are equally applicable for this embodiment, as are
the techniques of normalization and clustering.

[00235] This embodiment uses many of the characteristics of
the previous embodiments and also adds some refinements. The
embodiment operates to analyze brain wave activities. The
signals from a brainwave, e.g., an EEG, typically follows the
characteristic where the amount of power in the brain wave is
related to, e.g., proportional to 1/f, where f is the
frequency of the brain wave: The amount of power is inversely
proportional to the frequency. As explained with reference to
previous embodiments, this 1/f spectral distribution has
tended to obscure the higher frequency portions of the signal,
since those higher frequency portions of the signals had
smaller voltage amplitudes.

[00236] Human observers who observed the waves representing
the EEGs have historically been unable to ascertain any
substantial information relative to the higher frequency.

Many reasons for this have been postulated by the inventors.
One reason is that higher frequencies of brainwave activities
have been more filtered from the skull, because the physical

'

structure of the skull acts as a low pass filter.
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[00237] Previous embodiments have shown how normalization,
for example using Z scoring, allowed analysis of more
information from the brainwave signal. The analysis which was
previously carried out normalized power information across
frequencies. The normalization preferably used Z scoring, but
any other kind of data normalization can be used. The
normalization which is used is preferably unitless, like Z
scoring. As well-known in the art, z scoring can be used to
normalize a distribution without changing a shape of the
envelope of the distribution. The z scores are essentially
changed to units of standard deviation. Each z score
normalized unit reflects the amount of power in the signal,
relative to the average of the signal. The scores are
converted into mean deviation form, by subtracting the mean
from each score. The scores are then normalized relative to
standard deviation. All of the z scored normalized units have
standard deviations that are equal to unity.

[00238] While the above describes normalization using 2%
scores, it should be understood that other normalizations can
also be carried out, including T scoring, and others.

[00239] The above embodiments describe normalizing the power
at every frequency within a specified range. The range may be
from 0, to 100 hz, or to 128 hz, or to 500 hz. The range of
frequencies is only restricted by the sampling rate. With an
exemplary sampling rate of 30KHz, an analysis up to 15KHz can

be done.
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[00240] According to the present embodiment, an additional
normalization is carried out which normalizes the power across
time for each frequency. This results in information which
has been normalized across frequencies and across time being
used to create a doubly normalized spectrogram.

[00241] This embodiment can obtain additional information
from brainwave data, and the embodiment describes
automatically detecting different periods of sleep from the
analyzed data. The periods of sleep that can be detected can
include, but are not limited to, short wave sleep (SWS), rapid
eye movement sleep (REM), intermediate sleep (IIS) and
wakefulness. According to an important feature, a single
channel of brainwave activity (that is obtained from a single
location on the human skull) is used for the analysis.

[00242] The operation is carried out according to the
flowchart of figure 41, which may be executed in any of the
computer devices described herein, or may be executed across a
network or in any other known way. At 4100, data is obtained.
As described above, the obtained data can be one channel of
EEG information from a human or other subject. The EEG data
as obtained can be collected, for example, using a 256 Hz
sampling rate, or can be sampled at a higher rate. The data
is divided into epochs, for example 30 second epochs, and

characterized according to frequency.
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[00243] At 4110, a first frequency normalization is carried
out. The power information is normalized using a z scoring
technique on each frequency bin. In the embodiment, the bins
may extend from one to 100 Hz and 30 bins per hertz. The
normalization occurs across time; This creates a normalized
spectrogram or NS, in which each frequency band from the
signal has substantially the same weight. In the embodiment,
each 30 second epoch is represented by a "preferred frequency"
which is the frequency with the largest z score within that
epoch.

[00244] This creates a special frequency space called the
preferred frequency space. Figure 42A illustrates the raw
spectrogram, and figure 42 B illustrates the normalized
spectrum. Each epoch, e.g., a 30 second segment in figure 43,
or or a 1 second sliding window epoch in Figure 44, is
represented by the frequency with the largest z score. Figure
44 illustrates how this broadly separates into different
patterns.

[00245] Analysis of how those patterns are formed and allow
analysis of the characteristics of the patterns. For example,
the W or wakefulness state has been found by analysis to be
characterized by a band in the alpha band, or 7 to 12 Hz and

sometimes by a band in the beta (15 to 25 Hz).
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[00246] Intermediate states display Delta values in the 1 to
4 Hz range, and the spindle frequencies in 12 to 15 Hz. These
also show activity of the higher frequencies and the gamma
range 3- 90 Hz. Surprisingly, REM state defines compact bands
at Delta and Theta frequencies, and short wave sleep was
dominated by diffuse broad-spectrum activity.

[00247] Different sleep states, therefore, can be defined
according to a discrimination function, where the
discrimination function looks for certain activity in certain
areas, and non-activity in other areas. The function may
evaluate sleep states according to which of the frequency at
areas have activity and which do not have activity.

[00248] More generally, however, any form of dynamic
spectral scoring can be carried out on the compensated data.
The discrimination function may require specific values, or
may simply require a certain amount of activity to be present
or not present, in each of a plurality of frequency ranges.
The discrimination function may simply match envelopes of
frequency response. The discrimination function may also look
at spectral fragmentation and temporal fragmentation.

[00249] 4120 illustrates a second normalization which is
carried out across frequencies. The second normalization at
4120 produces a doubly normalized spectrogram. This produces
a new frequency space, in which the bands become even more
apparent. The second normalization is shown as Figure 42C,

where bands show as lighter values, representing the positive
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values, while darker regions will tend to have negative
values.

[00250] The doubly normalized spectrogram values can be used
to form filters that maximally separate the values within the
space. Figure 43 illustrates a graph of preferred frequency
as a fuﬂction of time, showing the different clusters of
frequencies.

[00251] 4130 illustrates a clustering technique which is
carried out on the doubly normalized frequency. For example,
the clustering technique may be a K means technique as
described in the previous embodiments. The clusters form
groups, as shown in Figure 43. Figure 44 illustrates how the
areas between different states, such as boundary 4400, form
multiple different clusters. Each cluster can represent a
sleep state.

[00252] The clusters are actually multi dimensional
clusters, which can themselves be graphed to find additional
information, as shown in Figure 45. The number of dimensions
can depend on the number of clustering variables. This
illustrates how the doubly normalized spectrogram also allows
many more measurement characteristics. Figure 45 is actually
a three-dimensional graph, of different characteristics, and
can allow detection of the different states. The analysis,
however, reveals that slow wave sleep is more unstable and

time and frequency than rapid eye movement sleep or
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wakefulness. Intermediate sleep often forms a bridge to and
from the short wave sleep.

[00253] Measurement of the average spread in normalized
power across frequency which illustrates the spectral
fragmentation is also possible, as shown in Figure 46
illustrates the spectral fragmentation. Fragmentation values
can alternatively be based on temporal fragmentation for the
different states may also be used as part of the
discrimination function.

[00254] For example:

[00255] Using Z and ZZ to correspond to the NS and 2NS
values respectively:

[00256] w_filter=mean(ZZ(12-15 Hz))+mean(ZZ (1-4
Hz))+mean (27 (4-7 Hz)).

[00257] nrem filter=mean(ZZ(60-100 Hz))-+mean (ZZ%(4-7 Hz))-
[mean (27 (12-15 Hz))+mean (ZZ (25-60Hz) ) +mean (ZZ (15-25 Hz)) ]

[00258] sws_filter= mean(Z(4-7 Hz))+mean(Z(7-12 Hz))

[00259] The fragmentation values are as follows:
[00260] Spectral_ frag= mean(abs(grad f(ZZ(1-100 Hz))));
[00261] Spectral_ temp= mean(abs(grad t(ZZ(1-100 Hz)))):

[00262] Where grad_f and grad t correspond to the two-

dimensional nearest neighbor gradients of ZZ.
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[00263] These two functions are evaluated on the doubly
normalized spectrum, relying on homogeneous increases in gain
at all frequencies as caused movement artifacts in NREM sleep
and W would lead to abnormally elevated fragmentation values
in the singly normalized spectrum.

[00264] These fragmentation values may be used as part of
the discrimination function. Importantly, and as described
above, this discrimination function is typically not apparent
from any previous analysis technique, including manual
techniques.

[00265] The computation may be characterized by segmenting,
or may use overlapping windows or a sliding window, to
increase the temporal registration. This enables many
techniques that have never been possible before. By
characterizing on-the-fly, this enables distinguishing using
the dynamic spectral scoring, between sleep states and awake
states using the brainwave signature alone.

[00266] Another aspect includes a machine which
automatically obtains EEG information, and includes a computer
that analyzes the EEG information to determine information
about the sleep state. For example, the information may
include the actual sleep state, or other parts of the sleep
state. The computer may also include nonvolatile memory
therein to store the information indicative of the sleep
state, and may include, for example, a wireless network

connection to allow sending the information indicative of the
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sleep state to a remote device. The user can wear the
machine, or an electrode that is connected“to the machine, in
order to characterize his or her sleep.

[00267] The above has described how information can be used
to determine sleep states. These techniques may also be used
for other applications including characterizing sleep states,
and other techniques. Applications may include determination
of whether a patient has taken certain kinds of drugs based on
their sleep state, and based on variables that were previously
determined as changing in brain function based on those sleep
states. Another application can analyze brain wave signals to
determine alcohol consumption, e.g., forming a system that can
be used as a “breathalyzer”.

[00268] The general structure and techniques, and more
specific embodiments which can be used to effect different
ways of carrying out the more general goals are described
herein.

[00269] Although only a few embodiments have been disclosed
in detail above, other embodiments are possible and the
inventors intend these to be encompassed within this
specification. The specification describes specific examples
to accomplish a more general goal that may be accomplished in
another way. This disclosure is intended to be exemplary, and
the claims are intended to cover any modification or
alternative which might be predictable to a person having

ordinary skill in the art. For example, other applications
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are possible, and other forms of discrimination functions and
characterization is possible. While the above extensively
described characterizing the frequency in terms of its
"preferred frequency", it should be understood that more
rigorous characterization of the information may be possible.
Also, while the above only refers to aetermining sleep states
from the EEG data, and refers to only a few different kinds of
determination of sleep states, it should be understood that
other applications are contemplated.

[00270] Also, the inventors intend that only those claims
which use the words “means for” are intended to be interpreted
under 35 USC 112, sixth paragraph. Moreover, no limitations
from the specification are intended to be read into any
claims, unless those limitations are expressly included in the
claims.

[00271] The computers described herein may be any kind of
computer, either general purpose, or some specific purpose
computer such as a workstation. The computer may be a Pentium
class computer, running Windows XP or Linux, or may be a
Macintosh computer. The computer may also be a handheld
computer, such as a PDA, cell phone, or laptop.

[00272] The programs may be written in C, or Java, Brew or
any other programming language. The programs may be resident
on a storage medium, e.g., magnetic or optical, e.g. the
computer hard drive, a removable disk or media such as a

memory stick or SD media, or other removable medium. The
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programs may also be run over a network, for example, with a
server or other machine sending signals to the local machine,
which allows the local machine to carry out the operations

described herein.
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What is claimed is

1. A method, comprising:

obtaining data indicative of brainwave activity;

normalizing at least one frequency range of said data to
change a power level of the data in said at least one
frequency range relative to data in another frequency range,
to form normalized data indicative of brainwave activity; and

analyzing said normalized data indicative of brainwave
activity to determine at least one parameter indicative of

sleep state from said analyzing.

2. A method as in claim 1, wherein said analyzing
comprises automatically clustering said normalized data into
clusters, and using said clusters in said analyzing, to

determine said parameter.

3. A method as in claim 1, wherein said normalizing

comprises Z scoring the data.

4. A method as in claim 1, further comprising a second
normalizing the data, to form double normalized data, prior to

said analyzing.

5. A method as in claim 4, wherein said second

normalizing comprises normalizing frequencies across time.
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6. A method as in claim 5, wherein said first and second

normalizing each use Z scoring for the normalizing.

7. A method as in claim 5, further comprising definiﬁg a
discrimination function which represents characteristics of
the said double normalized data for a plurality of different
sleep states, and using said discrimination function to

determine a sleep state from said double normalized data.

8. A method as in claim 7, wherein said discrimination
function is a function that is in terms of frequencies which
are present in specified ranges and not present in specified

other ranges, to define a sleep state.

9. A method as in claim 4, further comprising
characterizing a preferred frequency as a frequency which has
the highest normalized value in any specified time, and
analyzing the preferred frequency to determine said at least

one parameter.

10. A method as in claim 9, further comprising defining
a discrimination function as a function of preferred
frequency, where a discrimination function defines a sleep
state in terms of frequencies which are present, and

frequencies which are not present.
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11. A method as in claim 4, further comprising analyzing
a fragmentation of the double normalized data, and using the

fragmentation as to the part of said analyzing.

12. A method as in claim 1, wherein said parameter
indicative of sleep state comprises a probable sleep state

corresponding to the current time period.

13. A method as in claim 1, wherein said parameter
indicative of sleep state comprises information indicative of

likely drug consumption.

14. A method as in claim 1, wherein said normalizing is

carried out using a computer to change the data.

15. The method of claim 1 further comprising removing

artifacts from the source data.

l6. The method of claim 1 further comprising: prior to

said normalizing, segmenting the source data in a plurality of

time segments.

17. The method of claim 16 wherein the separating

comprises using one of a scanning window or a sliding window.
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18. The method of claim 17 wherein the separating

comprises determining at least one time series increment

selected from the group consisting of:
whole time series;
overlapping time series; and

non-overlapping series.

19. A method for determining sleep states in a subject

over a period of time comprising:

receiving brain wave data for the subject over the period

of time, wherein the brain wave data exhibits lower dynamic

range for power in at least one low power first frequency

range in a frequency spectrum as compared to
frequency range in the frequency spectrum;
segmenting the brain wave data into one
weighting frequency power of the one or
across time, wherein the weighting comprises
dynamic range for power within the low power

of the frequency spectrum as compared to the

a second

or more epochs;
more epochs
increasing the
frequency range

second frequency

range, thereby generating one or more frequency weighted

epochs; and
classifying sleep states in the subject

or more frequency weighted epochs.
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20. The method as in claim 19 wherein classifying sleep
states in the subject comprises:
clustering the one or more frequency weighted epochs; and
assigning sleep state designations to the one or more
frequency weighted epochs according to the clustering; and
presenting the sleep state designations as indicative of
sleep states in the subject for the period of time represented

by the one or more frequency weighted epochs.

21. The method of claim 19 wherein clustering the one or

more frequency weighted epochs comprises k-means clustering.

22. The method of claim 19 further comprising
pretreating the electroencephalography data with component

analysis.

23. The method of claim 19 wherein classifying sleep
states in the subject comprises applying independent component

analysis to the one or more frequency weighted epochs.

24. The method of claim 19 wherein classifying sleep

states further comprises incorporating manually determined

sleep states.
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25. The method of claim 19 wherein assigning sleep state
designations to the one or more frequency weighted epochs
comprises:

determining a slow wave sleep designation from a non-slow
wave sleep designation based at least on low frequency
information; and

determining a rapid eye movement sleep designation from a
non-rapid eye movement sleep designation based at least on

high frequency information.

26. The method of claim 25 further comprising assigning
a slow wave sleep designation to an epoch that has significant

weighted power at low frequencies.

27. The method of claim 25 further comprising assigning
a rapid eye movement sleep designation to an epoch with

significant weighted power at high frequency.

28. The method of claim 19 wherein assigning sleep state
designations to the one or more frequency weighted epochs
further comprises applying a smoothing window to the one or
more weighted epochs, wherein the smoothing can comprise
averaging sleep state designations across the one or more

weighted epochs.
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29. The method of claim 19 further comprising presenting
one or more frequency weighted epochs as canonical spectra
representative of the sleep state in the subject for the
period of time represented by the one or more epochs having

similar sleep state designations.

30. The method of claim 29 further comprising analyzing
the canonical spectra with independent component analysis to

establish sleep state classification confidence.

31. The method of claim 19 further comprising presenting
sleep statistics for the subject according to the sleep state

designations of the one or more frequency weighted epochs.

32. The method as in claim 19, further comprising second
weighting power to normalize the data according to a second
dimension, prior to said classifying to form doubly normalized

data.

33. The method as in claim 32, wherein saild second
weighting comprises normalizing at least one frequency across

time.

34. A method as in claim 32,wherein said weighting and
said second weighting each use Z scoring to carry out

normalizing.
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35. A method as in claim 32, further comprising defining
a discrimination function which represents characteristics of
the double normalized data for a plurality of different sleep
states, and using said discrimination function to determine a

sleep state from said double normalized data.

36. A method as in claim 35, wherein said discrimination
function is a function that is in terms of frequencies which
are present in specified ranges and not present in specified

other ranges, to define a sleep state.

37. A method as in claim 32, further comprising
characterizing a preferred frequency as a frequency which has
the highest normalized value in any specified time, and
analyzing the preferred frequency to determine said at least

one parameter.

38. A method as in claim 37, further comprising defining
a discrimination function as a function of said preferred
frequency, where a discrimination function defines a sleep
state in terms of frequencies which are present, and

frequencies which are not present.
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39. A method as in claim 32, further comprising

analyzing a spectral fragmentation of the double normalized

data, and using the spectral fragmentation as part of said

analyzing.

40. A method as in claim 32, further comprising
analyzing a temporal fragmentation of the double normalized
data, and using the temporal fragmentation as part of said

analyzing.

41. An apparatus, comprising:

a computing device, receiving at least one signal
indicative of brainwave activity, and normalizing at least one
frequency range of said signal to change a power level of data
in said at least one frequency range relative to data in
another frequency range, to form normalized data indicative of
brainwave activity‘and using said normalized data indicative
of brainwave activity to determine at least one parameter

indicative of sleep state.

42. An apparatus as in claim 41, wherein said computing

device carries out saild normalizing by Z scoring the data.

43. An apparatus as in claim 41, wherein said computer
operates to carry out a second normalizing of the data, to

form double normalized data, prior to using said data.
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44. An apparatus as in claim 43, wherein said second
normalizing carried out by sald computer comprises normalizing

frequencies across time.

45. An apparatus as in claim 42, wherein said computer
operates based on a discrimination function which represents
characteristics of said double normalized data for plurality
of different sleep states, and uses said discrimination

function to determine a sleep state from said normalized data.

46. An apparatus as in claim 46, wherein said
discrimination function is a function that is in terms of
frequencies which are present in specified ranges and not

present in specified other ranges, to define a sleep state.

47. An apparatus as in claim 43, wherein said computer
operates to determine a preferred frequency as a frequency
which has a highest normalized value in any specified time,
and analyzes the preferred frequency to determine said at

least one parameter.
48. An apparatus as in claim 43, wherein said computer

determines a fragmentation of the double normalized data as a

part of said analyzing.
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49. An apparatus as in claim 41, further comprising a

brain wave electrode, connected to obtain said signal.

50. An apparatus, comprising:

a first receiving part, receiving information indicative
of brainwave signals; and

a processing part, normalizing at least one frequency
range of said brainwave signals, to form normalized data
indicative of brainwave activity and using said normalized
data indicative of brainwave activity to determine at least

one parameter indicative of sleep state.

51. An apparatus as in claim 50, wherein said processing

part carries out said normalizing by Z scoring the data.

52. An apparatus as in claim 50, wherein said processing

part carries out two separate normalizing of the data, to form

double normalized data, prior to using said data.
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