(54) 发明名称

钕离子掺杂氧化钪氧化镧混晶激光材料及其
制备方法

(57) 摘要

一种钕离子掺杂氧化钪氧化镧混晶材料及其
制备方法，钕离子掺杂氧化钪氧化镧混晶材料的
分子式为：Nd₃(LuₓSc₂₋ₓ)O₁₁，其中 x 的取值范围为：
0.1 ≤ x ≤ 1.9。Nd⁺ 是典型的四能级离子，由于
激光下能级与基态相距较远，所以泵浦阈值较低，
且它的吸收截面和发射截面都比较大，是非常好的
激光增益介质。Nd₃(LuₓSc₂₋ₓ)O₁₁激光材料优异的
光学特性、热学性能使其成为发光二极管、产生超
短脉冲飞秒激光的增益介质的完美选择。
1. 一种钕离子掺杂氧化钪氧化镧混合激光材料，其特征在于该激光材料的分子式为 Nd₄Lu₂Sc₂₋ₓO₃₊ₓ，其中 x 的取值范围为 0.1 ≤ x ≤ 1.9。

2. 权利要求 1 所述的钕离子掺杂氧化钪氧化镧混合激光材料的制备方法，其特征在于该方法的具体步骤如下：

（1）选定 x 的取值，按 Nd₄Lu₂Sc₂₋ₓO₃₊ₓ的摩尔比将 Lu₂O₃、Sc₂O₃、Nd₂O₃经过 200–250 目筛过筛研磨后装入圆形或方形模具中压制成块体；

（2）将所述的块体放入真空烧结炉中，抽真空至 10⁻³Pa 以下，加热至 1600–1800℃，保温 3–10h，选取致密度 ≥ 90％的烧结品；

（3）将所述的致密度 ≥ 90％的烧结品放入热等静压炉中，在 Ar 气气氛下加压至 200–300MPa，加热至 1800–2000℃，保温 5–20h，得到 Nd₄Lu₂Sc₂₋ₓO₃₊ₓ混合激光材料。
说明书

钕离子掺杂氧化钪氧化镥晶体激光材料及其制备方法

技术领域
本发明属于激光材料，特别是一种钕离子掺杂氧化钪氧化镥晶体激光材料及其制备方法。

背景技术
固体激光器的发展就是朝着降低激光介质材料热效应以提高输出功率和输出光束质量的目的发展，固体激光器的激光介质材料有棒状转变为板条状，抽运源由灯转变为激光二极管，并选择激光二极管光谱与激光介质吸收光谱相匹配，使得激光二极管抽运的固体激光器中激光介质材料的热效应大为降低，但是在激光介质材料吸收的泵浦能量中，仍有很大一部分光能转化为热能沉积在介质内部，而散热又要求对其表面进行冷却，这使得激光介质材料内部产生温度梯度和热应力，从而引起介质材料折射率发生变化，导致热效应的存在，尤其是在高功率固体激光器中激光介质材料的热效应极为显著，这一方面导致光束质量的破坏，如热透镜效应、热致双折射退偏、热致波前畸变等，另一方面，热应力过大甚至会使激光介质材料炸裂，制备了泵浦功率密度的提高，进而影响输出激光能量和重复频率的提高。固体激光介质材料的热效应严重制约着固体激光器的发展，因此迫切需要对激光介质中的热效应进行控制，寻找能够优异热效应的材料具有重要意义。

发明内容
本发明要解决的技术问题在于提供了一种钕离子掺杂氧化钪氧化镥晶体激光材料及其制备方法，该激光材料可以采用 LD 直接泵浦。制备方法显著的降低的烧结温度，适宜大尺寸制造，批量生产，能有效改善材料热效应对激光输出的影响，具有重大突破意义。

本发明的技术解决方案如下：

一种钕离子掺杂氧化钪氧化镥晶体激光材料，其特点在于该激光材料的分子式为 Nd : Lu₄Sc₂O₆，其中 x 的取值范围为 0.1 ≤ x ≤ 1.9。

上述钕离子掺杂氧化钪氧化镥晶体激光材料的制备方法，该方法的具体步骤如下：

1) 选定 x 的取值，按 Nd : Lu₄Sc₂O₆ 的摩尔比将 Lu₂O₃，Sc₂O₃，Nd₂O₃ 经过 200~250℃煅烧过筛称量后装入圆形或方形模具中压制为块体；
2) 将所述的块体放入真空烧结炉中，抽真空至 10⁻³Pa 以下，加热至 1600~1800℃，保温 3~10h，选取致密度 > 90% 的烧结晶。
3) 将所述的致密度≥90％的烧结体放入热等静压炉中，在 Ar 气氛下加压至 200-300MPa，加热至 1800-2000℃，保温 5-20h，得到 Nd:Lu₂Sc₂O₇ 混晶激光材料。

本发明的技术效果：

1. 由于 Nd³⁺是典型的四能级离子，激光下能级与基态相距较远，所以泵浦阈值较低。此致离子掺杂氧化钪氧化铬混晶激光材料可以满足日益发展的固体激光技术及飞秒光学的需要。

2. 通过前后期研究我们发现，Nd:Lu₂Sc₂O₇ 的发射光谱比 Nd:Lu₂O₃ 和 Nd:Sc₂O₃ 更宽，有利于实现超短脉冲激光输出。

3. Nd:Lu₂Sc₂O₇ 热导率达到了 15.5W/m•K，高的热导率可以有效改善激光热效应，从而改善激光热效应对激光输出质量的影响。

4. 本发明相比较单晶生长工艺极大的降低烧结温度，此材料工艺简单适宜批量生产，能够满足激光技术迅猛发展的市场需求，具有良好的经济效益和价值。

附图说明

图 1 是 Nd³⁺离子在 Lu₂Sc₂, Lu₂O₃, Sc₂O₃ 中的荧光光谱及发射带宽。

具体实施方式

下面结合实施例和附图对本发明作进一步说明，但不应以此限制本发明的保护范围。

实施例 1

按照分子式进行原料配比，利用热等静压法制备 Nd:Lu₂Sc₂O₇，原料配比中取 x = 1。首先将高纯的 Lu₂O₃, Sc₂O₃, Nd₂O₃ 粉体按上述配比称量，机械混合均匀后，经过约 200 个筛过秤称量后装入直径 40mm 的圆筒模中在 3kPa 压力下压制成型，将制备好的块体放入真空烧结炉中，抽真空至 9×10⁻⁵Pa，加热至 1600℃，保温 3h，得到致密度≥90% 的样品；将得到的致密度≥90% 的样品放入热等静压炉中，在 Ar 气氛下加压至 200MPa，加热至 1800℃，保温 5h，得到质量优良的 Nd:Lu₂Sc₂O₇ 混晶激光材料，利用制备的 Nd:Lu₂Sc₂O₇ 混晶，抛光加工镀膜，进行激光腔设计，采用 808nmLD 泵浦，获得 1064nm 激光输出。

实施例 2

按照分子式进行原料配比，利用热等静压法制备 Nd:Lu₂Sc₂O₇，原料配比中取 x = 1。首先将高纯的 Lu₂O₃, Sc₂O₃, Nd₂O₃ 粉体按上述配比称量，机械混合均匀后，经过约 250 个筛过秤称量后装入直径 60mm 的圆筒模中在 6kPa 压力下压制成型，将制备好的块体放入真空烧结炉中，抽真空至 1×10⁻⁵Pa，加热至 1800℃，保温 10h，得到致密度≥98% 的样品；将得到的致密度≥98% 的样品放入热等静压炉中，在 Ar 气氛下加压至 300MPa，加热至 2000℃，保温 20h，得到质量优良的 Nd:Lu₂Sc₂O₇ 混晶激光材料，利用制备的 Nd:Lu₂Sc₂O₇ 混晶，抛光加工镀膜，进行激光腔设计，采用 808nmLD 泵浦，获得 1064nm 激光输出。使用 808nm 激光泵浦 Nd:Lu₂O₃, 单晶, Nd:Sc₂O₃, 单晶, 制备得到的 Nd:Lu₂Sc₂O₇ 混晶激光材料，得到图 1 中所示荧光光谱，发现 1064nm 附近带宽明显变宽。

实施例 3

按照分子式进行原料配比，利用热等静压法制备 Nd:Lu₁ₓSc₀₁₋ₓO₇，原料配比中取 x
＝ 1。首先将高纯的 Lu₂O₃、Sc₂O₃、Nd₂O₃粉体按上述配比称重，机械混合均匀后，经过 225 目筛过筛称量后装入长 80mm，宽 80mm 的方形模具中，5.5kPa 压强下压制成型，将制备好的块体放入真空烧结炉中，抽真空至 5×10⁻³Pa，加热至 1700℃，保温 6.5h，得到致密度＝ 95% 的样品；将得到的致密度＝ 95% 的样品放入热等静压炉中，在 Ar 气气气氛下加压至 250MPa，加热至 1900℃，保温 12.5h，得到高质量的 Nd :LuScO₃ 混晶激光材料，利用制备的 Nd :LuScO₃ 混晶，抛光加工镀膜，进行激光腔设计，采用 808nmLD 泵浦，获得 1064nm 激光输出。

【0024】 实施例 4

【0025】 按照分子式进行原料配比，利用热等静压法制备 Nd :Lu₅₆Sc₁₉₀₃，原料配比中取 x ＝ 0.1。首先将高纯的 Lu₂O₃、Sc₂O₃、Nd₂O₃粉体按上述配比称重，机械混合均匀后，经过 200 目筛过筛称量后装入长 140mm，宽 40mm 的方形模具中，在 8kPa 压强下压制成型，将制备好的块体放入真空烧结炉中，抽真空至 9×10⁻³Pa，加热至 1800℃，保温 10h，得到致密度＝ 96% 的样品；将得到的致密度＝ 96% 的样品放入热等静压炉中，在 Ar 气气气氛下加压至 300MPa，加热至 2000℃，保温 20h，得到高质量的 Nd :Lu₅₆Sc₁₉₀₃ 混晶激光材料，利用制备的 Nd :Lu₅₆Sc₁₉₀₃ 混晶，抛光加工镀膜，进行激光腔设计，采用 808nmLD 泵浦，获得 1064nm 激光输出。

【0026】 实施例 5

【0027】 按照分子式进行原料配比，利用热等静压法制备 Nd :Lu₅₆Sc₁₉₀₃，原料配比中取 x ＝ 1.9。首先将高纯的 Lu₂O₃、Sc₂O₃、Nd₂O₃粉体按上述配比称重，机械混合均匀后，经过 200 目筛过筛称量后装入长 140mm，宽 40mm 的方形模具中，在 8kPa 压强下压制成型，将制备好的块体放入真空烧结炉中，抽真空至 5×10⁻³Pa，加热至 1700℃，保温 6.5h，得到致密度＝ 95% 的样品；将得到的致密度＝ 95% 的样品放入热等静压炉中，在 Ar 气气气氛下加压至 250MPa，加热至 1900℃，保温 12.5h，得到高质量的 Nd :Lu₅₆Sc₁₉₀₃ 混晶激光材料，利用制备的 Nd :Lu₅₆Sc₁₉₀₃ 混晶，抛光加工镀膜，进行激光腔设计，采用 808nmLD 泵浦，获得 1064nm 激光输出。
图 1