A modular single sheet feeder for feeding media sheets to a processing apparatus includes a chassis frame and a modular roller support and drive assembly pivotally supported on the frame for easy assembly. The roller support and drive assembly biases a roller frame which may be a replaceable bogie toward the media sheets to be fed and selectively positions the roller frame in a stack feeding position. A stack stop is provided for limiting the motion of the stack during manual loading and is automatically moved out of the media path as sheets are fed. Over engagement protection of the input gears and of the roller drive gears is also provided.
CROSS REFERENCE TO RELATED APPLICATIONS

None.

BACKGROUND OF THE INVENTION

The present invention relates generally to the art of document processing equipment such as scanners, printers, facsimile machines and combination devices which use single sheet feeders to pick single sheets of media to be processed from a stack thereof. Such equipment includes sheet moving rollers, belts or wheels and, in particular, the sheet feeders with which the present invention is concerned employ both a pre-feed roller and a separation roller spaced downstream from the pre-feed roller. A stack stop is positioned to be moved into and out of the path of sheet movement between the rollers. Worn or otherwise damaged rollers in such equipment occasionally require replacement necessitating a service call and attendant expense. It is accordingly desirable to provide a modular single sheet feeder which can be easily assembled at the factory and which also has easily replaceable rollers which can be serviced by the user without the necessity to involve a skilled service technician.

SUMMARY OF THE INVENTION

The present invention therefore provides a sheet feeder comprising:

a) a tray having a support surface and spaced sides defining a sheet delivery path;
b) a roller support assembly pivotally mounted on said tray, said assembly including a frame having a sheet engaging roller and roller drive gears thereon, said roller support and drive assembly including:
 1) a shaft extending transversely above said sheet delivery path and a biasing member for rotating said shaft relative to said tray;
 2) at least one load arm fixedly attached to said shaft, said frame being pivotally affixed to said load arm, said shaft biasing said frame toward said support surface;
 3) a cam coaxially rotatably mounted on said shaft, said cam including a cylindrical surface and an aperture in said surface;
 4) a follower pivotally supported on said assembly for rotation about an axis parallel to said shaft, said follower having a finger engageable with said cam surface and said aperture and having a first cam surface engageable with said frame;
 5) a swing arm rotatably mounted on said shaft, said swing arm engaging said follower to pivot said follower;
 6) an input gear and a clutch gear mounted on said swing arm, said input gear being affixed to said cam and engaged with said clutch gear, said clutch gear being engageable with a roller drive gear on said frame as said swing arm rotates on said shaft in a forward sheet delivery direction, and said swing arm rotating on said shaft to disengage said clutch gear from said roller drive gear when input power is applied in a reverse direction and when a roller is over driven.

The present invention further provides a sheet feeder comprising:

a) a tray having a support surface and spaced sides defining a sheet delivery path; and
b) a roller support assembly which includes a frame having a pre-feed roller and a separation roller mounted thereon, said assembly being pivotally mounted on said tray, said assembly comprising:
 1) a shaft extending transversely above said sheet delivery path and a biasing member for rotating said shaft to urge said rollers toward said support surface;
 2) at least one load arm fixedly attached to said shaft for pivotally supporting said roller frame;
 3) a cam rotatably mounted on said shaft, said cam including a cylindrical surface and an aperture in said surface;
 4) a follower pivotally supported on said load arm for rotation about an axis parallel to said shaft, said follower having a finger engageable with said cam surface, said finger being moveable into said aperture during forward rotation of said cam in a sheet delivery direction, said follower having a first follower cam surface engageable with said frame for moving said frame and roller away from said support surface during reverse rotation of said cam, said follower having a second cam surface;
 5) a swing arm rotatably mounted on said shaft, said swing arm engaging said follower during said reverse rotation to pivot said follower to remove said finger from said aperture; and
 6) a stack stop pivotally mounted on said assembly and engageable by said second cam surface to move said stack stop in a path extending between said pre-feed roller and said separation roller out of a path of movement of a media sheet when said finger is in said aperture during said forward rotation.

The invention further provides a sheet feeder comprising:

a) a tray having a support surface and spaced sides defining a sheet delivery path; and
b) a roller support assembly mounted on said tray, said assembly including a rotary input gear mounted on support structure; and
c) an input gear retainer coaxially mounted on said support structure with said input gear, said retainer having a cylindrical surface which provides a motion limit surface for engagement by a pivotal motor output gear arm to prevent over engagement of teeth on said output gear and said input gear.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a single sheet feeder module which includes a media input tray shown partly in section, a modular roller support assembly, and a removable roller bogie.

FIG. 2 is a top plan view of the sheet feeder module.

FIG. 3 is a cross sectional elevation taken at line 3—3 on FIG. 2.

FIG. 4 is an exploded perspective view of the bogie.

FIG. 5 is a plan view of the bogie.

FIG. 6 is a cross sectional elevation of the bogie taken at line 6—6 on FIG. 5 showing a stack damper on the bogie.

FIG. 7 is a right side elevation of the bogie.

FIG. 8A is a cross sectional elevation of the bogie taken at line 8—8 on FIG. 5 showing the gear cluster and disengaged pre-feed roller clutching gear.
FIG. 8B is a cross sectional elevation of the bogie like FIG. 8A showing the engaged position of the pre-feed roller clutching gear.

FIG. 9 is a plan view of the modular roller support assembly and bogie removed from the sheet feeder module.

FIG. 10 is a perspective view of the modular roller support assembly.

FIG. 11 is a cross sectional elevation of the modular roller support assembly taken at line 11—11 on FIG. 9 showing the bogie lifting handle.

FIG. 12 is a cross sectional elevation taken at line 12—12 on FIG. 9 showing a bogie support load arm.

FIG. 13 is a cross sectional elevation taken at line 13—13 on FIG. 9 showing the bogie latch and the stack stop.

FIG. 14 is a cross sectional elevation taken at line 14—14 on FIG. 9 showing the main clutch gear disengaged from the separation roller drive gear.

FIG. 15 is a cross sectional elevation taken at line 15—15 on FIG. 9 showing the follower engagement with the swing arm.

FIGS. 16A—16E show five positions of the bogie and stack stop as controlled by different positions of a cam follower moved by a cam and by a swing arm.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The modular sheet feeder 10 seen in the perspective view in FIG. 1 is a separate unit of a document processing apparatus which includes a document processing module (not shown) such as a printer, scanner, facsimile machine or copier or combination of any of the foregoing. The sheet feeder module 10 is affixed to the document processing module (not shown) for feeding individual sheets from the top of a stack thereof to sheet transporting mechanism in the document processing module.

The sheet feeder module 10 is comprised of an input tray comprising an input frame 20 having a stack support surface 22 and spaced sides 24, 26 in the form of upstanding walls which define a sheet transport path for moving individual sheets from the top of a stack supported on a stack support surface 22 from left to right as seen in FIG. 1. The side wall 24 includes a shaft mounting cradle having a non-circular gate 28 and an integrally formed spring mounting post 30 for purposes which will be described. The other side wall 26 is provided with a bushing aperture 32 located in a motor support plate 34 attached by suitable fasteners to the wall 26. A reversible electric step motor 35 is supported on the motor support plate 34 which, with the wall 26, defines a housing for the motor and motor output gear (not shown).

The input frame 20, which may be of molded plastic as is conventional, includes a stack retard wall 36 which is angled upwardly and away from the stack support surface 22 and with a retard pad 38 positioned for engagement with the arcuate surface of a single sheet separation roller 90 and with a pad 40, preferably of cork, for engagement with a sheet pre-feed roller 80. As herein used, the term ‘roller’ includes single and multiple rollers and spaced or adjacent coaxially mounted wheels and equivalents for moving single sheets of media such as moveable belts trained around spaced rollers.

A roller assembly, which may comprise a replaceable bogie, best seen in FIG. 4, comprises a frame 50 formed of spaced side members or plates 52, 54 joined by a cross piece 60 to support a pre-feed roller 80 and a single sheet separation roller 90 downstream of the pre-feed roller 80, supported on the frame 20. Side plate 54 has an integrally formed tail or lever arm 56 which extends generally parallel to a line connecting the centers of rotation of the pre-feed roller 80 and single sheet separation roller 90. The side plates 52, 54 include bearing apertures 62, 64 for a pre-feed roller support shaft and bearing apertures 66, 68 for a separation roller support axle 92. A gear retainer plate 70 is mounted on and spaced from side plate 52 by spacing posts 74 and fasteners 76. A pre-feed roller clutch gear shaft slot 58 in side plate 54 aligns with a pre-feed roller clutch gear shaft mounting slot 72 in the gear retainer 70.

The sheet pre-feed roller 80 is supported on a shaft 81 whose ends are received in the apertures 62, 64 in the side plates 52, 54, respectively. As is conventional, the pre-feed roller has an elastomeric surface or a surface texture suitable for engaging the top surface of a sheet to be removed from the stack. Similarly, the single sheet separation roller 90 is supported on an axle 92 the ends of which are received in the bearing apertures 66, 68 in the side plates 52, 54. In sheet transporting position, the separation roller 90 forms a sheet separation nip with a surface of the retard pad 38. The separation roller axle 92 has spaced support bearings 94, 96 thereon for a purpose to be described and a separation roller drive gear 98 is also mounted on the axle 92 for driving the separation roller 90. A plurality of intermediate gears 102, 104 may be provided to transmit power from the rotating separation roller 90 to rotate the pre-feed roller 80 through a pre-feed roller clutch gear 110 which preferably has elastomeric teeth permanently engaged with the separation roller drive gear 98 or with one of the intermediate gears. The clutch gear 110 is supported on a shaft, the ends of which are received in the slots 58, 72 which are preferably arcuate and are centered on the axis of rotation of a drive or intermediate gear which is continually engaged with the clutch gear 110.

A stack damper 120 is freely rotatable on the pre-feed roller support shaft 81, the stack damper having a surface which extends in the downstream direction of sheet movement from the pre-feed roller 80 parallel to the surface of a stack of media sheets on the support surface 22. The stack damper 120 is heavy enough to prevent buckling of thin sheets between the pre-feed roller 80 and the separation roller 90 and is free to pivot upwardly by sheet contact, particularly with heavy sheets, until it engages a stop surface on the frame such as the cross piece 60 as seen in FIG. 6. The roller frame 50 thus supports the pre-feed roller 80, single sheet separation roller 90, gears and stack damper 120, if provided, which together comprise a replaceable bogie which is supported by a modular roller support and drive assembly 200 to be described.

The modular roller support and drive assembly 200 best seen in FIGS. 9 and 10 is comprised of a shaft 201 received in axially aligned shaft supports in the spaced side walls 24, 26 of the input tray 20. One of the shaft supports comprises the bushing aperture 32 into which one end of the shaft is inserted as the other end of the shaft, having a part non-circular configuration, is rotated to the appropriate position to be dropped into the other support through the non-circular shaft mounting slot 28. The shaft also has a transversely extending spring arm 202 non-rotatably affixed to the shaft, the arm 202 having a spring retainer or boss 204 protruding therefrom. A biasing member, preferably a tension spring 206, is connected between the spring retainer 30 on the side of the input tray and the boss 204 on the spring arm 202. The spring 206 passes over the center axis of the shaft 201 as the spring is tensioned.

The roller assembly 50 in the form of a replaceable bogie is supported between a pair of spaced bogie support load
arms 210, 212 non-rotatably affixed to the shaft 201 as seen in FIGS. 9 and 10. The bogie support arms preferably also include spaced axially aligned support hubs 214 (FIGS. 1 and 13) for supporting a stack stop link 252. The load arms 210, 212 also preferably have spaced transversely extending stack stop guides 216 thereon and are provided with aligned bogie support apertures or slots 218, 220 in which the spaced bearings 94, 96 on the separation roller axle 92 are received to support the removable bogie on the modular roller support and drive assembly 200. A bogie retention latch 230 having a release button 232 and spaced latch hooks 234 is pivotally mounted between the bogie support arms 210, 212, the latch being biased to closed position by a bogie latch spring 236 seated between the bogie latch button and a transverse brace 211 which extends between and is connected to the load arms 210, 212. The latch hooks 234 engage the bogie support arms when the latch is closed to avoid clamping of the latch hooks onto the bearings 94, 96 of the separation roller axle 92.

A bogie lifting handle 240 is preferably also provided, the handle being non-rotatably affixed to the support shaft 201. As seen in FIG. 11, the lifting handle is biased to a downward position by a spring 242 engaged with a seat on the load arm 210 so that lifting of the handle 240 first compresses the spring 242 before lifting the load arms 210, 212 and attached bogie. The compression spring 242 also biases the bogie downwardly through contact of the end of the handle 240 with the upper surface of the bogie frame as seen in FIGS. 1 and 10 providing the force on the pre-feeder roller 80 in the media feed position and urging the frame tail or lever arm 56 upwardly against a cam surface of a follower 260 (FIGS. 14 and 16) to be described, when the follower has lifted the bogie to the up positions. The lifting handle 240 and tension spring 206 are designed with over center geometry so that the spring 206 will bias the replaceable roller assembly or bogie 50 downwardly for sheet feeding and will hold the handle and bogie in the lifted position to facilitate removal of jammed sheets and inspection of the paper path.

As seen in FIGS. 3, 13 and 16, a stack stop 250 comprising a substantially rectangular plate which is vertically guided between the stack guides 216 is pivotally connected to and extends from a stack stop link 252 downwardly between the pre-feeder roller 80 and single sheet separation roller 90. The stack stop link 252 is pivotally attached to and supported between the spaced load arms 210, 212 such that the stack stop 250 is movable into and out of the path of movement of a media sheet downstream of the pre-feeder roller 80 and upstream of the single sheet separation roller 90. A downwardly extending leg 256 is integrally formed on the stack stop link 250 for engagement with a follower 260 to lift and lower the stack stop 250. As seen best in FIG. 16, the follower 260, having a pivot aperture 262 therein is pivotally mounted on a follower support post 222 received in the aperture 262, the post extending outwardly from the load arm 212 in a direction parallel to the axis of the support shaft 201. The follower 260 has a point 264 and a cylindrical first cam surface 266 (FIG. 16A-3) which engages the bogie tail lever arm 56 as the follower 260 pivots on its support post to partly raise the bogie and pre-feeder roller 80 supported thereon relative to the stack support surface 22 in the tray 20 when a stack of sheets is to be inserted against the stack stop 250. The follower 260 also has a second cam surface 268 (FIG. 16A-3) which engages the leg 256 on the stack stop link 252 for raising and lowering the stack stop into and out of sheet blocking position. A third cam surface 270 (FIG. 16C) on the follower 260 is provided for engagement with the bogie tail lever arm 56 and is used for test purposes not relevant herein when the single sheet feeder module is not installed on the document processing module. The follower 260 also includes an axially protruding portion in the form of a pin 272 for a purpose to be described.

As seen in FIGS. 10, 14 and 16, modular roller support and drive assembly 200 also includes a swing arm 280 axially supported on the shaft 201 for rotation relative to the shaft 201 by spaced swing arm supports 284, 286. A power input gear assembly 290 having axially spaced gears 291 affixed to opposite ends of a sleeve 292 is mounted on the support shaft 201. One of the axially spaced gears 291 receives input power from an automatic direction finding gear drive (not shown) driven by the motor 35. The other of the axially spaced gears 291 on the input gear assembly 290 is continuously engaged with a clutch gear 294 supported on the swing arm 280. An adrag spring for the clutch gear 294 may also be provided. A pocket 296 seen in FIGS. 16 (3) in the side face of the swing arm 280 receives the pin 272 on the follower so that rotation of the swing arm on shaft 201 lifts the follower 260 when the input gear assembly 290 is rotated in the reverse direction of rotation by the motor 35. A motion limit hook 300 is also integrally formed on the swing arm 280 for engagement with the protruding end of the separation roller axle 92 to provide over-engagement protection between the teeth of the main clutch gear 294 and the separation roller drive gear 98 and to restrain lifting of the bogie frame 50.

As seen in FIGS. 2 and 16, a rotary cam Geneva 310 is also affixed to the input gear assembly 290 and is positioned on the remote side of the swing arm 280 from the gears 291 and in alignment with the follower 260 so that the point 264 on the follower engages a cylindrical surface of the cam and is permitted to enter an aperture 312 in the cylindrical surface of the cam 310 when the cam rotates in the forward or counterclockwise direction as seen in FIG. 16 (1). Reverse rotation of the input gear assembly 290 causes the cam 310 to lift the point 264 from the aperture 312 to raise the bogie and lower the stack stop 250 for insertion of a new stack of media sheets.

The swing arm 280 and input gear assembly 290 including the cam Geneva 310 which are all rotatably supported on the shaft 201, are retained on the shaft by a retainer 320 suitably affixed to the shaft to axially position one of the input gears 291 in alignment with the motor output gear 293 and the other gear 291 is positioned for engaging the clutch gear 294 supported on the swing arm 280. As seen in FIG. 10, the retainer 320 has an arcuate, preferably cylindrical, surface 322 adjacent to the input gear 291 in a position such that the cylindrical surface 322 will be engaged by a motor output gear support 295 which moves the motor output gear 293 into and out of engagement with the input gear 291 to prevent over engagement of the motor output gear and the input gear 291. The retainer 320 may be held in position on the shaft 201 by a snap spring seated in a properly axially positioned circumferential groove on the shaft 201 or by any other suitable means. A split sleeve 330 made of resilient plastic is snapped onto the other end of the shaft 201 adjacent the bogie lifting handle 240 to provide proper positioning of the lifting handle 240.

Operation
A stack of media sheets is inserted into the sheet feeder beneath the pre-feeder roller 80 which is initially positioned at a distance above the stack support surface 22 to permit stack insertion until the leading edge of the stack engages the stack stop 250. Application of input power in the forward direction
to the input gear assembly 290 then rotates the Geneva cam 310 and aperture 312 to a position which permits the follower finger 264 to drop into the cam aperture 312. Continued forward rotation of the motor then lifts the stack stop 250 and drops the bogie and roller 80 into sheet transporting position. The pre-feed roller 80 is under driven relative to the separation roller 90 which subsequently is under driven with respect to the sheet moving rollers in the document processing module (not shown) such that sheets are pulled through the feeder. In addition, both the pre-feed roller 80 and the separation roller 90 are clutch driven to allow them to be over driven by the media sheet. The pre-feed roller drag spring 84 places drag on the pre-feed roller drive gear to permit dwell to be built up in the prefeed roller 80. The pre-feed roller 80 is under driven so that dwell can be accumulated during advancement of the sheet of media, the dwell then being consumed after the trailing edge of one sheet leaves the pre-feed roller 80. This dwell then allows the pre-feed roller to remain stationary so that a second sheet will also remain stationary until the trailing edge of the first sheet has just left the nip defined between the separation roller 90 and the tray 20.

Since position 90 must be under driven relative to the downstream document processing rollers (not shown) the separation roller 90 needs to be clutched in an overdrive situation to prevent abnormally high back tension from the sheet feeder module and unnecessary parasite torque losses in the drive system caused by a sheet of paper pulled by the downstream document processing module rollers. The clutch gear 294 for the separation roller 90 therefore needs to engage when the bogie is in the down position. Also, the stack stop 250 must be in the up position whenever the rollers 80, 90 are driven to transport a sheet of media. Conversely, the clutch gear 294 for the separation roller 90 is disengaged when the bogie is up, the stack stop is down, and the system is dormant. The separation roller clutch gear 294 also allows the separation roller to free wheel when the sheet is being pulled down downstream by the document processing module rollers.

The follower finger 264 is always urged against the cylindrical surface of the Geneva cam 310 due to bias by the tail lever arm 56 on the bogie frame 50 on the cam surface 266 of the follower 260. Although a compression spring 242 engaged with the lifting arm provides this bias, various alternatives can easily be envisioned by those skilled in the art. The point on the end of finger 264 is therefore urged into the aperture 312 whenever the aperture rotationally passes in the forward direction past the finger 264 but the aperture in the cam 310 is curved to prevent entry of the point into the aperture when the cam 310 continues to rotate in the same direction after the finger 264 has exited the aperture 312. This provides four stable operational positions of the follower.

1. Stack Insertion or Up-Up—The pre-feed roller 80 is spaced from the input tray and the follower 260 and protruding pin 272 are in the up position and the point 264 engages the cylindrical surface of the cam 310 anticipating passage of the slot as seen in FIG. 16A(1). The follower 260 is upwardly biased by the bogie tail lever arm 56. The coefficient of friction between the engaged surfaces of the follower and lever arm must be low enough to ensure that the lever arm urges the follower point 264 toward the surface of the cam 310. The swing arm 280 is also in the up position as seen in FIGS. 16A(2 and 3) and a lower wall of swing arm pocket 296 is engaged with the pin 272.

2. Up-Down—The pre-feed roller 80 is still spaced from the input tray since the follower 260 is in the up position but the point 264 has moved into the aperture 312 as seen in FIG. 16C(1). It is to be noted that the point 264 enters the aperture 312 only when the cam is rotated in the reverse direction (counterclockwise as seen in FIG. 16). The first cam surface 266 on the follower allows the follower to maintain in a stable up-down state without jumping to one of the following positions. The swing arm 280 has commenced downward movement as seen in FIGS. 16D(2 and 3) and an upper wall of the pocket 296 now engages the pin 272.

3. Operational State—This position seen in FIGS. 16C(1–3) is used to pre-feed a document from the input stack and present it to the separation nip and then drive the sheet to the scanning region of the apparatus. The pre-feed roller 80 rests on top of the input stack of media and is downwardly biased with sufficient sheet picking force by the handle 240. The follower and stack stop are in the same position as in the down states but there is clearance between the follower surface 270 and the tail lever arm 56. This allows all of the force from the lifting handle 240 to load the pre-feed roller against the input stack. The swing arm is down and engaged and the bogie clutch gear is engaged. Rotational power input then rotates the rollers 80, 90 in the forward direction.

4. Down-Up—This position is used when testing the modular roller support and drive assembly 200. The pre-feed roller 80 is in the down position as cam 310 is rotated in the reverse direction and the follower point 264 has entered the aperture 312 in the cam 310 due to engagement of the tail lever arm 56 with the first cam surface 266 of the follower pushing the point up into the aperture 312 as seen in FIG. 16D(1). The swing arm 280 is in the up and disengaged position as seen in FIGS. 16D(2 and 3) when the input is rotating in the reverse (clockwise) direction. There is enough space in the pocket 296 to allow the swing arm to rotate down into the engaged position if the input power is applied in the forward (counterclockwise) direction.

5. Down-Down—The pre-feed roller 80 and follower 260 are down and the point 264 is ready to enter the aperture 312 in the cam Geneva as seen in FIG. 16E(1). The swing arm 280 is also in the down position as seen in FIGS. 16E(2 and 3). The second cam surface 268 on the follower engages the leg 256 of the stack stop link 252 to raise the stack stop 250 when the follower rotates to the down position seen in FIGS. 16D and E. When the follower 260 rotates to the up position, the stack stop link and stack stop are lowered as seen in FIGS. 16A and B.

Engagement of the follower pin 272 by the wall of the swing arm pocket 296 ensures that when the follower 260 is in the up position the bogie is also up and the stack stop 250 is in the down position and the main clutch gear 294 on the swing arm is not engaged with the separation roller drive gear 98. Thus, the system is in “neutral” so that the input gear assembly 290 can rotate indefinitely in the reverse direction without engagement of the drive train for the rollers 80, 90.

The drag spring 295 for the main clutch gear 294 gives the clutch gear a propensity to engage when rotating in the forward direction and the motion and the impetus to disengage when the clutch gear rotates in the reverse direction. This impetus is transferred to the pin 272 on the follower by the surfaces of the pocket 296 on the swing arm. There is adequate spacing between the pocket surfaces such that some over travel of the swing arm 280 is permitted for the
overrunning clutching purposes previously explained. The surfaces of the pocket 296 are angled such that they rotate the follower about its pivotal support post 246 with the maximum amount of engagement of the point 264 with the Geneva cam 310. The stack damper 120 on the bogie frame 50 is preferably made of plastic and has a weight heavy enough to constrain thin media sheets driven by pre-feed roller 80 to prevent buckling in the area between the pre-feed roller 80 and the separation roller 90, yet light enough to prevent it from buckling between the pre-feed roller 80 and stack damper 120. The stack damper 120 is also stopped in its upward travel to impart a slight bend to thick media sheets during sheet movement imparted by the pre-feed roller 80. The stack damper 120 falls after each sheet passes to beat down subsequent sheets of media that may be climbing up the inclined retard wall 36 reducing the tendency for more than just a few sheets to thereby be driven over the top of the wall 36. The stack damper 120 rests by gravity on top of the top sheet of media. The bottom surface of the stack damper 120 is tangential to the outer drive surface of the pre-feed roller 80 to ensure that the surface of the stack damper is always in flat contact with the top sheet of the input stack regardless of the height of the input stack. The physical engagement of the stack damper 120 with a very stiff sheet to slightly bend it thus prevents it from moving straight from the input stack over the crest of the retard wall 36, scrubs off additional sheets from climbing over the top edge of the retard wall 36 and initiates proper form to a stiff sheet by providing a bend orthogonal to the direction of movement of the sheet. This eliminates sheet curl and other discontinuities that may exist in an axis parallel with the direction of movement of the sheet that can disturb single sheet separation.

The modular roller support and drive assembly 200 can easily be assembled to and removed from the tray 20 by detaching the spring 206. The support shaft 201 can then be rotated to the proper position so that it can be removed from its supports in the side walls of the tray 20. The mounting of the entire roller support and drive assembly 200 on a single support shaft 201 enables accurate alignment, loading and positioning of the various structural pieces mounted on the shaft.

The pre-feed roller clutch gear 110 is preferably made of elastomeric material or has elastomeric teeth thereon for quiet operation. The clutch gear 110 is supported on an axle received in slots 58, 72, the bottom saddle of which prevents over engagement of the clutch gear with the pre-feed roller drive gear 82. When the pre-feed roller 80 is over driven, the clutch gear 110 moves upwardly until its teeth disengage from the pre-feed roller drive gear 82. The slots are angled or preferably arcuate such that the clutch gear never disengages from the intermediate drive gear with which it is engaged. The use of elastomeric teeth on the clutch gear 110 has been found to significantly reduce objectionable clicking noises created, when clutching gears made out of hard plastic materials are moved into engagement with the driven gear.

Persons skilled in the art will also appreciate that various additional modifications can be made in the preferred embodiment shown and described above and that the scope of protection is limited only by the wording of the claims which follow. What is claimed is:

1. A sheet feeder comprising:
 a) a tray having a support surface and spaced sides defining a sheet delivery path;
 b) a roller support assembly pivotally mounted on said tray, said assembly including a frame having a sheet engaging roller and roller drive gears thereon, said roller support assembly including:
 1) a shaft extending transversely above said sheet delivery path and a biasing member for rotating said shaft relative to said tray;
 2) at least one load arm fixedly attached to said shaft, said frame being pivotally affixed to said load arm, said shaft biasing said frame toward said support surface;
 3) a cam coaxially rotatably mounted on said shaft, said cam including a cylinderical surface and an aperture in said surface;
 4) a follower pivotally supported on said assembly for rotation about an axis parallel to said shaft, said follower having a finger engageable with said cam surface and said aperture and having a first cam surface engageable with said frame;
 5) a swing arm rotatably mounted on said shaft, said swing arm engaging said follower to pivot said follower;
 an input gear and a clutch gear mounted on said swing arm, said input gear being affixed to said cam and engaged with said clutch gear, said clutch gear being engageable with a roller drive gear on said frame as said swing arm rotates on said shaft in a forward sheet delivery direction, and said swing arm rotating on said shaft to disengage said clutch gear from said roller drive gear when input power is applied in a reverse direction and when a roller is over driven.
 2. The sheet feeder of claim 1, further comprising a second load arm fixedly attached to said shaft, said frame being pivotally supported on and between said load arms.
 3. The sheet feeder of claim 2, wherein said finger is received in said aperture in said cam as said cam is driven in reverse direction to pivot said follower and frame away from engagement with said tray.
 4. The sheet feeder of claim 3, wherein said frame includes a lever arm engageable with said follower for biasing said follower in a direction to urge said finger into engagement with said cam surface.
 5. The sheet feeder of claim 4, wherein said finger includes a point for entry into said aperture and said cam aperture is curved to prevent entry of said point into said aperture when said cam continues to rotate in one direction after said point has exited said aperture.
 6. The sheet feeder of claim 3, further comprising a motion limit stop on said swing arm and a motion limit stop on said frame, said stop on said swing arm engaging said limit stop on said frame to prevent over engagement of said clutch gear on said swing arm with said roller drive gear.
 7. The sheet feeder of claim 6, wherein said motion limit stop on said frame is aligned with the axis of rotation of said roller drive gear.
 8. The sheet feeder of claim 3, further comprising an input gear retainer mounted on said shaft, said retainer having a cylindrical surface which provides a motion limit surface for a pivotal motor output gear support to prevent over engagement of the point on said output gear and teeth on an input gear.
 9. The sheet feeder of claim 3, wherein said rollers on said frame include a pre-feed roller and a separation roller.
 10. The sheet feeder of claim 9, further comprising a stack stop pivotally mounted on said assembly and engageable by said follower to pivotally move said stack stop in a path extending between said pre-feed roller and said separation roller into and out of the path of movement of a media sheet.
11. The sheet feeder of claim 10, wherein said stack stop is in sheet blocking position when said drive gear is disengaged from said separator drive roller gear and is in sheet passing position when said drive gear is engaged with said separation roller drive gear.

12. The sheet feeder of claim 11, wherein said stack stop comprises a stop member and a link member pivotally connected to said stop member, said link member having a leg which engages said follower.

13. The sheet feeder of claim 10, wherein said tray includes shaft supports for receiving said shaft whereby said media roller support and drive assembly is removable as a module from said tray.

14. The sheet feeder of claim 13, wherein said shaft supports comprise a bearing aperture for receiving one end of said shaft and a cradle having a non-circular opening for receiving a non-circular collar on said shaft when said shaft is rotated to an assembly module removal position.

15. The sheet feeder of claim 14, wherein said roller support and drive assembly further comprises a lifting handle fixedly attached to said shaft for manually rotating said roller support and drive assembly relative to said tray.

16. The sheet feeder of claim 15, wherein said biasing member comprises a tension spring connected to said tray and to a spring arm affixed to said shaft.

17. The sheet feeder of claim 16, wherein said tension spring is connected to said tray and spring arm such that said tension spring crosses the centerline of said shaft to hold said roller support and drive assembly in an inequitable position for inspection of said sheet delivery path.

18. The sheet feeder of claim 2, wherein said load arms have frame support slots therein which receive frame support bearings aligned with the axis of rotation of said separation roller.

19. The sheet feeder of claim 18, wherein said roller frame, said rollers and said gears mounted on said roller frame comprise a replaceable bogie supported by said load arms.

20. The sheet feeder of claim 19, further comprising a bogie latch pivotally mounted on said load arms, said latch including spaced latch hooks for holding axially aligned bearings on said separation roller in said support slots on said load arms.

21. The sheet feeder of claim 20, further comprising a spring biasing said hooks toward said slots.

22. The sheet feeder of claim 21, wherein said hooks engage said frame to prevent said latch from clumping said separation roller.

23. The sheet feeder of claim 20, further comprising a manually accessible release button on said latch for pivoting said latch relative to said load arms to release said bogie.

24. The sheet feeder of claim 11, further comprising a frame positioning lever extending from said frame in a direction generally parallel to and spaced from a line connecting the axes of rotation of said rollers, said follower having a first cam surface which engages said lever to position said frame relative to said input tray.

25. The sheet feeder of claim 24, wherein said follower includes a second cam surface for testing said media roller support and drive assembly module.

26. A sheet feeder comprising:

a) a tray having a support surface and spaced sides defining a sheet delivery path; and
b) a roller support assembly which includes a frame having a pre-feed roller and a separation roller mounted thereon, said assembly being pivotally mounted on said tray, said assembly comprising:
32. The sheet feeder of claim 31, wherein said support structure comprises a shaft and said input gear and said retainer are rotatably mounted on said shaft.

33. A document processing apparatus comprising a document processing module and a sheet feeding module removably affixed to said document processing module, said sheet feeding module comprising the sheet feeder of claim 1.

34. The document processing apparatus of claim 33, wherein said document processing module includes a printer.

35. The document processing apparatus of claim 34, wherein said printer is an inkjet printer.

36. The document processing apparatus of claim 33, wherein said document processing module includes a facsimile machine.

37. The document processing apparatus of claim 33, wherein said document processing module includes a document scanner.

38. A document processing apparatus comprising a document processing module and a sheet feeding module removably affixed to said document processing module, said sheet feeding module comprising the sheet feeder of claim 26.

39. The document processing apparatus of claim 38, wherein said document processing module includes a printer.

40. The document processing apparatus of claim 39, wherein said printer is an inkjet printer.

41. The document processing apparatus of claim 38, wherein said document processing module includes a facsimile machine.

42. The document processing apparatus of claim 38, wherein said document processing module includes a document scanner.

43. A sheet feeder having an input gear affixed to a shaft, said input gear being engageable with a motor driven output gear for transmitting bi-directional input power delivered by said motor driven output gear to at least one sheet feeder roller, a motion limiter mounted on said shaft proximate said input gear, said motion limiter having an arcuate surface to prevent over engagement of an output gear with said input gear while said input gear is driving said roller support assembly, the motion limit surface located adjacent the input gear and comprising said arcuate surface having a cylindrical shape, configured for engagement by a motor output gear support which moves the output gear into and out of engagement with the input gear.

44. The sheet feeder of claim 43, wherein said motion limiter comprises an input gear retainer for retaining said input gear in desired axial position on said shaft.

45. The sheet feeder of claim 44, wherein said motion limiter is non-rotatably affixed to said shaft alongside said input gear.