
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2008/0301 179 A1 

US 20080301 179A1 

Shipp et al. (43) Pub. Date: Dec. 4, 2008 

(54) CLIENT SIDE INDEXING OF OFFLINE (22) Filed: Aug. 12, 2008 
ADDRESS BOOK FILES O O 

Related U.S. Application Data 

(75) Inventors: Neil L. Shipp, Bellevue, WA (US); (63) Continuation of application No. 1 1/105,719, filed on 
Victor Erwin Romano, North Apr. 14, 2005. 
Bend, WA (US) Publication Classification 

(51) Int. Cl. Correspondence Address: 
SENNIGER POWERS LLP (MSFT) G06F 7/30 (2006.01) 
1OO NORTH BROADWAY, 17TH FLOOR (52) U.S. C. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 707/102; 707/E17.009 

ST. LOUIS, MO 63102 (US) (57) ABSTRACT 

A method of building an offline address book (OAB). An 
(73) Assignee: Mittee Corporation, Redmond, OAB data file and a table of attributes are generated at a 

(US) server. The data file and table are transferred from the server 
to a client. The transferred data file and table are indexed by 

(21) Appl. No.: 12/190,444 the client. 

- 102 
OAB data file - 

OAB HDR 

OABATT TABLE 

OAB REC HDR 

PROPERTY 

BYTE rgData 

PROPERTY 

BYTE rgData 

PROPERTY 

Index File 200 

ULONG orecCffset 

ULONG OValOffset 

ULONG OReCOffset 

ULONG OValOffset 

ULONG ORecoffset 

ULONG oWaCoffset 

ULONG oRecC)ffset 

ULONG oWaCoffset 

ULONG orecOffset 

ULONG OVaCoffset 

ULONG oRecC)ffset 

ULONG OValOffset 

  



Patent Application Publication Dec. 4, 2008 Sheet 1 of 5 US 2008/03011 79 A1 

OAB data file 

OAB HDR 

OAB ATT TABLE 
OAB INDEX HDR 

OAB REC HDR OAB INDEX RECs 

OAB REC HDR 

ANRIndex 

OAB INDEX HDR 

OAB REC HDR 
104 OAB INDEX RECs / 

/ 
/ 

Display Name Index 

OAB INDEX HDR 

OAB INDEX RECs 106 

FIG. 1 

  

  

  



Patent Application Publication Dec. 4, 2008 Sheet 2 of 5 US 2008/03011 79 A1 

102 
OAB data file 

OAB HDR index File 200 / 2O2 

OAB INDEX HDR 

ULONG ORecCoffset 

ULONG OValOffset 

ULONG ORecCoffset 

ULONG OValOffset 

ULONG ORecCOffset 

ULONG OValOffset 

ULONG ORecCoffset 

ULONG OValOffset 

ULONG ORecCoffset 

ULONG OValOffset 

ULONG OReCOffset 

ULONG OValOffset 
PROPERTY 

BYTED rgData 

PROPERTY 

FIG. 2 

  



Patent Application Publication Dec. 4, 2008 Sheet 3 of 5 US 2008/03011 79 A1 

OAB PROP TABLE Presence Bit Array Record Data 

byte 0 bit 8 

fyte Ob O 

FIG. 3 

(CG) 

(CG) 

(CG) 

<> 

<G> 

<> 

<> 

<-G> 

(CG) 

<> 

<G> 

(CG) 

  



Patent Application Publication Dec. 4, 2008 Sheet 4 of 5 US 2008/03011 79 A1 

OAB Data file 

OAB HDR 

OAB META DATA (attribute tables) 

Zeroth record (meta-data info) 

OAB record data 

OAB record data 

CRC-32 

OAB record data 

OAB record data 

FIG. 4 

  



US 2008/03011 79 A1 Dec. 4, 2008 Sheet 5 of 5 Patent Application Publication 

[7] 

--EE_| VBHW BOJIM 

NOLIVOITddv | 9NI IV (BdO 

HOW-THELNI |[ldNI RHEST) 

XRHOWALEN VEIHW TWOOT 

78]99] 99 I 

LIN[] 06]5ONISSE OORHd 

  

  

  

  

  

  

    

  

  



US 2008/0301 179 A1 

CLIENT SIDE INDEXING OF OFFLINE 
ADDRESS BOOK FILES 

TECHNICAL FIELD 

0001 Embodiments of the present invention relate to the 
field of address books. In particular, embodiments of this 
invention relate to maintaining and indexing offline address 
books on a client side device. 

BACKGROUND OF THE INVENTION 

0002. In previous versions of an offline address book 
(OAB) (such as the address book feature of Exchange Server 
and Outlook), the index files were generated on the server at 
the same time the data files were generated. Index files pre 
sented sorted views of the offline address book and were tied 
to one version of the full OAB data file (e.g., the particular 
version of the data files being indexed. 
0003. One problem was that different languages sort 
words and text differently than others. In order to support 
multiple client languages, a server generated a different set of 
index files for each client sort locale. For example, the 
Exchange Server architecture only Supported generating one 
client locale on any one server for an OAB so multiple servers 
would be deployed to generate multiple client sort locales. 
The administrator would then need to ensure that the proper 
code-pages and language packs were installed on the server 
for each client language. There is a need to find away to index 
the OAB so that the administrator no longer needs to deploy 
multiple servers nor do the language packs for each language 
need to be installed. 
0004 Another problem resulted from differential updates 
Such as the differential update mechanism introduced in 
Exchange Server 5.5. Differential updates allow the client 
copies of the OAB and index files to be incrementally updated 
from the previous version. Updating the index files is a diffi 
cult problem to do efficiently and optimally, so the final 
design resulted in data structures that would become unbal 
anced and inefficient after a large number of updates. There is 
a need for indexing the data files after each OAB update so 
that the resulting index files will always be efficient and well 
balanced. 
0005 Also, server based designs of the OAB tend to limit 
future growth of the OAB. Small changes have been applied 
many times to work around these limits, but it still has some 
problems. 
0006. There is a need for a new OAB format that will 
overcome many if not all of the current limitations of the OAB 
design. 
0007 Accordingly, a system and method for maintaining 
and indexing address books is desired to overcome one or 
more of these and other disadvantages. 

SUMMARY OF THE INVENTION 

0008 According to one embodiment, the client sorts the 
records and builds the index files of the OAB. Previously the 
server was responsible for that task and using a differential 
algorithm to update the index files on the client was difficult 
to implement efficiently. By moving the task to the client, one 
set of files can now be used by all clients regardless of sort 
order required by the client. By building the index files on the 
client, each client can customize their experience without 
requiring a custom index file on the server. New attributes can 

Dec. 4, 2008 

be added or removed from index files or different index 
behavior can be achieved without server side changes. 
0009. In one form, the invention comprises a method of 
building an offline address book (OAB). An OAB data file and 
a table of attributes are generated at a server. The data file and 
table are transferred from the server to a client. The trans 
ferred data file and table are indexed at the client. 
0010. In another form, the invention comprises a client 
side method of building an offline address book (OAB) 
wherein a server generates an OAB data file and a table of 
attributes. The data file and table are received by the client 
from the server. The transferred data file and table are indexed 
at the client. 
0011. In another form, the invention comprises a method 
of maintaining an offline address book (OAB). An OAB data 
file and a table of attributes are periodically generated at a 
server. A differences file between the previous version and the 
next version of the OAB file is generated using an update 
mechanism. The difference file is transferred to a client which 
previously received the previous version. The transferred data 
file and table and difference file are indexed at the client. 
0012. Alternatively, the invention may comprise various 
other methods and apparatuses. 
0013. Other features are in part apparent and in part 
pointed out hereinafter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0014 FIG. 1 is a block diagram of an exemplary embodi 
ment of an OAB data file set according to the invention. 
0015 FIG. 2 is an exemplary block diagram illustrating 
the relationship between an OAB index file of a data file 
according to the invention. 
0016 FIG. 3 is a block diagram illustrating the relation 
ship between the property record (table), the presence bit 
array and the record data according to the invention. 
0017 FIG. 4 is a block diagram illustrating an exemplary 
data structure for an OAB data file according to the invention. 
0018 FIG. 5 is a block diagram illustrating one example of 
a suitable computing system environment in which the inven 
tion may be implemented. 
0019 Corresponding reference characters indicate corre 
sponding parts throughout the drawings. 

DETAILED DESCRIPTION OF THE INVENTION 

0020 Referring to FIG. 1, client side indexing for an OAB 
begins with the server generating an OAB data file 102 that 
contains all the mail recipient address book data. Along with 
this data, there exists a table of attributes that the server or 
administrator has determined be indexed. 
0021 Examples of indexed attributes: 
0022 ANR or Ambiguous Name Resolution index file 
104, including one or more of the following: Display Name, 
Surname, Mail Nickname (alias), and/or Office location. 
0023 Browse Index File such as a Display Name index file 
106 (used to show the records in alphabetical order when 
listed). 
0024 Distinguished Name index file 108 (used to find 
records based on their unique distinguished names). 
0025. After the client has updated its local copy of the 
OAB data file 102 (either by downloading a full new file or 
updating the existing file), the client indexes the local data file 
according to the table of indexable attributes and the client's 
sort locale. 



US 2008/0301 179 A1 

0026. The index files 102 tend to change dramatically due 
to Small changes in the data files so the size of the update files 
is not that much smaller than the size of the entire new index 
file. One advantage of client indexing is that by calculating 
the index files on the client, only the changed records needed 
to be transmitted to the client and not the large amount of 
changes to the index files. 
0027. A separate index file is built for each index that the 
client wants to use. In one embodiment as illustrated in FIG. 
1, a display name index file 106 is built from the OAB data file 
102 for the display name attribute so that the OAB can be 
viewed in sorted order. Optionally, a different index file is 
built for a virtual Ambiguous Name Resolution (ANR) 
attribute, e.g., ANR index 104, that indexes all the values for 
all properties that are marked with the ANR flag. This file 
allows searches to be quickly performed over numerous 
attributes without requiring multiple search operations. 
Optionally, another index file is built for the distinguished 
name (DN) attribute, e.g., DNindex 108, which is the primary 
key for all mail recipient records. This file allows conversion 
to and from entry-ids (the main identifier of a mail recipient 
record). Other index files can optionally be built by the client 
to make search operations faster for specific attributes in the 
OAB 

0028. In index file systems in which the display name 
attributes and DN attributes are single valued, such as in the 
Windows(R Active Directory schema, every object has a cor 
responding one in the OAB. In such systems, the DN index 
file 108 and the display name index file 106 will have as many 
records as there are in the OAB data file 102 and each index 
record will point to a unique record in the OAB file 102. In 
other index file systems, the number of index records may 
differ from the number of OAB records. Attributes may be 
optional or multi-valued so certain records may be unrefer 
enced and others may be referenced multiple times. 
0029. In one embodiment as illustrated in FIG. 1 and also 
shown with some more detail in FIG. 2, each index file struc 
ture would be as follows. The start of each index file 200 (e.g., 
each of files 104,106, 108) would begin with a header struc 
ture 202 (e.g., OAB INDEX HDR). The structure may 
include one or more of a version number, a signature value, a 
count of records, an attribute identifier and a sort locale. The 
version number is used to distinguish between different OAB 
file types and the signature is a hash value computed from the 
main OAB data file 102 so that the client can be certain that 
the file used as the index matches the full OAB data file 102. 
Following the header record is a list of fixed sized index 
records 204 (e.g., OAB INDEX RECs, ULONG oRecCoff 
set, ULONG oValOffset). These records comprise a record 
offset into the OAB data file 102, plus an offset to the par 
ticular value within the referenced OAB data file record. For 
multi-valued attributes an index record is generated for each 
value stored in the OAB. 

0030 Index calculation would be accomplished by the 
client side as follows. Each index file can be built individually 
or all the files can be built at the same time. In one embodi 
ment, the client reads the OAB data file 102 in order, reading 
each record, adding the attribute value to an in-memory table 
and, after the entire file is read, Sorting the table, and writing 
out the index file. The client repeats this building process for 
each other attribute that needs indexing. More advanced 
implementations can be devised to only perform a single pass 
through the main OAB file and handle memory constraints on 
the client. 

Dec. 4, 2008 

0031 Index traversal is accomplished in the following 
way. To display the address book in order, the client chooses 
a starting position in the index file 102 to begin the list, reads 
eachindex record of index file 200 in order from the index file, 
and uses the offsets to read each OAB record in turn. Because 
the client uses the sorted index filed 200, the records come out 
in the correct sort order. To search for entries in an index file 
102, a binary search may be performed. The client chooses 
the midpoint of the index file 102, retrieves the record pointed 
to by the record offset value, reads the value pointed to by the 
value offset, compares it with the search key and then chooses 
whether to bisect the upper range or lower range depending 
on the comparison result. The client then performs the opera 
tion again and again until the desired value is found or is 
determined to not be present. 
0032. The following illustrates one embodiment of the 
invention. In this embodiment, the terms noted in Table 1 have 
the indicated meaning: 

TABLE 1 

GLOSSARY 

Term Definition 

Diff Differential update 
OABOAL Offline Address Book? Offline Address List 
PDN Parent Distinguished Name 
RDN Relative Distinguished Name 

(0033. The OAB format as generated by the server does not 
require the server generated index and browse files. All recipi 
ent data is stored in one file with no fixed order. Each record 
is self-contained and independent of any other record. It is up 
to the client to index the OAB file and generate ANR, browse, 
SMTP and RDN index files. No attempt at compressing file 
space is done to reduce often duplicated data Such as common 
prefixes or postfixes (Legacy PDNs and SMTP domain 
names). Each string is written in full. 

OAB Post Format 

0034 All OAB messages have at least the following prop 
erties set: 

Property name Prop ID Prop Type 

PR OAB SEQUENCE Ox6801 PT LONG 
PR OAB MESSAGE CLASS Ox6803 PT LONG 

0035. The sequence number allows the client to determine 
if the post has been updated or added since the last time the 
client checked. The message class allows the client to distin 
guish Full OAB posts from Differential OAB posts. 
0036 Files are compressed using the binpatch library 
LZX compression routines. Compressed files can be decom 
pressed using the binpatch library apply patch functions with 
an empty initial file. 

Full OAB Post 

0037. Each OAB post with a full copy of the OAB has the 
PROAB MESSAGE CLASS property set to 0x01 and will 
have the following file attachments: data.oab, lingXXXX. 
oab (multiple) and macxXXX.oab (multiple) where XXXX 



US 2008/0301 179 A1 

is the hex language locale ID. The data.oab file contains all 
of the OAB recipient data and the lingXXXX.oab and 
macxXXX.oab files contains the addressing and display 
template information. This list of files can be added to at any 
time and the client ignores files it does not understand. 
The post will also have the following MAPI properties set: 

Property name Prop ID Prop Type 

PR OAB NAME Ox68OO PT UNICODE 
PR OAB SEQUENCE Ox68O1 PT LONG 
PR OAB CONTAINER GUID Ox68O2 PT UNICODE 
PR OAB MESSAGE CLASS Ox68O3 PT LONG 
PR OAB DN Ox6804 PT UNICODE 

0038. The PR OAB NAME property contains the name 
of the Address List used to generate the OAB. This is the 
property that should be displayed to the client when choosing 
from multiple OABs to download. 
0039. The PROAB SEQUENCE property contains an 
integer that keeps track of the number of times this OAB has 
been generated. Each generation increases this number by 
one and the same number is stamped on the Differential post 
and the Full post to allow the client to keep track of changes 
and determine which files are necessary to bring an OAB up 
to date via differential means. 
0040. The PR OAB CONTAINER GUID property con 
tains a graphical user interface display (GUID) that identifies 
the address list being generated. All posts that relate to the 
same address list have this GUID set to the same value. If the 
Address List is renamed causing the PR OAB NAME prop 
erty to change, the GUID remains the same. The value is 
formatted as a hex encoded string and not as a binary type. 
0041. The PROAB MESSAGE CLASS property is set 
to 0x01 for all Full OAB messages to allow the client as well 
as the Exchange Store to distinguish full downloads from 
differential updates. 
0042. The PR OAB DN property contains the distin 
guished name of the Exchange Address List that corresponds 
to this OAB message. 

Differential OAB Post 

0043. Each OAB post with a differential copy of the OAB 
will have the PR OAB MESSAGE CLASS property set to 
0x02 and will have the following file attachment: binpatch. 
oab, and may have one or more of the following template 
files: lingXXXX.oab (multiple) and macxXXX.oab (mul 
tiple) where XXXX is the hex language locale ID. This list of 
files can be added to at any time and the client should ignore 
files it doesn't understand. 
The post will also have the following MAPI properties set: 

Property name Prop ID Prop Type 

PR OAB NAME Ox68OO PT UNICODE 
PR OAB SEQUENCE Ox68O1 PT LONG 
PR OAB CONTAINER GUID Ox68O2 PT UNICODE 
PR OAB MESSAGE CLASS Ox68O3 PT LONG 
PR OAB DN Ox6804 PT UNICODE 

0044) The above properties are described in the previous 
section. For the PR OAB MESSAGE CLASS property, it is 

Dec. 4, 2008 

set to 0x02 to allow the client and the Exchange store to detect 
that this is an OAB update message. 
0045. The server may include the template files in the 
differential message if it thinks the client should update its 
copy of the display templates. So if the client finds that the 
display or addressing templates it's using is included in the 
differential message it should update its own files. If the 
templates are not included, the client should continue to use 
the existing templates. 

Availability of Updates 

0046. The OAB server will only post differential OAB 
messages when the contents of the OAB have changed from 
the previous version. This includes changes to template files. 
If no changes have occurred the server will repost the 
unchanged OAB files to the server using the same sequence 
number. This will stop the public folder server from expiring 
the OAB post. 
0047. The full uncompressed OAB data file format will 
consist of the following: the OAB header, the attribute table, 
and the OAB records. The header will follow the following 
format: 

Struct OAB HDR { 
ULONG ulVersion; 32 for full file, 33 for index 
ULONG ulSignature: 
ULONG ulRecords: 

0048. The ulVersion field indicates the file type and is set 
to 32 decimal for the full OAB file. The ulSignature is a hash 
computed from the record data itself. The ulRecords field will 
give the total count of OAB records stored in the file. 
0049. Following the OAB HDR is the attribute table. This 
includes OAB meta-data such as the properties included in 
the OAB data records along with the OAB meta-data record, 
which properties should be part of ambiguous name resolu 
tion (ANR), and which properties should be indexed. 
0050. The attribute table is stored as follows: 

struct OAB META DATA { 
ULONGcbSize: 
OAB PROP TABLE hdratts; 
OAB PROP TABLE OabAtts; 
}: 
struct OAB PROP TABLE { 
ULONG cAtts; 
OAB PROP RECrgProps: 
}: 
struct OAB PROP REC { 
ULONG ulPropID: 
ULONG ulFlags; 
}: 
#define OAB ANR FLAG OxO1 
#define OAB RDN FLAG 0x02 
#define OAB IDX FLAG 0x04 

0051. The enclosing OAB META DATA structure con 
tains two attribute tables plus a size member that describes the 
size of this section of the file in bytes. The arrays of OAB 
PROP REC structures is stored sequentially in the file so the 
start of the oabAtts section will follow immediately after the 
hdratts section in the file. 



US 2008/0301 179 A1 

0052. Thehdratts section describes the format of the OAB 
properties record which is the first data record in the OAB file 
after the Attribute Table section. This section contains infor 
mation such as the OAB name, DN, sequence number, ANR 
behaviorand other information that the server wants to pass to 
the client outside of recipient data. This section is expandable 
and new data can be added by use of new property tags and 
values. Included are the PROAB DN, PROAB CON 
TAINER GUID, PROAB SEQUENCE and PROAB 
NAME properties whose data is stored in the OAB properties 
record. 
0053. The oabAtts section describes the format of the 
OAB records for recipient data which follow the OAB prop 
erties record. For both the haratts and oabAtts structures, it 
starts with a count of properties, cAtts, followed by cAtts 
number of OAB PROP REC structures. The OAB client 
code will use these tables to decode the OAB properties 
record and each OAB recipient record. The ulFlags member is 
used to determine if the attribute should be indexed, should be 
part of the ANR attribute set, or is a primary record key 
(RDN). 
0054 The client should make no assumption about the 
order of records in the attribute arrays. The properties may 
come in any order. 

OAB Data Section 

0055 FIG. 3 is a block diagram illustrating the relation 
ship between the property record (table), the presence bit 
array and the record data. 
0056. Following the OAB attribute table is the OAB prop 
erties record and then the OAB recipient records. The number 
of recipient records is the same as ulRecords in the OAB 
HDR section. There will only be one OAB properties record 
that represents meta-data about the OAB. Each record will 
start with a ULONG that specifies the number of bytes that is 
used to encode the values including the ULONG itself, and 
can be used as an offset to the next record in the file. 
0057 The next section of the record is a bit array that 
indicates the presence of specific properties in the record. The 
number of bytes that encode this bit array is equal to the cAtts 
count in the OAB META DATA record plus 7 divided by 8. 
So for a 37 attribute count, the number of bytes representing 
the bit field is 5. The bit array starts at the most significant bit 
of the first byte and continues through the rest of the bits of the 
first byte into the most significant bit of the second byte. Any 
unused bits of the last byte are set to 0. 
0058. The data for each property in the record is laid out in 
the same order that the attribute appears in the OAB PROP 
TABLE structure and the presence bit array. If a property is 
not present, the bit field will have a value of Zero and no 
property value is encoded. Otherwise each value is laid out 
according to the property type part of the PropID. For single 
valued property types, PT STRING8 properties are encoded 
as a null terminated String and in the format they are stored in 
the Active Directory. PT UNICODE strings are stored as 
UTF8 null terminated strings. By default PT STRING8 will 
only be used for Strings that the AD stores as narrow Strings. 
But if the AD stores the string as Unicode, the code page of the 
server is used to convert the string to MBCS. For PT BI 
NARY and all other types other than PT BOOLEAN and 
PT LONG, a length field as described in the next paragraph, 
followed by the specified number of bytes is stored in the file. 
For PT BOOLEAN, a single byte will describe the value. 
O=False and 1=True. For PT LONG, the value is described 

Dec. 4, 2008 

the same way that a length field is encoded. A length or integer 
field is represented as a compacted byte array of 1 to 5 bytes. 
The leading byte will indicate the entire length if 127 bytes or 
smallerby having the value 0 through 127. If the high order bit 
of the first byte is set then the length of the length field is 
encoded in the 7 lower order bits. The length field is then 
encoded in little endian format in the next 1 to 4 bytes. 

Length or Integer encoding Bytes 

OxOOOOOOOO-OXOOOOOO7f OxXX 
OxOOOOOO8O-OXOOOOOOff Ox81 (OXXX 
OxOOOOO1 OO-OXOOOOffff Ox82 (OXXXXX 
OxOOO1 OOOO-OXOOffffff Ox83 OXXXXXXX 
OXO1OOOOOO-Oxffffff Ox84 OxXXXXXXXX 

0059. The length field should use the format that uses the 
least number of bytes to encode, but it is not mandatory. For 
PT LONG values, the server can compress the value by not 
encoding the non-zero upper bytes. Using this method the 
PT LONG value 0x00000000 can be encoded as 0x00. 
0060 For multi-valued properties the value will first start 
with a length field as encoded above that encodes the number 
of values present in the attribute. This is followed by the 
indicated count of individual values encoded as single valued 
attributes above. 
0061. To find a property in the data record the code will 

first determine if the property is present using the presence bit 
array of the record. Ifmarked as present, the code begins at the 
first present property, and using the property type field of the 
PropID, skip to the next present property in the record data, 
find the next present property type in the bit array and iterate 
until it finds the PropID it was looking for. 

Property Truncation/Size Limiting 
0062. In order to stop the OAB from taking too much 
space on the client for degenerate cases, the OAB generation 
code will truncate overly long strings, remove overly long 
binary values, and limit the number of values in a multi 
valued attribute. Information about which properties were 
truncated or removed is passed as a constructed multi-valued 
long property in the OAB record itself. The property PR O 
AB TRUNCATED PROPS (0x6805, PT MV LONG) 
contains a list of the property tags that have been truncated or 
limited by the server. If no properties have been removed or 
limited, the attribute will not be present. 
0063. The PR EMAIL ADDRESS(LegacyExchan 
geDN)and PR EMS AB HOME MDB (Home-MDB) 
attributes will not be subject to property truncation or size 
limiting. The LegacyExchange DN will not be limited 
because it is the property that uniquely identifies the object in 
the OAB and must be kept intact. The PR EMS AB 
HOME MDB attribute will also be kept intact because it is a 
calculated value that could often be quite long and must be 
kept intact for certain Outlook operations. 

OAB Signature Generation 
0064 FIG. 4 is a block diagram illustrating an exemplary 
data structure for an OAB data file according to the invention 
including a header, attribute tables, metadata and record data. 
The signature of the main OAB data file is calculated by 
computing the CRC-32 checksum over the entire file not 
including the OAB HDR record. The seed value is 



US 2008/0301 179 A1 

0xFFFFFFFF (-1). The display and addressing template files 
will not have a CRC-32 checksum in the OAB header when 
downloaded from the server. However the download from the 
server will have extra error checking available. 

Client Index Implementation 
0065. In one embodiment for the client index implemen 

tation, the client index files are built from the server full OAB 
file after it is downloaded from the server or updated using the 
update mechanism (e.g., binpatch). A separate index file is 
built for each index that the client wants to use. At minimum 
an index file is build for the PR DISPLAY NAME attribute 
that corresponds to the browse file. An index file is built for 
the PR ANR attribute that indexes all the values for all prop 
erties that are marked with the ANR flag. An index file is built 
for the PR EMAIL ADDRESS or PR SMTP ADDRESS 
record which is the primary key file that allows conversion to 
and from short term and long term entry-ids. 
0066. The start of each index file begins with the OAB 
IDX HDR structure. The ulVersion number is set to 33 deci 
mal to indicate an index file format, the ulSignature is set to 
the same value as found in the full OAB data file so that index 
files cannot be used with the wrong data file, the ulRecords 
field will indicate the number offixed size index records in the 
file, the ulPropTag field will indicate which property has been 
indexed in the file, and the ulSortLocale will indicate which 
sort locale was used to build the file. 

Struct OAB IDX HDR { 
ULONG ulVersion; 
ULONG ulSignature; 
ULONG ulRecords: 
ULONG ulPropTag: 
ULONG ulSortLocale: 

0067. Following the OAB IDX HDR record are 
ulRecords number of OAB IDX REC records. These follow 
the following format: 

Struct OAB IDX REC { 
ULONG oRecCoffset: 
ULONG oValOffset: 

0068. The oRecCoffset field indicates the absolute offset in 
the full OAB data file of the start of the OAB record. The 
oValOffset field indicates the relative offset in the full OAB 
data file from the start of the OAB record to the value indexed. 
For multi-valued properties this points at the value instance 
that was indexed as if it was a single valued property, not the 
start of the multi-valued property. 
0069. To display the GAL in order, the client needs to 
choose a starting position in the index file to begin the list, 
read each OAB IDX REC in order from the file, and use the 
offsets to read each OAB record in turn. Because it is using the 
sorted index, the records will come out in the correct sort 
order. 
0070. To search for entries in the index file, a binary search 

is performed. The client will choose the midpoint of the index 
file, retrieve the record pointed to by the oRecCffset member, 
read the value pointed to by the oValOffset, compare it with 

Dec. 4, 2008 

the search key and then choose whether to bisect the upper 
range or lower range depending on the comparison result. 

Compressed File Format 
(0071 Optionally, the compressed file format of the OAB 
files as posted on the server is the same as prior formats except 
that the compression algorithm is changed to the new LZX 
algorithm or other algorithm used by the update mechanism. 
The header block will follow the same format: 

struct oabhdr { 
unsigned long ulVersionHi; 
unsigned long ulVersionLo: 
unsigned long ulBlockMax: 
unsigned long lull JincompSize: 
OABHDR; 

0072. The ulVersionHi field is set to 3 to indicate LZX 
(binpatch) compression and distinguish it from 2 MDI (zip) 
compression and 1 mrcfcompression. ulVersionLo is set to 1. 
ulBlockMax is set to the largest size of a compressed or 
uncompressed OAB block which is 256 kilobytes. This value 
is configurable on the server by registry key. ulTargetSize is 
set to what the resulting decompressed file size is. 
(0073. Following the OABHDR record is a numberofcom 
pressed data blocks. Each block will start with the following 
Structure: 

struct lzxblk { 
unsigned long ulFlags; 
unsigned long ulCompSize: 
unsigned long lull JincompSize: 
unsigned long ulCRC; 
} LZXBLK: 

0074 The ulFlags member will always be set to 1 to indi 
cate the block is compressed and needs to be passed to the 
binpatch core to uncompress the block. If set to zero, the 
block is uncompressed and can be written directly to the 
uncompressed file. 
0075. The ulCompSize member indicates the size in bytes 
of the patch chunk to be read from the patch file that directly 
follows the structure. This is the data that should be passed to 
the binpatch core to decompress. 
0076. The uluncompSize member indicates the size of the 
uncompressed block that will result from decompressing/ 
patching the chunk. This is the exact size of the output buffer 
that is needed by the binpatch core to decompress the block 
and is the size of the record that needs to be written to the 
uncompressed file. 
0077. The ulCRC member indicates the CRC-32 check 
sum of the uncompressed block. This should be used by the 
client to test the results of the decompression code. The CRC 
32 checksum is seeded with the value 0xFFFFFFFF (-1). 
This value has no relation to the CRC-32 signature contained 
in the OAB header for the full OAB file. 

(0078. The compressed file itself will end at the end of the 
last compressed data block and will not have any extra data. 
When the client reaches the end of the compressed file and 
decompresses the last block, it should then read the file again 
to generate the OAB signature as described in the previous 



US 2008/0301 179 A1 

section with the OAB signature in the OAB header section. 
The client could alternatively build the OAB signature as it 
decompresses the file. 

Differential File Format 

007.9 The differential file and compressed files as down 
loaded from the server are in a chunked format that is usable 
by the binpatch library. The binpatch library is used in a way 
that the window size is 256 kilobytes in size on the client. The 
compressed patch file will start with a header block similar to 
the OAB versions 2 and 3 compressed files. 

struct patchhdr { 
unsigned long ulVersionHi; 
unsigned long ulVersionLo: 
unsigned long ulBlockMax: 
unsigned long ulSourceSize: 
unsigned long ulTargetSize: 
unsigned long ulSourceCRC; 
unsigned long ulTargetCRC; 
} PATCH HDR; 

0080. The ulVersionHi field is set to 3 to indicate LZX 
(binpatch) compression, ulVersionLo is set to 2 to indicate 
this is a differential patch file and not justan LZX compressed 
data file. ulBlockMax is set to the largest size of any com 
pressed OAB patch block or any uncompressed source or 
target block. ulSourceSize is set to the size of the source file. 
If the value does not match the file on the client the result of 
the patching is undefined. ulTargetSize is set to what the 
resulting decompressed or patched file size is. The ulSource 
CRC field is the CRC-32 OAB signature of the source file, 
and the ulTargetCRC field is the CRC-32 OAB signature of 
the resulting patched file. 
I0081. Each chunk of the patch file will start with the fol 
lowing structure: 

struct patchblk { 
unsigned long ulPatch.Size: 
unsigned long ulTargetSize: 
unsigned long ulSourceSize: 
unsigned long ulCRC; 
} PATCH BLK: 

0082. The ulPatch.Size member indicates the size in bytes 
of the patch chunk to be read from the patch file that directly 
follows the structure. This value can be zero. 
0083. The ulTargetSize member indicates the size of the 
uncompressed block that will result from decompressing/ 
patching the chunk. This value can be Zero. 
0084. The ulSourceSize member indicates the size of the 
chunk from the client source file that should be read and 
patched. This value can be zero. This chunk will also be 
passed to the binpatch api. 
0085. The ulCRC member indicates what the 
0xFFFFFFFF (-1) seeded CRC-32 checksum of the resulting 
block should be after the patch is applied. 

Client Side Multi-day Patch Implementation 
I0086. The client can use the binpatch api to efficiently 
implement a multi-day patch application that will not require 
the client to rewrite the entire OAB file N times. The client 

Dec. 4, 2008 

would download all the patch files before attempting the 
patching. The client would open each file, read the header and 
the first patch block from each. By maintaining a list of N 
input and output buffers, the client would read the first 
ulSourceSize block from the client source file into the first 
input block, apply the first patch block and put the output 
block into the input buffer of the next patch file. As each input 
buffer reaches the ulSourceSize limit of the next patch block, 
the output buffer can be written to the next stage. When the 
final output buffer has been filled, the output file can be 
written. If the client determines that the input buffer does not 
contain enough information for the next patch block, it looks 
at the previous set of input, output and patch blocks to attempt 
to fill more of the blocks. This would be iterated until it 
required that more data from the source file be read. 
I0087. The server will create patch blocks so that both 
ulTargetSize and ulSourceSize are both less than or equal to 
the maximum block size. The following pseudo-code 
describes the algorithm. This code has a memory requirement 
of O(Max binpatch block size--NMax input/output block 
size) where N is the number of days of patches to apply. 

dim InFile, OutFile, PatchFileN) 
dim PatchN, Input N, Output N 
dimp 
p = 0 
do 
if Patchp is empty then 
read PatchFilep-> Patchp 
end if 
if Patch OulSourceSize < Input O.size then 
read InFile -> Input O 
end if 
while Inputp.size >= Patchp).ulSourceSize 
DoPatch Inputp), Patchp) -> Outputp 
remove Patchp).ulSourceSize from Inputp 
assign empty -> Patchp 
p=p+1 
if p == N then 
write Outputp-1-> OutFile 
exit while 
else 
append Outputp-1-> Inputp 
if Patchp is empty then 
read PatchFilep-> Patchp 
end if 
end if 
end while 
p=p-1 

until OutFile.size = finalSize 

I0088 As a result, the server no longer needs to generate 
index files. That task has been transferred to the client. Only 
a single OAB must be generated for multiple client locales 
rather than requiring a separate OAB server for each client 
locale needed. 

Exemplary Operating Environment: 

I0089 FIG. 8 shows one example of a general purpose 
computing device in the form of a computer 130. In one 
embodiment of the invention, a computer Such as the com 
puter 130 is suitable for use in the other figures illustrated and 
described herein. Computer 130 has one or more processors 
or processing units 132 and a system memory 134. In the 
illustrated embodiment, a system bus 136 couples various 
system components including the system memory 134 to the 
processors 132. The bus 136 represents one or more of any of 



US 2008/0301 179 A1 

several types of bus structures, including a memory bus or 
memory controller, a peripheral bus, an accelerated graphics 
port, and a processor or local bus using any of a variety of bus 
architectures. By way of example, and not limitation, Such 
architectures include Industry Standard Architecture (ISA) 
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA 
(EISA) bus, Video Electronics Standards Association 
(VESA) local bus, and Peripheral Component Interconnect 
(PCI) bus also known as Mezzanine bus. 
0090 The computer 130 typically has at least some form 
of computer readable media. Computer readable media, 
which include both volatile and nonvolatile media, removable 
and non-removable media, may be any available medium that 
may be accessed by computer 130. By way of example and 
not limitation, computer readable media comprise computer 
storage media and communication media. Computer storage 
media include Volatile and nonvolatile, removable and non 
removable media implemented in any method or technology 
for storage of information Such as computer readable instruc 
tions, data structures, program modules or other data. For 
example, computer storage media include RAM, ROM, 
EEPROM, flash memory or other memory technology, CD 
ROM, digital versatile disks (DVD) or other optical disk 
storage, magnetic cassettes, magnetic tape, magnetic disk 
storage or other magnetic storage devices, or any other 
medium that may be used to store the desired information and 
that may be accessed by computer 130. Communication 
media typically embody computer readable instructions, data 
structures, program modules, or other data in a modulated 
data signal Such as a carrier wave or other transport mecha 
nism and include any information delivery media. Those 
skilled in the art are familiar with the modulated data signal, 
which has one or more of its characteristics set or changed in 
Such a manner as to encode information in the signal. Wired 
media, Such as a wired network or direct-wired connection, 
and wireless media, Such as acoustic, RF, infrared, and other 
wireless media, are examples of communication media. 
Combinations of any of the above are also included within the 
Scope of computer readable media. 
0091. The system memory 134 includes computer storage 
media in the form of removable and/or non-removable, vola 
tile and/or nonvolatile memory. In the illustrated embodi 
ment, system memory 134 includes read only memory 
(ROM) 138 and random access memory (RAM) 140. A basic 
input/output system 142 (BIOS), containing the basic rou 
tines that help to transfer information between elements 
within computer 130. Such as during start-up, is typically 
stored in ROM 138. RAM 140 typically contains data and/or 
program modules that are immediately accessible to and/or 
presently being operated on by processing unit 132. By way 
of example, and not limitation, FIG. 8 illustrates operating 
system 144, application programs 146, other program mod 
ules 148, and program data 150. 
0092. The computer 130 may also include other remov 
able/non-removable, Volatile/nonvolatile computer storage 
media. For example, FIG. 8 illustrates a hard disk drive 154 
that reads from or writes to non-removable, nonvolatile mag 
netic media. FIG. 8 also shows a magnetic disk drive 156 that 
reads from or writes to a removable, nonvolatile magnetic 
disk 158, and an optical disk drive 160 that reads from or 
writes to a removable, nonvolatile optical disk 162 such as a 
CD-ROM or other optical media. Other removable/non-re 
movable, Volatile/nonvolatile computer storage media that 
may be used in the exemplary operating environment include, 

Dec. 4, 2008 

but are not limited to, magnetic tape cassettes, flash memory 
cards, digital versatile disks, digital video tape, Solid state 
RAM, solid state ROM, and the like. The hard disk drive 154, 
and magnetic disk drive 156 and optical disk drive 160 are 
typically connected to the system bus 136 by a non-volatile 
memory interface, such as interface 166. 
0093. The drives or other mass storage devices and their 
associated computer storage media discussed above and illus 
trated in FIG. 8, provide storage of computer readable instruc 
tions, data structures, program modules and other data for the 
computer 130. In FIG. 8, for example, hard disk drive 154 is 
illustrated as storing operating system 170, application pro 
grams 172, other program modules 174, and program data 
176. Note that these components may either be the same as or 
different from operating system 144, application programs 
146, other program modules 148, and program data 150. 
Operating system 170, application programs 172, other pro 
gram modules 174, and program data 176 are given different 
numbers here to illustrate that, at a minimum, they are differ 
ent copies. 
0094. A user may enter commands and information into 
computer 130 through input devices or user interface selec 
tion devices such as a keyboard 180 and a pointing device 182 
(e.g., a mouse, trackball, pen, or touch pad). Other input 
devices (not shown) may include a microphone, joystick, 
game pad, satellite dish, Scanner, or the like. These and other 
input devices are connected to processing unit 132 through a 
user input interface 184that is coupled to system bus 136, but 
may be connected by other interface and bus structures. Such 
as a parallel port, game port, or a Universal Serial Bus (USB). 
A monitor 188 or other type of display device is also con 
nected to system bus 136 via an interface, such as a video 
interface 190. In addition to the monitor 188, computers often 
include other peripheral output devices (not shown) such as a 
printer and speakers, which may be connected through an 
output peripheral interface (not shown). 
0.095 The computer 130 may operate in a networked envi 
ronment using logical connections to one or more remote 
computers, such as a remote computer 194. The remote com 
puter 194 may be a personal computer, a server, a router, a 
network PC, a peer device or other common network node, 
and typically includes many or all of the elements described 
above relative to computer 130. The logical connections 
depicted in FIG. 8 include a local area network (LAN) 196 
and a wide area network (WAN) 198, but may also include 
other networks. LAN 136 and/or WAN 138 may be a wired 
network, a wireless network, a combination thereof, and so 
on. Such networking environments are commonplace in 
offices, enterprise-wide computer networks, intranets, and 
global computer networks (e.g., the Internet). 
0096. When used in a local area networking environment, 
computer 130 is connected to the LAN 196 through a network 
interface or adapter 186. When used in a wide area network 
ing environment, computer 130 typically includes a modem 
178 or other means for establishing communications over the 
WAN 198, such as the Internet. The modem 178, which may 
be internal or external, is connected to system bus 136 via the 
user input interface 184, or other appropriate mechanism. In 
a networked environment, program modules depicted relative 
to computer 130, or portions thereof, may be stored in a 
remote memory storage device (not shown). By way of 
example, and not limitation, FIG. 8 illustrates remote appli 
cation programs 192 as residing on the memory device. The 



US 2008/0301 179 A1 

network connections shown are exemplary and other means 
ofestablishing a communications link between the computers 
may be used. 
0097 Generally, the data processors of computer 130 are 
programmed by means of instructions stored at different 
times in the various computer-readable storage media of the 
computer. Programs and operating systems are typically dis 
tributed, for example, on floppy disks or CD-ROMs. From 
there, they are installed or loaded into the secondary memory 
of a computer. At execution, they are loaded at least partially 
into the computer's primary electronic memory. The inven 
tion described herein includes these and other various types of 
computer-readable storage media when Such media contain 
instructions or programs for implementing the steps 
described below in conjunction with a microprocessor or 
other data processor. The invention also includes the com 
puter itself when programmed according to the methods and 
techniques described herein. 
0098. For purposes of illustration, programs and other 
executable program components, such as the operating sys 
tem, are illustrated herein as discrete blocks. It is recognized, 
however, that Such programs and components reside at Vari 
ous times in different storage components of the computer, 
and are executed by the data processor(s) of the computer. 
0099. Although described in connection with an exem 
plary computing system environment, including computer 
130, the invention is operational with numerous other general 
purpose or special purpose computing system environments 
or configurations. The computing System environment is not 
intended to Suggest any limitation as to the scope of use or 
functionality of the invention. Moreover, the computing sys 
tem environment should not be interpreted as having any 
dependency or requirement relating to any one or combina 
tion of components illustrated in the exemplary operating 
environment. Examples of well known computing systems, 
environments, and/or configurations that may be suitable for 
use with the invention include, but are not limited to, personal 
computers, server computers, hand-held or laptop devices, 
multiprocessor Systems, microprocessor-based systems, set 
top boxes, programmable consumer electronics, mobile tele 
phones, network PCs, minicomputers, mainframe computers, 
distributed computing environments that include any of the 
above systems or devices, and the like. 
0100. The invention may be described in the general con 
text of computer-executable instructions, such as program 
modules, executed by one or more computers or other 
devices. Generally, program modules include, but are not 
limited to, routines, programs, objects, components, and data 
structures that perform particular tasks or implement particu 
lar abstract data types. The invention may also be practiced in 
distributed computing environments where tasks are per 
formed by remote processing devices that are linked through 
a communications network. In a distributed computing envi 
ronment, program modules may be located in both local and 
remote computer storage media including memory storage 
devices. 

0101. An interface in the context of a software architecture 
includes a software module, component, code portion, or 
other sequence of computer-executable instructions. The 
interface includes, for example, a first module accessing a 
second module to perform computing tasks on behalf of the 
first module. The first and second modules include, in one 
example, application programming interfaces (APIs) such as 
provided by operating systems, component object model 

Dec. 4, 2008 

(COM) interfaces (e.g., for peer-to-peer application commu 
nication), and extensible markup language metadata inter 
change format (XMI) interfaces (e.g., for communication 
between web services). 
0102 The interface may be a tightly coupled, synchronous 
implementation such as in Java 2 Platform Enterprise Edition 
(J2EE), COM, or distributed COM (DCOM) examples. Alter 
natively or in addition, the interface may be a loosely coupled, 
asynchronous implementation Such as in a web service (e.g., 
using the simple object access protocol). In general, the inter 
face includes any combination of the following characteris 
tics: tightly coupled, loosely coupled, synchronous, and asyn 
chronous. Further, the interface may conform to a standard 
protocol, a proprietary protocol, or any combination of stan 
dard and proprietary protocols. 
0103) The interfaces described herein may all be part of a 
single interface or may be implemented as separate interfaces 
or any combination therein. The interfaces may execute 
locally or remotely to provide functionality. Further, the inter 
faces may include additional or less functionality than illus 
trated or described herein. The order of execution or perfor 
mance of the methods illustrated and described herein is not 
essential, unless otherwise specified. That is, elements of the 
methods may be performed in any order, unless otherwise 
specified, and that the methods may include more or less 
elements than those disclosed herein. For example, it is con 
templated that executing or performing a particular element 
before, contemporaneously with, or after another element is 
within the scope of the invention. 
0104. When introducing elements of the present invention 
or the embodiment(s) thereof, the articles “a,” “an.” “the and 
“said are intended to mean that there are one or more of the 
elements. The terms “comprising.” “including.” and “having 
are intended to be inclusive and mean that there may be 
additional elements other than the listed elements. 
0105. In view of the above, it is seen that the several 
objects of the invention are achieved and other advantageous 
results attained. As various changes could be made in the 
above constructions, products, and methods without depart 
ing from the scope of the invention, it is intended that all 
matter contained in the above description and shown in the 
accompanying drawings shall be interpreted as illustrative 
and not in a limiting sense. 

1-20. (canceled) 
21. A method of building an offline address book (OAB) on 

a plurality of clients comprising: 
generating an OAB data file and a table of indexable 

attributes at a server, wherein each OAB; 
transferring the data file and the table of indexable 

attributes from the server to a client; and 
indexing the transferred data file according to the table of 

indexable attributes, wherein the index comprises: 
a header structure comprising a version number that 

distinguishes between different OAB file types; and 
an offset to into the OAB data file. 

22. The method of claim 21, wherein the table of indexable 
attributes comprises at least one of the following: 

an ambiguous name resolution file; 
a browse index file; and 
a distinguished name index file. 
23. The method of claim 21, wherein the OAB data file 

comprises the following: and OAB header, and attribute table, 
and a plurality of OAB records. 



US 2008/0301 179 A1 

24. The method of claim 21, wherein generating the OAB 
data file further comprises truncating properties to limit the 
size of the OAB data file. 

25. The method of claim 24, further comprising maintain 
ing a list of the properties that have been truncated. 

26. The method of claim 21, wherein the OAB data file is 
compressed. 

27. A computer-readable storage medium having com 
puter-executable instructions that, when executed by a com 
puter, performs the method comprising: 

generating an OAB data file and a table of indexable 
attributes at a server, wherein each OAB; 

transferring the data file and the table of indexable 
attributes from the server to a client; and 

indexing the transferred data file according to the table of 
indexable attributes, wherein the index comprises: 
a header structure comprising a version number that 

distinguishes between different OAB file types; and 
an offset to into the OAB data file. 

Dec. 4, 2008 

28. The computer-readable storage medium of claim 27, 
wherein the table of indexable attributes comprises at least 
one of the following: 

an ambiguous name resolution file; 
a browse index file; and 
a distinguished name index file. 
29. The computer-readable storage medium of claim 27, 

wherein the OAB data file comprises the following: and OAB 
header, and attribute table, and a plurality of OAB records. 

30. The computer-readable storage medium of claim 27, 
wherein generating the OAB data file further comprises trun 
cating properties to limit the size of the OAB data file. 

31. The computer-readable storage medium of claim 30, 
further comprising maintaining a list of the properties that 
have been truncated. 

32. The computer-readable storage medium of claim 27, 
wherein the OAB data file is compressed. 

c c c c c 


