Office de la Proprieté

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian

Intellectual Property

Office

An agency of
Industry Canada

CA 2446304 C 2012/03/20

(11)(21) 2 446 304

(12 BREVET CANADIEN
CANADIAN PATENT
13) C

(86) Date de déepot PCT/PCT Filing Date: 2002/04/30

(87) Date publication PCT/PCT Publication Date: 2002/11/14
(45) Date de délivrance/lssue Date: 2012/03/20
(85) Entree phase nationale/National Entry: 2003/11/03

(86) N° demande PCT/PCT Application No.: US 2002/013521
(87) N° publication PCT/PCT Publication No.: 2002/091662

(51) Cl.Int./Int.Cl. HO4L 9/00 (2006.01),
HO4L 29/06 (2006.01)

(72) Inventeur/Inventor:
COULIER, FRANK, BE

(73) Proprietaire/Owner:
VASCO DATA SECURITY, INC., US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(30) Priornte/Priority: 2001/05/01 (US60/287,858)

(54) Titre : UTILISATION ET PRODUCTION D'UNE CLE DE SESSION DANS UNE CONNEXION SSL
(54) Title: USE AND GENERATION OF A SESSION KEY IN A SECURE SOCKET LAYER CONNECTION

/zoo

Authentication Key

Client Server
201, Establish SSL connection
.| e P>
SSL. Connection
202. Exchange information
L o~
203. Compute 204, Compute

Authentication Xey

203, Encrypt gserver

207, Verify conectncss] 206, Send encrypted server authentication authentication
of server information information
authentication -+
information =
authenticate server
‘— TR
208, Encrypt client 2(9. Send encrypted client authentication 210. Verify
authentication information correctness of client
imformation ' authentication

information =
authenticate client

/

(57) Abrégée/Abstract:

The invention describes a method (200) and system for verifying the link between a public key and a server's identity as claimed In
the server's certificate without relying on the trustworthiness of the root certificate of the server's certificate chain. The system

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

OPIC

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

CA 2446304 C 2012/03/20

anen 2 446 304
13) C

(57) Abrege(suite)/Abstract(continued):

establishes a secure socket layer type connection (201) between a client and a server, wherein the server transmits information
Including the server's public key to the client while establishing the connection. Next, a first information is sent from the client to the
server (202). The client and the server create an identical authentication key using a shared secret known to the server and the
client (203 and 204). Next, the server transmits a first encrypted message to the client (206), wherein the first encrypted message
Includes the server's public key encrypted with the authentication key. Then, the client decrypts the first encrypted message and
verifies the correctness (207) of that message including comparing the public key included Iin the decrypted first encryptead
message to the public key transmitted during the set-up of the secure socket layer type connection to authenticate the client and to
establish the trustworthiness of the server's public key and thereby the entire SSL connection. The client then transmits a second
encrypted message to the server (209), wherein the second encrypted message Is the first information encrypted with the
authentication key. Finally, the server then decrypts the second encrypted message and verifies the correctness of the decrypted
second encrypted message to authenticate the client (210).

WO 02/091662 Al

CA 02446304 2003-11-03

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 November 2002 (14.11.2002)

HO04L 9/00

(51) International Patent Classification”:

(21) International Application Number: PCT/US02/13521

(22) International Filing Date: 30 April 2002 (30.04.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/287,858 1 May 2001 (01.05.2001) US

(71) Applicant (for all designated States except US): VASCO
DATA SECURITY, INC. [US/US]; Suite 210, 1901 S.
Meyers Road, Oakbrook Terrace, IL 60181 (US).

(72) Inventor: COULIER, Frank; Sint-Hubertusstraat 12,
1850 Grimbergen (BE).

(10) International Publication Number

WO 02/091662 Al

(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Dubb Meyer
and Lovejoy LLP, Fourth Embarcadero Center, Suite 400,
San Francisco, CA 94111-4156 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ., EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, 1.C,
LK, LR, LS, LT, LU, L.V, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page/

(54) Title: USE AND GENERATION OF A SESSION KEY IN A SECURE SOCKET LAYER CONNECTION

2 00
v~

201. Establish SSL connection

Client Server

SSL Connection

202. Exchange information

204. Compute
Authentication Key

203. Compute
Authentication Key

205. Encrypt server
authentication
infoermation

206. Send encrypted server authentication
information

207. Venfy correctness
of server

authentication <
rnformation =
authenticate server
)
208. Encrypt client 209. Send encrypted client avthentication 210, Verify
authentication information correctness of chent
mformation p{ authentication

mformation =
authenticate chient

/

(87) Abstract: The invention describes a method (200) and
system for verifying the link between a public key and a server’s
identity as claimed in the server’s certificate without relying
on the trustworthiness of the root certificate of the server’s
certificate chain. The system establishes a secure socket layer
type connection (201) between a client and a server, wherein
the server transmits information including the server’s public
key to the client while establishing the connection. Next, a
first information is sent from the client to the server (202). The
client and the server create an identical authentication key using
a shared secret known to the server and the client (203 and
204). Next, the server transmits a first encrypted message to the
client (206), wherein the first encrypted message includes the
server’s public key encrypted with the authentication key. Then,
the client decrypts the first encrypted message and verifies
the correctness (207) of that message including comparing the
public key included in the decrypted first encrypted message to
the public key transmitted during the set-up of the secure socket
layer type connection to authenticate the client and to establish
the trustworthiness of the server’s public key and thereby the
entire SSL. connection. The client then transmits a second
encrypted message to the server (209), wherein the second
encrypted message is the first information encrypted with the
authentication key. Finally, the server then decrypts the second
encrypted message and verifies the correctness of the decrypted
second encrypted message to authenticate the client (210).

CA 02446304 2003-11-03

wO 02/091662 A1 NGO UVG 0 RE A A

(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, (15) Information about Correction:
NE, SN, TD, TG). see PCT Gazette No. 33/2003 of 14 August 2003, Section I1

Published:

— with international search report
For two-letter codes and other abbreviations, refer to the "Guid-

(48) Date of publication of this corrected version: ance Notes on Codes and Abbreviations" appearing at the begin-
14 August 2003 ning of each regular issue of the PCT Gazette.

10

15

20

CA 02446304 2010-11-02

USE AND GENERATION OF A SESSION KEY IN A SECURE SOCKET

LAYER CONNECTION

Cross Reference to Related Applications

The present application is related to the following United States Patents and
Patent Applications, which patent/applications are assigned to the owner of the

present invention:

United States Patent Application publishing under Publication No.
2001/0054148, entitled "Field Programmable Smart Card Terminal and Token
Device", filed on February 20, 2001;

United States Patent No. 4,599,489, entitled "Solid State Key for Controlling

Access to Computer Software", filed on February 22, 1984, issued on 15 July 8,
1986;

United States Patent No. 4,609,777, entitled "Solid State Key for Controlling

Access to Computer Software", filed on December 23, 1985, issued on September 2,

1986; and

United States Patent No. 4,819,267, entitled "Solid State Key for Controlling

Access to Computer Systems and to Computer Software and/or for Secure

Communications, filed on June 9, 1987, issued on April 4, 1989.

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

2

Field of the Invention
The invention relates generally to establishing secure connections over a
network, and more particularly to establishing a secure socket layer type connection

over a digital public network.

Background

Extended development and public acceptance have made electronic
commerce and distributed transactions over public networks widespread. As
shown in FIG. 1, many of these transactions involve a client device 110, such as

10 a personal computer, accessing and communicating with a server 120. The
connection between the client 110 and the server 120 may be used to exchange
confidential information or enable the server to provide restricted or secured
access. As a result, the need for security in transactions between a client and a
server occurring over a digital connection on a network has become widespread as

15 well. Therefore, in many cases, the connection between the client 110 and the
server 120 is an encrypted and mutually authenticated connection 130.

The prior art includes several methods that attempt to resolve this need for
security that requires mutual authentication and encrypted communication between
the server and client. One method utilizes a symmetrical encryption algorithm

20 based on a shared secret. In general, a shared secret is known to both the client and
the server. However, a shared secret may sometimes also be possessed by a trusted
third party. In general, a shared secret is not known to or easily determined by the
public at large. The shared secret is used to derive an encryption key. The
encryption key is then used to encrypt communication between the server and the

25 client using a symmetrical encryption algorithm. The symmetrical encryption

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

3

algorithm achieves confidentiality because the encrypted messages can't be read

without knowing the shared secret. The method achieves authentication 1n that

only a participant to the connection who possesses the shared secret may properly

encrypt and decrypt messages with another participant. Thus, if a participant can

S read and generate a message or connection request that 1s encrypted, the party must

possess the secret and is deemed authenticated. For practical reasons, the shared

secret often originates from the client side by a physical person operating the client

side (e.g. by typing in a password). For ergonomic reasons, the size of the shared

secret (e.g. the number of characters in a password) is therefore quite limited. As

10 a result, the cryptographic strength of the symmetric encryption key derived from
that shared secret 1s also rather limited.

Another method used by previous systems involves an asymmetric
cryptographic algorithm and public key infrastructure (PKI) certificates for the
server and the client. This method does not utilize a shared secret known to both

15 ends of a connection before setting up the connection. Rather, a client and a server
exchange certificates when they establish a connection. The client and server then
authenticate one another by validating each other’s certificates. Next, dynamically
generated random data is exchanged by the client and server using the public keys
certified by each other’s certificates. Both the client and the server use this

20 dynamically generated data to compute separate but identical symmetric encryption
key. This symmetric encryption key is then used to encrypt further communication
between the client and the server and thereby provide confidentiality. In practice,
it may be impractical to provide clients with certificates. As a result, sometimes
only the server has a certificate to be validated. In this case, the server certificate

25 is sufficient to authenticate the server and to establish the symmetric encryption

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

4

key that provides confidentiality. Another method must be used to authenticate the
client. For example, the client may provide proof to the server that it possesses a
shared secret known only to the server and the client (e.g. the client might send the
server apassword). As mentioned above, the server end in a secure socket layer
5 connection is authenticated by validating or verifying the server’s certificate. The
server certificate may be considered a digital signature generated by a certification
authority (CA) linking the server’s public key to the server’s identity. The public
key of the CA may then be certified by another higher-level CA. In theory, an
entire hierarchy or chain of certificates may require verification. Regardless of the
10 number of levels in a server’s certificate chain, the client must have the public key
of the highest level or root CA to be able to validate the entire chain. Thus, the
security of this method depends on the trustworthiness of the root’s public key.
In practice, many client systems and network browsers have an extensive
list of certificate roots that the client “trusts.” It is usually not difficult to convince
15 a user to add additional certificate roots to their list of trusted roots. Thus, a user
may unknowingly add a tainted or false certificate root by an illegitimate CA. This
false root may have been used by a dishonest entity to generate a certificate for an
illegitimate server that poses as a legitimate server. In this way, a dishonest entity
may lead a client to make a connection with the illegitimate server and
20 unknowingly provide sensitive information such as the user’s password to the
legitimate server.
For purposes of illustration, one may consider a bank operating a website
that allows bank customers to consult their accounts and perform financial
transactions online. Only the rightful owner of an account should have access to

25 their account. Therefore, the bank might require its customers to authenticate

10

135

20

25

WO 02/091662

CA 02446304 2003-11-03
PCT/US02/13521

5

themselves by entering a password when accessing the site. To protect the
confidentiality of information exchanged between the client and the bank’s website
such as a user password, clients connect to the bank’s website using the SSL
protocol. A entity who wants to compromise the account of a legitimate bank
customer could mount a man-in-the-middle. To do so, the entity could set up a
website that mimics the legitimate bank website. T he entity generates a certificate
for the fraudulent website with a bogus certification authority. The entity tricks the
legitimate customer into adding the root certificate of the bogus CA to his hist of
trusted roots. If the legitimate customer now connects to the fraudulent website, the
legitimate customer will think it’s the legitimate bank website and enter a
password. The entity has now obtained a valid password and can access the real
bank website posing as the legitimate user to e.g. transfer money from the
legitimate user’s account to the entity’s account. Thus, relying on a technique that
requires a client to trust the public key of the root CA of a server’s SSL certificate
to validate the authenticity of that server may reduce the security level of a secure
socket layer connection and jeopardize server security.

What is therefore needed is a way to increase the security of a secure socket
layer connection. A client system should be able to verify the validity of a server’s
certificate or validate the link between the server’s public key and its claimed
identity without the client system having to trust the root CA or some intermediate
CA of the server’s certificate chain.

Summary of the Invention

The invention satisfies the shortcomings of the prior art by providing a

method and system for verifying the link between a public key and a server’s

identity as claimed in the server’s certificate without relying on the trustworthiness

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

6

of the root certificate of the server’s certificate chain. A secure socket layer type
connection is established between a client and a server. While establishing the
connection, the server transmits the server’s certificate information to the client.

Next, information is sent from the client to the server. Then, the client and the

5 server independently create identical authentication keys by utilizing a shared
secret known to the server and the client. Next, the server transmits a first
encrypted message to the client over the secure socket layer connection, wherein

the first encrypted message is encrypted with the server authentication key and

wherein the correctness of the contents of the first message can be verified by the

10 client. Then, the client decrypts the first encrypted message and vahidates the
decrypted first message thus authenticating the server. The client then transmits

a second encrypted message to the server, wherein the second encrypted message

is encrypted with the client authentication key and wherein the correctness of the

contents of the second message can be verified by the server. Finally, the server

15 decrypts the second encrypted message and validates the decrypted second message
thus authenticating the client. In one embodiment, the first encrypted message sent

by the server to the client contains the server’s certificate or public key that was

used during the set-up of the secure socket layer type connection. In one
embodiment, the shared secret used to create the authentication key may be the

20 response of a strong authentication token. In this embodiment, the strong
authentication token may be a challenge-response, event, internal counter-based

or time-based token, or any combination of these three strong authentication token

variants.

25

10

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

7
Brief Description of the Drawings

Figure 1 is a illustration of a server client connection requiring a secured

mutually authenticating connection in accordance with the prior art;

Figure 2 is an illustration of a method for mutual authentication of an SSL

connection in accordance with one embodiment of the present invention;

Figure 3 is an illustration of a method for mutual authentication of an SSL

connection in accordance with one embodiment of the present invention;

Figure 4 is an illustration of a method for mutual authentication of an SSL

connection, in accordance with one embodiment of the present invention; and

Figure 5 is an illustration of a method for an authentication key generation

process in accordance with one embodiment of the present invention.

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

8

Detailed Description

The present invention solves the problems of prior systems by using a secret
to verify the link between a public key and a server’s identity as claimed 1n the
server’s certificate without relying on the trustworthiness of the root certificate of

5 the server’s certificate chain. The invention takes the advantages of an SSL type
connection without relying on the root certificate needed to verify the server's
identity. This is achieved using a symmetric encryption authentication key that the
client and server generate independently from each other. The authentication key
is used by the server to encrypt the server’s public key or certificate that was used

10 to set-up the SSL connection. Thus, the present invention achieves mutual
authentication and encryption without depending on the trustworthiness of the

server certificate.

One method for establishing a secure connection between a client and

server involves using public key infrastructure (PKI) certificates for the server and

15 the client. The first step in this method includes a client and a server exchanging
certificates as they establish a connection. The client and server may valhidate each

other’s certificates to authenticate one another. However, in some instances, the

client may not provide a certificate. Next, dynamically generated random data is
exchanged by the client and server using an asymmetric cryptographic algorithm

20 and the public keys certified by the client and server (each by their own cert)
certificates. Both the client and the server use this dynamically generated data to
compute identical symmetric encryption keys. This symmetric encryption key uses

a symmetric encryption algorithm to encrypt all further communication during the
connection between the client and the server. A secure socket layer (SSL)

25 connection as used herein shall be meant to include all types of connections that are

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

9

established using the certificate-based method discussed above. Examples of such
connections include transaction layer security (TLS) connections, a wireless TLS

(WTLS) connection, and IP secure (IPSEC) connections.

In one embodiment of the present invention, two types of encryption are

5 occurring. The first level of encryption involves the encryption provided by the
SSL connection. Messages sent over an SSL connection are encrypted. The

second level of encryptién involves the encryption performed by an authentication

key. The authentication key is used to encrypt and decrypt messages to ensure that

a client or server is who it represents itself to be. Unless otherwise specified,

10 references to encryption herein are intended to pertain to the encryption performed

by an authentication key.

A method 200 for establishing a server connection between the server and

the client in accordance with one embodiment of the present invention is shown 1n

FIG. 2. In method 200, a client and server establish an SSL connection in step 201.

15 This SSL connection may be established with or without using a client certificate.
While the SSL connection is being established, the client receives the server’s
certificate. All further communication between client and server occurs through

this SSL connection. In one embodiment, the result of the verification of the

server’ certificate chain may be 1gnored.

20 Next, the authentication key to be used for mutually authenticating the
server and the client is created. First, the client and server exchange some
information in step 202. Then, the client and server each use the same shared
secret to independently compute a symmetric encryption key in steps 203 and 204.
This symmetric encryption key is the authentication key. A shared secret as used

25 herein is generally defined as a secret possessed by the client and the server. In one

10

15

20

23

WO 02/091662

CA 02446304 2003-11-03

10

embodiment, a third party such as a certificate authority may possess the secret.
However, a secret known to a third party is still considered secret from the public
at large. In one embodiment, the shared secret 1s not transferred between the server

and the client.

Next, the client and server are both authenticated. First, the server encrypts
server authentication information in step 205. The server constructs this server
authentication information so the client may verify its correctness. The server then
encrypts the server authentication information with the authentication key
generated in the previous step and transmits the encrypted server authentication
information to the client in step 206. By successfully deérypting this encrypted
server authentication information and verifying its correctness in step 207, the
client authenticates the server end of the SSL connection and establishes the
trustworthiness of the SSL connection. Next, the client encrypts client
authentication information in step 208 with the same authentication key generated
in step 203 and sends the encrypted client authentication information to the server
in step 209. The server then decrypts the encrypted client authentication
information received from the client and verifies its correctness in step 210. By
successfully decrypting and verifying the encrypted client authentication
information, the server authenticates the client. The client authentication
information can include the username and/or part of the information exchanged
between client and server earlier on. The authentication key can be used to encrypt
any further communication between the server and the client in addition to the

encryption already provided by the SSL connection.

FIG. 3 illustrates a method for establishing a secure connection between a

client and a server in another embodiment of the present invention. In FIG. 3, the

PCT/US02/13521

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

11

server authentication information includes the server’s public key that 1s certified
previously by the SSL server certificate. Thus, verifying the correctness of the

server authentication information by the client includes verifying that the public

key included in the server authentication information 1s the same as the public key

5 certified by the SSL server certificate. The advantage of this embodiment 1s that the
server’s SSL certificate has been authenticated in a way which does not rely on

using the public key of the certification authority that signed the SSL server
certificate. The SSL connection can now be considered to be a secure, mutually
authenticated connection that provides integrity and confidentiality, without the

10 client side having to rely on the trustworthiness of the root certificate that holds the

key of the certification authority that signed the SSL server certificate and has been

stored on the client.

Method 300 of FIG. 3 begins when the server and client establish a secured

socket layer type connection in step 301. This step 1s similar to the step of 201 1n

15 FIG. 2 except that the server sends its certificate to the client. The client then
stores the certificate in step 302. Once the connection 1s established, all
communication between the client and server will occur through this connection.

Next, the server and client compute authentication keys. First, the client

and server exchange information in step 303. Then, the client and server each use

20 the same shared secret to independently compute a symmetric encryption key in
steps 304 and 305. This symmetric encryption key is the authentication key. Next,

the server encrypts the server certificate using the symmetric encryption key in step

306 and transmits the encrypted server certificate to the chient in step 307. The

client compares the stored server certificate from step 302 to the encrypted server

25 certificate sent in step 308 to authenticate the server. The client then encrypts

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

12

client authentication information in step 309. The encrypted client authentication
information is then sent to the server from the client in step 310. The server then

decrypts the client authentication information to authenticate the client in step 311.

In another embodiment of the present invention, the entire SSL server

S certificate may be included in the server authentication information in step 301.
Verifying the correctness of the server authentication information by the client in

step 308 then includes verifying that the certificate included 1n the server
authentication information is the same as the SSL server certificate received during

the set-up of the SSL connection 1n step 301.

10 In one embodiment of the present invention, the shared secret used by the
client and the server to generate the authentication key 1s the output of a strong
authentication token (SAT). In apreferred embodiment of the invention, the output
of the token is the dynamic password generated by the token. In this embodiment,
the output of a SAT is provided to both the client and the server. The client and

15 server generate an authentication key using the SAT output. The SAT 1s not
transmitted between the client and the server before generating an authentication
key.

In one embodiment of the present invention, the SAT may be a challenge-
response token. In this embodiment, the output ofthe SAT may rely on a challenge

20 to generate a response. If a strong authentication token requires a challenge from
the server to generate a dynamic password, the server side of the SSL connection
sends this challenge to the client side of the SSL connection. The client and server
will both independently generate a separate but identical response to the challenge.
The SAT response 1s then considered the shared secret between the server and

25 client and is used to generate the authentication key.

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

13

In another embodiment, the token may be a time-based SAT. This
embodiment of a SAT may introduce synchronization issues to generating an
authentication key. In one embodiment where strong authentication tokens are
based on an internal real-time clock and/or an event such as an internal counter, the

5 server may allow a limited set of possible SAT responses rather than one single
SAT response. One reason for allowing multiple SAT responses 1s to overcome
synchronization issues. If a strong authentication token 1s time based, the server
may not be capable of knowing exactly which value of the time the SAT has used
to generate its response. This is because the internal clock of the SAT might

10 slightly drift with respect to the server’s clock and because the user interaction with
the SAT always takes some varying unpredictable time. Similarly, if a strong
authentication token 1s event based, the server i1s often not capable of knowing
exactly which value of the event counter the SAT has used to generate 1ts response.
This is because it may be possible that the SAT has generated a response that
15 incremented a counter but didn’t reach the server. Thus, the server would not be

aware that the event counter has been increased.

To overcome the synchronization problems in case of a time or event based

SAT, the server may allow a certain number of possible responses rather than a

single response. In one embodiment of the present invention, the number of

20 possible responses is relatively small. In the case of a time based SAT, the server
will use a window of time around the current time of its real-time clock and will

allow multiple responses that can be generated on the basis of time values in that

window. Similarly, in the case of an event based token the server will allow
multiple responses that can be generated on the basis of the current value of the

25 server’s counter and a limited number of consecutive counter values.

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

14

In one embodiment, to account for more than one valid response, the server
should allow more than one authentication key. However, since the server first
sends data to the client encrypted with the authentication key, the server should
already know which of the possible authentication keys to use because the client

5 only has one authentication key. To enable the server to figure out which key of
the set of possible authentication keys is the one being used by the client, a

synchronization phase may be implemented.

FIG. 4 1illustrates a method 400 for using a SAT to generate an

authentication key. The method 400 begins when the client and server set up an

10 SSL connection in operation 401, with or without client authentication. While the
connection is established, the server sends the server certificate to the client. The

client obtains and stores the server’s certificate in operation 402. Once the
connection is established, all further communication between client and server

happen through this SSL connection.

15 Next, the authentication key is established as represented by steps 403 and
404. .In operation 403, the client sends information to the server. In one
embodiment of the invention, the information 1s the username or other information
client authentication information 1dentifying the user at the client end. Next, the
server and the client exchange some data that will be used in calculating the

20 authentication key in step 404. In one embodiment of the present invention, the
data exchanged are random seeds created independently by the client and server.
Next, if the SAT is a challenge-response SAT, the server sends a challenge to the
client in operation 405. Then, in operation 406 and 407 the chient and server
independently generate an identical symmetric encryption key using the response

25 of the SAT and the data exchanged in the operation 404. This symmetric

10

15

20

25

WO 02/091662

CA 02446304 2003-11-03
PCT/US02/13521

15

encryption key is the authentication key. Next, 1fthe SAT 1s a time-based or event-
based SAT, the server sends a synchronization challenge to the client 1n step 408.
Then, the client encrypts this synchronization challenge with the authentication key
it has computed at step 409. The client then sends the encrypted synchronization

challenge back to the server 1n step 410.

The server then determines what authentication key to use in step 411. In
one embodiment, the server computes several acceptable SAT responses using
information that may include the SAT challenge, the value of its clock and the
current value of the event counter. In one embodiment, the server computes all the
acceptable SAT responses. Then, based on the acceptable SAT responses
computed and the data exchanged, the server computes a set of candidate

authentication keys in operation.

In one embodiment, the server may decrypt the encrypted synchronization
challenge it received from the client with each of the authentication keys that are
allowed on the basis of its clock or event counter in step 410. The key from the set
of allowed keys that successfully decrypts the encrypted synchronization challenge

is the key that will be used by the server for authentication purposes.

Next, the client and server are authenticated. First, in operation 412 the
server encrypts the certificate that it has sent to the client during the set-up of the
SSL connection with its authentication key. The server sends this encrypted
certificate to the client in operation 413. Then, in operation 414, the client decrypts
the certificate received from the server and compares it to the certificate received
from the client in the set-up of the SSL connection. Upon successfully decrypting
of the encrypted server certificate and verifying it is the same certificate that the

client has obtained during the set-up of the SSL connection, the client authenticates

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

16

the server end of the SSL connection and establishes the trustworthiness of the SSL
connection. Next, in step 415 the client encrypts the username or other client
authentication information sent to the server in step 403 with the same
authentication key. The client sends this encrypted information to the server 1n

5 operations 416. The server then decrypts the information and compares 1t to the
information received from the client in step 417. Upon successfully decrypting the
encrypted username or 6ther information previously received, the server
authenticates the client. The SSL connection can now be considered to be a secure,
mutually authenticated connection that provides integrity and confidentiality,

10 without relying on the trustworthiness of the root certificate that has been stored
on the client. The authentication key can be used to encrypt any further
communication between the server and the client on top of the encryption already

offered by the SSL connection.

Figure 5 is a flow chart of a process S00 showing a key generation

15 algorithm based on the dynamic password of a challenge-response token in
accordance with one embodiment of the present invention. First, in operations 501

and 502, the client and server exchange random seeds. In one embodiment, the

seeds are 256 bits in length are processed by both the client and the server 1n a

similar fashion. The seeds are then combined in an operation 503. In one

20 embodiment, the random seeds are combined using an XOR function. If the token
is a challenge-response token the server will also provide the client with a
challenge for the token. Next, the initial generation vector 1s created. First, the

user name which is known to the both the server and the client at the time of the

session key generation is repeated to yield a string of 128 bits in operation 504. A

25 challenge issued by a server and known to both the server and the client 1s then

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

17

repeated to yield a string of 128 bits in operation 506. Next, the first 128 bits of
the combined random seeds and the expanded user name and the expanded
challenge are then combined to yield the Initial Generation Vector in operation 507.

In one embodiment of the present invention, the elements are all combined using

5 an XOR function.

Next, the generation key is created. First, the response to the challenge 1s
repeated to yield a string of 128 bits in operation 509. The response 1s
independently generated by both the server and the client. Then, the last 128 bits
of the combined seeds and the expanded response are combined to yield the

10 Generating Key. In one embodiment, the elements are combined using an XOR

function.

Then, in operation 511, using the generating key as a symmetrical block
cypher key, the symmetrical block cipher algorithm is applied X number of times
on the Initial Generation Vector with the output of round N serving as the input to

15 round N+1, where X is a fixed number known in advance by both client and server
such that the described calculation takes something between 10 and 100
milliseconds on a typical client. Finally, the resulting 128 bits of this calculation
are the Authentication Key in operation 512. In one embodiment the symmetrical
block cipher algorithm is the 3DES algorithm. In another embodiment the

20 symmetrical block cipher algorithm 1s the AES algorithm.

The present invention solves the problems of prior systems by using a secret
to verify the link between a public key and a server’s 1dentity as claimed 1n the
server’s certificate without relying on the trustworthiness of the root certificate of
the server’s certificate chain. The invention takes the advantages of an SSL type

25 connection without relying on the root certificate needed to verify the server's

identity. This is achieved using a symmetric encryption authentication key that the

10

15

WO 02/091662

CA 02446304 2003-11-03
PCT/US02/13521

18

client and server generate independently from each other. The authentication key
is used by the server to encrypt the server’s public key or certificate that was used
to set-up the SSL connection. Thus, the present invention achieves mutual

authentication and encryption without depending on the trustworthiness of the

server certificate.

Other features, aspects and objects of the invention can be obtained from
a review of the figures and the claims. It i1s to be understood that other
embodiments of the invention can be developed and fall within the spirit and scope
of the invention and claims.

The foregoing description of preferred embodiments of the present
invention has been provided for the purposes of illustration and description. It 1s
not intended to be exhaustive or to limit the invention to the precise forms
disclosed. Obviously, many modifications and variations will be apparent to the
practitioner skilled in the art. The embodiments were chosen and described 1n
order to best explain the principles of the invention and its practical application,
thereby enabling others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the

following claims and their equivalence.

10

15

20

235

30

CA 02446304 2010-11-02

19

What 1s claimed 1is:

1. A method for establishing a secure connection and authenticating a
server in connections formed with PKI procedures, wherein a server public key,
obtained from the server by a client, 1s used with asymmetric cryptography to
establish a symmetric session key for encryption of communications with
symmetric cryptography during the connection, said method offering an alternative
for authenticating the server public key, and comprising:

generating a server authentication key by the server,

transmitting said server public key by the server to the client in clear text
form;

generating a client authentication key by the client, the server
authentication key and the client authentication key being identical to each other as
both are generated using a common secret;

generating server authentication information from data derived from the
server public key and processed with a symmetric cryptographic algorithm and the
server authentication key,

sending said server authentication information to the client,

verifying the server authentication information at the client in order to
authenticate the server public key, said verifying using the client authentication
key to determine that the server authentication information is based on said server
authentication key and the server public key used in establishing the secure

connection and received from the server.

2. A method as recited in claim 1 wherein:

the server authentication key is used for encrypting the server
authentication information with a symmetric encryption algorithm; and which
further includes:

decrypting, at the client, the received server authentication information with
the client authentication key and a symmetric decryption algorithm, and

wherein said verifying implements verifying the correctness of the server

authentication information at the client by comparing the decrypted server

10

15

20

25

30

CA 02446304 2010-11-02

20

authentication information with the server public key used in establishing the

secure connection and received from the server.

3. The method of claim 2 wherein the server authentication

information includes a server certificate.

4. The method of claim 2 wherein the secure connection includes an

SSL. connection.

5. The method of claim 2 wherein the secure connection includes an

WTLS connection.

6. The method of claim 2 wherein the secure connection includes an

IPSEC connection.

7. The method of claim 2 wherein the secure connection includes a

TLS connection.

8. The method of claim 2 wherein the secret is generated by a strong
authentication token.

9. The method as recited 1n claim 2 which further includes:

sending client information to the server to authenticate the client, the client
information encrypted by the client using the client authentication key and
decrypted by the server using the server authentication key, the correctness of the

client information verified by the server.

10. The method of claim 2 wherein the server authentication

information includes the server public key.

11. The method of claim 2 wherein the server authentication

information includes data derived from the server public key.

10

15

20

25

30

CA 02446304 2010-11-02

21

12. The method of claim 8 wherein the strong authentication token is a
challenge response token, wherein generating an authentication key by both the
server and the client includes:

sending a challenge from a server to the strong authentication token;

generating a first strong authentication token response to the challenge at
the client;

generating a second strong authentication token response to the challenge at
the server, the first response identical to the second response when the secret is
common to the client and server;

deriving a client authentication key by the client from the first strong
authentication token response;

deriving a server authentication key by the server from the second strong

authentication token response.

13. The method of claim 8 wherein the strong authentication token is a
time-based token, wherein generating an authentication key includes:

generating a strong authentication token time-based response by the strong
authentication token at the client;

deriving a client authentication key from the response by the client;

sending a synchronization challenge from the server to the client;

encrypting the synchronization challenge with the client authentication key
by the client;

sending the encrypted synchronization challenge from the client to the
server; and

generating a server authentication key by the server that corresponds to the

client authentication key used by the client.

14. A method for authenticating a server public key and establishing a
secure connection between a client and a server, the connection formed with PKI
procedures and including a symmetric key established using the server public key

with asymmetric cryptography, said symmetric key used to encrypt

10

15

20

23

30

CA 02446304 2010-11-02

22

communications during the connection with symmetric cryptography, the method
otffering an alternative for authenticating the server public key, and comprising:
transmitting a server certificate from the server to the client, the server
certificate including server public key information;
generating separate authentication keys by the server and the client, the
keys being identical as generated using a common secret, said generating separate
authentication keys including:
sending user authentication information from the client to the server;
exchanging dynamic information between the client and the server;

generating a secret by the client and the server from the response of a

strong

authentication token; and

generating authentication keys at client and server using the wuser
authentication information, the dynamic information, and the secret; thereafter

generating server authentication information at the server from data derived
from the server public key and processed with a symmetric cryptographic
algorithm and the server authentication key;

sending said server authentication information to the client;

rece1ving the server authentication information at the client, and

verifying the server authentication information at the client in order to
authenticate the server public key, said verifying using the client authentication
key to determine that the server authentication information is based on said server

authentication key and the server public key information from the server

certificate.

15. A method as recited in claim 14 wherein:

said generating server authentication information comprises encrypting data
related to the server public key using the server authentication key and a symmetric
encryption algorithm;

said verifying includes decrypting the received server authentication

information at the client using a symmetric decryption algorithm and the client

authentication key; and

10

15

20

25

30

CA 02446304 2010-11-02

23

determining the correctness of the server authentication information by
comparing the decrypted server authentication information with the server public

key information from the server certificate.

16. The method of claim 15 wherein the user authentication information

includes a user identification information.

17. The method of claim 15 wherein the secure connection 1s an SSL
connection.
18. The method of claim 15 wherein the dynamic information includes

random information.

19. The method of claim 15 wherein the strong authentication token
includes a challenge-response strong authentication token, wherein the secret 1s

derived from the response of the challenge response token.

20. The method of claim 15 wherein the strong authentication token

includes a time based token.

21. The method of claim 15 wherein the strong authentication token
includes an event based token.

22. The method as recited in claim 15 further including:

sending encrypted user authentication information to the server, the user
authentication information encrypted by the client using the authentication key
generated by the client; and

receiving and decrypting the user authentication information by the server,
the server decrypting the user authentication information using the authentication
key created by the server, the correctness of the user authentication information

verified by the server.

10

15

20

25

30

CA 02446304 2010-11-02

24

23. The method of claim 15 wherein the server certificate transmitted to

the client includes the server public key.

24. The method of claim 15 wherein the server authentication

information includes the server public key.

25. The method of claim 15 wherein the server authentication

information includes data derived from the server public key.

26. The method of claim 11 wherein the data denived from the server

public key includes a hash of the server public key.

27. The method of claim 25 wherein the data derived from the server

public key includes a hash of the server public key.

28. A method for establishing a secure connection using PKI
procedures and authenticating a server public key, wherein the server public key,
obtained from the server by a client, 1s used with asymmetric cryptography to
establish a symmetric session key for encryption of communications with
symmetric cryptography during the connection and offering an alternative for
authenticating the server public key where a server authentication key is generated
by the server and used to create server authentication information for transmission

to the client, said method comprising

generating a client authentication key by the client, the server
authentication key and the client authentication key being identical to each other as
both are generated using a common secret;

receiving the server public key in clear text form from the server;

receiving the server authentication information at the client to authenticate
the server public key, the server authentication information including data derived
irom the server's public key and processed with a server authentication key and

with a symmetric cryptographic algorithm; and

10

15

20

235

30

CA 02446304 2010-11-02

25

verifying the server authentication information at the client in order to
authenticate the server public key, said verifying using the client authentication
key to determine that the server authentication information is based on the server
authentication key and the server public key used in establishing the secure

connection and received from the server.

29. A method as recited in claim 28 wherein the server authentication
key 1s used to encrypt the server authentication information for transmission to the
client, wherein said method further includes:

decrypting, at the client, the received server authentication information with
the client authentication key and a symmetric decryption algorithm to obtain
decrypted data, and

wherein said verifying includes verifying the correctness of the server
authentication information at the client in order to authenticate the server public
key by comparing the decrypted data with the server public key used in

establishing the secure connection and received from the server.

30. The method of claim 29 wherein the server authentication

information includes a server certificate.

31. The method of claam 29 wherein the secure connection includes an

SSL connection.

32. The method of claim 29 wherein the secure connection includes an

WTLS connection.

33. The method of claim 29 wherein the secure connection includes an

[PSEC connection.

34, The method of claim 29 wherein the secure connection includes a

TLS connection.

10

15

20

23

30

CA 02446304 2010-11-02

26

35. The method of claim 29 wherein the secret is generated by a client

strong authentication token.

36. The method as recited in claim 29 which further includes:
sending client information to the server to authenticate the client, the client

information encrypted by the client using the client authentication key.

37. The method of claim 29 wherein the server authentication

information includes the server public key.

38. The method of claim 35 wherein the strong authentication token is a
challenge response token, wherein generating an authentication key by the client
includes:

receiving a challenge from the server for the strong authentication token;

generating a strong authentication token response to the challenge at the
client; and

deriving a chlient authentication key by the client from the strong

authentication token response.

39. The method of claim 35 wherein the strong authentication token is a
time-based token, wherein generating an authentication key includes:

generating a strong authentication token time-based response by the strong
authentication token at the client;

deriving a chient authentication key from the response by the client;

receiving, at the client, a synchronization challenge from the server;

encrypting the synchronization challenge with the client authentication key
by the client; and

sending the encrypted synchromization challenge from the client to the
server for generating a server authentication key by the server that corresponds to

the client authentication key used by the client.

10

15

20

23

30

CA 02446304 2010-11-02

27

40. A method for authenticating a server public key and establishing a
secure connection between a client and a server, the connection formed with PKI
procedures and including a symmetric key, established using the server public key
with asymmetric cryptography, to encrypt communications during the connection
with symmetric cryptography, the method offering an alternative for authenticating
the server public key, and comprising:

recetving a server certificate at the client, the server certificate including
server public key information in clear text form;

generating an authentication key by the client corresponding to an
authentication key generated at the server, the keys being identical as generated
using a common secret, said generating an authentication key by the client
including:

sending user authentication information from the client to the server;

exchanging dynamic information between the client and server,

generating a secret by the client from a response of a client strong
authentication token corresponding to a secret generated by the server; and

the chient generating said authentication key, corresponding to an
authentication key generated at the server, using the user authentication
information, the dynamic information, and the secret; thereafter

receiving server authentication information at the client, the server
authentication information including data derived from the server public key,
processed using the authentication key generated by the server and a symmetric
cryptographic algorithm; and

verifying the server authentication information at the client by using the
clhient authentication key to determine that the server authentication information is
based on the server authentication key and the server public key information

received in clear text form.

41. A method as recited in claim 40 wherein;
sald recetving server authentication information comprises receiving server
authentication information encrypted using the authentication key generated by the

server and a symmetric encryption algorithm, and wherein

10

15

20

25

30

CA 02446304 2010-11-02

28

said verifying fturther comprises;

decrypting the server authentication information by the client, the client
decrypting the server authentication information using a symmetric decryption
algorithm and the authentication key created by the client, and

comparing the decrypted server authentication information at the client

with server public key information received in clear text form.

4?. The method of claim 40 wherein the user authentication information

includes a user identification information.

43, The method of claim 40 wherein the secure connection 1s an SSL
connection.
44. The method of claim 40 wherein the dynamic information includes

random information.

45. The method of claim 40 wherein the strong authentication token
includes a challenge-response strong authentication token, wherein the secret is

derived from the response of the challenge response token.

46. The method of claim 40 wherein the strong authentication token

includes a time based token.

47. The method of claim 40 wherein the strong authentication token

includes an event based token.

48. The method as recited in claim 40 further including:

sending encrypted user authentication information to the server, the user
authentication information encrypted by the client using the authentication key

generated by the client.

10

CA 02446304 2010-11-02

29

49, The method of claam 40 wherein the server certificate received by

the client includes the server public key.

50. The method of claim 40 wherein the server authentication

information includes the server public key.

51. The method of claim 29 wherein the data derived from the server

public key includes a hash of the server public key.

52. The method of claim 41 wherein the data derived from the server

public key includes a hash of the server public key.

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

1/5

CA 02446304 2003-11-03
WO 02/091662 PCT/US02/13521

2/5
/zoo

Clhient Server

201. Establish SSL connection

SSL Connection

202. Exchange information l

203. Compute 204. Compute
Authentication Key Authentication Key

205. Encrypt server

207. Verify correctness 206. Send encrypted server authentication authentication
| of server information information

authentication

information =

|l authenticate server

208. Encrypt client 209. Send encrypted client authentication 210. Venfy
authentication information correctness of client
imformation authentication
information =
authenticate client

CA 02446304 2003-11-03

WO 02/091662 PCT/US02/13521
3/5
Client Server
U F _ 301. Establish SSL connection
i oerver’s public key
' E
302. Store server’s :
| | public key :
] E
|
i
|
| i
| 303. Exchange information : |
E
i
|
304. Compute 305. Compute
Authentication Key Authentication Key

’
|
]
|
]
|
]
!
¢
|
3
/
u
|
L
|
v
;
¥
)
.
|
»
|
’
)
v
|
’

| 306. Encrypt server’s

308. Compare stored _ public key
and encrypted server 307. Send encrypted server public key

public key =
authenticate server

310. Send encrypted client authentication
309. Encrypt client information 311. Verify
correctness of client
authentication
information =

authentication
information

authenticate client

.-.-.”.-.-.-.~.-.~.-.-.-.-.-.“.

WO 02/091662

Client

--

402. Store server’s
certificate

L 3 T O WS W e W

406. Compute

Session Key

S W Wil w mm— W w—— W w—— D w wae o WV T T e P

CA 02446304 2003-11-03

4[5

o

401. Establish SSL connection

SSL Connection

403. Send username

IIIIIIIIIIIIIIIII

404. Exchange random seeds

405. Send token challenge (optional)

PCT/US02/13521

Server

"""

409. Encrypt synch.
challenge

414. Compare stored
and encrypted server
certificate =

authenticate server

415. Encrypt
username

.

408. Send synch. challenge (optional)

410. Return encrypted synch. challenge

413. Send encrypted server certificate

416. Send encrypted username

i 4

:

E

!

:

:

!

:

i
407. Compute (set of)
Session Key(s)

! L .

; : |\ Synchronization phase

]

i i

i i

S

412. Encrypt server’s
certificate

411. Determne
Session Key

uthentication phase

417. Compare
received and
encrypted
username =

authenticate client

CA 02446304 2003-11-03

WO 02/091662 PCT/US02/13521
5/5

500 '—\
1. Exor of the client and server seeds | SO\

Server provided Seed (256 bits) ——___—‘_jf‘!
@ . 502
Client provided Seed (256 bits) . 3 F_jé‘),

- S5O0

Combined Seeds (256 bits)

.. . 1 Vector 3. Create |Generation Key
2. Create Initiall Generation 50\,\. SR

[eft part of the Seed (128 bits) Right part of the Seed (i?_? bits) l 3

505 N N
‘ Username (repeated to128 bits) _Ld | Respgnse (repeated to 123 bnts)]

@ 500b

‘ Challenge (repeated to 128 bits) _k) . @
J L | 510

501 : e
Generation Key -

Initial Generation Vector

-

4. Generate Session Key
S\ T 1>

X
SDEST *** |3DESF °+°* |3DES (:]J
‘ 3DES Session Key ‘é),

'\(:.'S'

/zoo

201, Establish SSL connection

SS1. Connection

Server

202. Exchange information

Client
-
<
203. Compute
Authentication Key

207, Verify correctess
of server
authentication
information =
authenticate server

-

208, Encrypt client
authentication
informsation

-

206. Send encrypted server authentication

204, Compute
Authentication Xey

205, Encrypt server
authentication

information information
2(9. Send encrypted client authentication 210. Verify
information correctness of client
authentication
information =

authenticate client

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

