Title: MEANS AND METHODS TO ENHANCE THE PRODUCTION OF VINBLASTINE AND VINCIRISTINE IN CATHARANTHUS ROSEUS

Abstract: The present invention relates to the field of plant secondary metabolites, particularly terpenoid indole alkaloids. More particularly the present invention relates to the production of the anti-cancer metabolites vincristine and vinblastine. The invention provides novel polynucleotide sequences derived from Catharanthus roseus and the uses of said polynucleotide sequences to stimulate the production of vinblastine and/or vincristine in plants of Catharanthus roseus and plant cell lines derived thereof. The invention further relates to recombinant plants, plant cells, tissue and organ cultures obtainable by the process of the invention.
Means and methods to enhance the production of vinblastine and vincristine in Catharanthus roseus

Field of the invention

The present invention relates to the field of plant secondary metabolites, particularly terpenoid indole alkaloids. More particularly the present invention relates to the production of the anticancer metabolites vincristine and vinblastine. The invention provides novel polynucleotide sequences derived from Catharanthus roseus and the use of said polynucleotide sequences to stimulate the production of vinblastine and/or vincristine in plants of Catharanthus roseus and plant cell lines derived thereof. The invention further relates to recombinant plants, plant cells, tissue and organ cultures obtainable by the process of the invention.

Background of the invention

The medicinal plant Catharanthus roseus L. G. Don has been of enormous interest to pharmaceutical science because it contains more than 120 terpenoid indole alkaloids (TIAs) some of which exhibit potent pharmacological activities (van der Heijden et al., 2004). The antihypertensive alkaloid ajmalicine and the antineoplastic bisindole alkaloids vinblastine and vincristine are in clinical use. The latter two anticancer compounds are produced only in very low amounts in the plants (Noble, 1990) and their total synthesis is not economically feasible. These compounds are consequently still directly isolated from field-grown plants. Alternatively, derivatives such as vinorelbine are synthesized from plant-derived building blocks (van der Heijden et al., 2004). As a result of the costly extraction process and the influence of various environmental factors on harvest yields, the market prices for vinblastine and vincristine are exorbitantly high (Moreno et al., 1995).

Despite significant efforts, cell cultures have not offered a valid production alternative so far. Engineering plant metabolic pathways in order to increase the productivity e.g. in cultivated plant cells is generally a difficult task because our fundamental knowledge of the biosyntheses is far from complete even in the well studied example of the TIA pathway. General problems encountered when characterizing plant metabolomes are the enormous chemical diversity of the compounds (primary and secondary) and their highly complex nature (Hirai et al., 2004; Oksman-Caldentey and Inze, 2004). Undifferentiated Catharanthus cells can produce fairly high levels of alkaloids such as ajmalicine, tabersonine and catharanthine but not of vindoline, the compound that together with catharanthine constitutes the building blocks for the in vivo formation of bisindole alkaloids (Figure 1). All TIAs in C. roseus are derived from the central precursor strictosidine, which is a fusion product of the shikimate pathway-derived tryptamine moiety and of the plastidic non-mevalonate (MEP) pathway-derived secologanin moiety (Figure 1). Starting from the amino acid tryptophan and the monoterpenoid geraniol, the
biosynthesis of *C. roseus* bisindole alkaloids involves at least 35 intermediates and 30 enzymes or biosynthetic genes (St-Pierre *et al.*, 1999; van der Heijden *et al.*, 2004). The TIA biosynthetic pathway is under strict developmental and environmental control. For instance, expression of desacetoxyvindoline 4-hydroxylase (D4H) and vindoline accumulation is affected both by light and methyl jasmonate (MeJA) in *C. roseus* seedlings (Vazquez-Flota and De Luca, 1998), whereas TIA production in *C. roseus* cell cultures can be induced by various phytohormones, and biotic and abiotic elicitors (van der Heijden *et al.*, 2004; Yahia *et al.*, 1998 and references therein). Ultimately, transcription factors are responsible to coordinate the expression of biosynthetic genes in response to these external and internal signals. Members of the plant specific AP2/ERF transcription factor family have been identified in *C. roseus*, namely ORCA2 and 3 (Octadecanoid-Responsive Catharanthus AP2/ERF-domain transcription factor), the expression of which is induced by MeJA. ORCA proteins control the transcription of genes involved in the TIA biosynthesis such as strictosidine synthase (STR) by specific binding to a promoter element involved in jasmonate- and elicitor-responsive gene expression (JERE) (Menke *et al.*, 1999; van der Fits and Memelink, 2001). Several other *C. roseus* transcriptional regulators have been identified, all displaying binding activity to the STR promoter (Chatel *et al.*, 2003; Pauw *et al.*, 2004; Siberil *et al.*, 2001; van der Fits and Memelink, 2000), pointing to a considerable degree of complexity in the control of TIA biosynthesis. A deeper understanding of the regulatory system governing TIA metabolism is therefore of particular interest, in order to eventually allow successful metabolic engineering of alkaloid biosynthesis. Genome-wide cDNA-amplified fragment length polymorphism-based transcript profiling combined with metabolic profiling of elicited *C. roseus* cell cultures yielded an ample collection of known and novel *C. roseus* metabolites and transcript tags, centred on terpenoid indole alkaloids. Correlation network analysis between the expression profiles of the 417 gene tags and the accumulation profiles of 178 metabolite peaks allowed visualising novel gene-to-gene and gene-to-metabolite networks. This revealed the existence of divergent hormonal regulation, not only for the different branches of terpenoid indole alkaloid biosynthesis but also for various other periwinkle metabolic pathways. Simultaneously, the constructed correlation networks allowed distinguishing the genes and metabolites that are related to the biosynthesis of terpenoid indole alkaloids from those that do not. In the present invention a set of 66 genes were identified that can be used to enhance the production of tabersonine and/or catharanthine and/or vincristine and/or vinblastine.

Figures

Figure 1. Biosynthesis of *C. roseus* terpenoid indole alkaloids, (a) Formation of cathenamine. (b) TIA formation. Metabolites are written as full names in small-case and enzymes as abbreviations in capital letters. Full and dashed arrows indicate single and multiple conversion steps between intermediates, respectively. In the upper left corner transcription factors binding
promoters of TIA biosynthetic genes are indicated. Additionally a graphical snapshot representing the relative transcript (boxes) and metabolite (circles) accumulation levels of samples harvested 12h after elicitation is presented. The left and right boxes or circles reflect the influence of jasmonate and auxin, respectively. Red, induced expression compared to control without the phytohormone; green, repressed expression compared to control without the phytohormone; white, no effect of the phytohormone on expression; crossed, no transcript or metabolite accumulation detected. Enzymes and transcription factors listed: ORCA (octadecanoid-responsive Catharanthus AP2-domain), BPF (box P-binding factor), GBF (G-box binding factor), ZCT (zinc finger Catharanthus transcription factor), DXS (1-deoxy-D-xylulose-5-phosphate synthase), DXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase), CMS (4-diphosphocytidyl-2C-methyl-D-erythrol 4-phosphate synthase), CMK (4-diphosphocytidyl-2C-methyl-D-erythrol kinase), MECS (2C-methyl-D-erythrol-2,4-cyclodiphosphate synthase), HDS (GCPE, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase), HDR (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase), IPPI (Isopentenylpyrophosphosphate isomerase), G1OH (geraniol 10-hydroxylase), CPR (cytochrome P450 reductase), 10HGO (10-hydroxygeraniol oxidoreductase), SLS (secologanin synthase), STR (strictosidine synthase), SGD (strictosidine β-D-glucosidase), AS (anthranilate synthase), TDC (tryptophan decarboxylase), T16H (tabersonine 16-hydroxylase), OMT (O-methyltransferase), NMT (N'-methyltransferase), D4H (desacetoxyvindoline 4-hydroxylase), DAT (deacetylvinodoline 4-O-acetyltransferase), MAT (acetyl-CoA:monovincine-O-acetyltransferase).

Aims and detailed description of the invention

The regulatory and metabolic pathways determining the biosynthesis of biologically active plant compounds are generally poorly understood. This greatly impedes rational engineering of complicated metabolic networks involved in the production of an interesting compound. Whereas comprehensive genome-wide functional genomics approaches are successfully applied for holistic systems analysis of a select number of model plants like Arabidopsis, such an approach has not yet been reported for non-model plants representing most if not all medicinal plants. Large-scale gene discovery programs in medicinal plants such as Catharanthus roseus are enormously hampered by the fact that standard transcript profiling methods such as SAGE (Serial Analysis of Gene Expression) or micro-array analysis are not applicable because large sequence repertoires are not available for these non-model plant systems. However, the cDNA-AFLP technology offers the possibility to allow gene identification in such plants species and to acquire quantitative expression profiles at the same time (Goossens et al., 2003). In the present invention genome-wide cDNA-AFLP-based transcript profiling based on jasmonate-elicited C. roseus cell suspensions, allowed to build a substantial collection of known and novel genes of this medicinally important plant. Homology
searches with the sequences from the *C. roseus* cDNA-AFLP tags revealed that 37% of these
tags displayed no sequence similarity to any of the known plant genes. This finding was not
unexpected considering the scarce availability of gene sequences from either *C. roseus* or
other species belonging to the Apocynaceae family— that can be used for tag sequence
extension in the BLAST searches — as compared to the abundant EST collections of tobacco,
tomato and other Solanaceae species. For instance, when blasting the 417 nucleotide
sequences of our cDNA-AFLP tags with the 236 prior to this study publicly available *C. roseus*
EMBL entries, less than 10% gave a (near) perfect match. Thus, the vast majority of the tags
identified here confer novel sequence information to *C. roseus*. When overlaying the TIA gene
expression profiles with the TIA metabolite accumulation profiles on the pathway presented in
Figure 1, our findings clearly extend the earlier observations on the coordinate regulation of
TDC and STR by MeJA in *Catharanthus* cells (St-Pierre et al., 1999) to the whole TIA pathway
(up to 16-hydroxytabersonine).

Integration of genome-wide transcript and metabolite profiles allowed not only to visualise most
of the known genes involved in TIA biosynthesis in a single experiment but also to draw novel
gene-to-gene and gene-to-metabolite networks. As such, this invention provides 66 new genes
which can be used to stimulate the production of tabersonine and/or catharanthine and/or
vinblastine and/or vincristine in *Catharanthus roseus* plants and plant cell lines derived thereof.

Thus in a first embodiment the invention provides an isolated polynucleotide that enhances the
production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in
Catharanthus roseus, or plant cell lines derived thereof, that is selected from the group
comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 or any variant or
functional fragment thereof.

In yet another embodiment the invention provides a polynucleotide that enhances the
production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in
Catharanthus roseus, or plant cell lines derived thereof, wherein said polynucleotide shares at
least 70% homology with a polynucleotide that is selected from the group comprising SEQ ID
NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 or any variant or functional fragment thereof.

In the present invention the sequences depicted in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 represent gene tags and full length sequences which are derived from the plant Catharanthus roseus. In particular SEQ ID NO: 49, 50, 53, 62, 63, 64 and 65 represent full length sequences. It is obvious for the person skilled in the art to isolate the complete gene by means of routine cloning methods based on the sequence information of the herein identified gene tags. One method which is non-limiting for isolating the complete gene or cDNA sequence is based on the use of said gene tags in DNA hybridization. In such a typical experiment a gene tag is labeled (e.g. fluorescent of radioactive) and used to fish out the corresponding nucleotide sequence from a library (e.g. an arrayed cDNA library). Another non-limiting method is the PCR RACE technology which is a popular method to get the sequences of the 5' and 3' ends of a mRNA via PCR amplification of the corresponding cDNA ends.

As used herein, the word "polynucleotide" may be interpreted to mean the DNA and cDNA sequence as detailed by Yoshikai et al. (1990) Gene 87:257, with or without a promoter DNA sequence as described by Salbaum et al. (1988) EMBO J. 7(9):2807. As used herein, "fragment" refers to a polynucleotide of at least about 30 base pairs, typically 50 to 75, or more base pairs. If desired, the fragment may be fused at either terminus to additional base pairs, which may number from 1 to 20, typically 50 to 100, but up to 250 to 500 or more. A "functional fragment" means a polynucleotide fragment possessing the biological property able to enhance the production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in Catharanthus roseus or cell derived thereof. The term 'production' includes intracellular production and secretion into the medium. The term 'enhances' refers to an increase. With said enhancement or increase in the production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine it is understood that said production may be enhanced by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant or plant cell which was used to transform with an expression vector comprising an expression cassette further comprising at least one polynucleotide or variant or fragment thereof of the invention. The terms 'identical' or percent 'identity' in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e. 70% identity over a specified region), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using sequence comparison algorithms or by manual alignment and visual inspection. Preferably, the identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides or even more in length. Examples of useful algorithms are PILEUP (Higgins & Sharp, CABIOS 5:151 (1989), BLAST and BLAST 2.0 (Altschul et al. J. Mol. Biol. 215: 403
(1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). In the present invention the term 'homologue' also refers to 'identity'. For example a homologue of a polynucleotide comprising SEQ ID NO: 1-66 has at least 70% identity to one of these sequences. In yet another embodiment such a homologue has at least 75%, 80%, 85% or 90% homology. According to still further features in the described preferred embodiments the polynucleotide fragment encodes a polypeptide able to enhance the production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine, which may therefore be allelic, species and/or induced variant of the amino acid sequence encoded by a sequence comprising SEQ ID NO: 1-66. A variant of a polynucleotide as described herein may be a naturally occurring variant such as an allelic variant, or it may be a variant that is not known to occur naturally. Changes in the nucleotide sequence of the variant may be silent, i.e. they may not alter the amino acids encoded by the polynucleotide. Where alterations are limited to silent changes of this type a variant will encode a polypeptide with the same amino acid sequence. Changes in the nucleotide sequence of the variant may alter the amino acid sequence of the polypeptides encoded by the polynucleotides described herein. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the polynucleotide sequences. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis. For instance, a conservative amino acid substitution may be made with respect to the amino acid sequence encoding the polypeptide. A "conservative amino acid substitution", as used herein, is one in which one amino acid residue is replaced with another amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art, including basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Nucleic acid molecules corresponding to natural allelic variants and homologues can be isolated based on their homology to the polynucleotides comprising SEQ ID NO: 1-66 disclosed herein using said polynucleotide sequences, or a portion thereof, as a hybridisation probe according to standard hybridisation techniques (e.g. as described in Sambrook, J. et al. molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989).

The present invention accordingly provides in another embodiment a method for enhancing the production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in plant or plant cells, by transformation of said plant or plant cells with an expression vector comprising
an expression cassette that further comprises at least one gene comprising a fragment, variant or homologue encoded by at least one sequence selected from a polynucleotide comprising SEQ ID NO: 1-66.

In another embodiment the invention provides a recombinant DNA vector comprising at least one polynucleotide sequence, homologue, fragment or variant selected from at least one of the sequences comprising SEQ ID NO: 1-66. The vector may be of any suitable type including, but not limited to, a phage, virus, plasmid, phagemid, cosmid, bacmid or even an artificial chromosome. The at least one polynucleotide sequence preferably codes for at least one polypeptide that is involved in the biosynthesis and/or regulation of synthesis of tabersonine and/or catharanthine and/or vinblastine and/or vincristine (e.g. a transcription factor, a repressor, an enzyme that regulates a feed-back loop, a transporter, a chaperone). The term "recombinant DNA vector" as used herein refers to DNA sequences containing a desired coding sequence and appropriate DNA sequences necessary for the expression of the operably linked coding polynucleotide sequence in a particular host organism (e.g. plant cell).

Plant cells are known to utilize promoters, polyadenylation signals and enhancers.

In yet another embodiment the invention provides a transgenic plant or derived cell thereof transformed with said recombinant DNA vector.

A recombinant DNA vector comprises at least one "expression cassette". Expression cassettes are generally DNA constructs preferably including (5' to 3' in the direction of transcription): a promoter region, a polynucleotide sequence, homologue, variant or fragment thereof of the present invention operatively linked with the transcription initiation region, and a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal. It is understood that all of these regions should be capable of operating in biological cells, such as plant cells, to be transformed. The promoter region comprising the transcription initiation region, which preferably includes the RNA polymerase binding site, and the polyadenylation signal may be native to the biological cell to be transformed or may be derived from an alternative source, where the region is functional in the biological cell.

The polynucleotide sequence, homologue, variant or fragment thereof of the invention may be expressed - alone or in combination - in for example a plant cell under the control of a promoter that directs constitutive expression or regulated expression. Regulated expression comprises temporally or spatially regulated expression and any other form of inducible or repressible expression. Temporally means that the expression is induced at a certain time point, for instance, when a certain growth rate of the plant cell culture is obtained (e.g. the promoter is induced only in the stationary phase or at a certain stage of development).

Spatially means that the promoter is only active in specific organs, tissues, or cells (e.g. only in roots, leaves, epidermis, guard cells or the like). Other examples of regulated expression comprise promoters whose activity is induced or repressed by adding chemical or physical
stimuli to the plant cell. In a preferred embodiment the expression is under control of environmental, hormonal, chemical, and/or developmental signals. Such promoters for plant cells include promoters that are regulated by (1) heat, (2) light, (3) hormones, such as abscisic acid and methyl jasmonate (4) wounding or (5) chemicals such as salicylic acid, chitosans or metals. Indeed, it is well known that the expression of secondary metabolites (such as terpenoid indole alkaloids) can be boosted by the addition of for example specific chemicals, jasmonate and elicitors. In a particular embodiment the co-expression of several (more than one) polynucleotide sequence or homologue or variant or fragment thereof, in combination with the induction of terpenoid indole alkaloid synthesis is beneficial for an optimal and enhanced production of tabersonine, catharanthine, vinblastine or vincristine. Alternatively, the at least one polynucleotide sequence comprising SEQ ID NO: 1-66, or a homologue, an variant or a functional fragment thereof is placed under the control of a constitutive promoter. A constitutive promoter directs expression in a wide range of cells under a wide range of conditions. Examples of constitutive plant promoters useful for expressing heterologous polypeptides in plant cells include, but are not limited to, the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues including monocots; the nopaline synthase promoter and the octopine synthase promoter. The expression cassette is usually provided in a DNA or RNA construct which is typically called an "expression vector" which is any genetic element, e.g., a plasmid, a chromosome, a virus, behaving either as an autonomous unit of polynucleotide replication within a cell (i.e. capable of replication under its own control) or being rendered capable of replication by insertion into a host cell chromosome, having attached to it another polynucleotide segment, so as to bring about the replication and/or expression of the attached segment. Suitable vectors include, but are not limited to, plasmids, bacteriophages, cosmids, plant viruses and artificial chromosomes. The expression cassette may be provided in a DNA construct which also has at least one replication system. In addition to the replication system, there will frequently be at least one marker present, which may be useful in one or more hosts, or different markers for individual hosts. The markers may a) code for protection against a biocide, such as antibiotics, toxins, heavy metals, certain sugars or the like; b) provide complementation, by imparting prototrophy to an auxotrophic host; or c) provide a visible phenotype through the production of a novel compound in the plant. Exemplary genes which may be employed include neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (HPT), chloramphenicol acetyltransferase (CAT), nitrilase, and the gentamicin resistance gene. For plant host selection, non-limiting examples of suitable markers are β-glucuronidase, providing indigo production, luciferase, providing visible light production, Green Fluorescent Protein and variants thereof, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.
The term "promoter activity" refers to the extent of transcription of a polynucleotide sequence, homologue, variant or fragment thereof that is operably linked to the promoter whose promoter activity is being measured. The promoter activity may be measured directly by measuring the amount of RNA transcript produced, for example by Northern blot or indirectly by measuring the product coded for by the RNA transcript, such as when a reporter gene is linked to the promoter. The term "operably linked" refers to linkage of a DNA segment to another DNA segment in such a way as to allow the segments to function in their intended manners. A DNA sequence encoding a gene product is operably linked to a regulatory sequence when it is ligated to the regulatory sequence, such as, for example a promoter, in a manner which allows modulation of transcription of the DNA sequence, directly or indirectly. For example, a DNA sequence is operably linked to a promoter when it is ligated to the promoter downstream with respect to the transcription initiation site of the promoter and allows transcription elongation to proceed through the DNA sequence. A DNA for a signal sequence is operably linked to DNA coding for a polypeptide if it is expressed as a pre-protein that participates in the transport of the polypeptide. Linkage of DNA sequences to regulatory sequences is typically accomplished by ligation at suitable restriction sites or adapters or linkers inserted in lieu thereof using restriction endonucleases known to one of skill in the art.

In a particular embodiment the polynucleotides or homologues or variants or fragments thereof of the present invention can be introduced in plants or plant cells that are different from *Catharanthus roseus* and said polynucleotides can be used for the enhancement of terpenoid indole alkaloids in plants or plant cells which are different from *Catharanthus roseus*. Preferred plants (or plant cell lines derived thereof) are plants that produce the secondary metabolite strictosidine. Examples of such plants comprise *Vinca major*, *Qinchona officinalis*, *Corynanthe johimbe*, *Strychnos nux-vomica* and *Rauwolfia serpentine*.

The term "heterologous DNA" and or "heterologous RNA" refers to DNA or RNA that does not occur naturally as part of the genome or DNA or RNA sequence in which it is present, or that is found in a cell or location in the genome or DNA or RNA sequence that differs from that which is found in nature. Heterologous DNA and RNA (in contrast to homologous DNA and RNA) are not endogenous to the cell into which it is introduced, but has been obtained from another cell or synthetically or recombinantly produced. An example is a gene isolated from one plant species operably linked to a promoter isolated from another plant species. Generally, though not necessarily, such DNA encodes RNA and proteins that are not normally produced by the cell in which the DNA is transcribed or expressed. Similarly exogenous RNA encodes for proteins not normally expressed in the cell in which the exogenous RNA is present. Heterologous DNA or RNA may also refer to as foreign DNA or RNA. Any DNA or RNA that one of skill in the art would recognize as heterologous or foreign to the cell in which it is expressed is herein encompassed by the term heterologous DNA or heterologous RNA.
Examples of heterologous DNA include, but are not limited to, DNA that encodes proteins, polypeptides, receptors, reporter genes, transcriptional and translational regulatory sequences, selectable or traceable marker proteins, such as a protein that confers drug resistance, RNA including mRNA and antisense RNA and ribozymes.

Accordingly, the invention provides in a further aspect a gene construct in the form of an expression cassette comprising as operably linked components in the 5'-3' direction of transcription, one or more units each comprising a suitable promoter in a plant cell, a plurality of nucleotide sequences selected from the group comprising sequences SEQ ID NO: 1-66 for the stimulation of tabersonine and/or catharanthine and/or vinblastine and/or vincristine production and a suitable transcriptional and translational termination regulatory region.

The promoter and termination regulatory regions will be functional in the host plant cell and may be heterologous or homologous to the plant cell and the gene. Suitable promoters which may be used are described above.

The termination regulatory region may be derived from the 3' region of the gene from which the promoter was obtained or from another gene. Suitable termination regions, which may be used, are well known in the art and include Agrobacterium tumefaciens nopaline synthase terminator (Tnos), Agrobacterium tumefaciens mannopine synthase terminator (Tmas), the rubisco small subunit terminator (TrbcS) and the Ca 35S terminator (T35S).

The present invention can be practiced with any plant variety of *Catharanthus roseus* or plants that produce terpenoid indole alkaloids for which cells of the plant can be transformed with an expression cassette of the current invention and for which transformed cells can be cultured *in vitro*. Suspension culture, callus culture, hairy root culture, shoot culture or other conventional plant cell culture methods may be used (as described in: Drugs of Natural Origin, G. Samuelsson, 1999, ISBN 9186174813).

By "plant cells" it is understood any cell which is derived from a plant and can be subsequently propagated as callus, plant cells in suspension, organized tissue and organs (e.g. hairy roots). Tissue cultures derived from the plant tissue of interest can be established. Methods for establishing and maintaining plant tissue cultures are well known in the art (see, e.g. Trigiano R.N. and Gray D.J. (1999), "Plant Tissue Culture Concepts and Laboratory Exercises", ISBN: 0-8493-2029-1; Herman E.B. (2000), "Regeneration and Micropropagation: Techniques, Systems and Media 1997-1999", Agricell Report). Typically, the plant material is surface-sterilized prior to introducing it to the culture medium. Any conventional sterilization technique, such as chlorinated bleach treatment can be used. In addition, antimicrobial agents may be included in the growth medium. Under appropriate conditions plant tissue cells form callus.
tissue, which may be grown either as solid tissue on solidified medium or as a cell suspension in a liquid medium.

A number of suitable culture media for callus induction and subsequent growth on aqueous or solidified media are known. Exemplary media include standard growth media, many of which are commercially available (e.g., Sigma Chemical Co., St. Louis, Mo.). Examples include Schenk-Hildebrandt (SH) medium, Linsmaier-Skoog (LS) medium, Murashige and Skoog (MS) medium, Gamborg's B5 medium, Nitsch & Nitsch medium, White's medium, and other variations and supplements well known to those of skill in the art (see, e.g., Plant Cell Culture, Dixon, ed. IRL Press, Ltd. Oxford (1985) and George et al., Plant Culture Media, Vol 1, Formulations and Uses Exegetics Ltd. Wilts, UK, (1987)). For the growth of conifer cells, particularly suitable media include 1/2 MS, 1/2 L.P., DCR, Woody Plant Medium (WPM), Gamborg's B5 and its modifications, DV (Durzan and Ventimiglia, In Vitro Cell Dev. Biol. 30:219-227 (1994)), SH, and White's medium.

In a particular embodiment the current invention can be combined with other known methods to enhance the production and/or the secretion of tabersonine and/or catharanthine and/or vincristine and/or vinblastine in plant cell cultures such as (1) by improvement of the plant cell culture conditions, (2) by the transformation of the plant cells with a transcription factor capable of upregulating genes involved in the pathway of terpenoid indole alkaloid formation, (3) by the addition of specific elicitors to the plant cell culture, and 4) by the induction of organogenesis.

The term "plant" as used herein refers to vascular plants (e.g. gymnosperms and angiosperms). The method comprises transforming a plant cell with an expression cassette of the present invention and regenerating such plant cell into a transgenic plant. Such plants can be propagated vegetatively or reproductively. The transforming step may be carried out by any suitable means, including by Agrobacterium-mediated transformation and non-Agrobacterium-mediated transformation, as discussed in detail below. Plants can be regenerated from the transformed cell (or cells) by techniques known to those skilled in the art. Where chimeric plants are produced by the process, plants in which all cells are transformed may be regenerated from chimeric plants having transformed germ cells, as is known in the art. Methods that can be used to transform plant cells or tissue with expression vectors of the present invention include both Agrobacterium and non-Agrobacterium vectors. Agrobacterium-mediated gene transfer exploits the natural ability of Agrobacterium tumefaciens to transfer DNA into plant chromosomes and is described in detail in Gheysen, G., Angenon, G. and Van Montagu, M. 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In K. Lindsey (Ed.), Transgenic Plant Research. Harwood Academic Publishers, Amsterdam, pp. 1-33 and in Stafford, H.A. (2000) Botanical Review 66: 99-118. A second group of transformation methods is the non-Agrobacterium mediated transformation and these methods are known as direct gene transfer methods. An overview is
physical methods. In K. Lindsey (Ed.), Transgenic Plant Research, Harwood Academic
Publishers, Amsterdam, pp.35-55. Hairy root cultures can be obtained by transformation with
virulent strains of Agrobacterium rhizogenes, and they can produce high contents of secondary
metabolites characteristic to the mother plant. Protocols used for establishing of hairy root
cultures vary, as well as the susceptibility of plant species to infection by Agrobacterium
It is known that the Agrobacterium strain used for transformation has a great influence on root
morphology and the degree of secondary metabolite accumulation in hairy root cultures. It is
possible that by systematic clone selection e.g. via protoplasts, to find high yielding, stable,
and from single cell derived-hairy root clones. This is possible because the hairy root cultures
possess a great somaclonal variation. Another possibility of transformation is the use of viral
Any plant tissue or plant cells capable of subsequent clonal propagation, whether by
organogenesis or embryogenesis, may be transformed with an expression vector of the
present invention. The term Organogenesis’ means a process by which shoots and roots are
developed sequentially from meristematic centers; the term ‘embryogenesis’ means a process
by which shoots and roots develop together in a concerted fashion (not sequentially), whether
from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal
propagation systems available for, and best suited to, the particular species being transformed.
Exemplary tissue targets include protoplasts, leaf disks, pollen, embryos, cotyledons,
hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g. apical
meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon
meristem and hypocotyl’s meristem).
In yet another embodiment suitable expression cassettes comprising the nucleotide sequences
of the present invention can be used for transformation into other species (different from
Catharanthus roseus). This transformation into other species or genera can be carried out
randomly or can be carried out with strategically chosen nucleotide sequences. The random
combination of genetic material from one or more species of organisms can lead to the
generation of novel metabolic pathways (for example through the interaction with metabolic
pathways resident in the host organism or alternatively silent metabolic pathways can be
unmasked) and eventually lead to the production of novel classes of compounds. This novel or
reconstituted metabolic pathways can have utility in the commercial production of novel,
valuable terpenoid indole alkaloids.
Various assays within the knowledge of the person skilled in the art may be used to determine
whether the plant cell shows an increase in gene expression, for example, Northern blotting or
quantitative reverse transcriptase PCR (RT-PCR). Whole transgenic plants may be
regenerated from the transformed cell by conventional methods. Such transgenic plants having improved terpenoid indole alkaloid (e.g. tabersonine, catharanthine, vinblastine or vincristine) levels may be propagated and crossed to produce homozygous lines. Such plants produce seeds containing the genes for the introduced trait and can be grown to produce plants that will produce the selected phenotype.

The recombinant DNA and molecular cloning techniques applied in the below examples are all standard methods well known in the art and are e.g. described by Sambrook et al. (1989) Molecular cloning: A laboratory manual, second edition, Cold Spring Harbor Laboratory Press. Methods for tobacco cell culture and manipulation applied in the below examples are methods described in or derived from methods described in Nagata et al. (1992) Int. Rev. Cytol. 132, 1.

Examples

1. Growth and targeted TIA analysis

In order to enable functional genomics driven gene discovery in TIA metabolism in Madagascar periwinkle cells, it is crucial to establish the conditions in which differential accumulation of the desired metabolites can be observed. This can for instance be achieved by studying different plant developmental stages or the effects of elicitor treatments. In the present invention it is assumed that developmental or environmental conditions affecting the production of the desired secondary metabolites will also activate the genes involved in the biosynthesis of such compounds (Oksman-Caldentey and Inze, 2004). In the case of C. roseus, literature suggests that TIA accumulation is strongly influenced by the complex interaction of phytohormones such as auxins and jasmonates (Gantet et al., 1998; Pasquali et al., 1992). Therefore, it seemed most promising to investigate the combined effects of these two hormones on TIA accumulation in C. roseus cells, applying similar growth and elicitation conditions as described (Gantet et al., 1998). Since alkaloid contents can vary greatly between different cell lines, two independent C. roseus cell lines were used in this study, namely 'Leiden' and 'Wuerzburg' (see Experimental procedures). Growth curves for both cell lines and two experimental conditions (i.e. with and without auxin) were determined to establish the optimal time for elicitation. The elicitation point for both cell lines was set at day six. At that time cultured cells of both strains, under all growth conditions (with and without auxin) were in middle or late growth phase. In contrast to the 'Wuerzburg' line, the 'Leiden' line has been specifically optimized for TIA production. This was clearly reflected by higher absolute TIA levels and a more pronounced response to MeJA elicitation in the 'Leiden' cells. Consequently, in this invention we have concentrated on the 'Leiden' line for further profiling analyses. Tabersonine levels in 'Leiden' cells grown in the presence of auxin showed an extremely fast and pronounced response. Already 4 h after elicitation they had accumulated from 13 ± 1 to
124 ± 5 µg/g dw and after 12 h to 141 ± 7 µg/g dw representing a more than 10 fold increase. In the absence of auxin, elicitation was observed as well, although to a lesser extent (from < 1 to 5 µg/g dw). In general, catharanthine was present at levels reported in the literature (Vazquez-Flota et al., 2002) in the 'Leiden' line. When jasmonate elicited cells were grown in the presence of auxin, catharanthine accumulated up to 360 ± 69 µg/g dw, a level that had been reached with other elicitors, too (Zhao et al., 2001). In contrast, in cells cultured without auxin a differential elicitation effect could not be observed with respect to catharanthine concentrations. Similarly, ajmalicine concentrations were in the same range as reported in the literature (Vazquez-Flota et al., 2002). The amounts after elicitation approximately doubled within 12h in medium supplemented with auxin, whereas in the absence of auxin jasmonate-mediated induction of ajmalicine accumulation seemed to occur with some delay. Nonetheless, in accordance with Gantet et al. (1998) removal of auxins by itself, even in the absence of MeJA, positively affected TIA biosynthesis, leading to similar accumulation levels as obtained with MeJA elicitation in the presence of auxins. Notably, in 'Leiden' cells catharanthine and tabersonine levels are positively affected by the presence of auxins, whereas the opposite is true for ajmalicine accumulation, pointing to a possible divergent regulation of different steps of the TIA biosynthetic pathway by phytohormones. The negative effect of auxins on ajmalicine levels has been also observed by Gantet et al. (1998), whereas levels of other TIAAs were not assessed in the latter study. In striking contrast however, ajmalicine levels in 'Wuerzburg' cells are positively affected by the presence of auxins, underscoring the existence of variability in the regulation of TIA biosynthesis in different cell lines.

As expected (St-Pierre et al., 1999) vindoline and the downstream bisindolalkaloids vinblastine and vincristine were not detected in quantifiable amounts in none of the cell lines under any of the conditions tested.

2. Quantitative evaluation of cDNA-AFLP profiling of C. roseus gene expression
Using 128 BstYI+1/Msel+2 primer combinations, quantitative temporal accumulation patterns of 10,790 transcript tags were determined and analyzed from the 'Leiden' C. roseus cell culture. In total, 561 differentially expressed transcript tags were isolated. Direct sequencing of the PCR products gave good-quality sequences for 417 (=74%) fragments. To the remaining 26%, no unique sequence could be attributed unambiguously, indicating that they might not represent unique gene tags. Similar performance numbers were obtained in the cDNA-AFLP based transcript profiling of methyl jasmonate elicited tobacco BY-2 cells (Goossens et al., 2003). Homology searches with the sequences from the unique C. roseus (CR) gene tags revealed that 63% of these tags displayed similarity with known plant genes, whereas for the remaining 37% of the tags no homology to a known sequence was found. When blasting the nucleotide sequences of the CR cDNA-AFLP tags with the 236 prior to this study publicly
available C. roseus EMBL entries, only 33 hits were found with a (near) 100% match. The majority of the tags identified in this study thus represent novel gene sequences of the medicinal plant C. roseus.

3. Qualitative evaluation of cDNA-AFLP profiling of C. roseus gene expression

The CR tags can be divided in different subclusters, either based on their expression profiles or based on their annotation. Average linkage hierarchical clustering analysis of the expression profiles showed that three main forces steer the formation of clusters. Listed by their order of impact, these are the addition of methyl jasmonate, growth (independent of the exogenous application of hormones or elicitors), and the presence of auxin, modulating respectively the expression of 42.8%, 33.8%, and 28.5% of the CR tags. For 5.2% of the CR tags the expression is affected both by methyl jasmonate and auxin. According to the Functional Catalogue of the Munich Information Center for Protein Sequences (http://mips.gsf.de/projects/funct) the CR tags could be classified into eight broadly defined functional groups. Notably, and of relevance for this study is that the functional category group 'Metabolism & Energy' constitutes one of the major groups, including as anticipated a large number of TIA genes, but also a notable number of tags with sequence similarity to genes encoding enzymes involved in the S-adenosylmethionine (SAM) cycle, phytohormone metabolism, and phenolic compound biosynthesis. To assess the relevance of the cDNA-AFLP tags presented in this study, a biological repeat experiment was performed on the 'Wuerzburg' line submitted to the same treatments. 18 primer combinations were chosen and run on the 'Wuerzburg' samples (biological repeat) and again on the 'Leiden' samples (technical repeat). In the 'Leiden' CR tag collection, 70 unique differentially expressed tags were isolated using these particular primer combinations. The technical repeat confirmed the expression profile for more than 90% of the CR tags whereas the biological repeat showed that 57% of the tags differentially regulated in the 'Leiden' culture have a gene equivalent in the 'Wuerzburg' culture that displays a similar expression pattern. When excluding CR tags that subcluster in the 'Growth regulated' groups, which likely represent genes not directly related to TIA biosynthesis, the biological repeat gives a higher match (63%). One should also consider that nuclear polymorphisms between the two cell lines (and thus the C. roseus cultivars they were derived off) might account in part for the differential AFLP patterns. Based on this partial cDNA-AFLP analysis it could be estimated that overall 3% of the transcript tags show a cell line specific presence.

4. CR tags corresponding to genes involved in TIA biosynthesis

The tags corresponding to genes reported to be associated with TIA biosynthesis that were isolated as differentially expressed by cDNA-AFLP include tags corresponding with genes associated with the biosynthesis of the terpenoid moiety (1-deoxy-D-xylulose-5-phosphate
synthase, DXS; 2C-methyl-D-erythrol-2,4-cyclophosphate synthase, MECS; 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, HDS; geranylpyrophosphate synthase, GPPS and geraniol 10-hydroxylase, G10H), biosynthesis of the indole moiety (anthranilate synthase, AS), biosynthesis of the monomer TIA's (strictosidine β-D-glucosidase, SGD) and transcription factors regulating TIA biosynthesis (octadecanoid-responsive Catharanthus AP2-domain factors, ORCA2 and ORCA3). In all these cases, it concerns tags with a (near) perfect match with the gene sequences, encoding the isoforms reported to catalyze (or regulate) the known enzymatic reactions. Additionally, the cDNA-AFLP set also includes tags with close similarity (greater than 70%) to 10-hydroxygeraniol oxidoreductase (1OHGO), strictosidine synthase (STR), tabersonine 16-hydroxylase (T16H) and deacetylvinodoline 4-O-acetyltransferase (DAT) but of which the sequence does not perfectly match the isoenzyme reported to catalyze the corresponding enzymatic reactions. Further analysis will be required to investigate whether the gene products corresponding to these tags catalyze identical reactions or whether they possibly generate structurally related alkaloids or other types of secondary metabolites.

Expression of all these genes is induced by elicitation with MeJA, and additionally either stimulated or repressed by the presence of auxin. RT-PCR was performed for all of the remaining known but undetected TIA biosynthesis genes and showed that all but two of them (i.e. T16H and tryptophan decarboxylase, TDC) either were not differentially expressed or not transcribed at all. The expression profiles (snapshot at 12h after elicitation) of the TIA genes are also displayed together with the targeted TIA metabolite profiling data in the pathway presented in Figure 1.

5. Overlap between transcriptome and proteome analysis
Recently, a systematic 2D-PAGE proteomic analysis on TIA producing C. roseus cell suspension cultures at various points in a culture growth cycle allowed the identification of 58 C. roseus proteins, including tryptophan synthase and two isoforms of STR (Jacobs et al., 2005). By comparing the sequences of this proteome data set with our transcriptome sequence data set, for nine of the protein spots, a potential corresponding transcript tag could be identified. By BlastX searches of the transcript tag nucleotide sequences against the protein spot amino acid sequences, a direct hit (with 88% to 100% identity) was found with three protein spots, amongst which the so-called PS Protein, suggested to be associated with TIA biosynthesis (Lenenger et al., 2005). By looking for common hits of respective Blast searches with the transcript tag and protein spot sequences against public databases, presumable counterparts for six more protein spots could be detected within the transcript tag set, amongst which was an enzyme involved in jasmonate biosynthesis (i.e. 12-oxophytodienoate reductase). As expected a common blast hit was also encountered with the STfi-like transcript tag (CRG130) and the two STR isoforms identified by Jacobs et al. (2005),

16
the latter displaying a 100% match with the previously released STR gene sequence (McKnight et al., 1990), in contrast to the CRG130 sequence.

6. Non-targeted metabolite analysis

To allow true integration of metabolomics and transcriptomics and ultimately collect novel information on gene-to-metabolite networks in C. roseus cells, we performed a large-scale non-targeted LC-MS analysis of the same samples as used for cDNA-AFLP profiling. Prior to normalization and peak filtering the metabolic profile of this non-targeted analysis revealed 3891 peaks using the MZmine LC/MS toolbox (Katajamaa and uresis, 2005). Among those there were many peaks with too low signal-to-noise ratio to be considered relevant to the study, such as peaks of very low intensity and low variability, and natural isotope peaks. We have therefore performed peak filtering to remove such peaks. Furthermore, we have excluded the peaks eluting within the first three minutes, because retention is unstable within this period. The peak filtering resulted in 178 peaks altogether. Using an internal library of masses and retention times of metabolites from the TIA biosynthetic pathway, we identified nine compounds (ajmalicine, tabersonine, catharanthine, yohimbine, cathenamine, secologanine, lochnerine, 16-methoxy-2,3-dihydro-3-hydroxytabersonine, and desacetoxyvindoline). As anticipated all of these compounds are synthesized upstream of D4H in the pathway (Figure 1B). The remaining peaks comprised metabolites most abundantly in the range of 300-400 m/z, the typical range expected for the monomeric TIA metabolite class, some of them also displaying retention times similar to the identified TIAs. Notwithstanding, more detailed analytical investigation would be required for unequivocal chemical characterisation. Average linkage hierarchical clustering of the metabolite accumulation profiles reveals the existence of various subclusters of metabolites, in which two are of particular importance for this study: one consisting of 43 metabolites of which accumulation is stimulated by auxins and one consisting of 53 metabolites of which accumulation is repressed by auxins. To the best of our knowledge, this is the first report that provides a list, obtained through non-targeted metabolite profiling and consisting of known and novel metabolites of which accumulation is modulated by an auxin. Eventually, for some of the metabolites present in these two clusters, the differential auxin-mediated regulation might be enforced by or depends on the presence of MeJA. Most important however is the fact that not all identified monomeric TIAs group within the same auxin-modulated subcluster. For instance, the accumulation of tabersonine and catharanthine, the two building blocks for bisindole alkaloid biosynthesis, is positively affected by auxins whereas the accumulation of ajmalicine, a monomeric TIA not involved in the synthesis of bisindole alkaloids, is repressed by the presence of auxins. This was apparent from the targeted TIA analysis, too, and similar evidence was also obtained from the Principal Components Analysis and linear network correlation analysis (see below). This indicates the
existence of divergent regulation of biosynthesis and accumulation of metabolites within the TIA pathway.

7. Integrated analysis of transcriptome and metabolome

For integrated analysis of metabolite and transcript profiles, the accumulation profiles of 178 retained metabolite peaks were combined with the expression profiles of the 471 transcripts. Normalized profiling data were scaled so that the mean value within each of the two datasets was set to 1. In order to explore the variability structure of data, we first performed the Principal Components Analysis (PCA) using mean scaling (Jackson, 1991). The first two principal components (PC), accounting for 64% of total variability, reveal clear separation between the auxin-treated and non-treated cells by first PC, and the separation of each group across the time domain along the second PC. To establish gene-to-gene and metabolite-to-gene correlation patterns, we utilized correlation network analysis (Kose et al., 2001; uresis et al., 2004). We calculated the Pearson correlation coefficient between each pair of variables (either gene or metabolite) across the profiles including all time points and conditions. To optimally visualise the complex networks related to secondary metabolism in C. roseus cells, we performed the analysis for two different subsets of the profiles. As illustrated below these two approaches clearly underscore the power of integrative metabolite and transcript profiling. Out of the hundreds of metabolite peaks and transcript tags identified one can sort the ones of which accumulation or expression is closely correlated with the accumulation of certain TIA metabolites. In first instance, correlation network analysis was performed for a selected subset of identified metabolites and genes. This subset was chosen arbitrarily and consisted at the one hand of the nine identified TIA metabolite peaks and at the other hand of the gene tags identical to or with close sequence similarity to genes respectively encoding proteins catalysing jasmonate and TIA biosynthesis, and given the importance of these two protein families in TIA biosynthesis, all putative cytochrome P450 (CP450) and AP-2 transcription factors. All of the CR tags belonging to the gene classes used in this subset could be integrated in the network, except for three tags corresponding respectively to an AP-2 factor (CRG20), a lipoxygenase possibly involved in jasmonate biosynthesis (CRG48), and a CP450 (CRG96). Most striking observations here are (i) the presence of a strongly correlated gene-to-gene network that includes practically all of the known early pathway TIA genes as well as the ORCA transcription factors, (ii) the presence of a gene-to-metabolite cluster comprising a part of the TIA metabolites and a set of CP450 genes with still unspecified function, and (iii) some smaller correlation groups (i.e. only pairs or triplets of genes or metabolites), containing for instance ajmalicine, thus confirming the differential regulation of this particular biosynthetic branch. Clearly, the correlation network analysis conveniently allows distinguishing within the genes of unknown function (for instance putative CP450s) the ones that are most interesting by linking some of them with particular branches of the TIA biosynthetic pathway. Secondly, an unbiased
subset is visualised, subtracted from the complete network across all transcript and metabolite
profiles, and centring on the tabersonine node. The gene-to-metabolite network around this
node consists of 29 metabolites and 97 genes (with a blast hit) that represent the nearest links
). Importantly, many of the unassigned metabolites that are included in this cluster display
masses in the range of 300-400 m/z, the typical range expected for the monomeric TIA
metabolite class, and thus might represent as yet unknown intermediates or side products of
TIA metabolism. Accordingly, this network centred on tabersonine harbours 66 tags
corresponding to enzymes with still unknown activity and substrate specificity, thus candidates
to code for some of the missing links in the biosynthesis of tabersonine and/or catharantidine
and/or vincristine.

8. Functional validation of the polynucleotides comprising SEQ ID NO: 1-66 in transgenic hairy
roots of Catharanthus roseus

For the cloning of the complete genes, corresponding to the gene tags with SEQ ID NO: 1-66,
full-length open reading frames (ORFs) are isolated either via RACE technology (Invitrogen) or
by screening of a Catharanthus roseus cDNA library. This custom library (Invitrogen) was
derived from Catharanthus roseus cells harvested at different time points following MeJA
elicitation. Library screening of this library is performed either via colony hybridization using
cDNA-AFLP tag sequences as probes or via PCR. For RACE and PCR screening, primers
were designed based on available cDNA-AFLP tag sequences using the Primer3 software
(Rozen and Skaletsky, 2000). Full-length ORF amplicons are synthesized by PCR using the
Platinum Pfx DNA polymerase (Invitrogen) with the Gateway attB1 and attB2 sequences, and
are subsequently transferred, using the Gateway recombination cloning technology
(Invitrogen), in pDONR221 via BP clonase, then the binary vector pK7WG2D via LR clonase
(Karimi et al., 2002). Each ORF is fully sequence validated in the pDONR221 entry clone. The
pK7WG2D constructs are then finally transferred to an Agrobacterium rhizogenes strain
suitable for Catharanthus roseus hairy root transformation.

The generation of hairy roots is as follows. Fully expanded green leaves of greenhouse-grown
C. roseus plants are cut at the base near the stem and surface sterilized by a quick dip in 70%
ethanol followed by immersion in 0.6% hypochlorite solution containing 2 drops of tween 20 for
10 min on a magnetic stirrer. Then the leaves are washed two times for 5 min with sterile water
and subsequently dried between sterile paper towels. The leaves are placed upside down in
petridishes containing MS medium with 10 g/l sucrose. A sterile needle is dipped into the
bacterial culture and then used to make incisions in the midrib of the leaves. Cocultivation is
for 2 d under light at 23°C. To kill the remaining Agrobacteria the leaves are then transferred to
plates containing the same medium but with the addition of 500 mg/l Cefotaxime. Until the
appearance of hairy roots the leaves are subcultured every two weeks to the same medium. Finally short pieces of hairy roots are placed on antibiotic free medium.

9. Functional validation of the polynucleotides comprising SEQ ID NO: 1-66 in cell lines of Catharanthus roseus

The pK7WG2D plasmid constructs generated for hairy root transformation can also be used for transformation of Catharanthus roseus cell lines. To this end the generated constructs are not integrated in an Agrobacterium rhizogenes strain but instead in an Agrobacterium tumefaciens strain suitable for Catharanthus roseus cell line transformation.

Transformation of cells in suspensions is as follows. Catharanthus cells grown as suspension cultures can be transformed either indirect using Agrobacterium tumefaciens or direct by particle bombardment. Indirect transformation has been described by Talou et al. (2001) Plant Phys. and Biochem. 39: 595. based on work of van der Fits (2000) Doctoral Thesis, University of Leiden, Netherlands. Briefly, one volume of bacterial culture is mixed with nine volumes of plant cells and plated on cocultivation medium containing 100 µl acetylsyringone. After 3 d incubation in the dark at 24°C the cells are filtered on sterile filter paper and washed two times with culture medium. For agro killing and selection the cells are transferred to medium containing cefotaxime and the selective antibiotics.

An efficient direct transformation system using particle bombardment has been described by Hilliou et al. (1999) Plant Science 140: 179. Cells growing on solid medium are dried on sterile filter paper directly before bombardment. 10 mg of 1 µm gold particles coated with 10 µg of DNA are bombarded at 14 kV. Two different plasmids are mixed at a 3:1 molar ratio for cotransformation. The calli are incubated overnight in the dark at 25°C after the bombardment and are then subcultured to fresh medium. After 5 d the calli are transferred to medium containing the selective antibiotics.

Materials and methods

Catharanthus roseus cell suspensions were grown in liquid Gamborg B5 medium (Gamborg et al., 1968) containing 20 g/l sucrose and 1.86 mg/l NAA at 26°C, continuous light and 125 rpm shaker speed. Two cell lines designated 'Leiden' and 'Wuerzburg' were used. The 'Leiden' line was a gift from Prof. Robert Verpoorte, Leiden University, and was specifically selected for catharanthine production (Verpoorte, personal communication). The 'Wuerzburg' line was established in our laboratory on the same medium and starting from leaves from axenically grown C. roseus seedlings. Growth curves were determined by weighing the lyophilized cells at different time intervals. Elicitations were started at day six after inoculating 2 g fresh weight of cells in 25 ml medium (with or without NAA) contained in 100 ml Erlenmeyer flasks by addition of either MeJA dissolved in DMSO at a final concentration of 50 µM or the same
volume of DMSO alone as a control. Samples for metabolite and transcript profiling were
harvested by vacuum filtration 0, 1, 4, 6, 8, 10 and 12 h after elicitation or 0, 4, 8 and 12 h after
DMSO addition. Samples were lyophilized and stored at -20°C until the extraction was
performed.

Reference compounds
Pure terpenoid indole alkaloids (Toivonen et al., 1991) ajmalicine hydrochloride, catharanthine
hydrochloride, tabersonine hydrochloride and vindoline were generously provided by M. Ojala
(VTT Processes, Espoo, Finland). Vinblastine sulfate, vincristine sulfate and vincamine were
purchased from Sigma (St. Louis, Missouri, USA).

Extraction and sample preparation
For TIA extraction we followed the modified protocol of Whitmer et al. (2002). Briefly, 100 mg
of lyophilized cells were spiked with internal standard (vincamine) and extracted with 15 ml
ethanol in an ultrasonic bath for 10 min. Following centrifugation at 5000 rpm for 10 min the
solvent was decanted and evaporated to dryness. Dry samples were stored at -20°C until
analysis. Then the samples were redissolved in a 1:1 mixture of acetonitrile (Rathbum,
Walkerbum, UK) and 10 mM ammoniumacetate (Merck, Darmstadt, Germany) adjusted to pH
10. 25 µl of the solution were injected into the HPLC after centrifugation.

HPLC-MS analysis
25 µl sample was loaded onto a reverse-phase C18 column (Xterra MS C18, 4.6 x 150 mm, 5
µm, Waters) at 35°C. The sample was eluted within 30 min using isocratic conditions of 10 mM
ammoniumacetate at pH 10 and acetonitrile (55:45) applying a flow of 1 ml/min and a split of
0.2 ml/min reaching the mass spectrometer. For TIA-targeted analysis HPLC separation was
performed using a Waters HT-Alliance 2795 system and was monitored with a Waters 996
photodiode array detector (200 to 270 nm) and a Micromass Quattro micro triple quadrupole
mass spectrometer equipped with an electrospray source. The ion source was operated at
capillary voltage 3.20 kV and cone voltage 45 V. Source and desolvation temperatures were
130°C and 290°C, respectively. Desolvation gas flow was 900 l/h and cone gas flow 30 l/h.
The selected ion recording (SIR) function was applied to record the protonated molecular ions
\(m/z \) in 6 channels: 337.1 for catharanthine and tabersonine, 353.1 for ajmalicine, 355.1 for the
internal standard vincamine, 457 for vindoline, 811.3 for vinblastine and 825.2 for vincristine.
Quantification for ajmalicine, catharanthine, tabersonine, vindoline, vinblastine and vincristine
was based on the internal standard method similar to the description by Auriola et al. (1990).
Ten-point calibration curves were created (0.004-2 ppm) with five injections each. The
amounts of analyte were plotted versus the response. Linear regression was used for
calculating the curve parameters. For non-targeted analysis the same Waters HT-Alliance
system with the Micromass Quattro micro triple quadrupole mass spectrometer as for the TIA-targeted analysis was used. All settings were the same except that the full scan mode function was applied. The data processing methods involving peak detection, alignment, and normalization were the same as described previously (Oresis et al., 2005).

cDNA-amplified fragment length polymorphism (AFLP) analysis and data processing
RNA from both 'Leiden' and 'Wuerzburg' C. roseus cells was prepared with Concert™ Plant RNA Reagent (InVitrogen Life technologies). Sample preparation and cDNA-AFLP based transcript profiling were performed as described (Breyne et al., 2003). All 128 possible BstYI+1/Msel+2 primer combinations were used for transcript profiling on 'Leiden' samples, whereas only 18 primer combinations were used on 'Wuerzburg' samples. Data processing was performed essentially as described (Vandenabeele et al., 2003). For normalization within each primer combination, 25% of the genes with the lowest coefficient of variation (CV) value were marked as constitutively expressed. Gene tags displaying expression values with a CV >0.6 were considered as differentially expressed and, after visual inspection, were taken for further analysis. To characterize the isolated cDNA-AFLP fragments, the sequences, directly obtained from the reamplified PCR product, were compared against nucleotide and protein sequences in the publicly available databases by BLAST sequence alignments (Altschul et al., 1997). When available, tag sequences were replaced with longer EST or isolated cDNA sequences to increase the chance of finding significant homology. The similarity threshold maintained for BLAST searches was established at a value of 10e-3. However, due to the small size of some tags, in some cases a lower e value was accepted when unambiguous matches were observed.

Reverse transcriptase-PCR (RT-PCR)
RNA and single-stranded cDNA for RT-PCR analysis was prepared as described above for cDNA-AFLP analysis. Expression of gene products reported to be involved in TIA biosynthesis was verified by RT-PCR using gene specific primer pairs. PCR-products were visualized on ethidium-bromide stained agarose gels.

Data analysis of transcriptional and metabolic profiles
Both metabolic and gene expression datasets were normalized separately with the method based on maximum likelihood estimate of scaling parameters (Hartemink et al., 2001), using the complete dataset in parameter estimation calculations (Oresis et al., 2004). In order to better match the size of the transcriptional dataset, we filtered the peaks from the metabolic profile dataset based on coefficient of variance (CV) and retention time. Only peaks with CV>0.7 across all conditions and with retention time higher than 3 minutes were retained. The Principal Components Analysis (Jackson, 1991) was performed using PLS Toolbox package (Eigenvector Research, Inc.) using Matlab software (MathWorks, Inc.). We used the Tom Sawyer Visualization 6.0 software (Tom Sawyer, Inc.) for generation of correlation networks.
References

understanding of global responses to nutritional stresses in Arabidopsis thaliana. P Natl Acad Sci USA 101, 10205-10210.

Tiss Org 42, 1-25.

Claims

1. An isolated polynucleotide that enhances the production of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in Catharanthus roseus that is selected from the group comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 or any variant or functional fragment thereof.

2. A polynucleotide according to claim 1 wherein said polynucleotide shares at least 70% homology with a polynucleotide that is selected from the group comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 or any variant or functional fragment thereof.

3. A recombinant DNA vector, particularly an expression vector, comprising at least one of the polynucleotide sequences according to claims 1 or 2.

4. A transgenic plant or a cell derived thereof that is transformed with a recombinant DNA vector according to claim 3.

5. Use of at least one of the polynucleotides according to claims 1 or 2 to enhance the biosynthesis of tabersonine and/or catharanthine and/or vinblastine and/or vincristine in Catharanthus roseus.
Means and methods to enhance the production of vinblastine and vincristine in catharanthus roseus

PATENTIN VERSION 3.3

1
2
3
4

atgcgcaaca aatagggttg gactacttcg agatataact aggggctta cagaaaaatg 60
gttagcaatt gtacgacact atgtggccag ggcggagag aaggcgggtga atgtttctta 120
cgttagggat gtatcatgaa acaatgtgga tatgcagttt gtgaagtcga tgaagagagga 180
aatgggtgcc atgtatcaca tcgcatgaa gatta 215

ttgctgtacc taaaaatggc tgggctgcta ttagattcaa ggcaaacaat cctggggtgt 60
gttgctgca tggcacttgc gagagcaca taagtggggg aatggaaatg gcatccacta 120
ttagaaatgg gagacaccct gacccaaaaag ttctgcttgc acctccagac atgcttgcct 180
gttactcagg acctcatc 197

tccaagtttt ctggaagtg ttagatgctgaa aaaaaaaga gctgtggtgt ccacatatgtg 60
tgaagaaggt tactcaagac tc 82
caggtaggag aatatgtccg ggtttaccc tcggcttatcg gacgcttcat acaatgttgg 120
cacttgtat tcataacttt gatggaagc ttaactcagga tctatc 166
<210> 5
<211> 107
<212> DNA
<213> Catharanthus roseus
<214> 5
tgattccact ctctccata cttagatat tcagttattg atatgagtct ttgattcact 60
aaggaagac tcactcagct ttgattcact gcacgct 107
<210> 6
<211> 112
<212> DNA
<213> Catharanthus roseus
<214> 6
tatggtccgt tggattgaag aagattcatt ggcacatcaaa gcaacaaggg gaaccggaagc 60
ggttcaattg agcaagtttc tttttcaat ggctttaact caggactcat ca 112
<210> 7
<211> 66
<212> DNA
<213> Catharanthus roseus
<214> 7
ccagattgca aaggattgag gttgggaagaa aagttggtgt gatcatttgt ttactcagga 60
ttcattc 66
<210> 8
<211> 312
<212> DNA
<213> Catharanthus roseus
<214> 8
aagtgtaagg tgtgagttag aagagttagt atttgtttgt ggttgggtgct gctgagaaaa 60
agataaaaagct ctgctcatatt gtagctgct ctgctcatatt tttttctgc atggcaacca 120
gagagttgca agcagtttca ttcttcacaa gcaatctcaaa gcaacggaaca tataacaaga 180
aaggttttaga gttggttgaa ccacacggaag gttggaaaga tgtgttggtg gctctactacc 240
cagatgcactaaccaagtttcaggttctcttc acagtttctcttc tttctgtgttg gatgcgccttc 300
ttcattc tta 312
<210> 9
<211> 151
<212> DNA
<213> Catharanthus roseus
<214> 9
atggttcatt acttctgtaact tggccaacca caatgctgttc gagggttgct cactcttcaaa 60
tctcaccgc gaaagtgttct tggtaagttgc tagagacaat tgttggtgct atgataacca 120
ttcataatt atctcttactc aggactcatc a 151
DNA Catharanthus roseus

```
ttttcaagtg agctattttg agtgtggagg agtggttgattt gctctatgca tatctcataa 60
gatcgctgat ggctctacac tatatacatt tatgaataat ttggtctactt ccacacgcct 120
gtcacccaga gtgcacaactc cggtactgcct ttctgacttcc atttttccat gtggaaatga 180
tatggttcct agaccattac tcagagctca tea 213

tgggaagcttt gaaacaagca aaaaaaagcttg ttgatgctgg tgtagatgctg ataattgtac 60
aaggacgga aacggcggcct catggttatttg gacaggttcc atattcaggg acteate 117

tagatatcct tcagcagtttg tgaacctgtg cgggtcccta atgaagcttca tgtcgataaa 60
ttttggtattg ggagaagaaa ttctacaaaa tgcatttgga ggggaggata tcggagcttg 120

tttactcagg acteate 137

cacaaccttt ctagctacac cgggtgcacc gaacggaagtt ccagcagatag 60
acggacccag gtttcaaaaat gttgttacttc aggacteate 100

ggttccggtt gccgctcagtg ccggtcggag gacggttag ccagatcag agcaggttca 60
tgtgtgccagt cagtgagagg tgagatcact acgcagctca 99
```
tttatttcca agagaatgta gggaagaatt tgagatagat ggaatgacca tacctaaaaa 60
atcttggggtg attataaact actgggcaat tggagagat cactacgcag tea 113

<210> 16
<211> 212
<212> DNA
<213> Catharanthus roseus

<400> 16
attgctgcca tcaatagtat catataaaat ctgagctttc ttcttatattct tcttttcaac 60
cctgaccaat ccacctgag ccagcagatc atcaaaacta acgcccacaca tggtaaatccc 120
aaaaaagaga ggggtattgt acaagaatattg ttttctgcg tgtatcttat aactcaacatat 180
aactggcgtata tggggtcag catttccaat ta 212

<210> 17
<211> 296
<212> DNA
<213> Catharanthus roseus

<400> 17
ggatacagtg cacagatttt ctaaagaat tggctaacacg aaaaaggaag aactcaaggt 60
agaaaatccac catcgatttc gtcgatatct tgtcaacgatt cctgaatttt cggcatcgg 120
acgaagattt cgtcaccgag attgtaatcc gttctcatatt agcaggtcgc gacactcat 180
cctgacagat actcaggact acatctcatt actcaggact actcaggact 240
catcattact cactcaggact catcattact actcaggact catcattact aceag 296

<210> 18
<211> 215
<212> DNA
<213> Catharanthus roseus

<400> 18
catattatc acccatccaa tttcagtgca atettetttct ctgacccacca actcaggaaa 60
cacggtatttc acacagagga gtaaggaatct aacatc acccttgaaac ccatggaaggt 120
ggcattggt cacattgttct cgtcctattc actattcagg acctactattt acctactagg 180
actacctcatc attactcagg acctactattt attactac 215

<210> 19
<211> 164
<212> DNA
<213> Catharanthus roseus

<400> 19
aacctgagct tctatgaggt ttggaaggggt gtctttcccat gaaacacgca ttagtgcgaa 60
tgttattata tcgcaccacct aacaaagcat cattgaagac gatgggggag attccatccc 120
ttgatgatata ctttaacctt aatttgagtgt tgtatttttt ttta 164

<210> 20
<211> 204
<212> DNA
<213> Catharanthus roseus
eolf-seql.txt

<400> 20
cacacagtgg cacatttgat gcataaattc aatattgagt tgccaaatgg agtcagtgct 60
gaagattttg atcccacaga tcgctatctc atgacaaaaa ccctctctcg 120
tttgtgcaa atccggtttac catttttag tacattcact cggtgctaaag taaaaggttc 180
aatagttta ttcagaggact atca 204

<210> 21
<211> 539
<212> DNA
<213> Catharanthus roseus

<400> 21
tttccggagg gtattgatat ttactttgag aatgttggag ggaagatgct ggtcctgcgt 60
cattctaca aagccctctg aatgtaggag ggtcctgcgt tgaattaataac 120
tcggatcaga aaaaactgtg ttcacatctg ttctgctttg tcgcggagag aatcttctgg 180
gaggatttc tggttggttg ttcatctctc tgcgttcccag aatcttctgag aaggttct 240
cacaattaa aagaagggaa ggtggattttc tgcggcttttc gtagctgagg acttgagatt 300
gttcggagtgt cactctatag gccgattttt gccgactactggt tgggtacgag aaggttctt 360
gtggcccttg aaaaaatagtc ttctattttg tcggtctatctg tttctttttc atggaatgca 420
ccttgcccttg gagcactccgag gagacagtctcc ttggctacgtg ttcttttttc atggaatgca 480
atggcggcaat gttgataaaa ttctataag gaaataatgt tatgggtgtgc ttgcgctttc 539

<210> 22
<211> 213
<212> DNA
<213> Catharanthus roseus

<400> 22
ttttgacttt ggcaacactc acgtgtaaaca aaaaaactgtgac aatctggtacct ggtctggtgc 60
tggcctcttgg ccgcctcttc atggtaggtggt tcggagagtg tgggtcggag aagctttctc 120
aggctctgact gcaagttgagc aggagctagct tgcagcttac ttcagctttg ttgggataat 180
caaaagggcc atggagaaact cctggagacag ttt 213

<210> 23
<211> 119
<212> DNA
<213> Catharanthus roseus

<400> 23
tcttttattga gattgggggc atatcggttc gcgaatgaaa gaaagcaact agactaggg 60
ataagaagag agagagaatt tcattttat tttttttgct cattctactca gactacgg 119

<210> 24
<211> 306
<212> DNA
<213> Catharanthus roseus

<400> 24
cagccattgg atccccctact ccaagaaagc atcaaggata taaggttcag gcacccatgc 60
<211> 139
<212> DNA
<213> Catharanthus roseus

ttttcggagg atcataagca actaatttgg atgcaatttg...ttttgcttctt ggtgagacca 60
agagtgcgccttcacacagtatttcgat tttgagctgg cattgtcttt ggtgagacca 120
catcctggtt ctggtactc 139

<210> 30
<211> 203
<212> DNA
<213> Catharanthus roseus

<400> 31
gagttgggca ccgcaaattga agatactgag tcattgaatcg gttgggtggat tcttgactca 60
cgggggttgg atggatgtttc aactctgctc tccacaggat 120
attctttgct gaccaagsg tatggtcaag ggttttggag gcagaagaga tgggtatttc 180
cgtccccaga gatgatcgag atg 203

<210> 31
<211> 169
<212> DNA
<213> Catharanthus roseus

tgatgagtcc tgaggtaacc tgataaatcc tcttggtgtt tcttcagtga taagtccttc 60
taaagttcca atttctttgtc caactccggg tccccaaaac attaccacag agatcttttc 120
cattctgag ttttgcacag ctchtgctca tgggtactc acgcagtca 169

<210> 32
<211> 253
<212> DNA
<213> Catharanthus roseus

<400> 32
ccattagtac agccataccc aaacagggcg gcgtgcggcg gttgggtccac ctccacggtg 60
gaatccacc accgcaagag cgcgaagagc cttcttgtgt gcgtgcggcg aactacgggc 120
aaaagggcct gaaatggtct caaatgacgt atatgtacc cttatgtctcc catgcaggaa 180
atctttgtga ccatgaccat gccctttggct tgaactctgt gcacccttttg ggtggtttac 240
tcgagactca tea 253

<210> 33
<211> 54
<212> DNA
<213> Catharanthus roseus

<400> 33
gagattagtt atgatagage cgcttttgcag atacgtgag ctaaagcttt actt 54

<210> 34
<211> 217
<212> DNA
Catharanthus roseus

gtataacgaa ttttcgctact agaagacaaa gaggagtttg tattttgagt gggagcggca 60
cggtaacaa aattcatctta aaaaaaccag ctgcaccgagg tcgagttgtct tggttactag 120
gaatattcga gatttttacta ctttcggtct cgttttttgcct tccaccggct ccacacggc 180
cgctccggttt actcaggact catcatattnn tttttt 217

tcataatcact ctctgcagta gtgatctctt cttatgtttg atcaatttca gcttgggtat 60
tcatcacaag tggacaccgg tcgactactg gttcattact caggacccat c 111

gccttgatgg ccaccaatgta tggccctagct ccttcctctg ttcttaagac gaaagg 60
aaccttttag ccttcccgagt ctgcacattca aacccatacg gccctctcctt atctccccca 120
tacatgaaa aattgagccaa cagctttttct gaagatatct cgaatggaat attaacctacg 180
taaattcttcc tcaacgccac tgcagctgact cgcaatttcc cagaattgcc tgcctgtgca 240
agtctggttaa cgtaattcct tcctcattatt ttctatggtg gtcttttgag tgccaaata 300
gcagctgtct agggttattact caggactcat ca 332

tggagccccaa atggcttttt attgctacttct gattttgatgc tgtgctaatg atgattgatc 60
gattactatt actggctatttatatgct gatttactcg aatgatgctatcc tttcttaaaa 120
tcaccagctcc tcttccatct gattaattttt cacaattttt atttttctcg 180
agatatttgtt ttcttctata gttgattacct tcagactca tea 223

ttgaaagccaa atggtagttt gattgctagtt catttccccaa ttctattgact 60
gtataactatt actgtatatatta tcctcaggg gaatttggaaaa accttggagcc cccaccccttg 120
tccagccttct tcttctctcg gattttttttt cacaattttt atttttctcg 180
aggatatgttt ttcttcctta gttgtgacttc tcagactca tea 223

gutttaatttttt aacccacggcc aaaaagggat gttatcagttc aatatttccttta aattctggttaa 60
gttttttttttt aattaagcggta atggcaggtct gttgccttaaatc ctgcacggcc 120
ttcaggtgctc taacccacgc ggctccagttgaa ctacagggggt atggagcgtc aatggccgtta 180
agagttgata aatggagatt

<210> 39
<211> 83
<212> DNA
<213> Catharanthus roseus

<400> 39
agagctgata caaatcaagct gggcatctcg gagtacagta tcagtcagtc cactcttgaa 60
accatatta ttcagactc ate 83

<210> 40
<211> 377
<212> DNA
<213> Catharanthus roseus

<400> 40
cagctatgta tagggcgata gaggtcacgt cgcttcagca tgaccttgaa ttgctccctg 60
gaggtgatct tactgaatt ggtgaaagag gtgttaaacat tagtgaggg caaagacaa 120
gagtgcccat ggttagggct gtatatccaa attcagatgt ttgeatatte gatgaccccc 180
taagtgctct tgtgctctga gtgggctgtc aggttttctga aaatgcacg aaggagagac 240
tcagagaa aaccagagtt cttgtaacc ateaagetaca cttctctctca caagtagata 300
aaattatctt tgtgcaacgt ggtataagtt aagaggaagg aacctttgaa gaacctctca 360
ataatgggtg gctctttt 377

<210> 41
<211> 346
<212> DNA
<213> Catharanthus roseus

<400> 41
tgacacagcc atcaaaactg gcacgctcac gggcgtcacg gcctttgccc aaggaatagc 60
agttggcaga agttttgcga ttggcgacgg tttcagatct gatggaaaca aagagatgat 120
tgcatacttag caatgctttc ttgcttcctc ttgctacca ccaagctgccc 180
atatttcaaga tccagcagtga attttcattgc tcaggtgtaa caacgctaat caaactagtt 240
aattgcacag gcagtctatga taacagatcc aacccctttca ccaacagggc 300
tctggtggata ttatcactca ttataatagc agcaatgttg ggatta 346

<210> 42
<211> 145
<212> DNA
<213> catharanthus roseus

<400> 42	attactgaa tcagaaatgg caactgcgtta tactgctgctttactacttt gtgttctgtgt 60
attggtattg gcagctacctgcttccccggt gcccttcactc tccttggaag gacatggggt 120
ateatatget tactcaggac tcata 145

<210> 43
<211> 155
DNA Catharanthus roseus

cttggggatg gggtaatccc agcactcaca ttgatcatgg gaggttaccttt tttctcaggg 60
actcccatac tagccaatcc cggtaaagct cttgtagtga ggcataatcc acaagtgttt 120
cctgggagaga agagttgttt actcaggact catca 155

DNA Catharanthus roseus

tgatgagctcc tgaggttacga gctccccctgc ttcttcttcc acctctctttt ctctcttgcct 60
taccaccaag aaggttctcc acagtgctgg cctcaaccttt tctccataaa agttggccca 120
aaatcggcaca atggcttctt ccataaggact actacgcagtc ca 162

DNA Catharanthus roseus

gacctttcttg agatcagctgg gattagcttt gttttttctga ttgctttcttc tttgcccattt 60
gtctgaacca gctcccatac taaacagctc gtatgttcttc tttgtgcagtc agacctttgct 120
tatcctttgca gagcatatat agaatcttcc attcagagta cgcaagcaatc catctctttgt 180
agtcctttggg a 191

DNA Catharanthus roseus

cacaaaggaa atctatctgt cttggaaaaat tcacatgctc atttctgtgg tagatgctttt 60
tcagctgtag atacggatcg cgtagttggag ctagcaaaaga aagtattgggtt gaagctttc 120
attgagttc gcctttttctt ccctcttctgcgtg ttctttcttg ggttcggttct tcacaggttt 180
gtctgctgtgg cgtagttgttg tttatatcag gctcttggtgct tccagctggaa 240
agttgtgctttt gggtgcttcgcc aagtctcggac aagatgttggag ctaagcaaaaga 300
gttttggtgaa tggagcagaca ctccccatgttc ttctttcttc ttctttcttg cttttgcagt 360
aatgattgtaagctggagac aagatccagc aagggaaaaat tttcgctggag gggactgtaac 420
aaaaatcacaag gactaaagaat tgcacctgct ttgatgatg ccaacattgtt atttttcgta 480
a 481

DNA Catharanthus roseus
eolf-seql.txt

<400> 47
gaatggaatg caccatcaca atcatgtgct gcacgaacac aaccattctt tggaacaagg 60
tatccacgg gcacacatt atcatgggtt ataatgaaca gagtattact caggactca 119

<210> 48
<211> 237
<212> DNA
<213> Catharanthus roseus
<400> 48
tgtatcaata tcttggtccg atcgcaagga aggcatatga agtggctata gaagatggca 60
tagttcattt ccaagcaacc ggcagccttc ttgacacaag gagaggccct gagctactct 120
aatggatatt tgtatcagtt gtatcaatgg tgttgtatgt tgggcagaag aaaaaaggca 180
catttcaaca ttaagctttc tgggtgtggtg gcgctactct gtctgctggg agattac 237

<210> 49
<211> 656
<212> DNA
<213> catharanthus roseus
<400> 49
cggtctcaaa gatctaaatc ttgttggaat cagtggaaaa acgggtgttt ctgggaaatc 60
taatgttacg atcccaacca caatgaattt acctcagcat attggacatc cttgcccgtt 120
tgatccctct ctcctgatct ccaagccgag gacgggcaca ccctccagcat ccccagat 180
agggatatga agatctcaga ttgggtctaa ggaaggtgtt gttgtaatttg tattcctgaag 240
cttggcacgg gacaaagcga gagaagtaat gcaattggca gacaaacggaa cctccagcat 300
cggcagtaat tccgctacta ccaagccgag cttccagcat tctgctgccg cctccagcat 360
tccagttccc aagccacgct ccccaaccac gttttctttca ccagaaagcc ctcctccacc 420
tcaagtacc caggtcttgtg aagctaatct ttccagatgg ctaattggca gaagatctta 480
actgcatagg tttctttgaga aagggagggc cggctctgctt gtctcagtcg catatctca 540
tcaaccaagta caaaccacag cacccccacc cgggagtttt caaggggttt gttcctgcaa 600
agacgagaa caatcctggt tgaatattata attttgttcc taatgtggtt tggtttt 656

<210> 50
<211> 1223
<212> DNA
<213> Catharanthus roseus
<400> 50
tcactcttctc tcttcataaa tatttttctca tccgctggaa cagcatatat gttgtagctt 60
caaaagatcag tattttctca tcttcataaa tatttttctca cgggtagagtt gttgtagctt 120
agtgttcttg tggatagtcg tggctttatgt cggagaaaaa attttattctt gtaatattg 180
gagaagatc aatgctctttc tccgctagttc ttatggtgttc cggctctgctt cggctctgctt 240
agaagttcag ttgtttcttac ttgtttcttac ttttgtgtaag gaaaaggaag gtaattgtttt 300
gttttgaga tttctcagtt gactcaaccc ttaatttttga acaccaatgg gttcctgcaa 360
aactatgaaa ttttttctca aagcgaatggt taactctggc gatattagtt gttcctgctt 420
eolf-seql .txt

tgaaagagaa caaacctggg aatttgtttc ctcagccggc tggtttctac accatccctg 480
atataagtgt tgcaaatact gaaccagaca cagcacaat gaccatcttt tttggtgac 540
aagtctttgtttc tttcaatgac tttccccagtgg aaaaagccag agaatacatttt ctttttggcaa 600
gcaatgggaag cccacttaata ttcacctcata aaccagctga atctgccccacc gttttggtcaa 660
cctctccacc cccttgcgtcga tcaaatgtttg tcccaagtttt tggaaatggtc 720
agagaatgttg gcaagccccct cttttatccac gcaataatgac tttactcactc tcaagaaag 780
ccctacaatt tcgtatggaag gcaataattt tattatatct ttttatctc ttttcagattt 840
cattgaaaaa aaaaaaaaaa aaa 1223

<210> 51
<211> 135
<212> DNA
<213> Catharanthus roseus

<400> 51
tgaaagacccc atcagcgccct tttcttagat tctttgttttc gttgtaaaaa acctcttggtt 60
gataacaag cactctttcat ttcttagttt cttctgcgtc tggatctggaa ggtgacaaag 120
acctcaggact catca 135

<210> 52
<211> 95
<212> DNA
<213> Catharanthus roseus

<400> 52
gatgatgctc ttcttatctaa tgaagttgta aaggaactgc aatgtctacc aaaaaactga 60
gttttgttct aggtaaaagt tctttgatgc ttcag 95

<210> 53
<211> 1568
<212> DNA
<213> catharanthus roseus

<400> 53
tcttatgtct acctagcatgtttctccagttt acgctagtcttt cgggtggtctt atggccatgg 60
ggccccccggc gatccagatt cggccgagag aagagagata gataagaaag gttgagataaa 120
tcataaaag gatccagttt aagagaaaat aataaataaa attttctcattt caaaaaataagaa 180
agaactttttatctatttagt ggaagtagcag taatgatatac atagcaattt tagttctgatattc 240
ttttgtatgc gcagatgtgc tggactagtt atggcttttaa taatgatattt caaaaaataagaa 300
eolf-seql.txt

agatttgctc aataccceat gaaatctgg gttaataatta acagggttaa acaacatagt 360
ataagagatt tttcttacat gtttggaga atatgtcaca ctgaatcttg gaactttcca 420
tgttgggatc tgagaataat tggatatgcg agaggaatct caacctagta aggattcaca 480
aaccctcaaa atcttgagtt acaacgcttg ttctgggat ttgagagatc aagaggaat 540
gaaagctata ggccgctcct ttcataattc caatccagat atcattttgc ttcaggttcc 600
ttatataaat tacctctcct tggtaatagc cagctcaccc tatgtgatgt atatgtgatt 660
gctaatatat aactgctgct tctgtctcctg tggatatggc agaggaatct cactcaggta 720
atcaacgatt tccaacaattt cacttggctg cacttcagtc aggttgg CCT aagagagaat 780
ttcccttcag cagatcaaggg gacgttccata tttctgtatgc cagctgagca aggattcaaa 840
aaaatcatcct aacaoacacaac cctctcaaca ttctagtata ggaagagata tatgtcattg 900
agagatggaat atcagcagctg gcagttctaa tataatcattc cccctacaag gaaagctata 960
tctggaagaat cctaccctctt caccctcaca tttgtcataa taaacagccg aagaaagat 1020
agacaacgaca aacaagataa tcaaatattttc ctaaaatgcctcc cagctgagca tttctgcgg 1080
tgatatagtt tggagacgcc aactcagctt aaatccctta ttacatata atatgtcaga 1140
tgcttggttt gaattgaggg acatgtcctt aggttaagct tatgacacct aaatctcttg 1200
aattttgttt gcacacaggc caggtgcaaga gagagttggat cggtttttgc ccaaaattga 1260
tgatattttt tgggaacaag tctaagatgtg tggagctatc gcatccccgt gaggctctta 1320
cttggaagag aacagcagtga ggaataaggt acagacttctg gagctttcttg tttgccaag 1380
tgacatttatg gggtggtgtc tagaaatctg cggtaacatca taaacgaaat aaaaaagtat 1440
ggaattattg agggttttttt ttctctcagaa aacactgcgc tctgtttttgc acttagatg 1500
tttgtggctt ctggtatctg tctattttat actaattaa tgataacttt tatggaaaaa 1560
aaaaaaaaa 1568

<210> 54
<211> 479
<212> DNA
<213> catharanthus roseus

<400> 54
tttccgggata tgataacactc catgtatattg tttccatgatc cagcatatgg aacctcttag 60
gtctgtattgg cgggttgcttc ttttctgagaa aatcgtcagc gagactgtctg tatccccagac 120
caatagcttc gcaccattgcgc caagcccataa tggcacttgcc aaccctttctc ttcgctatgcc 180
gttggcctggg agagatgtac attgggaactc tttttggttgg cctttgcatt ggagcctcact 240
goinggaaatctg cggcagctgctt gctcagatgtt ttttgggttgg cccaaatttct aagagctcct 300
ataatattttt cacttctgcga aacccttgccg gctttgtggtt attcctgctatc ctcatttcaca 360
gcagattata tgtgacagaa gctgagaactc aagctcatcct gcccaacaaa 420
tcaacatttcatg agatcttcttg ctattgatga accatattc aggaactcat 479
<210> 55
<211> 204
<212> DNA
<213> Catharanthus roseus

<400> 55
ggaggatcac aacatcttta gtttccatgg gaggaacaac aggtgcagct tctggaggtt 60

ttgctgcaac tgcatttgta aacatgctcc ctggcatgat tggaatatg ctatatggaa 120
gatcggcttt cttgattagca catggaagat ctgcagcagt aaagatcaaa aagttatttc 180
cttatatatctctagtctgatac a 204

<210> 56
<211> 74
<212> DNA
<213> Catharanthus roseus

<400> 56
tgctcttgcc cgcaggttcc gatctctgtcc ctgctttatag tctctcggaaag 60
atcacactagc agtc 74

<210> 57
<211> 398
<212> DNA
<213> Catharanthus roseus

<400> 57
cggccagggt attaggatca agaatatgga ggtggtgggt ggggtatgg gctctgatatta 60
cgactatattt gagagagaa acctgatat tttcactgga cgaagaggat ctatatggag 120
gccagtttgg ccatgactgta aagattgtag cacatccgcc gctctgatag 180
taaggctgtg cagaggttgg cagatcttgcag cctctgccag ccaggaacaa 240
tgtggagcag tgtttgcaac ccagagccc cggctatgat catctctgcac ccaggaaca 300
cggccgtaat aagactgaga tgcgtcgctt tgaattttct ccgttggtgt ctgctttgata 360
agaagctaatag tctctattt attcctgctc gattatta 398

<210> 58
<211> 118
<212> DNA
<213> Catharanthus roseus

<400> 58
aactgttttt tattggcgtgg gttccaatgt atgcactgta aagctgtattg gggcatctgtc 60
agctgatggt tctgtggtta tttcagacta tttgctgtc gattatta 118

<210> 59
<211> 252
<212> DNA
<213> Catharanthus roseus

<400> 59
caatgtcgta gattgacaac tagtggtcctt gatggaacag aatcatcgaa atggttggcaaa 60
aagttccagt cttttcaaat cccctcatgga tttcctctgcataactctgtgagaataatg 120
acagaccctgt tattttggtacctggacag atgtaattctga aatggaacgc gttgcaaat 180
<210> 60
<211> 183
<212> DNA
<213> Catharanthus roseus

<400> 60
tgatgagtcc ttagatcaat atatgtcatt tagtagtaga tggatatctg 60
atgtccaagg aaccattta ctaatgttcc acggtgtaag gatctctca tggacactttt 120
ggactatga ttggatgata gaaatcata tttgtgtgat cactacgcg 180

tte 183

<210> 61
<211> 69
<212> DNA
<213> catharanthus roseus

<400> 61
tctccacccaa acttgctttc atctgggctg atgaaggtga gatcagtata 60
acgcagtca 69

<210> 62
<211> 788
<212> DNA
<213> Catharanthus roseus

<400> 62
tcataagcct accatcacga tgctccagat taegtagat tgggtgtgca tatgcccag 60
gagggccgg gatcgaagat tcgggcacag ctcatttccc aatggccagc aagacacag 120
cccttccac caccacccac aacacacacg caccacacac aaggggatg taaagcctgt 180
tgaggggttg gctcactcag aacaaagta tggctttgac ggcgtccagcg gataatacg 240
agctactgaa actcttgtg tggcagaaga gcccctctct gattatgaga aagaaagaa 300
gaccaccaag catctcctg agctcggaga cttggtgccc cttgctttcg gtcctactgc 360
ccgtcagcag aacgacagag aaagaagaag ctcagagatg gccccacaggc acaagataga 420
agaaggata tgcctcgtcag ccgggatggg tgcggccgggc cttcctatcag atgaacatca gataatacg 480
tgagaacaa gaatcacaag agagagagaa aagggcgtaa ggaagaagcc acatacctct 540
gtttaagct tttccatttta gatagtagat aaacatcat gtttcaatag 600
gataaataaa cgtgttacag tcgcttttcttg tggagtgtg ttcggtttgga tgggtctccaa 660
cattaagat ctttctagtt taactttccc cagttttttt ctttataaa aatggagttg 720
ggctgtattt tctatccaac aagaaaaa aaatttttag ttatattcct tggatcaaat 780
cggtttcgag 788
eolf-seql . txt

<212> DNA
<213> Catharanthus roseus

<400> 63
cacttttgta taacagaaaa cgctgctgta agaaagactt acattagaag aggatgtacg 60
aaaaacggtga ttttgatgca gatttggctc ttctctctct aatgaagcaa 120
gtgaactctc ccgggaacat ccttggggta gatgttattt tagtttcctt aatgaagcaa 180
gtgaagccgg taaggattca gaagaacaaa ttggtatttt tagtttcctt aatgaagcaa 240
ctactataac cgcagctgaa atggagctct aaaaatctcc aattgaatttt cctcaat3t 300
tcaatttccca atcagttgcc gcgccggtgg cacaaacagc aattaaatt accagttccgg 360
aagttaaagt aagtaggcga ccaaaagggaa aacattaccg ggaggtgaga aaggtgcgtt 420
ggggaaatt cgcgcgctgg attagagacg cgcagaaaca cggagctcag gtatggtcag 480
gaacttcccgc acgagggcag gatgctgcc tagtttcctt tcgcagagct tacggttgg 540
aggtttccag agcatatttg aatttttcatt taaggatatttt ccttggagaa 600
attagatttc ctcgaaggg ttatctatca ttcagatattt ctcagctgaa 660
attagtttccat gttgaagagc aagagcagct tacaagttgg gcgcgcgcct gcgcgcgcct 720
tagagcagga tacggagcag cgtggactag gagaacacag atgtctggtg gaattgggtac 780
tgcatattttc gattttttttttt taatattttt gggattttttt gaggattata catttcaaaa 840
tttacatttt ttttttttttt aaaaaagggaa agggaagaat aatatttcctta 900
tt
<211> 1276
<212> DNA
<213> Catharanthus roseus

<400> 6 5
cacctaaata gttagtaata tattacttct ccaattctat ... 6 6
tgactgcgta gtgatccaag tggtcataac tttctctgct accgcttttg caactattgg 6 0
gatgatcata aacaacgatt ttactcagga ctcatca 9 7