
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0007160 A1

US 20090007160A1

WE (43) Pub. Date: Jan. 1, 2009

(54) SYSTEMAND METHOD FOR Publication Classification
NETWORK-BASED COMPUTING (51) Int. Cl.

(75) Inventor: COACH K. WEI, BOSTON, MA G06F 9/54 (2006.01)
US
(US) (52) U.S. Cl. ... 719/328; 71.9/332

Correspondence Address:
AKC PATENTS (57) ABSTRACT
215 GROVEST.
NEWTON, MA 02466 (US) A network-based computing system that automates, simpli

fies, and optimizes the compilation, deployment, and execu
(73) Assignee: NEXAWEBTECHNOLOGIES, tion of an application by any type of a client machine con

INC., Burlington, MA (US) nected to a server via any type of a network connection. The
system includes a client runtime environment, a server runt

(21) Appl. No.: 12/209,826 ime environment and an object-oriented markup-business
1-1. logic binding mechanism. The client runtime environment

(22) Filed: Sep. 12, 2008 manages client side code and Screen definitions. The server

Related U.S. Application Data isitions, titless,
(63) Continuation of application No. 10/754,782, filed on applications on demand, by separating them into lightweight

Jan. 9, 2004. modules and delivering these modules.

Client machines

Personal
Computer

73

laptop
Computer

Computing
Device

Patent Application Publication Jan. 1, 2009 Sheet 1 of 15 US 2009/0007160 A1

80

Y
Application source file
Written using
JAVATM Language

82

JAVA TM COMPILER compiles source file 84

JAVATM bytecode file

88
JAVA TM VIRTUAL MACHINE executes JAVA bytecode file

Display of Computing Results
89

FIG. 1
(Prior Art)

Patent Application Publication Jan. 1, 2009 Sheet 2 of 15 US 2009/0007160 A1

ZO
Y Client machines

Personal
Server Computer

73

78
-\ Yry laptop

--- N - ////f ?
)- f / --s y --Yry-N

Network N.

Computing
Device

FIG. 2

Patent Application Publication Jan. 1, 2009 Sheet 3 of 15 US 2009/0007160 A1

200

Application Server

Server-Side application code

Server Runtime Environment (SRE)

Server Compiler Server CaChe Other Modules.
218 App Server

216 Interface, 17
215 Clustering,

Reliable Real-Time Communication 41 O XML Parser,

Message Queue 211 Fault Detection 213 Storag e.
Execution Engine

t
HTTP Web Server 21

242 Server-Side Fire Wall
24 XML over HTTP Reliable Bi-directional Messaging

\244Cien Sile Firewall
Client naChine

V / Client Browser 230

Message Queue 221 Fault Detectgg, Other Modul 227
o er IMOCUIeS

Reliable Real-Time Communication 225 user Interface, Security,
Client CaChe State Synchronization XML Parser,

226 and Persistency 228 Storage,
Execution Engine

4 Client Runtime Environment (CRE) 224

Compiled Client-Side application code

FIG. 3

Patent Application Publication Jan. 1, 2009 Sheet 4 of 15 US 2009/0007160 A1

300 - N

XML + Java TM XML - C ML + JavaScript TM
COde 302 COde 3O4 COde 306

Server Compiler 216

Server Compiler Control Logic 310

UniverSal UniverSal UniverSal
Java TMBytecode .NET CLR JavaScript TM
Compiler 312 Compiler 314 Compiler 316

UniverSal UniverSal
FaSh SWF XML
Compiler 318 Compiler 320

334 Server CaChe
332 218

JVM Executable .NET ExeCutable
XML + Java Bytecode XML + CLR Bytecode

340
336 XML Executable

Flash Executable XML COde
ML + Flash Bytecode

JVM 360 Flash Player 362 .NET CLR 364 ... XML. Engine 366

FIG. 4

Patent Application Publication Jan. 1, 2009 Sheet 5 of 15 US 2009/0007160 A1

350 -

XML + Java TM XML - CH XML + JavaScript TM
COde 302 COde 304 COde 306

Universal Java Bytecode Compiler 312

TM 1Y Y JavaScrip t TM
aVa Compiler 351 Ji Compiler 352 COmpiler 353

Universal Compiler Control Logic

332
JVM ExeCutable

XML + Java Bytecode

JVM 360

FIG. 4A

Patent Application Publication Jan. 1, 2009 Sheet 6 of 15 US 2009/0007160 A1

HTML 365. XAML 37O

Universal XML Compiler 320

XHTML Compiler XAML Compiler . SVG Compiler
371 372 373

Universal Compiler Control Logic

360 - N

SVG 368

340
ExeCutable
XML COOde

XML Execution Engine 366

FIG. 4B

Patent Application Publication Jan. 1, 2009 Sheet 7 of 15 US 2009/0007160 A1

400 N

Markup Documents 402

Business Logic Components 406

Object-oriented Representation
of the Markup Documents
405 Markup Objects 404

UI (401) and Data (403)

Business Logic Components 406

FIG. 5

Patent Application Publication Jan. 1, 2009 Sheet 8 of 15 US 2009/0007160 A1

so / 540
f s Markup Object Events —A
Markup 521 Business Logic
Objects v. 530 Components

Markup Object AP
(DOMAPI) Business Logic

Markup Document / 531 COce 560

FIG. 6

Patent Application Publication Jan. 1, 2009 Sheet 9 of 15 US 2009/0007160 A1

600 - N

<mco id="bean1" (621) f
SrC="COm.nexaWeb. Clientbean. Demoean"

\ onload="bean1.init()" /> / 630

<button id="parentBtn" text="This is the parent button" ? N
(632) oncommand="bean1.doClick()" />
<button id="child Btn" src="#parentBtn"

(635) text="this is the child button"
OnmOuSeOver="bean 1.doCVer()" />

<data id="Companyinfo"> (641)
<company>Nexawebs/company>
<phone>6174418055</phone>
<industry>software</industry>

</data

Markup Objects Defined in A Markup Document

(UI + Data +Behavior)

FIG. 7A

Patent Application Publication Jan. 1, 2009 Sheet 10 of 15 US 2009/0007160 A1

600 s.

package com.nexaweb.clientbean;
import Com.nexaWeb.domapi.",
import java. util..",
fe

*This is a demo client business logic component written using Java.
* It illustrates Markup Document to OOP binding.

*/
public class Demobean – 660

640 /
f public void init() {

System.out.println("initializing bean="+this);

A
public void doClick() {
XmlSession ac = XmlSession.instance(this);
ClientEvent ce=ac.getClientEvent();
Element eventSource=ac.getXmlElement(ce.getParameter("ctrilid"));
if(eventSourcel=null) {
eventSource.setAttribute("text","You clicked button "+ eventSource);

680
.

public void doOver() { f
XmlSession ac = XmlSession.instance(this);
ClientEvent ce=ac.getClientEvent();
Element data=ac.getXmlElement("companyinfo");
if(datal=null) {
alert("Companyinfo: "+ data);

Source Code of Business Logic
Component "bean1"

FIG. 7B

Patent Application Publication Jan. 1, 2009 Sheet 11 of 15 US 2009/0007160 A1

633

You clicked button: parentBtn

FIG. 7C

636

YOU Clicked button. ChildBtn

FIG. 7D

Patent Application Publication Jan. 1, 2009 Sheet 12 of 15 US 2009/0007160 A1

700 - N

720

C Parent Markup Object)

User Interface Definition
730

Data Definition

Behavior Definition (event hander
740

Binding
790

Business
LOgic

Components (Child Markup object D
User Interface Definition

77O
Data Definition

Behavior Definition (event handlers)
Binding

FIG. 8

Patent Application Publication Jan. 1, 2009 Sheet 13 of 15 US 2009/0007160 A1

400 -

Module 1 Module 2

/ / 460 / 490
| Markup Document Markup Document | Markup Document

(Markup Objects: (Markup Objects: (Markup Objects:
Ul(422) + Data(424)) Ul(462) "Data(464)) (492) + Data(493)

| Business Logic Business Logic BusineSS Logic
Component AN 430 Component C 470 Component A
Business Logic Business Logic 492
Component B 440 Component E.

494

FIG. 9

Patent Application Publication Jan. 1, 2009 Sheet 14 of 15 US 2009/0007160 A1

- 802 800 -N

CRE
tries to load /

module
804

IS the module
definition

available locally

SE SSSIs the -- 810 MESSESSR
module

Should this
document be
cachcd? 814

Cache the
received document
on the client side

this module
equire busineSS

Is this
component
available in the

cachc
CRE scnds a request
to server to load the
COn Onent

6ompgnent beenNicompile the component
Qmpiled beforsk into the executable

code supported by the
lient machine and

oad the executable cache it
code from
server cache and
send it to the client

837 FIG. 10

Patent Application Publication Jan. 1, 2009 Sheet 15 of 15 US 2009/0007160 A1

900

Gcient eve) 902
- 904 905 906 911

Is the
listener a client

side component or
Scrver-side

Is there any Client-side component
<listener listening to

his event?

Is the client-side
component
instantiated 2

907 Send the event to
server for
processing

Server invokes the
handler to process

the event locate the .
instantiated
instance 924

Invoke registered -
server handler listener E. to 926

Sends a document process the event
to client runtime
environment as
processing result listener method 928

Sends result to
CRE

930 931
S the result a DOM API

markup document or
direct client DOM CRE A processes the manipulatio

document (load new
client components if executes API

necessary) calls

- display result 910

Wait for client
cVents

FIG 11

US 2009/0007160 A1

SYSTEMAND METHOD FOR
NETWORK-BASED COMPUTING

CROSS REFERENCE TO RELATED
CO-PENDING APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 10/754,782 filed on Jan. 9, 2004 and entitled
“System and Method for Network-Based Computing which
is commonly assigned and the contents of which are expressly
incorporated herein by reference.

FIELD OF THE INVENTION

0002 The present invention relates to a system and a
method for network-based computing, and more particularly,
to network-based computing that provides network applica
tions that can be automatically deployed, compiled, and
executed by any type of a client machine connected to a server
via any type of a network connection.

BACKGROUND OF THE INVENTION

0003. A typical computing system includes hardware and
Software components. Hardware components include com
puting devices such as personal computers (PC), mainframe
computers, and computing circuits, among others. The basic
architecture of a computing device includes a central process
ing unit (CPU), which executes instructions, and a memory
unit, which stores instructions and data. Instructions and data
are transmitted from the memory unit to the CPU and the
results of the CPU operations are sent back to the memory
unit. Software components are application programs, which
contain the set of instructions that are executed by the CPU
unit. Application programs include among others, system
programming Software, drawing Software, word processing
Software, spreadsheet evaluation Software, enterprise
resource management Software, customer relationship man
agement software, data analysis Software, customerself-help
Software, network and storage management software, math
ematical and Scientific Software. A computer programmer
develops an application program by first coding a set of
instructions in a source file using the grammar rules of a
programming language. In the example of FIG. 1, a program
mer writes a source file using the grammar and syntax of the
JavaTM programming language 82. Next, the JavaTM source
file passes through a JavaTM compiler 84 where it gets ana
lyzed and parsed. The parsed file is then used to generate a
JavaTM bytecode 86, i.e., a code that is understood by a JavaTM
Virtual Machine (JVMTM). The compiled JavaTM bytecode
file 86 is then stored in the memory of the computing device.
When a user wants to run the particular application program
the computing device retrieves the compiled JavaTM bytecode
file 86 from the memory, the JavaTM Virtual Machine 88
executes it, and the computing results are displayed 89. The
compiled JavaTM bytecode file 86 may also be stored in a
computer readable storage medium Such as a compact disk
(CD) or a magnetic floppy disk or tape. These computer
readable storage media may also be used to distribute and
install the application program, i.e., the compiled JavaTM
bytecode files, in other computing devices. This computing
system is sufficient for independent computing devices.
0004. A network-based computing system includes a cen

tral server and a plurality of computing devices, i.e., client
machines, that are connected with each and to the server via a
network. Application programs are stored in the central server

Jan. 1, 2009

and can be deployed to the client machines via the network.
Alternatively, application programs can be installed in the
client machines via a manual distribution of computer read
able media Such as CD or floppy disks containing the com
piled application code. Network-based computing is used for
large enterprises that have multiple computing devices in
multiple locations that interact with each other and with the
server via a network connection. An application program in
the network-based computing system includes a server pro
gram that is stored in the server and a client program that is
stored in the memory of a client machine. The server program
runs on the server and the client program runs on one of the
client machines. Large enterprises utilize network-based
computing to run enterprise application Such as SAP's Enter
prise Resource Planning software and custom internal appli
cations. For example, a financial services company may uti
lize an internal Investment Portfolio Management application
to perform stock analysis. When a portfolio manager wants to
do a specific Stock analysis, he starts the client program for the
Investment Portfolio Management application in the client
machine. The client machine loads the multi-megabyte client
program, and then receives and processes the portfolio man
ager's requests. The client machine may also send further
requests to the server program via the network to gather any
necessary data. Next, the client program receives the neces
sary data, analyzes the data and presents the result in an
appropriate format to the portfolio manager.
0005 Processes associated with network-based comput
ing include application development, application deploy
ment, and application execution, among others. Application
development refers to the coding, compiling, and debugging
of the server and client programs that can be run by the server
and the various configurations and operating systems of the
client machines, respectively. Application deployment refers
to the distribution and installation of the various client pro
grams in the various client machines. Application execution
refers to the execution of the compiled server and client
programs by the server and the various client machines of the
network, respectively.
0006. The main issues with the application development
for a network-based computing system involve around client
platform and device configuration incompatibilities. Client
platform incompatibilities include different operating sys
tems and different hardware. The operating systems may be
various versions of Windows, Mainframe, Macintosh, Unix,
Linux, and PalmTM. The different hardware may be Pocket
PCs, desktops, laptops, workstation, phone systems, personal
digital assistants (PDA) and Smart television sets. Device
configuration includes the specific settings that a given appli
cation may require, such as the Dynamic Link Library (DLL)
version and registry for typical Windows applications. For
companies with thousands of users and client machines, cli
ent platform and device configuration incompatibilities result
in a significant amount of complexity and increased costs for
the development of network applications.
0007. The main issues with the application deployment in
a network-based system involve around the distribution of the
client program to thousands or even hundreds of thousands of
client machines and the confirmation that each client machine
always contains the most appropriate version of the applica
tion. The following approaches are the most commonly used
today for handling code distribution and configuration:
0008 a) CD/Floppy disk distribution and manual installa
tion and configuration: Information System (IS) personnel

US 2009/0007160 A1

install the compiled client program from a CD or floppy disks
directly onto the client computer and manually configure the
application for each client computer. This manual process is
repeated every time the code is upgraded. Considering that an
enterprise can have thousands of desktop computers distrib
uted in many different offices, this approach is very ineffi
cient, time consuming and costly.
0009 b) Manual network download, installation and con
figuration: This approach enables an end user to download
and install the client program into his computer over a Local
Area Network (LAN), a Wide Area Network (WAN) or the
Internet. However, considering that the client program can be
easily tens of megabytes, downloading Such a big file and
configuring the application can take each user up to several
hours to achieve. Considering an enterprise that has thou
sands of users, the amount of productivity loss due to this
manual downloading process can be significant. Further
more, in cases where the network connection is slow and has
limited bandwidth (i.e., dialup or wireless connection), this is
simply not a viable option.
0010. The issue with the client program execution is that
the current program execution model requires loading almost
the entire program into memory before the user is able to run
the application. As was mentioned above, client programs are
typically multi-megabyte files and loading Such big files into
memory creates lengthy delays for users. Further, this execu
tion model creates increasing demands on hardware because
it requires faster CPU, bigger memory, more storage, and a
faster network, all of which translate into costs and perfor
mance issues.

0011 Alternative approaches to this static network-based
computing system include the JavaTM Applet approach and
the Hyper Text Markup Language (HTML) web page
approach. In the JavaTM Applet approach the client compo
nent of a network application is written as a JavaTM Applet,
and the end users can access this application without the need
to install it in advance. However, JavaTM Applets have severe
technical limitations that restrict its practical use to simple
application only. For complex enterprise applications, the
JavaTM Applet not only performs poorly but also can easily
have a footprint in excess of 1 MB, which requires lengthy
downloading which in turn effectively prevents users from
using it over the Internet or WAN. In addition, JavaTM Applets
require a JavaTM Virtual Machine (JVMTM) on the client
machine. The JVMTM incompatibilities and lack of JVMTM on
some machines both add to the failure of wide adoption of
JavaTM Applets for enterprise applications.
0012. In the HTML web page approach companies use
HTML for publishing simple application screens. In this
approach, the entire application is running on the server. Each
screen is formatted into an HTML web page and displayed in
a web browser. Some simple client-side logic can be added to
the HTML page using technologies, such as JavaScript TM.
However, this approach is limited to applications that require
minimal user interactivity and functionality. Network appli
cations using this approach sacrifice many of the features and
functionality associated with client-side computing, such as
offline computing, drag&drop, multiple windows, spread
sheet behavior, among others. The "click and refresh' user
interaction model associated with web browsing is not suit
able for network applications because this model not only
consumes significant bandwidth by sending and re-sending
redundant information, but it also significantly lowers user
productivity by keeping users waiting with every mouse

Jan. 1, 2009

click. In this scenario, the client-side business logic is also
limited because a scripting language. Such as JavaScript"M,
does not scale well to a large team of developers, unlike the
more robust Object-oriented programming (OOP) languages
like JavaTM and C++. As a result, HTML is used only for
simple applications. Important applications are still being
written as traditional Client/Server applications using OOP
languages.
0013. In summary, the current approaches for network
based computing are costly, inefficient and complicated for
developers. In order to use an application, users have to go
through a lengthy downloading, configuration and loading
process. Whenever a new version of the application is avail
able, users have to go through the same process again. Plat
form incompatibilities often prevent many users from being
able to run the application at all. Companies often have to
maintain a significant technical Support team to manage and
deal with application configuration and management. Desk
tops need to be constantly upgraded to keep up demands from
bigger and bigger client programs. For users that are distrib
uted over a wide area network (WAN) or even the general
public Internet, where bandwidth is very limited, the current
approaches are simply not viable options. Though there are
alternative approaches, like HTML, which can significantly
lower the client footprint and reduce the client incompatibil
ity problem, such approaches are notable to deliver the func
tionality and performance required for most business appli
cations.
0014. Accordingly, there is a need for a network-based
computing system that automates, simplifies, and optimizes
the compilation, deployment, and execution of an application
by any type of a client machine connected to a server via any
type of a network connection.

SUMMARY OF THE INVENTION

0015. In general, in one aspect, the invention features a
computer application program including at least one markup
document, at least one business logic component associated
with and applied directly to the at least one markup document
and an objectoriented binding mechanism binding the at least
one markup document to the at least business logic compo
nent and the reverse.
0016. Implementations of this aspect of the invention may
include one or more of the following features. A client runt
ime environment (CRE) may receive and convert the at least
one markup document into an object-oriented representation.
The object-oriented representation may include one or more
markup objects, one or more user interfaces, and one or more
data sets. The at least one business logic component may
include one or more methods used as event handlers for a
markup object event. The object oriented binding mechanism
may include invoking the one or more methods by the one or
more markup objects by firing a markup object event. The
object oriented binding mechanism may further include
accessing and modifying the one or more markup objects by
the at least one business logic component via an Application
Program Interface (API). The API may be a markup object
API or a Document Object Model (DOM) API. The one or
more markup objects may include a parent markup object and
a child markup object and the child markup object may have
one or more markup object properties inherited from the
parent markup object. The one or more markup object prop
erties may be a user interface definition, a data set definition
or an event handler definition. The parent markup object may

US 2009/0007160 A1

have one or more user interface definitions, one or more data
definitions and one or more event handlers and the child
markup object may inherit the one or more user interface
definitions, the one or more data definitions and the one or
more event handlers from the parent markup object. The one
or more markup objects may include a parent markup object
and a child markup object and the child markup object may
overwrite one or more markup object properties of the parent
markup object and replace them with one or more markup
object properties of the child markup object. The at least one
markup document may be written in a markup language
including among others, XML, XUL, SVG, Xforms, XAML,
HTML, HTML related languages, text, or combinations
thereof. The one or more business logic components may be
Written in a programming language including among others,
JavaTM, JavaScriptTM, Ji, C#, C+, C++, Visual Basic, Action
Script, XSL, XQuery, or XPath.
0017. In general, in another aspect, the invention features
a network application program having one or more modules
wherein each module includes at least one markup document,
at least one business logic associate with the at least one
markup document and an object oriented binding mechanism
binding the at least one markup document to the at least
business logic component and the reverse.
0018. In general, in another aspect, the invention features
a method of binding a markup document with one or more
business logic objects including coding the markup document
using a markup language, coding the one or more business
logic objects using an object oriented programming language
and associating the markup document with the one or more
business logic objects. Next, constructing an object oriented
representation of the markup document thereby generating
one or more markup objects. Next, firing one or more markup
object events by the object oriented representation thereby
invoking the one or more business logic objects for process
ing the events and finally manipulating the markup objects by
the one or more business logic objects. The business logic
objects may manipulate the markup objects via a markup
object API or a Document Object Model (DOM) API.
0019. Among the advantages of this invention may be one
or more of the following. The computing system enables
partitioned delivery and execution of a network application
from a central server to any client machine connected to the
server via a network connection. The network connection
may be a low bandwidth network. The client machines may
include any type of computing platforms and devices. The
network application includes markup documents, business
logic components and an object-oriented binding mechanism
binding the markup documents to the business logic compo
nents and the reverse. The markup documents may be scripted
using any type of a markup language including among others,
XML, XUL, SVG, Xforms, XML related languages, HTML,
HTML related languages, text, and combinations thereof.
The business logic components may include source code
Scripted in any programming language including among oth
ers, JavaTM, JavaScriptTM, Jil, C#, C+, C++, Visual Basic,
ActionScript, XSL, XQuery, and XPath. A compiler system
converts the Source code to any type of executable bytecode.
This compiler system configuration provides flexibility in
both the programming side of the application and the execu
tion side of the application.
0020. The details of one or more embodiments of the
invention are set forth in the accompanying drawings and
description below. Other features, objects and advantages of

Jan. 1, 2009

the invention will be apparent from the following description
of the preferred embodiments, the drawings and from the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0021 FIG. 1 is a block diagram of a prior art process for
writing, compiling and executing of an application;
0022 FIG. 2 is an example of a network-based computing
system;
0023 FIG. 3 is a block diagram of the software and hard
ware components of a simple network-based computing sys
tem;
0024 FIG. 4 is a schematic diagram of the server compiler
of the application server of FIG. 3;
0025 FIG. 4A is a detailed block diagram of the universal
JavaTM bytecode compiler of FIG. 4;
0026 FIG. 4B is a detailed block diagram of the universal
XML compiler of FIG. 4;
0027 FIG. 5 is a block diagram of an object-oriented
application according to this invention;
0028 FIG. 6 is a schematic diagram of the markup-busi
ness logic binding mechanism of this invention;
(0029 FIG. 7A-FIG.7B are code examples of the markup
business logic binding mechanism;
0030 FIG. 7C is a screen shot of the example of FIG.7A:
0031 FIG. 7D is another screen shot of the example of
FIG. 7A:
0032 FIG. 8 is a schematic diagram of the object-oriented
markup object declaration and instantiation;
0033 FIG. 9 is a schematic diagram of the module struc
ture of a network-based application according to this inven
tion;
0034 FIG. 10 is a flow diagram of the process of deploy
ing, compiling and executing a network-based application
according to this invention; and
0035 FIG. 11 is a flow diagram of the event handing
process of this invention.

DETAILED DESCRIPTION OF THE INVENTION

0036 Referring to FIG. 2, a network-based computing
system 70 includes a server 72 and client machines 73,74, 75,
and 76. The client machines include a personal computer 73,
a laptop computer 74, other computing devices 75, and a
wireless communication device 76. Client machines 73, 74
and 75 are connected to the server 72 via a network connec
tion 78. Client machine 76 is connected to the server 72 via a
wireless network connection 79. There may be several addi
tional client machines including personal computers, laptop
computers, Linux machines, workstations, computing cir
cuits, and wired communications devices, such as telephone
and television. Network connection 78 may be the Internet,
the World WideWeb (WWW), a Wide Area Network (WAN),
a Local Area Network (LAN), a Personal Area Network
(PAN) or a telecommunication network. The wireless com
munication device 76 may be a mobile phone, a personal
digital assistant (PDA), a pager, a wireless laptop computer, a
personal computer, a television, and programmable versions
thereof or combinations thereof. The wireless network 79
may be a wireless wide area network (WWAN), a wireless
local area network (WLAN), a wireless personal area net
work (WPAN) or a private communication network.
0037 Referring to FIG.3, a block diagram of the software
and hardware components of a simple network computing

US 2009/0007160 A1

system 200 includes an application server 210, a client
machine 220, and a web server 219. The application server
210 runs behind the web server 219, and runs server-side
application code (or server-side business logic) 212. The web
server 219 delivers markup documents or electronic mes
sages generated by the server side application code 212 to a
client web browser 230 residing inside the client machine
220. Electronic messages are communication messages
delivered electronically for information exchange. Markup
documents are electronic documents, i.e., files, written using
a markup language Such as XML or HTML. A markup lan
guage is a conventional language for describing the contents
of an electronic document that is to be viewed or printed on a
computer output device such as a computer monitor. A
markup language document can contain text, images, JavaS
criptTM, and hyperlinks, among others. A real time, bidirec
tional, reliable messaging system 240 transmits messages
between the client web browser 230 and the web server 219
over an HTTP web connection. The application server
includes in addition to the server side application code 212 a
Server Runtime Environment (SRE) 214. The SRE 214 runs
behind the HTTP web server 219 and inside the application
server 210. The SRE 214 includes a server compiler 216, a
server cache 218, a communications module 215, and other
functional modules 217. The functional modules 217 include
an Application Server Interface, an XML Parser, Clustering,
Storage, and an Execution Engine. The application server
interface module enables the SRE 214 to run inside the appli
cation server 210 and enables applications inside the appli
cation server 210 to access the SRE's functionalities. The
XML Parser module is responsible for parsing XML docu
ments that come from the various client machines or other
information Sources such as other backend connections. The
parsing results may be stored in the Storage module. The
clustering module provides support for clustering the SRE
and the execution engine module executes the compiled
server-side application code 212.
0038. The client machine 220 includes a client runtime
environment (CRE) 224 that runs outside the client web
browser 230 and client-side application code 222 (or client
side business logic). In other embodiments the CRE runs
inside the client web browser 230. The client side application
code 222 includes Extensible Markup Language (XML)
documents and procedural code. The client machine 220 is
protected by a client side firewall 244 and the web server 219
is protected by a server side firewall 242. The CRE 224
processes markup documents and executes the client-side
application code 222. The CRE 224 includes a client cache
226, a communication module 225, a state synchronization
and persistency module 228 and other functional modules
227 Such as an XML parser, a user interface, storage, security,
and an execution engine. The XML Parser is responsible for
parsing XML documents that come from the application
server 210. The parsing results may be stored in the client
cache 226 as part of the application's client side state. The
user interface module is responsible for displaying the user
interface and interacting with the user according to the appli
cation's XML description. The execution engine module is
capable of running client side application code 222. The
client cache 226 maintains the application's client side state
and is updated by the CRE automatically. The synchroniza
tion and persistency module 228 is responsible for synchro

Jan. 1, 2009

nizing the client cache 226 with the application server 210,
and saving and/or retrieving the client cache 226 from per
sistent storage.
0039. The CRE 224 is centrally managed by the SRE 214.
The CRE 224 is automatically downloaded from the applica
tion server 210 and installed in the client machine 220 the first
time a user access a client application. After the initial instal
lation, the SRE 214 automatically manages the versioning
and updating of the CRE 224. Different CREs 224 are used
for the different client platforms. For example, different
CREs are used for a JavaTMVirtual Machine, a NET CLR, or
a Flash Player. The executable application code formats of
these three client platforms are: JavaTM bytecode, .NET CLR
bytecode and Flash bytecode, respectively. The application
code 222 is delivered in three different executable code for
mats for these three client platforms, accordingly.
0040. Referring to FIG. 4, the server compiler 216 is a
Software program that translates source code written in any
Supported programming language into executable code of any
supported executable format. As shown in FIG. 4, the source
code is written in a programming language. Such as JavaM,
C#, JavaScript TM, and XML, among others. The supported
executable formats are JavaTM bytecode, .NET CLR byte
code, or Flash bytecode, among others, depending on the
client platform. For example, when the client platform is
running a JavaTM Virtual Machine 360, all input source files,
no matter which language they are being written in, are com
piled into JavaTM bytecode executable files by the server
compiler 216. Similarly, if the client platform is running a
.NET CLR, all source code files are compiled into .NET CLR
bytecode.
0041. The server compiler 216 includes a plurality of spe
cific universal compilers including among others, a universal
JavaTMBytecode compiler 312, a universal.NET CLR(Com
mon Language Runtime) compiler 314, a universal JavaS
criptTM compiler 316, a universal Flash SWF compiler 318,
and a universal XML compiler 320. The server compiler 216
also includes a server compiler control logic 310 that detects
the type of the client platform, invokes compiling and caching
of a client platform appropriate executable code and delivers
the appropriate executable code to the corresponding client
platform. When the server compiler 216 receives a request
from a certain client machine, the control logic 310 first
characterizes the client machine to see which executable for
mat is Supported by this client machine. If a compiled execut
able code of the supported format is available in the server
cache 218 and the source file has not changed since last
compilation, the server compiler control logic 310 sends the
cached executable code to the client machine directly. If the
Source file has been changed since the last compilation, the
control logic 310 prompts the server compiler 216 to retrieve
the source file, compile the Source file into the appropriate
executable code, cache the executable code in the server
cache 218 and send the executable code to the client machine.

0042 Each universal compiler receives an input file writ
ten in any programming language, such as JavaM, C#, Java
ScriptTM, C+, C++, Visual Basic, and delivers an output file in
one executable format specific to a certain client platform.
The input files 302,304,306 and the output files 332, 334,
336, 340 may also include markup documents written in
XML

0043 Referring to the example of FIG. 4A, the universal
JavaTM bytecode compiler 312 receives source code files writ
ten in programming languages such as JavaTM302, C# 3.04.

US 2009/0007160 A1

JavaScript TM306, among others, and delivers a JavaTMVirtual
Machine executable JavaTM bytecode file 332. The universal
JavaTM bytecode compiler 312 includes a plurality of custom
developed language compilers. Such as JavaScript"M com
piler 353, a plurality of commercially available language
specific compilers, such as JavaTM compiler 351, Jil compiler
352. C# compiler, among others, and a control logic 355.
JavaTM compiler 351 is commercially available from Sun
Microsystems of Santa Clara, Calif., Jil compiler 352 is com
mercially available from Microsoft of Redmond Wash. The
JavaScript TM compiler 353 is custom developed by Nexaweb
and compiles JavaScriptTM files into JavaTM bytecode. Simi
larly, the universal .NET CLR compiler 314, the universal
JavaScript TM compiler 316, and the universal Flash SWF
compiler 318, receive input files written in any programming
language and deliver bytecode files executable by a .NET
CLR engine, a JavaScriptTM engine, and a Flash player,
respectively. The control logic 355 module includes rules for
handling the various programming language codes and pro
cesses the input files. When an input file is received, control
logic module 355 checks which language the source code file
is being written in and selects the appropriate language spe
cific compiler to compile the source code file into executable
code in the desired executable format. For example, control
logic 355 of the Universal JavaTM bytecode compiler 312
would select the JavaScriptTM compiler 353 to compile Java
Script TM source files and JavaTM compiler 351 to compile
JavaTM Source files.

0044) Referring to FIG. 4B, the universal XML compiler
320 receives files written using various markup languages
such as, XHTMLTM (362), X-Forms (364), HTML (365),
XAML (370), SVG (368), and delivers XML code (340)
executable by an XML execution engine (366). The universal
XML compiler 320 includes a plurality of markup language
specific compilers, such as XHTMLTM compiler 371,XAML
compiler 372, SVG compiler 373, among others, and a con
trol logic 355. The control logic 355 is responsible for select
ing and invoking a markup language specific compiler to
compile a source file written in the specific markup language.
The language specific compiler takes the markup document
and converts it into a new markup document in the executable
format required by the execution engine. For example, if the
execution engine is a SVG rendering engine that knows how
to render SVG and the source code file is written using
XAML, the XAML compiler takes the XAML input and
converts it into SVG format. This compilation process can be
achieved using an XML Stylesheet Transformation (XSLT).
or some other lexical analysis and transformation.
0045. The compiled bytecode files 332,334,336,340 may
be stored in the server cache 218, shown in FIG. 4. When the
CRE 224 of a client machine 220 requests a specific file, the
SRE 214 determines the particular executable format of the
CRE 224 and checks if this particular format has already been
compiled and is stored in the server cache 218. If the particu
lar compiled bytecode exist in the server cache 218 and the
code has not been modified since the last time it was compiled
the SRE 214 downloads the executable file to the CRE 220 an
stores it in the client cache 226. Otherwise, the SRE 214 will
invoke the server compiler 216, and first compile the
requested code in the particular executable format and then
download it to the CRE 224 and store it in the client cache
226.

0046. This invention utilizes object-oriented program
ming methodology to develop object-oriented application

Jan. 1, 2009

programs. Object-oriented application programs typically
model a problem using an “object model” that defines classes
of objects representing elements of the problem. A class of
objects is defined in terms of the relationship of the class to
other classes, the data and properties (or attributes) associated
with objects in the class, and the operations (or tasks) that can
be performed on objects in the class. During execution of an
object-oriented application program, instances of the classes
in the object model, referred to as “objects.” are produced and
manipulated. Computation on these “objects” is performed
by calling on “methods' defined in business logic compo
nents associated with these “objects”. For example, in an
accounting management program, the various accounts are
defined as the program objects. Each object, i.e., account, has
attributes including account name, account number, amount
deposited in the account, among others. Tasks associated with
these account objects may be 'get account number”, “set
account name”, “set account amount’, among others. Objects
interact with each other and with the business logic code via
events or messages. An object may fire an event (or send a
message) in order to modify its own properties, or state.
Events are received and processed by the Subprograms or
business logic components associated with these objects.
Object-oriented programming languages are well known in
the art and are described in “Programming languages' Chap
ter 11, p. 435-483, edited by Robert W. Sebesta.
0047 Referring to FIG. 5, the object-oriented application
code 400 includes one or more markup documents 402 and
one or more business logic components 406. The markup
documents 402 are files written using an XML markup lan
guage. The business logic components 406 include instruc
tions for performing tasks upon the program objects. These
instructions are formulated as source code files written in a
programming language. Such as JavaM, JavaScript TM, CH,
Visual Basic (VB), Ji, among others. The business logic
components 406 are also program objects. The Client Runt
ime Environment (CRE) 224 receives the markup documents
402 and converts them into object-oriented representations,
i.e., markup objects 404. The markup objects 404 may be user
interfaces (UI) 401 or data 403. Each markup object 404 may
have events associated with it. For example, in the case of a UI
markup object that has input fields or buttons, an event may
include highlighting the button or input field, entering text in
the field, or clicking the button, among others. The event is
received and processed by the business logic component, so
that the state of the object is modified. In the example of the
user interface with the input fields, where text is entered in the
input fields, the business logic component modifies the UI to
display the entered text. The object oriented representations
of the markup documents 405 and business logic components
406 are bound via a markup-business logic binding mecha
nism 500.
0048 Referring to FIG. 6, the markup-business logic
binding 500 includes the process of binding the markup
objects to the business logic components (520) and the pro
cess of binding the business logic components to the markup
objects (530). In the markup object to business logic compo
nent binding 520, markup objects 510 defined in markup
document 550 invoke business logic components 540 by fir
ing markup object events 521. The business logic components
540, include definitions of methods that are used as the event
handlers for the markup object events. Upon firing of an
event, the CRE invokes the associated method in the corre
sponding business logic component, passes necessary infor

US 2009/0007160 A1

mation about the event to the method and executes the
method. In the previous example of the user interface markup
object that has several input fields, firing an event may be
entering a user's phone number in the appropriate input field.
The business logic component receives this markup object
event, validates it and formats the phone number for display.
0049. In the business component to markup objects bind
ing 530, business logic components 540 can access and
modify the markup objects 510 via a markup object Applica
tion Program Interface (API), or a Document Object Model
(DOM) API, 531. In one embodiment, the CRE 224 parses
and stores the markup document 550 into a DOM, and
exposes this DOM as a set of API that can be invoked by
business logic components 540. Business logic components
540 invoke this DOM API to programmatically manipulate
the markup document 550 stored in the DOM. This feedback
mechanism via the markup object API 531 may be “a form
validation' process or an internal calculation that will result
in modifying the markup objects 510. In an example of a
“form validation' process the user enters in the UI a phone
number that has three digits. The business logic component
recognizes that a three digit phone number is not valid, rejects
the input, displays an error in the UI and requests a valid
phone number.
0050. This two-way binding mechanism 500 enables the
clear separation of business logic, presentation and data. The
HTML and JavaScriptTM interaction models in web browsers
share a similar architecture. However, the present invention
differs from these prior art models because it allows for
object-oriented binding. The markup documents are con
Verted into object oriented representations (markup objects)
and the business logic components become program objects
as well. The object-oriented binding is then a binding
between these objects, i.e., the markup objects and the pro
gram objects. In the prior art example, the business logic is
written as Scripts, which are not object oriented, and the
binding is a binding between program methods to HTML
objects. This object-oriented binding of this invention allows
for the development of complex applications and provides
programming language and execution format independence.
In other words, the business logic code may be written in any
programming language including JavaM, JavaScript"M, CH,
J#, VB, and C+, and the markup documents may be written in
any markup language including XML, text, and HTML,
among others. If the programming language is not object
oriented, the source code can be compiled by the universal
compiler into an object oriented executable code. Several
XML specifications may be used including XUL (XML User
Interface Language), SVG (Scalable Vector Graphics) and
XForms. The combination of these XML languages creates a
rich environment that supports all functionalities of all net
work applications including typical Windows graphical user
interface, forms, 2D graphics and animation.
0051. A code example 600 of the markup-business logic
binding mechanism 500 is shown in FIG. 7A and FIG. 7B. A
markup document 610 is written using XML. The markup
document 610 defines a client-side logic object “bean 1621,
a parent button “parentBtn 632, a child button “childBtn”
635, and a data object “company Info' 641. The client-side
logic object “bean 1621 defines a client-side programming
object whose source code is “com.nexaweb.clientbean. De
moBean', effectively associating the business logic compo
nent 650 with this markup document 610. The source code for
business logic component 650 is written using the JavaTM

Jan. 1, 2009

programming language and defines a JavaTM class with three
different methods, including “init' 660, “doClick” 670, and
“do Over 680. The markup document to business logic bind
ing 520 is achieved by using the three methods 660, 670, 680
of the business logic component 650 as the event handlers for
events fired by the three markup objects 621, 632, and 635,
respectively. Method 660 processes the “onload' event for
markup object 621, method 670 processes the “oncommand
event for the parent button 633, and method 680 processes the
“onmouseover event for the child button 635. Whenever
Such an event happens, the CRE invokes the corresponding
method in the business logic component to process it. An
example of the business logic to markup binding 530 is shown
in the implementation of the three methods 660, 670, 680 in
the business logic component 650. For example, using the
DOM API exposed by the CRE, the “doClick” method 670
inspects the event information, retrieves the event source,
which should be the markup object that the user clicked, and
sets the “text' attribute of this markup object to be the pro
cessed result. For example by clicking on the parent button
object 632 the text “You clicked button: parentBtn appears
on the UI screen 633, as shown in FIG. 7C. Similarly, by
clicking on the child button object 635 the text “You clicked
button: childBtn appears on the UI screen 636, as shown in
FIG 7D.

0.052 FIG. 8 shows how this invention allows object-ori
ented markup object inheritance. This process greatly simpli
fies the creation and management of markup documents and
increases the flexibility of markup documents. The parent
markup object 710 includes a user interface definition 720, an
object specific data definition 730 and object behavior (or
event handler) definition 740. The child markup object 750
includes a user interface definition 760, an object specific data
definition 770 and object behavior (or event handler) defini
tion 780. The child markup object 750 inherits all these UI,
data and behavior definitions 760,770 and 780, respectively,
from the parent markup object 710. The child markup object
750 can also optionally overwrite the corresponding parent
definitions and add new definitions. This object-oriented
approach allows for inheriting and changing not only object
attributes, but also allows for entire different object behavior
by replacing the parent object's event handler definition with
child specific event handlers. Referring back to the code
example of FIG. 7A, the “childBtn 635 inherits all defini
tions (UI, data and behavior) from the “parentBtn 632. How
ever, markup object specific data are changed, i.e., the “id' is
changed from “parentBtn to “childBtn’. Similarly the user
interface definition is changed, i.e., the value of “text'
attribute is changed so that the text “You clicked button:
childBtn is displayed instead of “You clicked button: parent
Btn”. The “childBtn” inherits the object behavior from
“parentBtn so that the “oncommand event will invoke the
“bean1.doClick () method 670 for the child markup object,
as well. The child markup object 750 also modifies the behav
ior definition of the parent markup object 710 by binding the
“bean 1.doOver () method 680 to the “onmouseover” event
so that the “onmouseover” event will invoke the “bean1.
doOver () method 680 for the parent markup object, as well.
0053 Application programs are typically multi-megabyte

files. Loading Such big files into memory creates lengthy
delays for users and places great demands on the hardware
components because it requires faster CPU, bigger memory,
more storage, and a faster network, all of which translate into
costs and performance issues. The present invention solves

US 2009/0007160 A1

these problems by separating the application code into Small
independent modules each of which can be downloaded and
executed independently. Referring to FIG.9, application code
400 includes N number of modules, Module 1 (410), Module
2 (450), Module 3 (480), ... Module N (not shown). Each
module includes one or more markup documents and option
ally one or more business logic components. In the example
of FIG. 9, Module 1 (410) includes a markup document 420
and business logic components A (430) and B (440). Markup
document 420 defines two markup objects, i.e., a User Inter
face (UI) 422 and a Data file 424. Module 2 (450) includes a
business logic component C (470) and a markup document
460 defining a User Interface 462 and a Data file 464. Module
3 (480) includes business logic component A (430), business
logic component E (494) and a markup document 490 defin
ing a User Interface 492 and a Data file 493. Different mod
ules may share business logic components. For example,
Module 3 (480) uses the same business logic component A
(430) as Module 1(410). In this case the system 200 of FIG.3
uses client-side caching 226, as well as server-side caching
216 to avoid loading the same module or component more
than once. Accordingly, although the entire application code
400 is composed of many XML documents and many busi
ness logic components, each module may require only one
XML document and a few compiled business logic compo
nents, therefore resulting in a small footprint for each module.
This small footprint of each module enables fast application
code downloading. Furthermore, once a module is down
loaded in the client machine it is stored in the client caching
and it can be reused in the future without requiring a new
download. The server also provides for automated updating
of the modules that were previously downloaded in the client
machine and were stored in the client cache.

0054 Referring to FIG. 10, the process 800 of running and
application through a client machine includes the following
steps. When a user wants to use a network application he
starts the CRE and enters a request to start the client program
(802). The CRE receives the request (804) and checks to see
if the initial module is available in the local client cache (806).
If the module is not available in the local cache (807), the CRE
sends a request to the server (SRE) to download the specific
module (808). The server delivers the markup document that
describes the specific module to the CRE (810) and the CRE
inquires if this markup document needs to be cached (812) by
checking the document properties or configuration informa
tion. If this markup document needs to be cached (813), the
CRE caches it in the local client cache (814) and then pro
ceeds to the next question (815). Similarly, if the markup
document does not need to be cached in the local client cache
(811), the CRE proceeds to the next question (815). If the
module is available in the local cache (809), the CREskips the
downloading process and proceeds to the next question (815),
as well. Next, the CRE checks the module properties or con
figuration information to see if this module requires a busi
ness logic component (816). If no business logic component
is required (815) the CRE displays the module to the user
(818) and then waits for a user input (820). If the module
requires a business logic component (817), process (840)
takes place. In process (840), the CRE proceeds to check if the
business logic component is available in the local cache
(824). If the business logic component is available in the local
cache (821), it gets loaded from the local cache (826) in the
active memory. If the business logic component is not locally
available (823), the CRE sends a request to the server to

Jan. 1, 2009

download the business logic component (828). The server
checks if this business logic component has been compiled
before for this particular client machine executable format
(830), and if it has (831) it downloads the executable code
from the server cache to the client cache (834). Next, the CRE
stores the executable code in the client machine cache (836)
and loads it in the active memory (826). If the business logic
component has not been previously compiled for the specific
client machine executable format (829), the server first com
piles it into an executable code executable by the specific
client machine execution engine and stores it in the server
cache (832). Next, the server downloads the executable code
from the server cache to the client cache (834), where the
CRE caches it in the client cache (836) and then loads it in the
active memory (826). Finally, both the markup document and
the business logic component (837) are present in the active
memory and wait for an input from the user (820). If there are
more than one business logic components associated with a
specific module the process (840) is repeated for each indi
vidual business logic component (841). The process 800 is
repeated for downloading the next module and the business
logic components that are associated with it. Once the CRE
receives the markup language document, it immediately pro
cesses the document, executes the associated business logic
and displays the result to the user. This module-type down
loading and execution of a network application has the advan
tages of being fast and requiring low bandwidth. The storing
of the previously downloaded modules and associated busi
ness logic in the client-side cache and the server cache and the
synchronization of the client-side cache with the server cache
allows the client machine to execute the network application
offline, even in the case when the network connection is not
available.

0055. Once the appropriate modules are brought in the
active memory of the client machine the user interacts
directly with the application through client events. Client
events include among others, entering text in a screen field,
moving the mouse over text or a screen button, clicking the
mouse, highlighting a button in the screen, drag & drop, a
window is hidden, and new data is available. FIG. 11 depicts
how the system handles the client events (900). When a client
event happens (902), the CRE checks if there is a listener
listening to this event (904). If there is no listener listening to
this event (907) the CRE waits for a new client event (910). If
there is a listener listening to this event (905), the CRE deter
mines if the listeneris a business logic component in the client
side or a server-side event handler (906). If the listener is a
client-side business logic component (911), the CRE checks
if this client-side business logic component is instantiated,
i.e., the business logic component has been created and ini
tialized in the memory (912). If the client-side business com
ponent is not instantiated (915) the CRE loads it from the
cache and instantiates it (922). If the client-side business
component is instantiated the CRE locates the instantiated
instance (924), and invokes the registered listener method for
handling this event (926). The CRE processes the event
according to the client-side business component listener
method and produces a result (928). Next the CRE checks if
the result is a markup document or a direct client DOM
manipulation through an API (930). If the result is a markup
document 933 the CRE processes the markup document
(918) and displays the result (920). If the result is a direct
client DOM manipulation through the API (931) the CRE
executes the API calls (932) and displays the result (920).

US 2009/0007160 A1

DOM modifications result in changes in the application state
which may be changes entered through the user interface or
internal data changes. The system then waits for a new client
event (910). A client-side listening component may be a client
side business logic component, macro statements defined in
markup documents, and local URL invocations, among oth
ers. A server-side event handler may be a JavaTM server page,
a web service call, a servlet, and an Active Server Page,
among others. In one example, the application state is main
tained in an XML Document Object Model (DOM). This
DOM is maintained on the client side by the CRE and by the
server. When the user interacts with the application, the CRE
updates the client side DOM accordingly to reflect the user's
inputs. When the application's server-side business logic dic
tates a change in the state of the application, for example,
making a Window invisible, the server automatically updates
the server side DOM. Whenever either the client side or the
serverside DOM is updated, either the CRE or the server send
a message to the corresponding party to synchronize its
DOM, respectively. When the network is disconnected, the
application is still available because business logic code and
markup documents have been cached on the client side, and
the application state is available on the client side as well.
Changes of the application state are maintained in the DOM.
When the network connection becomes available, the client
runtime and server runtime automatically synchronize the
DOM.
0056. Other embodiments are within the scope of the fol
lowing claims. For example, instead of downloading one
module at a time, the server may package a group of modules
together, or all modules together into one deployment module
and downloads this deployment module to the client machine.
This is particularly useful for the purpose of offline comput
ing where all required offline computing functionality and
data can be packaged into one deployment module and down
loaded to the client machine at once. After Such downloading,
the deployment module can run on the client machine without
any connectivity until further modules or data are required.
0057. Several embodiments of the present invention have
been described. Nevertheless, it will be understood that vari
ous modifications may be made without departing from the
spirit and scope of the invention. Accordingly, other embodi
ments are within the scope of the following claims.
What is claimed is:
1. A computer application program stored in a computer

comprising:
at least one markup document;
at least one business logic component associated with and

applied directly to said at least one markup document;
and

an object oriented binding mechanism binding said at least
one markup document to said at least business logic
component.

2. The computer application program of claim 1 wherein a
client runtime environment (CRE) receives and converts said
at least one markup document into an object-oriented repre
sentation comprising one or more markup objects, one or
more user interfaces, and one or more data sets.

3. The computer application program of claim 2 wherein
said at least one business logic component comprises one or
more methods used as event handlers for a markup object
event.

4. The computer application program of claim 3 wherein
said object oriented binding mechanism comprises invoking

Jan. 1, 2009

said one or more methods by said one or more markup objects
by firing a markup object event.

5. The computer application program of claim 4 wherein
said object oriented binding mechanism further comprises
accessing and modifying said one or more markup objects by
said at least one business logic component via an Application
Program Interface(API) and wherein said API comprises one
of a markup object API or a Document Object Model (DOM)
API.

6. The computer application program of claim 5 wherein
said one or more markup objects comprise a parent markup
object and a child markup object and wherein said child
markup object comprises one or more markup object proper
ties inherited from said parent markup object and wherein
said one or more markup object properties comprise one of a
user interface definition, a data set definition or an event
handler definition.

7. The computer application program of claim 6 wherein
said parent markup object comprises one or more user inter
face definitions, one or more data definitions and one or more
event handlers and wherein said child markup object inherits
said one or more user interface definitions, said one or more
data definitions and said one or more event handlers from said
parent markup object.

8. The computer application program of claim 7 wherein
said one or more markup objects comprise a parent markup
object and a child markup object and wherein said child
markup object overwrites one or more markup object prop
erties of said parent markup object and replaces them with
one or more markup object properties of said child markup
object.

9. The computer application program of claim 1 wherein
said at least one markup document is written in a markup
language comprising one of XML, XUL, SVG, XformsTM,
XAML, HTML, XHTMLTM, HTML related markup lan
guages, text, or combinations thereof.

10. The computer application program of claim 1 wherein
said at least one business logic component is written in a
programming language comprising one of JavaTM, JavaS
criptTM, Ji, C#, C+, C++, Visual BasicTM, ActionScript, XSL,
XQuery, or XPathTM.

11. A method for developing a computer application pro
gram comprising:

providing at least one markup document;
providing at least one business logic component associated

with and applied directly to said at least one markup
document;

providing an object oriented binding mechanism binding
said at least one markup document to said at least busi
ness logic component; and

storing said computer application into computer memory.
12. The method of claim 11 further comprising receiving

and converting said at least one markup document into an
object-oriented representation by a client runtime environ
ment (CRE), wherein said object-oriented representation
comprises one or more markup objects, one or more user
interfaces, and one or more data sets.

13. The method of claim 12 wherein said at least one
business logic component comprises one or more methods
used as event handlers for a markup object event.

14. The method of claim 13 wherein said object oriented
binding mechanism comprises invoking said one or more
methods by said one or more markup objects by firing a
markup object event.

US 2009/0007160 A1

15. The method of claim 14 wherein said object oriented
binding mechanism further comprises accessing and modify
ing said one or more markup objects by said at least one
business logic component via an Application Program Inter
face(API), wherein said API comprises one of a markup
object API or a Document Object Model (DOM) API.

16. The method of claim 15 wherein said one or more
markup objects comprise a parent markup object and a child
markup object and wherein said child markup object com
prises one or more markup object properties inherited from
said parent markup object, and wherein said one or more
markup object properties comprise one of a user interface
definition, a data set definition or an event handler definition.

17. The method of claim 16 wherein said parent markup
object comprises one or more user interface definitions, one
or more data definitions and one or more event handlers and
wherein said child markup object inherits said one or more
user interface definitions, said one or more data definitions
and said one or more event handlers from said parent markup
object.

18. The method of claim 17 wherein said one or more
markup objects comprise a parent markup object and a child
markup object and wherein said child markup object over
writes one or more markup object properties of said parent
markup object and replaces them with one or more markup
object properties of said child markup object.

19. The method of claim 11 wherein said at least one
markup document is written in a markup language compris
ing one of XML, XUL, SVG, XformsTM, XAML, HTML,
XHTMLTM, HTML related languages, text, or combinations
thereof.

20. The method of claim 11 wherein said at least one
business logic component is written in a programming lan
guage comprising one of JavaTM, JavaScriptTM, Ji, Ci, C+.
C++, Visual BasicTM, ActionScript, XSL, XQuery, or
XPathTM.

21. A network application program stored in a server
memory comprising one or more modules wherein each mod

Jan. 1, 2009

ule comprises at least one markup document, at least one
business logic associate with and applied directly to said at
least one markup document and an object oriented binding
mechanism binding said at least one markup document to said
at least business logic component.

22. The network application program of claim 21 wherein
said network application program is deployed in a network
computing system by first separating said network applica
tion into said one or more modules and then downloading
separately each of said one or more modules to one or more
client machines.

23. The network application program of claim 22 wherein
each of said client machines comprises a client runtime envi
ronment (CRE) and said CRE further comprises a storage for
caching said downloaded one or more modules.

24. The network application program of claim 23 wherein
said CRE executes said downloaded one or more modules
independently of each other.

25. The network application program of claim 24 wherein
said CRE executes said downloaded one or more modules
offline.

26. The network application program of claim 25 wherein
said server further comprises a compiler system receiving a
plurality of input files, and converting any of said plurality of
input files into a plurality of output files, respectively, wherein
said plurality of input files comprise said network application
written in a plurality of different programming languages,
respectively, and said plurality of output files comprise a
plurality of corresponding executable codes of said network
application, respectively.

27. The network application program of claim 26 wherein
each of said one or more client machines comprise an execu
tion engine receiving one of said output files and executing
said corresponding executable code.

28. The network application program of claim 27 wherein
said server is connected to said one or more client machines
via a low bandwidth network connection.

c c c c c

