La présente invention concerne un procédé et un dispositif de cogénération par turbine, notamment de turbine à gaz, comprenant une section de compression (14), au moins une section de détente (18, 52, 96) et une chambre de combustion (20).

Selon le procédé de l'invention, on compose un comburant comprenant de l'oxygène dans la section de compression (14); on réalise, dans la chambre de combustion (20), une étape de combustion sous pression d'un mélange du comburant comprimé avec un combustible; on utilise au moins une partie des gaz chauds obtenus par la combustion sous pression pour réaliser un échange avec une installation externe (54, 70) et on réalise au moins une étape de postcombustion d'un mélange des gaz chauds, issus de l'échange, avec un combustible, de façon à obtenir des gaz chauds qui sont envoyés à la section de détente (18, 52, 96), dans des conditions de température et de pression proches des conditions réalisées en l'absence d'échange.
La présente invention se rapporte à un procédé et à un dispositif de cogénération de travail et de chaleur.

Elle concerne plus particulièrement un procédé de cogénération réalisé au moyen d'une turbine, en particulier d'une turbine à gaz.

Plus précisément, le procédé consiste à utiliser les gaz de combustion chauds générés par la turbine à gaz pour échanger de la chaleur avec une installation industrielle afin d'effectuer, par exemple, une réaction endothermique.

Les procédés antérieurs de cogénération consistent à utiliser les gaz de combustion chauds sortant de la turbine, qui sont généralement à une pression proche de la pression atmosphérique, pour générer, par exemple, de la vapeur sous pression grâce à un échange thermique réalisé dans un échangeur traversé par ces gaz chauds et parcouru par un fluide, comme de l'eau. Ces systèmes peuvent alimenter un système de distribution de vapeur pouvant alimenter différentes installations industrielles, tel que le chauffage de rebouilleurs des colonnes de distillation.

L'inconvénient d'un tel procédé réside dans le fait que la température des gaz chauds n'est pas suffisante pour chauffer des installations industrielles opérant à des températures relativement élevées, par exemple supérieures à 500°C.

Par ailleurs, l'utilisation directe des gaz chauds sortant de la turbine à gaz est difficile, du fait que la perte de charge à la sortie de la turbine à gaz doit rester très faible, étant donné que ces gaz sortent à une pression proche de la pression atmosphérique et que toute perte de charge, même relativement faible, perturbe fortement les performances de la turbine à gaz.

Il a été également proposé d'utiliser de tels gaz de combustion chauds, comme cela est mieux décrit par exemple dans la demande de brevet français N° 2 825 995 ou dans la demande de brevet français N° 2 675 498 du
demandeur, pour assurer le réformage d'une charge gazeuse, mais un
inconvénient réside dans le fait que lorsque les gaz chauds sont envoyés à la
turbine après échange thermique, ils ont cédé de la chaleur et sont
sensiblement refroidis. Dans ces conditions, la puissance mécanique produite
par la turbine est sensiblement plus faible. En outre, les dimensionnements
initiaux de la turbine ainsi que des ailettes situées sur une turbine de détente,
ne sont pas adaptés aux nouvelles conditions d'admission des gaz chauds sous
pression qui y sont envoyés.

La présente invention se propose donc de remédier aux inconvénients ci-
dessus mentionnés grâce à un procédé et un dispositif permettant de maintenir
sensiblement constante la puissance générée par la turbine à gaz et d'obtenir
une température des gaz de combustion chauds à l'entrée de la turbine de
détente sensiblement voisine de la température initiale d'introduction en
l'absence d'échange thermique.

Pour cela, la présente invention concerne un procédé de cogénération par
turbine, notamment de turbine à gaz, comprenant une section de compression,
au moins une section de détente et une chambre de combustion, procédé dans
lequel on effectue les étapes suivantes :

(a) on comprime un comburant comprenant de l'oxygène dans la section
de compression ;

(b) on réalise, dans la chambre de combustion, une étape de combustion
sous pression d'un mélange du comburant comprimé avec un combustible ;

(c) on utilise au moins une partie des gaz chauds obtenus par la
combustion sous pression, pour réaliser un échange avec une installation
externe,

caractérisé en ce que

(d) on réalise au moins une étape de postcombustion d'un mélange des
gaz chauds, issus de l'échange, avec un combustible, de façon à obtenir des
gaz chauds qui sont envoyés à la section de détente, dans des conditions de
température et de pression proches des conditions réalisées en l'absence de l'étape (c).

On peut également réaliser une étape de postcombustion d'un mélange des gaz chauds issus de la combustion avec un combustible, au préalable de la réalisation de l'échange.

L'étape de postcombustion peut être réalisée en introduisant une quantité de combustible, qui est ajustée de manière à obtenir une température des gaz chauds à l'entrée de la section de détente sensiblement voisine de la température initiale d'introduction en l'absence d'échange.

On peut aussi réaliser l'étape de postcombustion en introduisant une quantité de gaz chauds, qui est ajustée de manière à obtenir une température des gaz chauds à l'entrée de la section de détente sensiblement voisine de la température initiale d'introduction en l'absence d'échange.

Une opération de production de vapeur ou une opération de reformage d'une charge peut être réalisée par échange avec l'installation externe.

L'invention concerne également un dispositif de cogénération par turbine, notamment par turbine à gaz, comprenant une section de compression, au moins une section de détente, une chambre de combustion et un moyen d'échange entre les gaz chauds issus de la combustion et un fluide à chauffer, caractérisé en ce que le dispositif comprend au moins une chambre de postcombustion alimentée par les gaz chauds issus du moyen d'échange.

Le dispositif peut comprendre chambre de postcombustion alimentant en gaz chauds le moyen d'échange.
Le dispositif peut aussi comprendre une conduite de court-circuit permettant d'ajuster la température des gaz chauds à la sortie de la chambre de combustion et/ou de la chambre de postcombustion.

5 Il peut également comprendre une conduite de gaz chauds raccordant directement la chambre de combustion au moyen d'échange.

Le moyen d'échange peut comprendre un échangeur de chaleur et/ou un réacteur.

10 Le dispositif peut comprendre une première section de détente et une deuxième section de détente et une conduite de gaz chauds raccordant la première section à la deuxième.

15 Les autres avantages et caractéristiques de l'invention vont apparaître à la lecture de la description qui va suivre, donnée uniquement à titre illustratif et non limitatif, à laquelle sont annexées des figures parmi lesquelles :
- la figure 1 est un exemple de configuration du dispositif selon l'invention;
- la figure 2 est une première variante du dispositif tel qu'illustré à la figure 1;
- la figure 3 est une variante du dispositif de la figure 2;
- la figure 4 est un schéma montrant l'implantation du dispositif selon l'invention dans une installation de réformage d'une charge;
- la figure 5 est une autre variante de configuration du dispositif selon la figure 1; et
- la figure 6 est une autre variante de configuration du dispositif selon l'invention.

L'exemple de la figure 1 montre un dispositif avec un type particulier de turbine à gaz, dit turbine à double arbre.

Dans cette configuration, la turbine à gaz comprend une cellule de détente-compression 10 dans laquelle une première étape de détente permet
de comprimer l'air de combustion et une cellule de détente 12 avec une seconde étape de détente permettant de générer une puissance mécanique et/ou électrique.

La cellule de détente-compression 10 comprend un compresseur 14 lié par un arbre 16 à une première section de détente avec une turbine de détente 18 et une chambre de combustion 20. Un fluide contenant de l'oxygène, généralement de l'air extérieur, est admis par une conduite 22 dans le compresseur 14 d'où il ressort à l'état comprimé par une conduite 24. La chambre de combustion 20 est alimentée en combustible, tel que du gaz naturel, par une conduite 26 et par un comburant qui est, dans le cas présent, tout ou partie de l'air comprimé véhiculé par la conduite 24. Les gaz chauds provenant de la combustion du mélange du combustible avec l'air comprimé dans la chambre de combustion 20 sont dirigés par une conduite 28 dans la turbine de détente 18 où ils sont détendus puis évacués par une conduite 30.

Dans l'exemple de la figure 1, une partie de l'air comprimé sortant du compresseur est envoyée dans la chambre de combustion 20 par la conduite 24, la partie restante étant dirigée directement vers la conduite des gaz chauds 28 par une conduite de court-circuit 32 dont le fonctionnement apparaîtra dans la suite de la description.

Le dispositif comprend également un moyen d'échange, notamment un moyen échangeur de chaleur 34, comme un échangeur de chaleur à tubes et calandre, parcouru par un fluide à chauffer qui entre par la conduite d'admission 36 et ressort de cet échangeur par une conduite de sortie 38. Cet échangeur comporte une admission 40 de gaz de combustion chauds véhiculés par la conduite 30. Ces gaz chauds traversent l'échangeur 34 pour transmettre leurs calories au fluide à chauffer. Une fois l'échange thermique réalisé, les gaz chauds ressortent de l'échangeur par une évacuation 42 raccordée par une conduite 44 à une chambre de postcombustion 46 qui est alimentée en combustible par une conduite 48, ce combustible pouvant être le même que celui qui alimente la chambre de combustion 20. La chambre de postcombustion 46 sera dénommée dans la suite de la description chambre de postcombustion aval, car elle se situe en aval du moyen d'échange 34 et cela
en considérant le sens de circulation des gaz chauds provenant de la chambre de combustion 20. Les gaz chauds résultant de la postcombustion du mélange du combustible et des gaz de combustion chauds de la conduite 44 sont dirigés par une conduite 50 dans une deuxième section de détente avec une turbine de détente 52 que comporte la cellule de détente 12, d'où ils ressortent, après détente, par une conduite 54. Cette turbine est liée par un arbre 56 à tout moyen produisant une puissance mécanique et/ou électrique, telle que par exemple un alternateur 58. Comme cela est montré sur la figure 1, les gaz chauds sortant de l'échangeur 34 sont envoyés en partie par la conduite 44 dans la chambre de postcombustion 46, la partie restante de ces gaz étant dirigée directement vers la conduite d'évacuation de gaz de postcombustion chauds 50 par une conduite de court-circuit 60 dont le fonctionnement va apparaître dans la description qui va suivre.

Le fonctionnement de l'installation décrite ci-dessus est le suivant :
L'air admis par la conduite 22 est comprimé dans le compresseur 14, d'où il ressort à l'état comprimé par la conduite 24. Une partie de cet air de compression est envoyé à la chambre de combustion 20, dans laquelle il est mélangé avec le combustible arrivant par la conduite 26. La combustion dans cette chambre produit des gaz de combustion chauds qui sont mélangés, à la sortie de cette chambre de combustion 20, avec l'air comprimé issu du compresseur, qui n'a pas été envoyé à la chambre de combustion et qui arrive par la conduite de court-circuit 32. Ceci permet d'ajuster la température des gaz chauds résultant de la combustion à un niveau compatible avec la température requise à l'entrée de la première turbine de détente 18, par exemple entre 1000 et 1300°C.

Les gaz chauds sortant de la turbine 18 par la conduite 30, à une température voisine de 650°C, sont alors envoyés à l'échangeur 34, dans lequel ils sont refroidis en chauffant le fluide extérieur, tel que de l'eau, qui entre dans l'échangeur par la conduite 36 et en ressort par la conduite 38 en un état souhaité, par exemple sous forme de vapeur d'eau. Ces gaz chauds sont sous pression, par exemple à une pression voisine de 4 bars.
Dans ces conditions, il est généralement possible de réaliser l'échange thermique dans une enceinte de volume fortement réduit par rapport à celle qui doit être réalisée lorsque les gaz chauds utilisés proviennent de la détente finale jusqu'à une pression proche de la pression atmosphérique. En effet, pour une même vitesse de passage, la section qui doit être occupée par les gaz chauds est approximativement inversement proportionnelle à la pression. La perte de charge acceptable étant sensiblement plus importante, la vitesse de passage peut être augmentée, ce qui permet de réduire encore la section de passage et d'augmenter le coefficient de transfert thermique.

A la sortie de l'échangeur 34, les gaz chauds sont à une température sensiblement inférieure à celle de leur entrée, l'écart de température par rapport à l'entrée 40 étant par exemple supérieur à 100°C. Ces gaz chauds sont ensuite envoyés dans la chambre de postcombustion aval 46. Etant donné que la quantité d'air entrant dans le compresseur 14 par la conduite 22 est très supérieure à la quantité d'air stoechiométrique nécessaire à la combustion du combustible arrivant par la conduite 48, on peut réaliser une postcombustion dans la chambre de 46 en utilisant comme comburant une fraction des gaz chauds sortant de l'échangeur 34, la fraction restante passant par la conduite de court-circuit 60 de manière à ajuster la température du mélange de gaz chauds résultant de la postcombustion à un niveau compatible avec la température requise à l'entrée de la deuxième turbine de détente 52. La quantité de combustible utilisée pour réaliser cette postcombustion et arrivant par la conduite 48 est également ajustée, en combinaison avec la quantité de gaz chauds circulant dans la conduite de court-circuit 60, de façon à obtenir à l'entrée de la deuxième turbine de détente 52, une température voisine de celle qui est requise en l'absence de l'échange opéré dans l'échangeur 34, comprise par exemple entre 1000 et 1300°C. Les gaz de postcombustion chauds ainsi obtenus sont détendus dans la turbine de détente 52, en produisant une puissance mécanique proche de celle qui est obtenue en l'absence de l'échange réalisé dans l'échangeur 34. Cette puissance mécanique est utilisée, dans l'exemple décrit, pour entraîner l'alternateur 58.
Après détente, les gaz chauds sont évacués à une pression proche de la pression atmosphérique par la conduite 54.

La figure 2 montre une variante de réalisation de la figure 1 et comporte pour cela les mêmes références.

Dans le cas de cette variante, lorsqu'il est nécessaire de fournir de la chaleur dans l'échangeur 34 à une température relativement élevée, il est également possible de réaliser deux étapes de postcombustion.

Plus particulièrement, il est prévu de réaliser une étape de postcombustion au préalable de celle réalisée dans la chambre de postcombustion 46 comme précédemment décrit.

Cette étape préalable est réalisée dans une chambre de postcombustion 62 qui permet de chauffer les gaz chauds sortant de la première turbine de détente 18 et avant qu'ils ne pénètrent dans l'échangeur 34. Cette chambre de postcombustion est dénommée chambre de postcombustion amont car elle se situe en amont du moyen d'échange 34 et cela toujours en considérant le sens de circulation des gaz chauds provenant de la chambre de combustion 20.

Pour réaliser cette postcombustion, cette chambre de postcombustion amont est alimentée en combustible, tel que du gaz naturel, par une conduite 64 et en gaz chauds par la conduite 30 raccordant la turbine de détente 18 à cette chambre. Les gaz chauds sortant de la chambre de postcombustion 62 sont dirigés par une conduite 66 à l'entrée 40 de l'échangeur de chaleur 34. Comme déjà décrit en relation avec les chambres 20 et 46, il est prévu une conduite de court-circuit 68 dont le rôle est identique à celui des conduites de court-circuit 32 et 60.

Ainsi, il est réalisé une première étape de postcombustion dans la chambre de combustion 62 avec la combustion du combustible arrivant par la conduite 64 et une fraction des gaz chauds sortant de la turbine de détente 18 par la conduite 30, la fraction restante des gaz chauds passant par la conduite de court-circuit 68 pour réaliser l'ajustement de température des gaz chauds sortant de cette chambre avant qu'ils ne pénètrent dans l'échangeur 34. Une deuxième étape de postcombustion est réalisée dans la chambre de
postcombustion 46, avec les gaz chauds sortant de l'échangeur 34 et du combustible arrivant par la conduite 48 dont la quantité est ajustée de façon à obtenir la température requise à l'entrée de la turbine de détente 52.

L'exemple de disposition représenté sur la figure 2 est particulièrement bien adapté pour effectuer le chauffage d'une réaction endothermique se produisant à relativement haute température, telle que par exemple une réaction de réformage à la vapeur pour produire de l'hydrogène à partir d'une charge à base de gaz, notamment de gaz naturel.

Ceci permet de générer une puissance mécanique ou électrique, tout en fournissant de la chaleur pour effectuer cette réaction endothermique. Si le dioxyde de carbone qui est produit en mélange avec l'hydrogène est séparé et séquestré, il est ensuite possible d'utiliser au moins en partie l'hydrogène ainsi produit pour effectuer la combustion et/ou la postcombustion et cela sans émettre de dioxyde de carbone.

Une telle réaction endothermique peut être aussi utilisée en association avec d'autres charges, telles que des coupes pétrolières, des alcools, comme le méthanol, ou éventuellement encore d'autres charges.

Un tel cas d'application est illustré par le schéma de l'installation de la figure 3 pour une réaction de réformage à la vapeur pour produire de l'hydrogène à partir d'une charge à base de gaz. Cette installation comporte un dispositif qui possède, pour l'essentiel, les mêmes éléments que ceux de la figure 2 et, pour cela, portera les mêmes références.

Dans cette installation, le moyen d'échange est un réacteur 70 de type réacteur-echangeur qui comporte une conduite d'arrivée de gaz 72, préférentiellement de gaz naturel, et une conduite d'arrivée d'un fluide 74, comme de la vapeur d'eau. Ces deux fluides se mélangent à la jonction des deux conduites et sont envoyés par une conduite 76 à l'entrée du réacteur. Le gaz de synthèse obtenu ressort par une conduite 78 par laquelle il est envoyé vers tout dispositif de traitement connu. Ce réacteur comprend également une admission de gaz chauds 80 amenés de la chambre de postcombustion amont.
62 par la conduite 66 et une évacuation de gaz chauds 82 vers la chambre de postcombustion aval 46 par la conduite 44.

Durant le fonctionnement de cette installation, le gaz naturel arrive par la conduite 72. Il a été préchauffé au moyen d'échangeurs de chaleur non représentés. La vapeur d'eau arrive par la conduite 74 et est mélangée avec le gaz naturel au point de jonction entre les deux conduites. Le rapport molaire de la quantité d'eau introduite par la conduite 74 sur la quantité de gaz naturel par la conduite 72 est compris entre 2 et 4. Le mélange résultant est introduit par la conduite 76 dans le réacteur 70. La réaction endothermique de réformage, qui est opérée dans le réacteur 70, permet de produire un mélange d'oxyde de carbone CO et d'hydrogène H₂. Le mélange gazeux opère dans des tubes, en présence d'un catalyseur, qui peut être par exemple à base soit de nickel déposé sur silico-aluminate de calcium ou de magnésium dopé à la potasse, soit de nickel sur support alumine. La température atteinte en sortie de zone de réaction est comprise entre 850 et 940°C. La réaction est opérée à une pression comprise entre 20 et 40 bars. Le chauffage du réacteur est assuré par les gaz chauds arrivant par la conduite 66, à une pression par exemple voisine de 4 bars et circulant dans la calandre, globalement à contre-courant. Il est possible également de réaliser un chauffage à co-courant, de façon à limiter la température de paroi des tubes. Le mélange d'oxyde de carbone et d'hydrogène obtenu est évacué par la conduite 78.

Pour augmenter la production d'hydrogène, il est alors possible d'opérer une deuxième étape de conversion en présence de vapeur d'eau. A l'issue de cette deuxième étape de conversion, le dioxyde de carbone peut être séparé par les différentes méthodes connues de l'homme de l'art, par exemple par lavage à l'aide d'un solvant. L'hydrogène produit peut être ensuite purifié par adsorption ou par membranes, en séparant les hydrocarbures non convertis, qui peuvent être recyclés vers l'entrée du gaz naturel.

L'hydrogène ainsi produit peut être utilisé au moins en partie pour alimenter la turbine à gaz en tant que combustible, de façon à générer de l'électricité par l'alternateur, en réduisant fortement les émissions de dioxyde de carbone.
Au lieu d'utiliser de l'air comme comburant dans la conduite 22, on peut aussi utiliser un mélange d'oxygène et de dioxyde de carbone recyclé. Si le combustible est un hydrocarbure, par exemple du gaz naturel, ceci permet d'obtenir des gaz d'échappement concentrés en dioxyde de carbone, et ainsi de pouvoir séparer facilement le dioxyde de carbone.

Le procédé comme décrit ci-dessus comprend les étapes suivantes :
(a) on comprime un comburant comprenant de l'oxygène dans la section de compression 14 d'une turbine;
(b) on réalise une étape de combustion sous pression avec un mélange d'un combustible et du comburant comprimé;
(c) on utilise au moins une partie des gaz chauds obtenus par la combustion sous pression, pour réaliser un échange avec une installation externe 34 ou 70;
(d) on réalise au moins une étape de postcombustion d'un mélange des gaz chauds issus l'échange avec un combustible, de façon à obtenir des gaz chauds qui sont envoyés à la turbine 52, dans des conditions de température et de pression proches des conditions réalisées en l'absence de l'étape (c).

Ainsi, le procédé permet d'utiliser des gaz chauds sous pression générés au cours du processus de production d'énergie mécanique tout en préservant les performances de la turbine à gaz. En outre, il est possible de maintenir sensiblement constante la puissance générée par la turbine à gaz. De plus pour minimiser la perte de charge entre l'entrée et la sortie du moyen d'échange, il peut être prévu de disposer, à la sortie de ce moyen d'échange, un moyen d'augmentation de pression, tel qu'un surpresseur.

Ce procédé peut être utilisé avec une installation de réformage, comme illustré, à titre d'exemple, sur le schéma de la figure 4.

Dans cet exemple, la turbine utilisée est une turbine à gaz de type GE Frame 7, en utilisant la terminologie du fabricant, General Electric. Une telle machine est susceptible de produire une puissance mécanique allant jusqu'à 80
MW en conditions iso. Le compresseur axial 14 aspire, par la conduite 22, environ 958 t/h d’air ambiant comprimé jusqu’à une pression d’environ 18 bars. L’air ainsi comprimé circulant dans la conduite 24 est mélangé, dans la chambre de combustion 20, avec environ 7 t/h d’un combustible riche en hydrogène arrivant par la conduite 26 et le mélange obtenu est brûlé dans la chambre de combustion 20. À la sortie de la chambre de combustion 20, on obtient un mélange de gaz chauds à une température d’environ 1200°C. Les gaz chauds sont alors envoyés, par la conduite 28, dans la première turbine de détente 18, d’où ils ressortent, par la conduite 30, à une pression d’environ 4 bars et une température d’environ 750°C. Ils sont ensuite mélangés, dans la chambre de postcombustion amont 62, avec une quantité additionnelle de 4 t/h environ de combustible riche en hydrogène arrivant par la conduite 64. On obtient ainsi, à la sortie de la chambre de postcombustion 62, un mélange de gaz chauds à une température d’environ 1150°C, qui sont utilisés, par la conduite 66, pour chauffer le réacteur 70, de type réacteur-échangeur. Après échange, les gaz chauds sortant du réacteur-échangeur 70 par la conduite 44 sont mélangés, dans la chambre de postcombustion aval 46, avec une troisième fraction de combustible représentant environ 1 t/h de combustible riche en hydrogène arrivant par la conduite 48. À la sortie de la chambre de postcombustion aval 46, les gaz chauds circulant dans la conduite 50 sont à nouveau à une température d’environ 750°C. Ils sont alors détendus dans la deuxième turbine de détente 52 d’où ils ressortent par la conduite 54 à une pression d’environ 1,3 bars et une température d’environ 565°C. La puissance générée dans la turbine de détente est de 55 MW.

Le combustible riche en hydrogène est produit par réformage d’environ 50 t/h de gaz naturel arrivant par la conduite 72 en présence d’environ 170 t/h de vapeur d’eau arrivant par la conduite 74. Cette vapeur d’eau est générée dans une chaudière de récupération 84 par récupération de chaleur sur les gaz chauds sortant de deuxième turbine de détente 52 par la conduite 54. La vapeur d’eau est générée à partir d’eau déminéralisée arrivant par une conduite 86 et recirculant dans la boucle d’échange 88.
A la sortie du réacteur-échangeur 70, le gaz de synthèse obtenu et circulant dans la conduite 78 passe par une deuxième étape de conversion, dénommée "shift-conversion" par les spécialistes du domaine, au cours de laquelle il réagit en présence de vapeur d'eau de façon à produire une quantité additionnelle d'hydrogène, tout en convertissant une partie du CO produit en dioxyde de carbone. Pour ce faire, on fait arriver, par une conduite 90, un débit de 56 t/h d'eau, qui est consommée par la réaction de "shift-conversion" dans un réacteur 92. Cette réaction de "shift-conversion" doit être réalisée à une température inférieure à celle qui est requise pour réaliser la réaction de réformage principale. La température est maintenue à environ 400°C, en générant 46 t/h de vapeur d'eau.

La vapeur générée dans la boucle de récupération 88 représente 164 t/h, dont 124t/h sont utilisés pour la production de gaz de synthèse. Le débit de 40 t/h non utilisé pour générer le gaz de synthèse, peut être soit exporté, soit utilisé dans un cycle à condensation.

Le gaz de synthèse sortant du réacteur 92, par la conduite 94, est ensuite envoyé dans une section de lavage et de purification de l'hydrogène (non représentée).

On produit ainsi 25 t/h d'hydrogène pur dont une partie peut être utilisée directement pour alimenter la turbine à gaz ainsi que les étapes de postcombustion. Une autre fraction peut subir une purification supplémentaire dans une unité, qui est par exemple une unité de purification par adsorption de type PSA.

On se réfère maintenant à la figure 5 qui est une variante de la figure 3 et dans laquelle les gaz chauds résultant de la combustion dans la chambre de combustion 20 sont évacués par une conduite 96 directement vers l'entrée 80 du réacteur 70, à une pression qui peut être par exemple comprise entre 10 et 40 bars. Il peut être dans ce cas avantageux d'opérer la réaction qui est réalisée dans le réacteur 70 à une pression au moins légèrement supérieure, de façon à éviter tout risque de passage d'un gaz contenant de l'oxygène vers les réactifs. Les gaz chauds sortant du réacteur 70 par la conduite 44 sont alors
envoyés vers la chambre de postcombustion aval 46. La quantité de combustible amenée par la conduite 48 est ajustée de façon à obtenir à l'entrée de la première turbine de détente 18 des gaz chauds, véhiculés par une conduite 98 reliant la chambre de postcombustion aval et la première turbine de détente 18, à la température requise pour obtenir une puissance mécanique proche de la puissance maximale pouvant être délivrée par la turbine. Les gaz chauds sortant de cette turbine de détente 18 sont alors envoyés, par une conduite 100 à la deuxième turbine de détente 52 entraînant l'alternateur 58.

L'exemple de configuration représenté sur les figures précédentes s'applique également au cas d'une turbine à un axe, comme cela est illustré schématiquement à la figure 6.

Dans ce cas, une seule turbine 102 est reliée par le même arbre 16, d'une part, au compresseur 14 et, d'autre part, à l'alternateur 58.

Dans cette variante reprenant, à titre d'exemple, la configuration de la figure 5, les gaz chauds sortant de la chambre de combustion aval 46 sont envoyés par la conduite 98 à la turbine de détente 102, qui entraîne non seulement le compresseur 14, mais aussi l'alternateur 58.

Il est également possible d'appliquer le principe du procédé selon l'invention au cas où on effectue non seulement un échange de chaleur dans le moyen d'échange, mais aussi un échange de matière entre les deux courants gazeux circulant dans le moyen d'échange, comme un réacteur-échangeur.

Un premier cas possible d'application concerne le transfert d'oxygène. Dans un tel cas, le réacteur-échangeur peut être réalisé en utilisant des tubes en matériau céramique, sélectivement perméables à l'oxygène. On peut, pour cela, utiliser notamment des céramiques de type pérovskyte, dans lesquelles peuvent transférer des ions oxygène. Une telle disposition peut être avantageuse, pour produire du gaz de synthèse à partir de charges hydrocarbures relativement lourdes, ou pour obtenir un mélange de CO et
d'hydrogène, contenant la proportion adéquate de CO, par exemple pour alimenter une réaction de synthèse Fischer-Tropsch.

Un deuxième cas possible concerne le transfert d'hydrogène. Dans ce cas, le réacteur-échangeur peut être réalisé en utilisant des tubes sélectivement perméables à l'hydrogène, par exemple des tubes comportant une couche sélective en palladium.

Ceci permet de favoriser l'avancement de la réaction et d'augmenter le taux de conversion en hydrogène.

L'hydrogène peut être ainsi directement séparé et mélangé au comburant, en vue de réaliser l'étape de postcombustion.
REVENDICATIONS

1) Procédé de cogénération par turbine, notamment de turbine à gaz, comprenant une section de compression (14), au moins une section de détente (18, 52, 102) et une chambre de combustion (20), procédé dans lequel on effectue les étapes suivantes :

(a) on comprime un comburant comprenant de l'oxygène dans la section de compression (14);

(b) on réalise, dans la chambre de combustion (20), une étape de combustion sous pression d'un mélange du comburant comprimé avec un combustible;

(c) on utilise au moins une partie des gaz chauds obtenus par la combustion sous pression, pour réaliser un échange avec une installation extérieure (34, 70), caractérisé en ce que

(d) on réalise au moins une étape de postcombustion d'un mélange des gaz chauds, issus de l'échange, avec un combustible, de façon à obtenir des gaz chauds qui sont envoyés à la section de détente (18, 52, 102), dans des conditions de température et de pression proches des conditions réalisées en l'absence de l'étape (c).

2) Procédé de cogénération selon la revendication 1, caractérisé en ce qu'on réalise une étape de postcombustion d'un mélange des gaz chauds issus de la combustion avec un combustible, au préalable de la réalisation de l'échange.

3) Procédé de cogénération selon l'une des revendications 1 ou 2, caractérisé en ce qu'on réalise l'étape de postcombustion en introduisant une quantité de combustible, qui est ajustée de manière à obtenir une température des gaz chauds à l'entrée de la section de détente (18, 52, 102) sensiblement voisine de la température initiale d'introduction en l'absence d'échange.
4) Procédé de cogénération selon l'une des revendications précédentes, caractérisé en ce qu'on réalise l'étape de postcombustion en introduisant une quantité de gaz chauds, qui est ajustée de manière à obtenir une température des gaz chauds à l'entrée de la section de détente (18, 52, 102) sensiblement voisine de la température initiale d'introduction en l'absence d'échange.

5) Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on réalise une opération de production de vapeur par échange avec l'installation externe (34).

6) Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on réalise une opération de reformage d'une charge par échange avec l'installation externe (70).

7) Dispositif de cogénération par turbine, notamment par turbine à gaz, comprenant une section de compression (14), au moins une section de détente (18, 52, 102), une chambre de combustion (20) et un moyen d'échange (34, 70) entre les gaz chauds issus de la combustion et un fluide à chauffer, caractérisé en ce que le dispositif comprend au moins une chambre de postcombustion (46) alimentée par les gaz chauds issus du moyen d'échange.

8) Dispositif de cogénération selon la revendication 7, caractérisé en ce qu'il comprend une chambre de postcombustion (62) alimentant en gaz chauds le moyen d'échange (34, 70).

9) Dispositif de cogénération selon la revendication 7 ou 8, caractérisé en ce qu'il comprend une conduite de court-circuit (32, 60) permettant d'ajuster la température des gaz chauds à la sortie de la chambre de combustion (20) et/ou de la chambre de postcombustion (46, 62).
10) Dispositif de cogénération selon la revendication 7, caractérisé en ce qu'il comprend une conduite de gaz chauds (98) raccordant directement la chambre de combustion (20) au moyen d'échange (34, 70).

11) Dispositif de cogénération selon l'une des revendications 7 à 10, caractérisé en ce que le moyen d'échange comprend un échangeur de chaleur (34).

12) Dispositif de cogénération selon l'une des revendications 7 à 11, caractérisé en ce que le moyen d'échange comprend un réacteur (70).

13) Dispositif de cogénération selon l'une des revendications 7 à 11 comprenant une première section de détente (18) et une deuxième section de détente (52), caractérisé en ce qu'elle comprend une conduite de gaz chauds (100) raccordant la première section (18) à la deuxième (52).
DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 34 13 241 A (BBC BROWN BOVERI & CIE) 13 juin 1985 (1985-06-13) * page 8 - page 9; figures 1-3 *</td>
<td>1-13</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 6 155 039 A (AGEE MARK A ET AL) 5 décembre 2000 (2000-12-05) * abrégé; figures 2,3 *</td>
<td>1-13</td>
<td></td>
</tr>
</tbody>
</table>

DOMAINE TECHNIQUES RECHERCHÉS (INCL-7)

- F02C
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE RELATIF À LA DEMANDE DE BREVET FRANÇAIS NO. FR 0303141 FA 630750

<table>
<thead>
<tr>
<th>Document brevet cité</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 3801605 C</td>
<td>24-05-1989</td>
<td>DE 3801605 C1</td>
<td>24-05-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 8904914 A1</td>
<td>01-06-1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2502393 T</td>
<td>02-08-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3413241 A1</td>
<td>13-06-1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 740616 B2</td>
<td>08-11-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3496097 A</td>
<td>07-01-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9709857 A</td>
<td>21-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2257848 A1</td>
<td>24-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 1466 B1</td>
<td>23-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 985973 A</td>
<td>18-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9748639 A1</td>
<td>24-12-1997</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82.