008/013655 A2 |00 0 000 0O O O

(@

=
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

‘ﬂb’ A0 O

(10) International Publication Number

WO 2008/013655 A2

(43) International Publication Date
31 January 2008 (31.01.2008)

(51) International Patent Classification: (74) Agent: HETZ, Joseph, F.; Brinks Hofer Gilson & Lione,

GOG6F 21/00 (2006.01) P.O. Box 10087, Chicago, IL 60610 (US).
(81) Designated States (unless otherwise indicated, for every
(21) International Application Number: kind of national protection available): AE, AG, AL, AM,
PCT/US2007/015301 AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU,CZ,DE, DK, DM, DO, DZ, EC, EE, EG,
(22) International Filing Date: 28 June 2007 (28.06.2007) ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
(25) Filing Language: English LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
(26) Publication Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, ™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(30) Priority Data: 7ZM, ZW.

60/819,507 7 July 2006 (07.07.2006) US (84) Designated States (unless otherwise indicated, for every
11/557,026 6 November 2006 (06.11.2006) US kind of regional protection available): ARIPO (BW, GH.
11/557,006 6 November 2006 (06.11.2006) US ’ ’

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 Mccarthy Boule-
vard, Milpitas, CA 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOLTZMAN, TPublished:
Michael [IL/US], 7602 Barnhart Place, Cupeltino, CA - without international search report and to be republished
95014 (US). BARZILAIL Ron [IL/IL]; 67 Meron Street, upon receipt of that report
25147 Kfar-vradim (IL). SELA, Rotem [IL/IL]; Katif Fortwo-letter codes and other abbreviations, refer to the "Guid-
17, 6164 Maalot (IL). JOGAND-COULOMB, Fabrice ance Notes on Codes and Abbreviations" appearing at the begin-
[FR/US]; 855 Buckland Avenue, San Carlos, CA (US). ning of each regular issue of the PCT Gagzette.

(54) Title: CONTENT CONTROL SYSTEM AND METHOD USING CERTIFICATE REVOCATION LISTS

1 l FiM
Registers Registers BMU to CPU Registers
32+ 34
FIFO
- FIFO
HosltlFBUS Flash IIF
Sequencer

J
Host I/F 14 J 38 Flashl/F

Y 268/ PP
i
10

(57) Abstract: Host devices present both the host certificate and the pertinent certificate revocation lists to the memory device
for authentication so that the memory device need not obtain the list on its own. Processing of the certificate revocation list and
searching for the certificate identification may be performed concurrently by the memory device. The certificate revocation lists for
authenticating host devices to memory devices may be stored in an unsecured area of the memory device for convenience of users.

WO 2008/013655 PCT/US2007/015301

CONTENT CONTROL SYSTEM AND METHOD USING
CERTIFICATE REVOCATION LISTS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. US
60/819,507 filed July 7, 2006. '

[0002] This application is related to U.S. Application No. 11/313,870, filed December 20,
2005; which application claims the benefit of U.S. Provisional Application No. 60/638,804,
filed December 21, 2004. This. application is further related to U.S. Patent Application No.
11/314,411, filed December 20, 2005; this application is further related to U.S. Patent
Application No. 11/314,410, filed December 20, 2005; this application is further related to
-U.S. Patent Application No. 11/313,536, filed December 20, 2005; this application is further
related to U.S. Patent Application No. 11/313,538, filed December 20, 2005; this application
is further related to U.S. Patent Application No. 1_1/314,055, filed December 20, 2005; this
application 1is further related to U.S. Patent Application No. 11/314,052, filed December 20,
2005; this application is further related to U.S. Patent Application No.11/314,053, filed
December 20, 2005.

[0003] The present application is related to U.S. Application No. 11/557,028 of Holtzman et
al., entitled “Content Control Method Using Certificate Chains,” filed on November 6, 2006,
U.S. Application No. 11/557,010 of Holtzman et al., entitled ““Content Control System Using
Certificate Chains,” filed on November 6, 2006, U.S. Application No. 11/557,006 of
Holtzman et al., entitled “Content Control Method Using Certificate Rev.ocation Lists,” filed
on November 6, 2006, U.S. Application No. 11/557,026 of Holtzman et al., entitled “Content
Control System Using Certificate Revocation Lists,” filed on November 6, 2006, U.S.
Application No. 11/557,049 of Holtzman et al., entitled “Content Control Method Using
Versatile Control Structure,” filed on November 6, 2006, U.S. Application No. 11/557,056 of
Holtzman et al, entitled “Content Control System Using Versatile Control Structure,” filed on
November 6, 2006, U.S. Application No. 11/557,052 of Holtzman et al., entitled “Method
for Controlling Information Supplied From Memory Device,” filed on November 6, 2006,
U.S. Application No. 11/557,051 of Holtzman et al., entitled “System for Controlling
Information Supplied From Memory Device,” filed on November 6, 2006, U.S. Application
No. 11/557,041 of Holtzman et al., entitled “Control Method Using Identity Objects,” filed

WO 2008/013655 PCT/US2007/015301

on November 6, 2006, and U.S. Application No. 11/557,039 of Holtzman et al., entitled
“Control System Using Identity Objects,” filed on November 6, 2006.

[0004] The applications listed above are incorporated herein in their entirety by reference as

if fully set forth herein.
BACKGROUND

[0005] This invention relates in general to memory systems, and in particular to a memory

system with versatile content control features.

[0006] Storage devices such as flash memory cards have become the storage medium of
choice for storing digital content such as photographs. Flash memory cards may also be used
to distribute other types of media content. Moreover, an increasing variety of host devices
such as computers, digital cameras, cellular telephones, personal digital assistants (PDAs)
and media players such as MP3 players now have the capability of rendering the media
content stored in flash memory cards. There is thus great potential for flash memory cards, as
well as other types of mobile storage devices, to become a widely used vehicle for

distributing digital content.

[0007] One of the key concerns to owners and distributors of digital content is that only"
authorized parties should be allowed to access the content, after the contént has been
distributed, either through downloads from networks such as the Internet, or through the
distribution of content on storage devices. One of the ways to avoid unauthorized access is to
use a system for establishing the identity of the party before content access is granted to the
party. Systems such as the public key infrastructure (PKI) have been developed for this
purpose. In a PKI system, a trusted authority known as a certificate authority (CA) issues
certificates for proving the identity of persons and organizations. Parties such as
organizations and persons who wish to establish proof of identity may register with the
certificate authority with adequate evidence for proving their identity. After the identity of
the party has been proven to the CA, the CA will issue a certificate to such party. The
certificate typically includes the name of the CA that issued the certificate, the name of the
party to whom the certificate is issued, a public key of the party, and the public key of the
party signed (typically by encrypting a digest of the public key) by a private key of the CA.

WO 2008/013655 PCT/US2007/015301

[0008] The private key and the public key of the CA are related so that any data encrypted
using the public key may be decrypted by means of the private key, and vice versa. The
private key and the public key thus form a key pair. An explanation of the private and public
key pair for cryptography is provided by in “PKCS#1 v2.1:RSA Cryptography Standard,”
dated June 14, 2002, from RSA Security Inc. The public key of the CA is made publicly
available. Therefore, when one party wishes to verify whether the certificate presented by
another party is genuine, the verifying party may simply use the public key of the CA to
decrypt the encrypted digest of the public key in the certificate using a decryption algorithm.
The decryption algorithm is typically also identified in the certificate. If the decrypted digest
of the public key in the certificate matches the digest of the unencrypted public key in the
certificate, this proves that the public key in the certificate has not been tampered with and is

genuine, based on trust in the CA and authenticity of the public key of the CA.

[0009] To verify the identity of a party, the verifying party typically will send a challenge

(e.g. random number) and ask that the other party send his or her certificate as well as a

response to the challenge (i.e. the random number encrypted with the private key of the other -
party). When the response and certificate are received, the verifying party first verifies

whether the public key in the certificate is genuine by the process above. If the public key is |
verified to be genuine, the verifying party can then decrypt the response using the public key
in the certificate, and compare the result to the random number sent originally. If they match,
this means the other party does have the correct private key, and for that reason has proven
his or her identity. If the public key in the certificate is not genuine, or if the decrypted
. response fails to match the challenge, authentication fails. Thus, a party wishing to prove his

or her identity will need to possess both the certificate and the associated private key.

[0010] By means of the above mechanism, two parties who otherwise may not trust each
other may establish trust by verifying the public key of the other party in the other party’s
certificate using the process described above. Recommendation X.509 from the International
Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) is a
standard that specifies certificate frameworks. More detailed information concerning

certificates and their use can be found in this standard.

[0011] For convenience in administration, and in large organizations, it may be appropriate
for a higher level CA, known as the root CA, to delegate the responsibility for issuing

certificates to several lower level CAs. In a two level hierarchy, for example, the root CA at

WO 2008/013655 PCT/US2007/015301

the top level issues certificates to the lower level CAs to certify that the public keys of these
low level authorities are genuine. These lower level authorities, in turn, issue certificates to
parties through the registration process described above. The verifying process starts from
the top of the certificate chain. The verifying party will first use the public key of the root
CA (known to be genuine) to first verify the genuineness of the public key of the lower level
CA. Once the genuineness of the public key of the lower level CA has been verified, then the
genuineness of the public key of the party to whom the lower level issued a certificate can be
verified uéing the verified public key of the lower level CA. The certificates issued by the
root CA and by the lower level CA then form a chain of two certificates of the party whose

identity is being verified.

[0012] Certificate hierarchies may of course include more than two levels, where each CA
except for the root CA at a lower level derives its authority from a higher level CA, and has a
certificate containing its public key issued by the higher level CA. Therefore, in order to
verify the genuineness of another party’s public key, it may be necessary to trace the path or
chain of certificates to the root CA. In other words, in order to establish one’s identity, the
party whose identity needs to be proven may need to produce the entire chain of certificates,

all the way from its own certificate to the root CA certificate.

[0013] A certificate is issued for a certain validity period. However, the certificate may
become invalid prior to the expiration of the validity period due to events, such as change of
name, change of association with the certificate issuer, compromised or suspected
compromise of the corresponding private key. Under such circumstances the certificate
authority (CA) needs to revoke the certificate. The certificate authority publishes
periodically a certificate revocation list, listing the serial numbers of all the certificates that
have been revoked. In conventional certificate verification methods, the authenticating entity
is expected to either possess or be able to retrieve certificate revocation lists from certificate
authorities (CA) and check the serial numbers of the certificate presented for authentication
against the list to determine whether the certificate presented has been revoked. Where the
authenticating entity is a memory or storage device, the device on its own has not been used
to retrieve certificate revocation lists from certificate authorities. As a result, the certificate
presented for authentication cannot be verified by the memory or storage device. It is
therefore desirable for an improved system to be provided which enables memory or storage

devices to verify certificates without having to obtain certificate revocation lists.

WO 2008/013655 PCT/US2007/015301

SUMMARY
[0014] Memory devices have not been used to obtain certificate revocation lists on their own.
Therefore, when the host device presents a certificate to the storage device for authentication
without also presenting a certificate revocation list pertaining to the certificate, the storage
device will be unable to ascertain whether the certificate presented by the host device is on
the pertinent certificate revocation list or not. Thus one embodiment of the invention is based
on the recognition that this problem can be avoided by a system where the host device
presents, in addition to the certificate, also the certificate revocation list that pertains to the
certificate. In this manner, the storage device is able to verify the genuineness of the
certificate by checking the identification of the certificate such as its serial number in the

certificate revocation list sent by the host device.

[0015] A certificate revocation list can be quite lengthy, if the list contains a large number of
identifications of revoked certificates, such as their serial numbers. Thus in another
embodiment, portions of the certificate revocation list are received by a device, and the
device processes the portions sequentially. The device also searches for a reference to or
identification of the certificate received from the host on the list where the processing and the
searching occur concurrently. Since the processing and searching occur concurrently, the

process of verifying the certificate becomes more efficient.

[0016) As noted above, storage devices have not been used to obtain certificate revocation
lists, while host devices have been used to do so. Thus, in another embodiment, while the
host device needs to present a certificate revocation list along with a certificate for
authentication of the host device, there is no such need for the storage or memory device to
do so, which will need only to present a certificate. It is then up to the host device to obtain

the pertinent certificate revocation list for verifying the memory device certificate.

[0017] While it is possible for host devices to be used to freely obtain certificate revocation
lists, many consumers may find it cambersome to have to do so frequently, such as every
time the consumer wishes to access encrypted content in the storage device. Thus in another
embodiment, at least one certificate revocation list is stored in a public area of the memory;
the memory also stores protected data or content a user or consumer may wish to access. In
this manner, the consumer or user will not need to obtain from a certificate authority the
certificate revocation list every time access to the content stored in the memo& is desired.

Instead, the consumer or user may simply retrieve the at least one certificate revocation list

WO 2008/013655 PCT/US2007/015301

stored in the public area of the memory and then turn around and present the same certificate
revocation list to the memory for authentication and content access. The public areas of
many types of memories are typically managed by host devices, and not by the memories

themselves.

[0018] All patents, patent applications, articles, books, specifications, standards, other
publications, documents and things referenced herein are hereby incorporated herein by this
reference in their entirety for all purposes. To the extent of any inconsistency or conflict in
the definition or use of a term between any of the incorporated publications, documents or
things and the text of the present document, the definition or use of the term in the present

document shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS
[0019] Fig. 1 is a block diagram of a memory system in communication with the host device

useful for illustrating this invention.

[0020] Fig. 2 is a schematic view of different partitions of a memory and of unencrypted and
encrypted files stored in different partitions where access to certain partitions and the
encrypted files is controlled by access policies and authentication procedures useful for

illustrating different embodiments of the invention.

[0021] Fig. 3 is a schematic view of a memory illustrating-the different partitions in the

memory.

[0022] Fig. 4 is a schematic view of file location tables for the different partitions of the
memory shown in Fig. 3 where some of the files in the partitions are encrypted useful for

illustrating different embodiments of the invention.

[0023] Fig. 5 is a schematic view of access control records in an access controlled record
group and the associated key references useful for illustrating different embodiments of the

invention.

[0024] Fig. 6 is a schematic view of tree structures formed by access controlled records
groups and access controlled records useful for illustrating different embodiments of the

invention.

WO 2008/013655 PCT/US2007/015301

[0025] Fig. 7 is a schematic diagram of a tree illustrating three hierarchical trees of access

controlled record groups to illustrate a process of formation of the trees.

[0026] Fig. 8A and 8B are flow charts illustrating the processes carried out by a host device
and a memory device such as a memory card for creating and using a system access control

record.

[0027] Fig. 9 is a flow chart illustrating a process using a system access control record to

create an access controlled record group useful for illustrating different embodiments .
[0028] Fig. 10 is a flow chart illustrating a process for creating an access control record.

[0029] Fig. 11 is a schematic view of two access control record groups useful for illustrating

a particular application of the hierarchical tree.
[0030] Fig. 12 is a flow chart illustrating a process for delegation of specific rights.

[0031] Fig. 13 is a schematic view of an access controlled record group and an access control

record to illustrate the process of delegation of Fig. 12.

[0032] Fig. 14 is a flowchart illustfating the process for creating a key for the purpose of

encryption and/or decryption.

[0033] Fig. 15 is a flow chart illustrating a process for removing access rights and/or

permission for data access according to an accessed controlled record.

[0034] Fig. 16 is a flow chart illustrating a process for requesting access when access rights

and/or permission to access has been deleted or has expired.

[0035] Figs. 17A and 17B are schematic views illustrating an organization of a rule structure
for authentication and policies for granting access to cryptographic keys useful for illustrating

different embodiments of the invention.

[0036] Fig. 18 is a block diagram of a database structure illustrating an alternative method for

controlling access to protected information according to policies.
[0037] Fig. 19 is a flow chart illustrating an authentication processes using passwords.

[0038] Fig. 20 is a diagram illustrating a number of host certificate chains.

WO 2008/013655 PCT/US2007/015301

[0039] Fig. 21 is a diagram illustrating a number of device certificate chains.

[0040] Figs. 22 and 23 are protocol diagrams illustrating processes for one way and mutual

authentication schemes.

[0041] Fig. 24 is a diagram of a certificate chain useful for illustrating one embodiment of the

invention.

[0042] Fig. 25 is a table illustrating the information in a control sector that precedes the
certificate buffer that is sent by the host for sending the last certificate to a memory device,
showing an indication that the certificate is the last certificate in the certificate chain to

illustrate another embodiment of the invention.

[0043] Figs. 26 and 27 are flow charts illustrating card and host processes respectively for

authentication schemes where a memory card is authenticating a host device.

[0044] Figs. 28 and 29 are flow charts illustrating card and host processes respectively for

authentication schemes where host device is authenticating a memory card.

[0045] Figs. 30 and 31 are flow charts illustrating processes carried out by a host device and
a memory device respectively where a certificate revocation list stored in the memory device

is retrieved by the host device to illustrate one more embodiment of the invention.

[0046] Fig. 32 is a diagram of a certificate revocation list showing the fields in the list to

illustrate yet another embodiment of the invention.

[0047] Figs. 33 and 34 are flow charts illustrating card and host processes respectively for

verifying certificates using certificate revocation lists.

[0048] Fig. 35 is a flow chart illustrating card processes for the card signing data sent to the

host and for decrypting data from the host.

[0049] Fig. 36 is a flow chart illustrating host processes where the card signs data sent to the
host.

[0050] Fig. 37 is a flow chart illustrating host processes where the host sends encrypted data

to the memory card.

WO 2008/013655 PCT/US2007/015301

[0051] Figs. 38 and 39 are flow charts illustrating processes respectively for the general

information and discreet information queries.

[0052] Fig. 40A is a functional block diagram of the system architecture in a memory device
(such as a flash memory card) connected to a host device to illustrate an embodiment of the

invention.

[0053] Fig. 40B is a functional block diagram of the internal software modules of the SSM
core of Fig. 40A.

[0054] Fig. 41 is a block diagram of a system for generating a one time password.

[0055] Fig. 42 is a functional block diagram illustrating one time password (OTP) seed

provisioning and OTP generation.

[0056] Fig. 43 is a protocol diagram illustrating a seed provisioning phase.

[0057] Fig. 44 is a protocol diagram illustrating a one time password generation phase.
[0058] Fig. 45 is a functional block diagram illustrating a DRM system.

[0059] Fig. 46 is a protocol diagram illustrating a process for license provisioning and

content download where the key is provided in the license object.
[0060] Fig. 47 is a protocol diagram illustrating a process for playback operation.

[0061] Fig. 48 is a protocol diagram illustrating a process for license provisioning and

content download where the key is not provided in the license object.

[0062] The figures illustrate features in various embodiments of aspects of the invention. For
simplicity in description, identical components are labeled by the same numerals in this

application.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0063] An example memory system in which the various aspects of the present invention
may be implemented is illustrated by the block diagram of Fig. 1. As shown in Fig. 1, the
memory system 10 includes a central processing unit (CPU) 12, a buffer management unit
(BMU) 14, a host interface module (HIM) 16 and a flash interface module (FIM) 18, a flash

WO 2008/013655 PCT/US2007/015301
10

memory 20 and a peripheral access module (PAM) 22. Memory system 10 communicates
with a host device 24 through a host interface bus 26 and port 26a. The flash memory 20
which may be of the NAND type, provides data storage for the host device 24, which may be
a digital camera, a personal computer, a personal digital assistant (PDA), a digital media
player such as a MP-3 player, a cellular telephone, a set top box or other digital device or
appliance. The software code for CPU 12 may also be stored in flash memory 20. FIM 18
connects to the flash memory 20 through a flash interface bus 28 and port 28a. HIM 16 is
suitable for connection to a host device. The peripheral access module 22 selects the
appropriate controller module such as FIM, HIM and BMU for communication with the CPU
12. In one embodiment, all of the components of system 10 within the dotted line box may
be enclosed in a single unit such as in memory card or stick 10’ and preferably encapsulated.
The memory system 10 is removably connected to host device 24, so that the content in

system 10 can be accessed by each of many different host devices.

[0064] In the description below, memory system 10 is also referred to as memory device 10,
or simply as memory device or device. While the invention is illustrated herein by reference
to flash memories, the invention may also be applicable to other types of memories, such as
magnetic disks, optical CDs, as well as all other types of rewriteable non-volatile memory

systems.

[0065] The buffer management unit 14 includes a host direct memory access (HDMA) 32, a
flash direct memory access (FDMA) 34, an arbiter 36, a buffer random access memory
(BRAM) 38 and a crypto-engine 40. The arbiter 36 is a shared bus arbiter so that only one
master or initiator (which can be HDMA 32, FDMA 34 or CPU 12) can be active at any time
and the slave or target is BRAM 38. The arbiter is responsible for channeling the appropriate
initiator request to the BRAM 38. The HDMA 32 and FDMA 34 are responsible for data
Uanspoded between the HIM 16, FIM 18 and BRAM 38 or the CPU random access memory
(CPU RAM)12a. The operation of the HDMA 32 and of the FDMA 34 are conventional and
need not be described in detail herein. The BRAM 38 is used to store data passed between
the host device 24 and flash memory 20. The HDMA 32 and FDMA 34 are responsible for
transferring the data between HIM 16/FIM 18 and BRAM 38 or the CPU RAM 12a and for

indicating sector completion.

[0066] In one embodiment, memory system 10 generates the key value(s) that are used for

encryption and/or decryption, where this value(s) is preferably substantially not accessible to

WO 2008/013655 PCT/US2007/015301
11

external devices such as host device 24. Alternatively, the key value may also be generated
outside of the system 10, such as by a license server, and sent to system 10. Irrespective of
how the key value is generated, once the key value is stored in system 10, only authenticated
entities will be able to access the key value. However, encryption and decryption is typically
done file by file, since the host device reads and writes data to memory system 10 in the form
of files. Like many other types of storage devices, memory device 10 does not manage files.
While memory 20 does store a file allocation table (FAT) where the logical addresses of the
files are identified, the FAT is typically accessed and managed by the host device 24 and not
by the controller 12. Therefore, in order to encrypt data in a particular file, the controller 12
has to rely on the host device to send the logical addresses of the data in the file in memory
20, so that the data of the particular file can be found and encrypted and/or decrypted by

system 10 using the key value(s) available only to system 10.

[0067] To provide a handle for both the host device 24 and memory system 10 to refer to the
same key(s) for cryptographically processing data in files, the host device provides a
reference for each of the key values generated by or sent to system 10, where such reference
_may simply be a key ID. Thus, the host 24 associates each file that is cryptographically
processed by system 10 with a key ID, and the system 10 associates each key value that is
used to cryptographically process data with a key ID provided by the host. Thus, when the
host requests that data be cryptographicall‘y processed, it will send the request along with a
key ID along with the logical addresses of data to be fetched from or stored in memory 20 to
system 10. System 10 generates or receives a key value and associates the key ID provided
by the host 24 with such value, and performs the cryptographic processing. In this manner,
no change needs to be made in the manner memory system 10 operates while allowing it to
completely control the cryptographic processing using the key(s), including exclusive access
to the key value(s). In other words, once the key value is stored in or generated by system 10,
the system continues to allow the host 24 to manage the files by having exclusive control of
FAT, while it maintains exclusive control for the management of the key value(s) used for
cryptographic processing. The host device 24 has no part in the management of the key
value(s) used for cryptographic processing of data, after the key value(s) are stored in

memory system 10.

[0068] The key ID provided by the host 24 and the key value sent to or generated by the

memory system form two attributes of a quantity referred to below as the “content encryption

WO 2008/013655 PCT/US2007/015301
12

key” or CEK in one of the embodiments. While the host 24 may associate each key ID with
one or more files, host 24 may also associate each key ID with unorganized data or data

organized in any manner, and not limited to data organized into complete files.

[0069] In order for a user or application to gain access to protected content or area in system
10, it will need to be authenticated using a credential which is pre-registered with system 10.
A credential is tied to the access rights granted to the particular user or application with such
credential. In the pre-registration process, system 10 stores a record of the identity and
credential of the user or application, and the access rights associated with such identity and
credential determined by the user or application and provided through the host 24. After the
pre-registration has been completed, when the user or application requests to write data to
memory 20, it will need to provide through the host device its identity and credential, a key
ID for encrypting the data, and the logical addresses where the encrypted data is to be stored.
System 10 generates or receives a key value and associates this value with the key ID
provided by the host device, and stores in its record or table for this user or application the
key ID for the key value used to encrypt the data to be written. It then encrypts the data and
stores the encrypted data at the addresses designated by the host as well as the key value it

generated or received.

[0070] When a user or application requests to read encrypted data from memory 20, it will
need to provide its identity and credential, the key ID for the key previously used to encrypt
the requested data, and the logical addresses where the encrypted data is stored. System 10
will then match the user or application identity and credential provided by the host to those
stored in its record. If they match, system 10 will then fetch from its memory the key value
associated with the key ID provided by the user or application, decrypt the data stored at the .
addresses designated by the host device using the key value and send the decrypted data to

the user or application.

[0071] By separating the authentication credentials from the management of keys used for
cryptographic processing, it is then possible to share rights to access data without sharing
credentials. Thus, a group of users or applications with different credentials can have access
to the same keys for accessing the same data, while users outside this group have no access.
While all users or applications within a group may have access to the same data, they may
still have different rights. Thus, some may have read only access, while others may have

write access only, while still others may have both. Since system 10 maintains a record of

WO 2008/013655 PCT/US2007/015301
13

the users or application identities and credentials, the key IDs they have access to, and the
associated access rights to each of the key IDs, it is possible for system 10 to add or delete
key IDs and alter access rights associated with such key IDs for particular users or
applications, to delegate access rights from one user or application to another, or even to
delete or add records or tables for users or applications, all as controlled by a properly
authenticated host device. The record stored may specify that a secure channel is needed for
accessing certain keys. Authentication may be done using symmetric or asymmetric

algorithms as well as passwords.

[0072] Especially important is the portability of the secured content in the memory system
10. In the embodiments where access to the key value is controlled by the memory system,
when the memory systemn or a storage device incorporating the system is transferred from one
external system to another, security of the content stored therein is maintained. Whether the
key is generated by the memory system or originates from outside the memory system,
external systems are not able to access such content in system 10 unless they have been
authenticated in a manner completely controlled by the memory system. Even after being so
authenticated, access is totally controlled by the memory system, and external systems can
access only in a manner controlled according to preset records in the memory system. If a

request does not comply with such records, the request will be denied.

[0073] To provide greater flexibility in protecting content, it is envisioned that certain areas
of the memory referred to below as partitions can be accessed only by properly authenticated
users or applications. When combined with the above described features of key-based data
encryption, system 10 provides greater data protection capability. As shown in Fig. 2, the
flash memory 20 may have its storage capacity divided into a number of partitions: a user
area or partition and custom partitions. The user area or partition PO is accessible to all users
and applications without authentication. While all bit values of data stored in the user area
can be read or written to by any application or user, if the data read is encrypted, the user or
application without authority to decrypt would not be able to access the information
represented by the bit values stored in a user area. This is illustrated, for example, by files
102 and 104 stored in user area PO. Also stored in the user area are unencrypted files such as
106 which can be read and understood by all applications and users. Thus, symbolically, the
files that are encrypted are shown with locks associated with them such as for files 102 and

104.

WO 2008/013655 PCT/US2007/015301
14

[0074] While an encrypted file in a user area PO cannot be understood by unauthorized
applications or users, such applications or users may still be able to delete or corrupt the file,
which may be undesirable for some applications. For this purpose, memory 20 also includes
protected custom partitions such as partitions P1 and P2 which cannot be accessed without
prior authentication. The authentication process permitted in the embodiments in this

application is explained below.

[0075] As also illustrated in Fig. 2, a variety of users or applications may access the files in
memory 20. Thus users 1 and 2, and applications 1-4 (running on devices) are shown in Fig.
2. Before these entities are allowed to access protected content in memory 20, they are first
authenticated by an authentication process in a manner explained below. In this process, the
entity that is requesting access needs to be identified at the host side for role based access
control. Thus, the entity requesting access first identifies itself by supplying information
such as “I am application 2 and I wish to read file 1.” Controller 12 then matches the
identity, authentication information and request against the record stored in memory 20 or
controller 12. If all requirements are met, access is then granted to such entity. As
illustrated in Fig. 2, user 1 is allowed to read from and write to file 101 in partition P1, but
can only read files 102 and 104 in addition to user 1 having unrestricted rights to read from
and write to files 106 in PO. User 2, on the other hand, is not allowed access to file 101 and
104 but has read and write access to file 102. As indicated in Fig. 2, users 1 and 2 have the
same login algorithm (AES) while applications 1 and 3 have different login algorithms (e.g.
RSA and 001001) which are also different from those of users 1 and 2.

[0076] The Secure Storage Application (SSA) is a security application of the memory system
10, and illustrates an embodiment of the invention, which can be used to implement many of
the above-identified features. SSA may be embodied as software or computer code with
database stored in the memory 20 or a non-volatile memory (not shown) in CPU 12, and is
read into RAM 12a and executed by CPU 12. The acronyms used in reference to the SSA are

set forth in the table below:

Definitions, Acronyms & Abbreviations

ACR Access Control Records
AGP ACR Group

CBC Chain Block Cipher
CEK Content Encryption Key
ECB Electronic Codebook

WO 2008/013655 PCT/US2007/015301

15
ACAM ACR Attributes Management
PCR Permissions Control Record
SSA Secure Storage Application
Entity Any thing that has real and individual existence (host side) that logs in the SSA
and thus utilizes its functionalities.

SSA System Description
[0077] Data security, integrity and access control are the major roles of the SSA. The data

are files that would otherwise be stored plainly on a mass-storage device of some kind. The
SSA system sits atop of the storage system and adds the security layer for the stored host

files, and provides security functions through security data structares described below.

[0078] The main task of the SSA is to manage the different rights associated with the stored
(and secured) content in the memory. The memory application needs to manage multiple
users and content rights to multiple stored content. Host applications from their side, see
drives and partitions that are visible to such applications, and file allocation tables (FATS)

that manage and portray the locations of the stored files on the storage device.

[0079] In this case the storage device uses NAND flash chip divided to partitions, although
other mobile storage devices may also be used and are within the scope of this invention.
These partitions are continuous threads of logical addresses, where a start and an end address
define their boundaries. Restrictions may therefore be imposed on access to hidden partitions,
if desired, by means of software (such as software stored in memory 20) that associates such
restrictions with the addresses within such boundaries. Partitions are fully recognizable to the

SSA by their logical address boundaries that are managed by it. The SSA system uses
partitions to physically secure data from unauthorized host applications. To the host, the
partitions are a mechanism of defining proprietary spaces in which to store data files. These
partitions can either be public, where anyone with access to the storage device can see and be
aware of the partition’s presence on the device, or private or hidden, where only the selected

host applications have access to and are aware of their presence in the storage device.

[0080] Fig. 3 is a schematic view of a memory illustrating the partitions of the memory: PO,
P1, P2 and P3 (obviously fewer or more partitions than four may be employed), where PO is a

public partition which can be accessed by any entity without authentication.

[0081] A private partition (such as P1, P2 or P3) hides the access to the files within it. By

preventing the host from accessing the partition, the flash device (e.g. flash card) delivers

WO 2008/013655 PCT/US2007/015301
16

protection of the data files inside the partition. This kind of protection, however, engulfs all
of the files residing in the hidden partition by imposing restrictions on access to data stored at
the logical addresses within the partition. In other words, the restrictions are associated with
 arange of logical addresses. All of the users/hosts that have access to that partition will have
unlimited access to all of the files inside. To isolate different files from one another — or
groups of files — the SSA system provides another level of security and integrity per file - or
groups of files — using keys and key references or Key IDs. A key reference or key ID of a
particular key value used for encrypting data at different memory addresses can be
analogized to a container or domain that contains the encrypted data. For this reason, in Fig.
4, the key references or key 1Ds (e.g. “key 1” and “key 2) are shown graphically as areas

surrounding the files encrypted using the key values associated with the key IDs.

[0082] In reference to Fig. 4, for example, File A is accessible to all entities without any
authentication, since it is shown as not enclosed by any key ID. Even though File B in the
public partition can be read or overwritten by all entities, it contains data encrypted with a
key with ID key 17, so that the information contained in File B is not accessible to an entity
unless such entity has access to such key. In this manner using key values and key references
or Key IDs provide logical prolection only, as opposed to the type of protection provided by
the partition described above. Hence, any host that can access a partition (public or private)
is capable of reading or writing the data in the entire partition, including the encrypted data.
However, since the data is encrypted, unauthorized users can only corrupt it. They preferably
cannot alter the data without detection. By restricting the access to the encryption and/or
decryption keys, this feature can allow only the authorized entities to use the data. Files B

and C are also encrypted using a key with key ID “key 2” in PO.

[0083] Data confidentiality and integrity can be provided through symmetric encryption
methods that use Content Encryption Keys (CEK), one per CEK. In the SSA embodiment,
the key values in CEKs are generated or received by the flash device (e.g. flash card), used
internally only, and kept as secrets from the outside world. The data that is encrypted or

ciphered may also be either hashed or the cipher is chain blocked to ensure data integrity.

[0084] Not all the data in the partition is encrypted by different keys and associated with
different key IDs. Certain logical addresses either in public or user files or in the operating
system area (i.e. FAT) may not be associated with any key or key reference, and thus are

available to any entity that can access the partition itself.

WO 2008/013655 PCT/US2007/015301
17

[0085] An entity that calls for the ability to create keys and partitions as well as writing and
reading data from them or using the keys, needs to login to the SSA system through an
Access Control Record (ACR). The privileges of an ACR in the SSA system are called
Actions. Every ACR may have Permissions to perform Actions of the following three
categories: Creating partitions and keys/key IDs, accessing partitions and keys and

creating/updating other ACRs. '

[0086] ACRs are organized in groups called ACR Groups or AGPs. Once an ACR has
successfully authenticated, the SSA system opens a Session through which any of the ACR’s
actions can be executed. ACRs and AGPs are security data structures used to control access

to the partitions and keys according to policies.

User Partition{s)

[0087] The SSA system manages one or more public partitions, also referred to as the user
partition(s). This partition exists on the storage device and is a partition or partitions that can
be accessed through the standard read write commands of the storage device. Getting
information regarding the size of the partition(s) as well as its existence on the device

preferably cannot be hidden from the host system.

[0088] The SSA system enables accessing this partition(s) either through the standard read
.write commands or the SSA commands. Therefore, accessing the partition preferably cannot
be restricted to specific ACRs. The SSA system, however, can enable the host devices to
restrict the access to the user partition. Read and write accesses can be enabled/disabled
individually. All four combinations (e.g. write only, read only (write protect), read and write

and no access) are allowed.

[0089] The SSA system enables ACRs to associate key IDs with files within the user
partition and encrypt individual files using keys associated with such key TDs. Accessing
encrypted files within the user partitions as well as setting the access rights to the partitions
will be done using the SSA command set. The above features also apply to data not

organized into files.

SSA partitions

WO 2008/013655 PCT/US2007/015301
18

[0090] These are hidden (from unauthenticated parties) partitions that can be accessed only
through the SSA commands. The SSA system will preferably not allow the host device to
access an SSA partition, other than through a session (described below) established by
logging onto an ACR. Similarly, preferably the SSA will not provide information regarding
the existence, size and access permission of an SSA partition, unless this request is coming

through an established session.

[0091] Access rights to partitions are derived from the ACR permissions. Once an ACR is
logged into the SSA system, it can share the partition with other ACRs (described below).
When a partition is created, the host provides a reference name or ID (e.g. PO-P3 in Figs. 3
and 4) for the partition. This reference is used in further read and write commands to the

partition.

Partitioning of the storage device
[0092] All available storage capacity of the device is preferably allocated to the user partition

and the currently configured SSA partitions. Therefore, any repartition operation may involve
reconfiguration of the existing partitions. The net change to the device capacity (sum of sizes
of all partitions) will be zero. The IDs of the partitions in the device memory space are

defined by the host system.

[0093] The host system can either repartition one of the existing partitions into two smaller
ones or, merge two existing partitions (which may or may not be adjacent) into one. The data
in the divided or merged partitions can be either erased or left untouched, at the host’s

discretion.

[0094] Since repartitioning of the storage device may cause loss of data (either because it was
erased or moved around in the logical address space of the storage device) severe restrictions
on repartitioning are administered by the SSA system. Only an ACR residing in a root AGP
(explained below) is allowed to issue a repartition command and it can only reference
partitions owned by it. Since the SSA system is not aware of how data is organized in the
partitions (FAT or other file system structure) it is the host’s responsibility to reconstruct

these structures any time the device is repartitioned.

[0095] Repartitioning of the user partition will change the size and other attributes of this

partition as seen by the host OS.

WO 2008/013655 PCT/US2007/015301
19

[0096] After repartitioning, it is the host system’s responsibility to make sure any ACR in the
SSA system is not referencing the non-existing partitions. If these ACRs are not deleted or
updated appropriately, future attempts, on behalf of these ACRs, to access the non-existing
partitions will be detected and rejected by the system. Similar care is taken, regarding deleted

keys and key IDs.

Keys, Key IDs and Logical Protection

[0097] When a file is written to a certain hidden partition, it is hidden from the general
public. But, once an entity (hostile or not) gets knowledge and access to this partition the file
becomes available and plain to see. To further secure the file, the SSA can encrypt it in the
hidden partition, where the credentials for accessing the key for decrypting the file are
preferably different from those for accessing the partition. Due to the fact that files are totally
controlled and managed by the host, associating a CEK with a file is a problem. Linking the
file to something the SSA acknowledges — the key ID, rectifies this. Thus, when a key is
created by the SSA, the host associates the key ID for this key with the data encrypted using
the key created by the SSA. If the key is sent to the SSA together with key ID, the key and

key ID can be readily associated with each other.

[0098] The key value and key ID provide logical security. All data associated with a given
key ID, regardless of its location, is ciphered with the same key value in the content
encryption key (CEK) whose reference name or key ID is uniquely provided at creation by
the host application. If an entity obtains access to a hidden partition (by authenticating
through an ACR) and wishes to either read or write an encrypted file within this partition, it
needs to have access to the key ID that is associated with the file. When granting access to
the key for this key ID, the SSA loads the key value in CEK associated with this key ID and
either decrypts the data before sending it to the host or encrypts the data before writing it to
the flash memory 20. In one embodiment, a key value in CEK associated with a key ID is
randomly created once by the SSA system and maintained by it. No one outside the SSA
system has knowledge or access to this key value in CEK. The outside world only provides
and uses a reference or key ID, not the key value in CEK. The key value is entirely managed
and preferably only accessible by the SSA. Alternatively, the key may be provided to the
SSA system.

WO 2008/013655 PCT/US2007/015301
20

[0099] The SSA system protects the data associated with the key ID using any one (user
defined) of the following cipher modes (the actual cryptographic algorithms used, as well as

the key values in CEKs, are system controlled and not revealed to the outside world):

[00100] Block mode - Data is divided into blocks, each one of them, encrypted
individually. This mode is generally considered less secure and susceptive to dictionary

attacks, However, it will allow users to randomly access any one of the data blocks.

[00101] Chained mode — Data is divided into blocks, which are chained during the
encryption process. Every block is used as one of the inputs to the encryption process of the
next one. In this mode, although considered as more secure, the data is written and read

sequentially from start to end, creating an overhead which may not be acceptable to the users.

[00102]_ Hashed — Chain mode with the additional creation of a data digest that can be
used for validating data integrity. -

ACRs and Access Control

[00103] The SSA is designed to handle multiple applications where each one of them
is represented as a tree of nodes in the system database. Mutual exclusion between the

applications is achieved by ensuring no cross talk between the tree branches.

[00104] In order to gain access to the SSA system, an entity needs to establish a
connection via one of the system’s ACRs. Login procedures are administered by the SSA

system according to the definitions embedded in the ACR the user chose to connect with.

[00105] The ACR is an individual login point to the SSA system. The ACR holds the
login credentials and the authentication method. Also residing in the record are the login
permissions within the SSA system, among which are the read and write privileges. This is
illustrated in Fig. 5, which illustrates n ACRs in the same AGP. This means that at least
some of the n ACRs may share access to the same key. Thus, ACR #1 and ACR #n share
access to a key with key ID “key 3”, where ACR#1 and ACR#n are the ACR IDs, and “key
3” is a key ID for the key that is used to encrypt data associated with “key 3. The same key

can also be used to encrypt and/or decrypt multiple files, or multiple sets of data.

[00106] The SSA system supports several types of login onto the system where

authentication algorithms and user credentials may vary, as may the user’s privileges in the

WO 2008/013655 PCT/US2007/015301
21

system once he logged in successfully. Fig. 5 again illustrates different login algorithms and
credentials. ACR#1 specifies a password login algorithm and password as credential whereas
ACR#2 specifies a PKI (public key infrastructure) login algorithm and public key as
credential. Thus, to login, an entity will need to present a valid ACR ID, as well as the

correct login algorithm and credential.

[00107] Once an entity is logged into an ACR of the SSA system, its permissions - its
rights to use SSA commands - are defined in the Permissions Control Record (PCR) which is
associated with the ACR. In Fig. 5, ACR#1 grants read only permission to data associated
with “key 3”, and ACR #2 grants permission to read and write data associated with “key 5”

according to the PCR shown.

[00108] Different ACRs may share common interests and privileges in the system such
as in keys with which to read and write. To accomplish that, ACRs with something in
common are grouped in AGPs — ACR Groups. Thus, ACR #1 and ACR #n share access to a
key with key ID “key 3”.

[00109] AGPs and, the ACRs within, are organized in hierarchical trees and so aside
from creating secure keys that keep sensitive data secure; an ACR can preferably also create
other ACR entries that correspond to his key ID/partitions. These ACR children will have the
same or less permissions as their father — creator and, may be given permissions for keys the
father ACR himself creat;ad. Needless to add, the children ACRs get access permissions to
any key that they create. This is illustrated in Fig. 6. Thus, all of the ACRs in AGP 120 were
created by ACR 122 and two of such ACRs inherit from ACR 122 permission(s) to access to _

data associated with “key 3”.

AGP

[00110] Logging onto the SSA system is done by specifying an AGP and an ACR
within the AGP.

[00111] Every AGP has a unique ID (reference name), which is used as an index to its

entry in the SSA database. The AGP name is provided to the SSA system, when the AGP is
created. If the provided AGP name already exists in the system, the SSA will reject the

creation operation.

WO 2008/013655 PCT/US2007/015301
22

[00112)] AGPs are used to administer restrictions on delegation of access and
management permissions as will be described in the following sections. One of the functions
served by the two trees in Fig. 6 is to administer the access by entirely separate entities, such
as two different applications, or two different computer users. For such purposes, it may be
important for the two access processes to be substantially independent of one another (i.e.
substantially no cross-talk), even though both occur at the same time. This means that the
authentication, permissions as well as the creation of additional ACRs and AGPs in each tree -
are not connected to and do not depend on those of the other tree. Hence, when the SSA
system is used in memory 10, this allows the memory system 10 to serve multiple
applications simultaneously. It also allows the two applications tb access two separate sets of
data independently of one another (e.g. a set of photographs and a set of songs). This is
illustrated in Fig. 6. Thus, the data associated with “keys 3”, “key X and “key Z” for the
application or user accessing via nodes (ACRs) in the tree in the top portion of Fig. 6 may
comprise photographs. The data associated with “key 5 and “key Y” for the application or
user accessing via nodes (ACRs) of the tree in the bottom portion of Fig. 6 may comprise
songs. The ACR that created the AGP has the permission to delete it only when the AGP is
empty of ACR entries.

The entity’s SSA entry point: Access Control Record (ACR)

[00113] An ACR in the SSA system describes the way the entity is permitted to log
into the system. When an entity logs into the SSA system it needs to specify the ACR that
corresponds to the authentication process it is about to perform. An ACR includes a
Permissions Control Record (PCR) that illustrates the granted actions the user can execute
once authenticated as defined in the ACR as illustrated in Fig. 5. The host side entity provides
all of the ACR data fields.

[00114] When an entity has successfully logged onto an ACR, the entity will be able to
query on all of the ACR’s partition and key access permissions and ACAM permissions

(explained below).

ACRID
[00115] When an SSA system entity initiates the login process it needs to specify the
ACR ID (as provided by the host when the ACR was created) that corresponds to the login

method so that the SSA will set up the correct algorithms and select the correct PCR when all

WO 2008/013655 PCT/US2007/015301
23

login requirements have been met. The ACR ID is provided to the SSA system when the
ACR is created.

Login/Authentication Algorithm

[00116] The authentication algorithm specifies what sort of login procedure will be
used by the entity, and what kind of credentials are needed to provide proof of user’s identity.
The SSA system supports several standard login algorithms, ranging from no procedure (and
no credential) and password-based procedures to a two-way authentication protocols based

on either symmetric or asymmetric cryptography.

Credentials

[00117] The entity’s credentiais correspond to the login algorithm and are used by the
SSA to verify and authenticate the user. An example for credential can be a- password/PIN-
number for password authentication, AES-key for AES authentication, etc. The type/format
of the credentials (i.e. the PIN, the symmetric key, etc...) is predefined and derived from the
authentication mode; they are provided to the SSA system when the ACR is created. The
SSA system has no part in defining, distributing and managing these credentials, with the
exception of PKI based authentication where the device (e.g. flash card) can be used to
generate the RSA or other type of key pair and the public key can be exported for certificate

generation.

The Permissions Control Record (PCR)

[00118] The PCR shows what is granted to the entity after logging into the SSA system
and passing the ACR’s authentication process successfully. There are three types of
permission categories: Creation permissions for partition and keys, Access permissions to

partitions and keys and management permissions for Entity-ACR Attributes

Accessing Partitions

[00119] This section of the PCR contains the list of partitions (using their IDs as
provided to the SSA system) the entity can access upon completing the ACR phase
successfully. For each partition the access type may be restricted to write-only or read-only or
may specify full write/read access rights. Thus, the ACR#1 in Fig. 5 has access to partition
#2 and not partition #1. The restrictions specified in the PCR apply to the SSA partitions and
the public partition.

WO 2008/013655 PCT/US2007/015301
24

[00120] The public partition can be accessed either by regular read and write
commands to the device (e.g. flash card) hosting the SSA system, or by SSA commands.
When a root ACR (explained below) is created with the permission to restrict the public
partition, he can pass it on to his children. An ACR can preferably only re-strict the regular
read and write commands from accessing the public partition. ACRs in the SSA system can
be restricted preferably only upon their creation. Once an ACR has the permission to

read/write from/to the public partition, preferably it cannot be taken away.

Accessing Key IDs

[00121] This section of the PCR contains the data associated with the list of key IDs
(as provided to the SSA system by the host) the entity can access when the ACR policies
have been met by the entity’s login process. The key ID specified is associated with a
file/files that reside in the partition appearing in the PCR. Since the key IDs are not
associated with logical addresses in the device (e.g. flash card), when more than one partition
is associated with a specific ACR, the files can be in either one of the partitions. The key IDs
specified in the PCR can have each, a different set of access rights. Accessing data pointed to
by key IDs can be restricted to write-only or read-only or may specify full write/read access

rights.

ACR Attributes Management (ACAM)

[00122] This section describes how in certain cases the ACR’s system attributes can be
changed.
'[00123] The ACAM actions that may be permitted in the SSA system are:
1. Create/delete/update AGPs and ACR.
2. Create/delete Partitions and Keys.
3. Delegate access rights to keys and partitions.
[00124] A father ACR preferably cannot edit ACAM permissions. This would

preferably need the deletion and recreation of the ACR. Also the access permission to a key

ID created by the ACR can preferably not be taken away.

[00125] An ACR may have the capacity to create other ACRs and AGPs. Creating

ACRs also may mean delegating them some or all of the ACAM permissions possessed by

WO 2008/013655 PCT/US2007/015301
25

their creator. Having the permission to create ACRs means having the permission for the

following actions:

1. Define and edit the child’s credentials — the authentication method preferably
cannot be edited once set by the creating ACR. The credentials may be altered within the

boundary of the authentication algorithm that is already defined for the child.

2. Delete an ACR.

3. Delegate the creating permission to the child ACR (thus having
grandchildren).
[00126] An ACR with the permissions to create other ACRs has the permission to

delegate the unblocking permission to ACRs it creates (although it probably does not have
the permission to unblock ACRs). The father ACR will place in the child ACR a reference to

his unblocker.

[00127] The father ACR is the only ACR that has the permission to delete his child
ACR. When an ACR deletes a lower level ACR that he created, then all ACRs spawned by
this lower-level ACR are automatically deleted as well. When an ACR is deleted then all the

key IDs and partitions that it created are deleted.

[00128] There are two exceptions by which an ACR can update its own record:
1. Passwords/PINs, although set by the creator ACR, can be updated only by the
ACR that includes them.

2. A root ACR may delete itself and the AGP that it resides in.

Delegate access rights to Keys and partitions
[00129} ACRs and their AGPs are assembled in hierarchical trees where the root AGP
and the ACRs within are at the top of the tree (e.g. root AGPs 130 and 132 in Fig. 6). There

can be several AGP trees in the SSA system though they are totally separated from one
another. An ACR within an AGP can delegate access permissions to its keys to all ACRs
within the same AGP that it is in, and to all the ACRs created by them. The pcrmiséion to

create keys preferably includes the permission to delegate access permissions to use the keys.

[00130] Permissions to keys are divided into three categories:

WO 2008/013655 PCT/US2007/015301

26
1. Access — this defines the access permissions for the key i.e. Read, Write.
2. Ownership — an ACR that created a key is by definition its owner. This

ownership can be delegated from one ACR to another (provided that they are in the same
AGP or in a child AGP). An ownership of a key provides the permission to delete it as well
as delegate permissions to it.

3. Access Rights Delegation — this permission enables the ACR to delegate the
rights he holds. |

[00131] ~ An ACR can delegate access permissions to partitions he created as well as

other partitions he has access permissions to.

[00132] The permission delegation is done by adding the names of the partitions and
key IDs to the designated ACR’s PCR. Delegating key access permissions may either be by
the key ID or by stating that access permission is for all of the created keys of the delegating
ACR. '

Blocking and Unblocking of ACRs

[00133] An ACR may have a blocking counter which increments when the entity’s
ACR authentication process with the system is unsuccessful. When a certain maximum
number (MAX) of unsuccessful authentications is reached, the ACR will be blocked by the

SSA system.

[00134] The blocked ACR can be unblocked by another ACR, referenced by the
blocked ACR. The reference to the unblocking ACR is set by it.s.c?rcator. The unblocking
ACR preferably is in the same AGP as the creator of the blocked ACR and has the

“unblocking” permission.

[00135] No other ACR in the system can unblock the blocked ACR. An ACR may be
configured with a blocking counter but without an unblocker ACR. In this case, if this ACR

get blocked it cannot be unblocked.

Root AGP — Creating an application database
[00136] The SSA system is designed to handle multiple applications and isolate the

data of each one of them. The tree structure of the AGP system is the main tool used to

identify and isolate application specific data. The root AGP is at the tip of an application SSA

WO 2008/013655 PCT/US2007/015301
27

database tree and adheres to somewhat different behavior rales. Several root AGPs can be
configured in the SSA system. Two root AGPs 130 and 132 are shown in Fig. 6. Obviously

fewer or more AGPs may be used and are within the scope of this invention.

{00137] Registering the device (e.g. flash card) for a new application and/or issue
credentials of a new applications for the device are done through the process of adding new

AGP/ACR tree to the device.

[00138] The SSA system supports three different modes of root AGP creation (as well
as all of the ACRs of the root AGP and their permissions):

1. Open: Any user or entity without requiring any sort of authentication, or
users/entities authenticated through the system ACR (explained below), can create a new root
AGP. The open mode enables creation of root AGPs either without any security measures
while all data transfer is done on an open channel (i.e. in the secure environment of an
issuance agency) or, through a secure channel established through the system ACR
authentication (i.e. Over The Air (OTA) and post issuance procedures).

[00139] If the system ACR is not configured (this is an optional feature) and the root

AGP creation mode is set to Open, only the open channel option is available.

2. Controlled: Only entities authenticated through the System ACR can create a
new root AGP. The SSA system cannot be set to this mode if system ACR is not configured.
3. Locked: Creation of root AGPs is disabled and no additional root AGPs can be

added to the system

[00140] Two SSA commands control this feature (these commands are available to any

user/entity without authentication):

1. Method configuration command — Used to configure the SSA system to use
any one of the three root AGP creation modes. Only the following mode changes are allowed:
Open -> Controlled, Controlled -> Locked (i.e. if the SSA system is currently configured as
Controlled, it can only be changed to locked).

2. Method configuration lock command - Used to disable the method

configuration command and permanently lock the currently selected method.

WO 2008/013655 PCT/US2007/015301
28

[00141] When a root AGP is created, it is in a special initializing mode that enables the
creation and configuration of its ACRs (using the same access restrictions that applied to the
creation of the root AGP). At the end of the root AGP configuration process, when the entity
explicitly switches it to operating mode, the existing ACRs can no longer be updated and

additional ACRs can no longer be created

[00142] Once a root AGP is put in standard mode it can be deleted only by logging
into the system through one of its ACRs that is assigned with the permission to delete the root
AGP. This is another exception of root AGP, in addition to the special initialization mode; it
is preferably the only AGP that may contain an ACR with the permission to delete its own

AGP, as opposed to AGPs in the next tree level.

[00143] The third and last difference between a root ACR and a standard ACR is that it

is the only ACR in the system that can have the permission to create and delete partitions.

SSA System ACR
[00144) The system ACR may be used for the following two SSA operations:

1. Create an ACR/AGP tree under the protection of a secured channel within
hostile environments.

2. Identify and authenticate the device hosting the SSA system.
[00145] There may preferably be only one System ACR in the SSA and once defined it
preferably cannot be changed. There is no need for system authentication when creating the
System ACR; only a SSA command is needed. The create-system-ACR feature can be
disabled (similarly to the create-root-AGP feature). After the system ACR is created, the
create-system-ACR command has no effect, since preferably only one System ACR is

allowed.

[00146] While in the process of creating, the System ACR is not operational. Upon
finishing, a special command needs to be issued indicating that the System ACR is created

and ready to go. After this point the System ACR preferably cannot be updated or replaced.

[00147] The System ACR creates the root ACR/AGP in the SSA. It has permission to
add/change the root level until such time that the host is satisfied with it and blocks it.
Blocking the root AGP essentially cuts off its connection to the system ACR and renders it

temper proof. At this point no one can change/edit the root AGP and the ACRs within. This

WO 2008/013655 PCT/US2007/015301
29

is done through an SSA command. Disabling creation of root AGPs has a permanent effect
and cannot be reversed. The above features involving the system ACR are illustrated in Fig.
7. The system ACR is used to create three different root AGPs. At a certain time after these
are created, the SSA command is sent from the host to block the root AGPs from the system
ACR, thereby disabling the create-root-AGP feature, as indicated by the dotted lines
connecting the System ACR to the root AGPs in Fig. 7. This renders the three root AGPs
-temper proof. The three root AGPs may be used to create children AGPs to form three

separate trees, before or after the root AGPs are blocked.

[00148] The above described features provides great flexibility to the content owner in
configuring secure products with content. Secure products need to be "Issued". Issuance is
the process of putting identification keys by which the device can identify the host and vice
versa. Identifying the device (e.g. flash card) enables the host to decide whether it can trust its
secrets with it. On the other hand, identifying the host enables the device to enforce security

policies (grant and execute a specific host command) only if the host is allowed to.

[00149] Products that are designed to serve multiple applications will have several
identification keys. The product can be "pre-issued” - keys stored during manufacturing
before shipping, or "post issued” - new keys are added after shipping. For post issuance, the
memory device (e.g. memory card) needs to contain some kind of master or device level keys

which are being used to identify entities which are allowed to add applications to the device.

[00150] The above described features enables a product to be configured to
enable/disable post issuance. In addition, the post issuance configuration can be securely
done after shipping. The device may be bought as a retail product with no keys on it in
addition to the master or device level keys described above, and then be configured by the

new owner to either enable further post issnance applications or disable them.

[00151] Thus, the system ACR feature provides the capability to accomplish the above

objectives:

- Memory devices with no system ACR will allow unlimited and uncontrolled
addition of applications. i

- Memory devices without system ACR can be configured to disable the system ACR
creation, which means there is no way to control adding of new applications (unless the

feature of creating new root AGP is disabled as well)

WO 2008/013655 PCT/US2007/015301
30

- Memory devices with system ACR will allow only controlled addition of
applications via a secure channel to establish through an authentication procedure using the
system ACR credential.

- Memory devices with system ACR may be configured to disable the application

adding feature, before or after applications have been added.

Key ID list
[00152] Key IDs are created per specific ACR request; however, in the memory

system 10, they are used solely by the SSA system. When a key ID is created the following
data is provided by or to the creating ACR:

1. Key ID. The ID is provided by the entity through the host and is used to
reference the key and data that is encrypted or decrypted using the key in all further read or
write accesses.

2. Key Cipher and data integrity Mode (the Blocked, Chained and Hashed Modes
above and as explained below)

[00153] In addition to the host provided attributes, the following data is maintained by
the SSA system:

l. Key ID Owner. The ID of the ACR that is the owner. When a key ID is
created the creator ACR is its owner. Key ID ownership may, however, be transferred.to
another ACR. Preferably only the key ID owner is allowed to transfer ownership of, and
delegate, a key ID. Delegating access permission to the associated key, and revoking these
rights can be administered either by the key ID owner or any other ACR assigned with
delegation permissions. Whenever an attempt is made to exercise any one of these operations,
the SSA system will grant it only if the requesting ACR is authorized.

2. CEK. This is the CEK whose key value is used to cipher the content
associated with or pointed to by the key ID. The key value may be a 128 bit AES random key
generated by the SSA system.

3. MAC and 1V values. Dynamic information (message authentication codes and

initiation vectors) used in the Chained Block Cipher (CBC) encryption algorithms.

[00154] The various features of the SSA are also illustrated in reference to the flow

charts in Figs. 8 A-16, where ‘H’ to the left of a step means the operation is performed by the

WO 2008/013655 PCT/US2007/015301
31

host, and ‘C’ means the operation is performed by the card. While these SSA features are
illustrated with reference to memory cards, it will be understood that these features apply as
well to memory devices in other physical forms. In order to create a Systerﬁ ACR, the host
issues to the SSA in the memory device 10 a command to create System ACR (block 202).
The device 10 responds by checking whether a System ACR already exists (block 204,
diamond 206). If it already exists, then device 10 returns failure and stops (oblong 208). If it
does not, then memory 10 checks to see if System ACR creation is allowed (diamond 210),
and returns a failure status if not allowed (block 212). Thus, there may be instances where
the device issuer does not allow the creation of a System ACR, such as in the case where the
security features needed have been predetermined so that no System ACR is needed. If this is
allowed, the device 10 returms OK status and waits for System ACR credentials from the host
(block 214). The host checks the SSA status and whether the device 10 has indicated that the
creation of a System ACR is allowed (block 216 and diamond 218). If creation is not
allowed or if a system ACR already exists, the host stops (oblong 220). If the device 10 has
indicated that the creation of a System ACR is allowed, the host issues a SSA command to
define its login credential and sends it to the device 10 (block 222). The device 10 updates a
System ACR record with the credential received and returns OK status (block 224). In
response to this status signal, the host issues SSA command indicating the system ACR is
ready (block 226). The device 10 responds by locking the System ACR so that it cannot be
updated or replaced (block 228). This locks in the features of the system ACR and its
identity for identifying the device 10 to the host.

[00155]) The procedure for creating new trees (New Root AGPs and ACR) is
determined by the way these functions are configured in the device. Fig 9 explains the
procedures. Both the host 24 and the memory system 10 follow it. If adding new root AGP is
disabled 'altogether, new root AGPs cannot be added (diamond 246). If it is enabled but a
system ACR is needed, the host authenticates through the system ACR and establishes a
secure channel (diamond 250, block 252) prior to issuing the Create Root_AGP command
(block 254). If system ACR is not needed (diamond 248) the host 24 can issue the create root
AGP command without authentication and proceed to block 254. If system ACR does exist,
the host may use it even if it is not needed (not shown in the flow chart). The device (e.g.
flash card) will reject any attempt to create a new root AGP if the function is disabled and it
will reject an attempt to create a new root AGP without authentication, if system ACR is

needed (diamonds 246 and 250). The newly created AGP and ACR in block 254, are now

WO 2008/013655 PCT/US2007/015301
32

switched to Operational Mode so that the ACRs in such AGPs cannot be updated or
otherwise changed, and no ACRs can be added to them (block 256). The system is then,
optionally locked so that additional root AGPs cannot be created (block 258). The dotted line
box 258 is a convention indicating that this step is an optional step. All the boxes in the flow
charts of the figures of this application in dotted lines are optional steps. This allows the
content owner to block the use of device 10 for other illicit purposes that may imitate a

genuine memory device with legitimate content.

[00156] To create ACRs (other than the ACRs in the root AGP as described above),
one may start with any ACR that has the right to create an ACR (block 270) as shown in
Figure 10. An entity may attempt to enter through the host 24 by providing the entry point
ACR identity, and the ACR with all the necessary attributes that it wishes to create (block
272). The SSA checks for a match to the ACR identity and whether the ACR with such
identity has the permission to create an ACR (diamond 274). If the request is verified to be
authorized, the SSA in device 10 creates an ACR (block 276).

[00157] Fig. 11 shows two AGPs that illustrate a tree useful in security applications
using the method of Fig. 10. Thus, the ACR with identity m1 in the marketing AGP has the
permission to create an ACR. The ACR m! also has the permission to use a key for reading
and writing data associated with the key ID “Marketing Information” and data associated
with the key ID “Price List”. Using the method of Fig. 10, it creates the Sales AGP with two
ACRs: sl and s2 with only read permission to the key for accessing pricing data associated
with the key ID “Price List”, but not to the key necessary for accessing data associated with
the key ID “Marketing Information”. In this manner, the entities with the ACRs sl and s2
can only read but not change the pricing data, and will have no access to marketing data. The
ACR m2, on the other hand, has no permission to create ACRs, and has only read permission
to the keys for accessing data associated with the key ID “Price List” and with the key ID

“Marketing Information™.

[00158] Thus, access rights may be delegated in the manner explained above where ml
delegates rights to read pricing data to sI and s2. This is particularly useful where large
marketing and sales groups are involved. Where there are but one or a few sales people,
there may be no need to use the method of Fig. 10. Instead, the access rights may be
delegated, by an ACR to one at a lower or the same level within the same AGP, as illustrated

in Fig. 12. First, the entity enters the tree for such AGP by specifying an ACR in the manner

WO 2008/013655 PCT/US2007/015301
33

described above in the tree through the host (block 280). Next the host will specify the ACR
and the rights to delegate to. The SSA checks the tree(s) for such ACR and whether the ACR
has the permission to delegate rights to the specified another ACR (diamond 282). If it does,
the rights are delegated (block 284); if not it stops. The result is illustrated in Fig. 13. The
ACR m1] in this case has the permission to delegate read permission to the ACR sl, so that sl
will be able to use a key to access pricing data after the delegation. This may be performed if
m1l has the same or greater rights to access pricing data and the permission to so delegate. In
one embodiment, m1 retains its access rights after the delegation. Preferably access rights
may be delegated under restricted conditions (rather then permanently) such as for a limited

time, limited number of accesses, etc.

[00159] The process for creating a key and key ID is illustrated in Fig. 14. The entity
authenticates through an ACR (block 302). The entity requests the creation of a key with an
ID specified by the host (block 304). The SSA checks and see if the ACR specified has the
permission to do so (diamond 306). For example, if the key is to be used for accessing data
in a particular partition, the SSA will check and see if the ACR may access such partition. If
the ACR is authorized, then the memory device 10 creates a key value associated with the
key ID provided by the host (block 308), ands stores the key ID in the ACR, and the key
value in its memory (either in the controller-associated memory or memory 20) and assigns
rights and permissions according to information supplied by the entity (block 310) and
modifies the PCR of such ACR with such assigned rights and permissions (block 312). Thus,
the creator of the key has all available rights, such as read and write permissions, right to
delegate and share with other ACRs in the same AGP or an ACR at a lower level, and the

right to transfer ownership of the key.

[00160] An ACR can change the permissions (or the existence altogether) of another
ACR in the SSA system as illustrated in Fig. 15. An entity may enter a tree through an ACR
as before; in one case the entity is authenticated and then it specifies an ACR (blocks 330,
332). It requests the deletion of a target ACR or the permission in a target ACR (block 334).
If the ACR specified or the one active at such time has the right to do so (diamond 336), the
target ACR is deleted, or the PCR of the target ACR is altered to delete such permission
(block 338). If this is not authorized the system stops.

[00161] After the above described process, the target will no longer be able to access

the data it was able to prior to the process. As shown in Fig. 16, an entity may attempt to

WO 2008/013655 PCT/US2007/015301
34

enter at the target ACR (block 350) and finds that the authentication process fails, since the
previously existing ACR ID is no longer present in the SSA, so that access rights are denied
(diamond 352). Assuming that the ACR ID has not been deleted, the entity specifies an ACR
(block 354) and the key ID and/or data in a particular partition (block 356), and the SSA then
checks to see the key ID or partition access request is permitted according to the PCR of such
ACR (diamond 358). If the permission has been deleted or has expired, then the request is

again denied. Otherwise, the request is granted (block 360).

[00162] The above process describes how access to protected data is managed by the
device (e.g. flash card), regardless of whether the ACR and its PCR were just changed by

another ACR or were so configured to begin with.

Sessions

[00163] The SSA system is designed to handle multiple users, logged in concurrently.
When this feature is used, every command received by the SSA is associated with a specific
entity and executed only if the ACR, used to authenticate this entity, has the permissions for

the requested action.

[00164] Multiple entities are supported through the session concept. A session is
established during the authentication process and assigned a session-id by the SSA system.
The session-id is internally associated with the ACR used for logging into the system and is

exported to the entity to be used in all further SSA commands.

[00165] The SSA system supports two types of sessions: Open, and Secure sessions.
The session type associated with a specific authentication process is defined in the ACR. The
SSA system will enforce session establishment in a way similar to the way it enforces the
authentication itself. Since the ACR defines the entity permissions, this mechanism enables
system designers to associate secure tunneling either with accessing specific key IDs or
invoking specific ACR management operations (i.e. creating new ACRs and setting

credentials)

Open session
[00166] Open session is a session identified with a session-id but without bus

. encryption, all commands and data are passed in the clear. This mode of operation is

WO 2008/013655 PCT/US2007/015301
35

preferably used in a multi-user or multi-entity environment where the entities are not part of

the threat model, nor is eavesdropping on the bus.

[00167] Although not protecting the transmission of the data nor enabling efficient
fire-walling between the applications on the host side, the Open session mode enables the
SSA system to allow access only to the information allowed for the currently authenticated

ACRs.

[00168] The Open session can also be used for cases where a partition or a key needs
to be protected. However, after a valid authentication process, access is granted to all entities
on the host. The only thing the various host applications need to share, in order to get the
permissions of the authenticated ACR is the session-id. This is illustrated in Fig. 17A. The
steps above the line 400 are those taken by the host 24. After an entity is authenticated
(block 402) for ACRI, it requests access to a file associated with a key ID X in the memory
device 10 (blocks 404, 406 and 408). If the PCR of the ACR 1 allows such access, device 10
grants the request (diamond 410). If not, the system returns to block 402. After
authentication is completed, the memory system 10 identifies the entity issuing a command
only by the assigned session id .(and not the ACR credentials). Once the ACR 1 gains access
to the data associated with the key IDs in its PCR, in an open session, any other application or
user can access the same data by specifying the correct session ID which is shared between
the different applications on the host 24. This feature is advantageous in applications where
it is more convenient to the user to be able to log in only once, and be able to access all the
data tied to the account through which the log in is performed for different applications.
Thus, a cellular phone user may be able to access stored emails, and listen to stored music in
memory 20 without having to log in multiple times. On the other hand, data not
encompassed by the ACR1 will not be accessible. Thus, the same cellular phone user may
have valuable content such as games and photographs accessible through a separate account
ACR2. This is data that he does not wish others who borrow his phone to access, even
though he may not mind others accessing data available through his first account ACR1.
Separating access to the data into two separate accounts while allowing access to ACRI1 in

open session provides ease of use as well as affording protection of valuable data.

[00169] To even further ease the process of sharing the session-id amongst the host
applications, when an ACR is requesting an Open session it can specifically request that the

session will be assigned the “0 (zero)” id. This way, applications can be designed to use a

WO 2008/013655 PCT/US2007/015301
36

pre-defined session-id. The only restriction is, for obvious reasons, that only one ACR,
requesting session 0, can be authenticated at a specific time. An attempt to authenticate

another ACR requesting session 0, will be rejected.

Secure session

[00170] To add a layer of security, the session id may be used as shown in Fig. 17B.
The memory 10 then also stores the session ids of the active sessions. In Fig. 17B, for
example, in order to be able to access a file associated with key ID X, the entity will need to
also provide a session id, such as session id “A” before it is allowed to access the file (blocks
404, 406, 412 and 414). In this manner, unless the requesting entity is aware of the correct
session id, it cannot access the memory 10. Since the session id is deleted after the session is
over and will be different for each session, an entity can gain access only when it has been

able to provide the session number.

[00171] The SSA system tracks whether a command is really coming from the correct
authenticated entity by using the session number. For applications and use cases where there
is a threat that attackers will try to use an open channel to send malicious comimands, the host

application uses a secure session (a secure channel).

[00172] When using a secure channel, the session-id, as well as the entire command, is
encrypted with the secure channel encryption (session) key and the security level is as high as

the host side implementation.

Terminating a session _
[00173] A session is terminated and, the ACR is logged off, in any one of the

following scenarios:

1. The entity issues an explicit end-session command.

2. Time out on communication. A specific entity issued no command for a time
period defined as one of the ACR parameters.

3. All open sessions are terminated after device (e.g. flash card) reset and/or

power cycle.

WO 2008/013655 PCT/US2007/015301

37
Data Integrity services
[00174] The SSA system verifies the integrity of the SSA database (which contains all

the ACRs, PCRs, etc...). In addition data integrity services are offered for entity data through

the key ID mechanism.

[00175] If a key ID is configured with Hashed as its encryption algorithms the hash
values are stored along side with the CEK and IV in the CEK record. Hash values are
calculated and stored during write operation. Hash values are again calculated during read
operations and compared with the values stored during the previous write operations. Every
time the entity is accessing the key ID the additional data is concatenated (cryptographically)

to the old data and the appropriate Hash value (for read or for write) updated.

[00176] Since only the host knows the data files associated with or pointed to by a key
ID, the host explicitly manages several aspects of the data integrity function in the following

manner:

1. A data file associated with or pointed to by a key ID is written or read from
the beginning to end. Any attempt to access portions of the file will mess it up since the SSA
system is using a CBC encryption method and generates a hashed message digest of the
entire data

2. There is no need to process the data in a contiguous stream (the data stream
can be interleaved with data streams of other key 1ds and may be split over multiple sessions)
since intermediate Hash values are maintained by the SSA system. However, the entity will
need to explicitly instruct the SSA system to reset the Hash values if the data stream i1s
restarted.

3. When a read operation is completed, the host explicitly requests the SSA
system to validate the read Hash by comparing it with the Hash value calculated during the
write operation.

4. The SSA system provides a “dummy read” operation as well. This feature will
stream the data through the encryption engines but will not send it out to the host. This
feature can be used to verify data integrity before it is actually read out of the device (e.g.

flash card).

WO 2008/013655 PCT/US2007/015301
38

Random number generation

[00177] The SSA system will enable external entities to make use of the internal
random number generator and request random numbers to be used outside of the SSA system.

This service is available to any host and does not need authentication.

RSA key pair generation
[00178] The SSA system will enable external users to make use of the internal RSA

key pair generation feature and request a key pair to be used outside of the SSA system. This

service is available to any host and does not need authentication.

Alternative Embodiment
[00179] Instead of using a hierarchical approach, similar results can be achieved using

a data base approach, as illustrated in Fig. 18.

[00180] As shown in Fig. 18, a list of credentials for entities, authentication methods,
the maximum number of failed attempts, and the minimum number of credentials needed to
unblock may be entered into a database stored in controller 12 or memory 20, which relates
such credential requirements to the policies (read, write access to keys and partitions, secure
channel requirement) in the database carried out by the controller 12 of memory 10. Also
stored in the database are constraints and limitations to the access to keys and partitions.
Thus, some entities (e.g. system administrator) may be on a white list, which means that these
entities can access all keys and partitions. Other entities may be on a black list, and their
attempts to access any information will be blocked. The limitation can be global, or key
and/or partition specific. This means that only certain entities can access certain specific
keys and partitions, and certain entities cannot do so. Constraints can also be put on the
content itself, irrespective of the partition it is in or the key used to encrypt or decrypt it.
Thus, certain data (e.g. songs) may have the attribute that they can only be accessed by the
first five host devices that access them, or that other data (e.g. movies) can only be read for a

limited number of times, irrespective of which entities had access.

AUTHENTICATION
Password Protection
Password-protect means that a password needs to be presented to access the
protected area. Unless it cannot be more than one password then passwords could be

associated with different rights such as read access or read/write access.

WO 2008/013655 PCT/US2007/015301
39

Password protect means that the device (e.g. flash card) is able to verify a
password provided by the host i.e. the device also has the password stored in device
managed secured memory area.

Issues and limitations

Passwords are subject to replay attack. Because the password does not change
after each presentation it can be identically resent. It means that password as is should not be
used if the data to be protected are valuable, and the communication bus is easily accessible.

Password could protect access to stored data but should NOT be used to
protect data (not a key)

To increase the security level associated with passwords, they can be
diversified using a master key, with the result that hacking one does not crack entire system.

A session key based secure communication channel can be use to send the password.

[00181] Fig. 19 is a flow chart illustrating authentication using a password. The entity
sends in an account id and password to system 10 (e.g. flash memory card). The system
checks to see if the password matches that in its memory. If it matches, authenticated status
is returned. Otherwise, the error counter is incremented for that account, and the entity is
asked to re-enter an account id and password. If the counter overflows, the system return

status that access is denied.

Symmetric key
[00182] Symmetric key algorithm means that the SAME key is used on both sides to
encrypt and decrypt. It means that the key has been pre-agreed prior to communicating. Also
each side should implement the reverse algorithm of each other i.e. encrypt algorithm on one
side and decrypt on the other. Both sides do not need to implement both algorithms to

communicate.

Authentication
Symmetric key authentication means that device (e.g. flash card) and host
share the same key and have the same cryptographic algorithm (direct and reverse e.g. DES
and DES-1).
. Symmetric key authentication means challenge-response (protect against
replay attack). The protected device generates a challenge for the other device and both

compute the response. The authenticating device sends back the response and the protected

WO 2008/013655 PCT/US2007/015301
40

device check the response and validate authentication accordingly. Then rights associated

with authentication can be granted.

Authentication could be:
External: the device (e.g. flash ;:ard) authenticates the outside world i.e. the
device validates credentials of a given host or application -
Mutual: a challenge is generated on both sides '
Internal: the host application authenticates the device (e.g. flash card) i.e. host

checks if device is genuine for its application.

To increase the security level of the entire system (i.e. breaking one does not break
all)

Symmetric key are usually combined with diversification using a master key
Mutual authentication uses challenge from both side to ensure challenge is a

real challenge

Encryption
Symmetric key cryptography is also used for encryption because it is a very efficient

algorithm i.e. it does not need a powerful CPU to handle cryptography.

[00183] When used to secure a communication channel:

Both devices have to know the session key used to secure the channel (i.e.
encrypt all outgoing data and decrypt all incoming data). This session key is usually
established using a pre-shared secret symmetric key or using PKI.

Both devices have to know and implement the same cryptographic algorithms

Signature

[00184] Symmetric key can also be used to sign data. In that case the signature is a
partial result of the encryption. Keeping the result partial allows to sign as many time as

needed without exposing the key value.

Issues and Limitations

WO 2008/013655 PCT/US2007/015301
41

[00185] Symmetric algorithms are very efficient and secure but they are based on a
pre-shared secret. The issue is securely share this secret in a dynamic manner and possibly to
have it random (like a session key). The idea is that a shared secret is hard to keep safe in a

long term and is almost impossible to share with multiple people.

[00186] To facilitate this operation, public key algorithm has been invented as it allows

the exchange of secrets without sharing them.
Asymmetric authentication procedure

[00187] Asymmetric key based authentication uses a series of data passing commands
that eventually construct the session key for the secure channel communication. The basic
protocol authenticates the user to the SSA system. Protocol variations allow for mutual
authentication, where the user gets to verify the ACR that he wishes to use, and two-factor

authentication.

[00188] The asymmetric authentication protocols of the SSA preferably uses Public
Key Infrastructure (PKI) and RSA algorithms. As defined by these algorithms, each party in
the authentication process is allowed to create its own RSA key pair. Each pair consists of
public and private keys. Since the keys are anonymous they cannot provide proof of identity.
The PKI layer calls for a third, trusted, party which signs each one of the public keys. The
public key of the trusted party is pre-shared between the parties which are to authenticate
each other and is being used to verify the public keys of the parties. Once trust is established
(both parties determined that the public key provided by the other party can be trusted) the
protocol continues to authentication (verifying that each party holds the matching private
key) and key exchange. This can be done through the challenge response mechanism

illustrated in Figs. 22 and 23 described below.

[00189] The structure containing the signed public key is referred to as a Certificate.
The trusted party that signed the certificates is referred to as Certificate Authority (CA). In
order for a party to be authenticated it has an RSA key pair and a Certificate attesting to the
authenticity of the public key. The Certificate is signed by a Certificate Authority which is
trusted by the other (the authenticating) party. The authenticating party is expected to have in

its possession the public key of its trusted CA.

WO 2008/013655 PCT/US2007/015301
42

[00190] The SSA allows for certificate chaining. This means that the public key of the
party being identified may be signed by a different - from the one trusted by the identifying
party - CA. In this case the identified party will provide, in addition to its own certificate, the
certificate of the CA which signed its public key. If this second level Certificate is still not
trusted by the other party (not signed by its trusted CA), a third level certificate can be
provided. In this Certificate chaining algorithm, each party will possess the complete list of
certificates needed to authenticate its public key. This is illustrated in Figs. 23 and 24. The
credentials, needed for mutual authentication by this type of ACR are RSA key pairs in the

selected length.
SSA Certificates

[00191] 'SSA employs [X.509] version 3 digital certificates. [X.509] is a general
purpose standard; the SSA certificate profile, described here, further specifies and restrict the
contents of the certificate’s defined fields. The certificate profile also defines the hierarchy of
trust defined for the management of certificate chain, the validation of SSA certificates and

the Certificate Revocation List (CRL) profile.

[00192] The certificate is considered public information (as the public key inside) and
therefore is not encrypted. However, it includes an RSA signature which verifies that the

public key, as well as, all other information fields were not tempered with.

[00193] [X.509] defines that each field is formatted using ASN.1 standard which, in

turn, is using DER format for data encoding.
SSA Certificate Overview

[00194] One embodiment of the SSA certificate management architecture, depicted in
Fig. 20 and Fig. 21, consists of unlimited level of hierarchy for the host and up to three-level
hierarchy for the device, although a larger or fewer number of levels of hierarchy than three

may be used for the device.
Host certificate Hierarchy

[00195] The device authenticates hosts based on two factors: the root CA certificate

stored in the device (as an ACR credential, stored on creation of the ACR) and the

WO 2008/013655 PCT/US2007/015301
43

certificate/certificate chain supplied by the entity trying to access the device (for that specific
ACR).

[00196] For each ACR the Host Certificate Authority serves as the root CA (this is the
certificate residing in the ACR credentials). For example: for one ACR the root CA could be
“Host 1 CA (level 2) cert” and for another ACR it could be “Host Root CA cert”. For each
ACR, every entity which holds a certificate (or a certificate chain which connects the root CA
to the end-entity certificate) signed by the root CA can login into that ACR provided it has
the corresponding private key for the end-entity certificate. As mentioned above, certificates

are public knowledge, and are not kept secret.

[00197] The fact that all certificate holders (and the corresponding private key) issued
by the root CA can login into that ACR means that authentication to a specific ACR is
determined by the issuer of the root CA stored in the ACR credential. Put in other words, the

issuer of the root CA can be the entity managing the authentication scheme of the ACR.
Host Root Certificate

[00198] The Root Certificate is the trusted CA Certificate the SSA is using to start
verifying the public key of the entity attempting to log-in (host). This certificate is provided
when the ACR is created as part of the ACR credentials. It is the root of trust for the PKI
system and, therefore, it is assumed to be provided by a trusted entity (either a father ACR or
manufacturing/configuration trusted environment). The SSA verifies this certificate using its
public key to verify the certificate signature. The host root certificate is stored encrypted in a
non-volatile memory (not shown in Fig. 1) with secret keys of the device preferably

accessible only by the CPU 12 of Fig. 1 of system 10.

Host Certificate Chain

[00199] These are the certificates provided to the SSA during authentication. No
recollection of the Host certificate chain should be stored in the device after the processing of

the chain is completed.

WO 2008/013655 PCT/US2007/015301
44

[00200] Fig. 20 is a schematic view of a host certificate level hierarchy illustrating a
" number of different host certificate chains. As illustrated in Fig. 20, the host certificate may

have many different certificate chains, where only three are illustrated:

Al. Host root CA certificate 502, host 1 CA (level 2) certificate 504 and host

certificate 506;

Bl. Host root CA certificate 502, host n CA (level 2) certificate 508, host 1 CA

(level 3) certificate 510, host certificate 512;

C1l. - Host root CA certificate 502, host n CA (level 2) certificate 508 and host
certificate 514.

[00201]) The three certificate chains Al, Bl and C1 above illustrate three possible host
certificate chains that may be used to prove that the public key of the host is genuine. In
reference to the certificate chain A1 above and in Fig. 20, the public key in the host 1 CA
(level 2) certificate 504 is signed (i.e. by cncrypting a digest of the public key) by the private
key of the host root CA, whose public key is in the Host root CA certificate 502. The host
public key in the host certificate 506 is in turn signed by the private key of the host 1 CA
(level 2), whose public key is provided in the host 1 CA (level 2) certificate 504. Hence, an
entity that has the public key of the Host root CA will be able to verify the authenticity of the
certificate chain Al above. As the first step, the entity uses the public key of the Host root
CA in its possession to decrypt the signed public key in host 1 CA (level 2) certificate 504
sent to it by the host and compare the decrypted signed public key with the digest of the
unsigned public key in the host 1 CA (level 2) certificate 504 sent by the host. If the two ~
match, the public key of the host 1 CA (level 2) is authenticated, and the entity will then use
the authenticated public key of the host 1 CA (level 2) to decrypt the public key of the host
signed by the private key of the host 1 CA (level 2) in the host certificate 506 sent by the
host. If this decrypted signed value matches that of the digest of the public key in the host
certificate 506 sent by the host, the public key of the host is then also authenticated. The

certificate chains B1 and C1 may be used for authentication in a similar manner.

[00202] As will be noted from the above process involving chain Al, the first public
key from the host that needs to be verified by the entity is the one in host 1 CA (level 2), and
not the host root CA certificate. Therefore, all the host needs to send to the entity are the host
1 CA (level 2) certificate 504 and the host certificate 506, so that host 1 CA (level 2)

WO 2008/013655 PCT/US2007/015301
45

certificate will be the first one in the chain that needs to be sent. As illustrated above, the
sequence of certificate verification is as follows. The verifying entity, in this case, memory
device 10, first verifies the genuineness of the public key in the first certificate in the chain,
which in this case is the certificate 504 of the CA underneath the root CA. After the public
key in such certificate is verified to be genuine, device 10 then proceeds to verify the next
certificate, in this case the host certificate 506. By the same token, a similar sequence of
verification may be applied where the certificate chain contains more than two certificates,
beginning with the certificate immediately below the root certificate and ending with the

certificate of the entity to be authenticated.

Device certificate Hierarchy

[00203] The host authenticates the device based on two factors: the device root CA
stored in the host and the certificate/certificate chain supplied by device to the host (which
are supplied to the device upon creation of the ACR as a credential). The process for
authenticating the device by the host is similar to that for the device authenticating the host

described above.
Device Certificate Chain

[00204] These are the Certificates of the ACR’s key pair. They are provided to the card
when the ACR is created. The SSA stores these Certificates individually and will provide
them to the host, one by one, during the authentication. The SSA uses these certificates to
authenticate to the host. The device is able to handle a chain of 3 certificates, although a
number of certificates different from 3 can be used. The number of Certificates may vary
from one ACR to another. It is determined when the ACR is created. The device is able to
send the certificate chain to the host, however it does not need to parse them since it does not

use the certificate chain data.

[00205] Fig. 21 is a schematic view illustrating a device certificate level hierarchy for
iHustrating 1 through n different certificate chains for devices using SSA such as storage

devices. The n different certificate chains illustrated in Fig. 21 are as follows:

WO 2008/013655 PCT/US2007/015301
46

A2. Device Root CA certificate 520, device 1 CA (manufacturer) certificate 522

and device certificate 524;

B2. Device root CA certificate 520, device n CA (manufacturer) certificate 526

and device certificate 528.

[00206]) The SSA device may be manufactured by 1 through n different manufacturers,
each with their own device CA certificate. Therefore, the public key in the device certificate
for a particular device will be signed by the private key of its manufacturer, and the public
key of the manufacture is in turn signed by the private kéy of the device root CA. The way
the public key of the device is verified is similar to that in the case of the public key of the
host described above. As in the case of the verification of chain Al described above for the
host, there is no need to send the device root CA certificate, and the first certificate in the
chains that will need to be sent is the Device i CA (Manufacturer) certificate, followed by the

device certificate, i being an integer from 1 to n.

[00207] In the embodiment illustrated in Fig. 21, the device will present two
certificates: the device i CA (manufacturer) certificate followed by its own device certificate.
The device i CA (manufacturer) certificate is that of the manufacturer that manufactured such
device and is the manufacturer that provides the private key to sign the public key of the
device. When the device 1 CA (manufacturer) certificate is received by the host, the host
would use the public key of the root CA in its possession to decrypt and verify the device i
CA (manufacturer) public key. If this verification fails, the host would abort the process and
notify the device that authentication has failed. If authentication succeeds, the host then
sends a request to the device for the next certificate. The device would then send its own

device certificate to be verified by the host in a similar manner.

[00208] The above-described verification processes are also illustrated in more detail
in Figs. 22 and 23. In Fig. 22, the “SSM system” is a software module that implements the
SSA system described herein as well as other functions described below. SSM may be
embodied as software or computer code with database stored in the memory 20 or a non-

volatile memory (not shown) in CPU 12, and is read into RAM 12a and executed by CPU 12.

[00209] As shown in Fig. 22, there are three phases in the process where the SSM
system 542 in device 10 authenticates a host system 540. In the first public key verification

phase, the host system 540 sends to the SSM system 542 the host certificate chain in the SSM

WO 2008/013655 PCT/US2007/015301
47

command. The SSM system 542 verifies (block 552) genuineness of the host certificate 544
and of the host public key 546 using the root certificate authority public key located in the
host root certificate 548 in the ACR 550. Where an intermediate certificate authority
between the root certificate authority and the host is involved, the intermediate certificate 549
is used as well for the verification in block 552. Assuming that the verification or process

(block 552) is successful, the SSM system 542 then proceeds to the second phase.

[00210] The SSM system 542 generates a random number 554 and sends it as a
challenge to the host system 540. System 540 signs the random number 554 using the private
key 547 of the host system (block 556) and sends the signed random number as the response
to the challenge. The response is decrypted using the host public key 546 (block 558) and
compared with the random number 554 (block 560). Assuming that the decrypted response

matches the random number 554, then the challenge response is successful.

[00211] In the third phase, random number 562 is encrypted using the host public key
546. This random number 562 is then the session key. The host system 540 can obtain the
session key by using its private key to decrypt (block 564) the encrypted number 562 from
the SSM systemn 542. By means of this session key, secure communication between the host
system 540 and SSM system 542 may then be initiated. Fig. 22 illustrates a one way
asymmetric authentication where the host system 540 is authenticated by the SSM system
- 542 in device 10. Fig. 23 is a protocol diagram illustrating a two-way mutual authenticatioh
process analogous to the one-way authentication protocol of Fig. 22, where the SSM system

542 in Fig. 23 is also authenticated by the host system 540.

[00212] Fig. 24 is a diagram of a certificate chain 590 used for illustrating one
embodiment of the invention. As noted above, the certificate chain that needs to be presented
for verification may include a number of certificates. Thus the certificate chain of Fig. 24
includes a total of nine (9) certificates, all of which may need to be verified for
authentication. As explained above in the background section, in the existing system for
certificate verification, either an incomplete certificate chain is sent, or if the entire certificate
is sent, the certificates are not sent in any particular order so that the recipient will not be able
to analyze the certificates until the entire group of certificates have been received and stored.
Since the number of certificates in a chain is not known beforehand, this can present a

problem. A large amount of storage space may need to be reserved for storing the certificate

WO 2008/013655 PCT/US2007/015301
48

chain of uncertain length. This can be an issue for storage devices that perform the

verification.

[00213] One embodiment of the invention is based on the recognition that the problem
can be alleviated by a system where host devices send its certificate chain in the same order
that the certificate chain will be verified by the storage device. Thus as shown in Fig. 24, the
chain 590 of certificates starts with certificate chain 590 (1) which is the certificate
immediately below the host root certificate and ends with certificate 590 (9) which is the host
certificate. Therefore, devipe 10 will first verify the public key in certificate 590 (1),
followed by a verification of the public key in certificate 590 (2) and so on until the host
public key in certificate 590 (9) is verified. This then completes the verification process of
the entire certificate chain 590. Thus if the host device sends to memory device 10 the
certificate chain 590 in the same order or sequence in which the certificate chain is to be
verified, then memory device 10 can ‘start verifying each certificate as it is received, without

having to wait until the entire 9 certificates in the chain 590 have been received.

[00214] Thus, in one embodiment, the host device sends one certificate at a time in
chain 590 to memory device 10. Memory device 10 will then have to store a single
certificate at a time. After the certificate has been verified, it can be over-written by the next
certificate that is sent by the host, except for the last certificate in the chain. In this manner,

memory device 10 will need to reserve space for storing only a single certificate at any time.

[00215] The memory device will need to know when the entire chain 590 has been
received. Thus, preferably, the last certificate 590 (9) contains an indicator or indication that
this is the last certificate in the chain. This feature is illustrated in Fig. 25 which is a table
illustrating information in a control sector that precedes the certificate buffer that is sent by
the host to the memory device 10. As shown in Fig. 25, the control sector of certificate 590
(9) contains an argument name ‘“’is final’ flag.” Memory device 10 can then verify that
certificate 590 (9) is the last certificate in the chain by checking whether the “is final” flag is

set, to determine whether the certificate received is the last one in the chain.

[00216] In an alternative embodiment, the certificates in chain 590 may be sent not
one-by-one, but in groups of one, two, or three certificates. Obviously, groups with other
number of certificates, or the same number of certificates in the groups, may be used. Thus,

chain 590 includes five (5) continuous strings of certificates 591, 593, 595, 597, and 599.

WO 2008/013655 PCT/US2007/015301
49

Each of the strings contains at least one certificate. A continuous string of certificates is one
that contains the certificate which is next to the string before the one string at issue in the
chain (beginning certificate), the certificate immediately next to the string that follows the
one string in the chain (ending certificate), and all of the certificates in between the beginning
and the ending certificates. For example, string 593 contains all three certificates 590 (2),
590 (3), and 590 (4). The five strings of certificates are verified by memory device 10 in the
following sequence: 591, 593, 595, 597, and ending with 599. Therefore, if the five strings
are sent and received in the same sequence as the verification performed by memory device
10, the memory device will not need to store any of the strings after they have been verified,
and all strings except for the last one can be overwritten by the next string that arrives from
the host. As in the prior embodiment, it is desirable for the last certificate in the chain to
contain an indicator such as a flag that is set to a particular value to indicate that it 1s the last
certificate in the chain. In this embodiment, the memory device will only need to reserve
space adequate for storing the largest number of certificates in the five strings. Thus if the
host first notifies the memory device 10 of the longest string it intends to send, the memory

device 10 will only need to reserve enough space for the longest string.

[00217] Preferably, the length of each certificate in the chain sent by the host is not
more than four times the length of the public key that is certified by the certificate. Similarly,
the length of the certificate sent by the memory device 10 to a host device to certify the
public key of the memory device is preferably not more than four times the length of the

public key certified by the certificate.

[00218] The above described embodiment for verification of certificate chains is
illustrated in the flow chart of Fig. 26, where for simplicity, the number of certificates in each
group is assumed to be one. As shown in Fig. 26, the host sends the certificates in the chain
sequentially to the card. Starting with the first certificate in the chain (typically the one
following the root ‘certificate as explained above), the card receives sequentially the
certificate chain from the host that is being authenticated (block 602). The card then verifies
each of the certificates received and aborts the process if any one of the certificates fails to be
verified. If any one of the certificates fails to be verified, the card notifies the host (Blocks
604, 606). The card will then detect whether the last certificate has been received and
verified (diamond 608). If the last certificate has not been received and verified, the card

then returns to block 602 to continue receiving and verifying certificates from the host. If the

WO 2008/013655 PCT/US2007/015301
50

last certificate has been received and verified, the card then proceeds to the next phase after
certificate verification (610). While the features in Fig. 26 and subsequent figures below
refer to memory cards as examples, it will be understood that these features are applicable as

well to memory devices with physical forms that are not memory cards.

[00219] The process carried out by the host when the card is authenticating the host is
illustrated in Fig. 27. As shown in Fig. 27, the host sends the next certificate in the chain to
the card (block 620)(typically beginning with the one following the root certificate. The host
then determines whether an abort notice indicating authentication failure has been received
from the card (diamond 622). If an abort notice has been received, the host stops (block 624).
If an abort notice has not been received, the host checks to see if the last certificate in the
chain has been sent by checking whether the “is final flag” has been set in the last certificate
sent (diamond 626). If the last certificate has been sent, the host then proceeds to the next
phase after certificate verification (block 628). As illustrated in Figs. 22 and 23, the next
phase can be a challenge response followed by session key creation. If the last certificate in
the chain has not yet been sent, the host returns to block 620 to send the next certificate in the .

chain.

[00220] The actions taken by the card and the host when the card is being
authenticated are illustrated in Figs. 28 and 29. As shown in Fig. 28, after starting, the card
waits for a request from the host for sending a certificate in the chain (block 630, diamond
632). If a request from the host is not received, the card will return to diamond 632. If a
request from the host is received, the card will then send the next certificate in the chain,
beginning with the first certificate that should be sent (typically beginning with the one
following the root certificate, (block 634). The card determines whether a failure notice has
been received from the host (diamond 636). If a failure notice has been received, the card
stops (block 637). If no failure notice is received, the card then determines whether the last
certificate has been sent (diamond 638). If the last certificate has not been sent, the card
returns to diamond 632 and waits until it receives the next request from the host for sending
the next certificate in the chain. If the last certificate has been sent, the card then proceeds to
the next phase (block 639).

[00221] Fig. 29 illustrates the actions taken by the host when the card is being
authenticated. The host sends the request for the next certificate in the chain to the card,

beginning with the request for the first certificate to be sent (block 640). The host then

WO 2008/013655 PCT/US2007/015301
51

verifies each certificate received, and aborts the process and notifies the card if verification
fails (block 642). If verification passes, the host checks to see whether the last certificate has
been received and successfully verified (diamond 644). If the last certificate has not been
received and successfully verified, the host then returns to block 640 to send a request for the
next certificate in the chain. If the last certificate has been received and successfully verified,

the host then proceeds to the next phase after certificate verification (block 646).
Certificate Revocation

[00222] When a certificate is issued, it is expected to be in use for its entire validity
period. However, various circumstances may cause a certificate to become invalid prior to
the expiration of the validity period. Such circumstances include change of name, change of
association between subject and CA (e.g., an employee terminates employment with an
organization), and compromise or suspected compromise of the corresponding private key.

Under such circumstances, the CA needs to revoke the certificate.

[00223] SSA enables certificates revocation in different ways, each ACR can be
configured for a specific method for revoking certificates. An ACR can be configured not to
support a revocation scheme. In this case, each Certificate is considered valid until its
expiration date. Or Certificate Revocation Lists (CRL) may be employed. As still another
alternative, the revocation scheme can be specific to a particular application, or Application-
Specific, which will be éxplained below. An ACR specifies which of the three revocation
schemes is adopted by specifying a revocation value. If an ACR is created with no
revocation scheme, it is possible for it to adopt a revocation scheme which can be activated
by the ACR owner. Revocation of memory device certificates is enforced by the host and not
by the SSA security system. An ACR owner is responsible for rﬂanaging the revocation of a
Host Root certificate, the mechanism by which it is done is by updating the ACR's

credentials.
Certificate Revocation List (CRL)

[00224] The SSA system uses a revocation scheme which involves each CA
periodically issuing a signed data structure called a Certificate Revocation List (CRL). A
CRL is a time stamped list identifying revoked certificates which is signed by a CA (the same
CA that issued the certificates in question), and made freely available to the public. Each

revoked certificate is identified in a CRL by its certificate serial number. The size of the

WO 2008/013655 PCT/US2007/015301
52

CRL is arbitrary and is dependent on the number of non-expired certificates revoked. When a
device uses a certificate (e.g., for verifying a host's identity), the device not only checks the
certificate signature (and validity) but also verifies it against a list of serial numbers received
through a CRL. If an identification such as serial number of a certificate is found on the CRL
issued by the CA that issued the certificate, this indicates that the certificate has been revoked

and is no longer valid.

[00225] The CRL also will need to be verified to be genuine in order for it to serve the
purpose of validating certificates. CRLs are signed using the private key of the CA that
issued the CRL, and can be verified to be genuine by decrypting the signed CRL using the
public key of the CA. If the decrypted CRL matches the digest of the unsigned CRL, this
means that the CRL has not been tampered with and is genuine. CRLs are frequently hashed
to obtain their digests using a hashing algorithm and the digests are encrypted by the private
key of the CA. In order to verify whether a CRL is valid, the signed CRL (i.e. hashed and
encrypted CRL) is decrypted using the public key of the CA to yield a decrypted and hashed
CRL (i.e. a digest of the CRL). This is then compared to the hashed CRL. Thus, the
verification process may frequently involve the step of hashing the CRL for comparison with

the decrypted and hashed CRL.

[00226] One of the characteristics of the CRL scheme is that the validation of the
certificate (against the CRL) can be performed separate from obtaining the CRL. CRLs are
also signed by the issuers of the pertinent certificates, and are verified in a manner similar to
the verification of certificates, using the public keys of CAs that issued the CRLs, in the
manner described above. The memory device verifies that the signature is of the CRL and
that the issuer of the CRL matches the issuer of the certificate. Another characteristic of the
CRL scheme is that CRLs may be distributed by exactly the same means as the certificates
themselves, namely, via un-trusted servers and un-trusted communications. CRLs and their

characteristics are explained in detail in the X.509 Standard.
SSA infrastructure for CRL

[00227] SSA provides an infrastructure for revocation of hosts using the CRL scheme.
When authenticating to an RSA based ACR with CRL revocation scheme, the host adds one
CRL (potentially — if no certificates are revoked by the issuer CA — an empty one) as an

additional field to a Set Certificate Command. This field will contain a CRL signed by the

WO 2008/013655 PCT/US2007/015301
53

issuer of the certificate. When this field is present, the memory device 10 first verifies the
certificate in the Set Certificate Command. The obtaining and accessing the CRL repository
is completely the hosts’ responsibility. CRLs are issued with time periods (CRL expiration
time periods or CET) during which they are valid. During verification, if the current time is
found to be not within this time period, then the CRL is deemed defective, and cannot be
used for certificate verification. The outcome is then that the authentication of the certificate

fails.

[00228] In conventional certificate verification methods, the authenticating or
verifying entity is expected to either possess or be able to retrieve certificate revocation lists
from certificate authorities (CA) and check the serial numbers of the certificate presented for
authentication against the list to determine whether the certificate presented has been
revoked. Where the authenticating or verifying entity is a memory device, the memory
device may not have been used on its own to retrieve certificate revocation lists from CAs. If
a certificate revocation list is pre-stored in the device, such list may become outdated so that
certificates revoked after the date of installation will not appear on the list. This will enable

users to access the storage device using a revoked certificate. This is undesirable.

[00229] The above problem may be solved in one embodiment by a system where the
entity that wishes to be authenticated presents a certificate revocation list together with the
certificate to be authenticated to the authenticating entity, which may be a memory device 10.
The authenticating entity then verifies the authenticity of the certificate and of the certificate
revocation list received. The authenticating entity checks whether the certificate is on the
revocation list by checking whether an identification of the certificate, such as a serial

number of the certificate, is present on the list.

[00230] In view of the above, an asymmetric authentication scheme may be used for
mutual authentication between a host device and memory device 10. The host device
wishing to be authenticated to memory device 10 will need to provide both its certificate
chain and the corresponding CRLs. Host devices, on the other hand, have been used to
connect to CAs to obtain CRLs, so that when memory device 10 is to be authenticated by
host devices, the memory device need not present CRLs to the host devices along with their

certificates or certificate chains.

WO 2008/013655 PCT/US2007/015301
54

[00231] In recent years, there is an expanding number of different types of portable
devices that can be used to play content, such as different embedded or stand alone music
players, mp3 players, cellular phones, personal digital assistants, and notebook computers.
While it is possible to connect such devices to the World Wide Web in order to access
certificate verification lists from certificate authorities, many users typically do not connect to
the web on a day to day basis, but instead will do so only to obtain new content or to renew
subscriptions, such as every few weeks. Therefore, it may be cumbersome for such users to
have to obtain certificate revocation lists from certificate authorities on a more frequent basis.
For such users, the certificate revocation list and optionally also the host certificate that will
need to be presented to a storagé device to access protected content may be stored in a
preferably unprotected area of the storage device itself. In many types of storage devices
(e.g. flash memories) the unprotected areas of the storage devices are managed by host
devices and not by the storage devices themselves. In this manner, there is no need for the
user (through the host device) to have to connect to the web to obtain more up to date
certificate revocation lists. The host device may simply retrieve such information from the
unsecured area of the storage device and then turn around and present such certificate and list
to the storage or memory device to access protected content in the storage device. Since the
certificate for accessing protected content and its corresponding certificate revocation list are
typically valid for certain time periods, as long as they are still valid, the user will not have to
obtain up to date certificates or certificate revocation list. The above feature enables users to
have convenient access to the certificate and the certificate revocation list during reasonably
long periods while both are still valid, without having to connect to the certificate authority

for updated information.

[00232] The above-described process is illustrated in the flowcharts of Figs. 30 and 31.
As shown in Fig. 30, the host 24 reads from an unsecured public area of the memory device
10 the CRL (block 652) that pertains to a certificate the host will present to the memory
device for authentication. Since the CRL is stored in an unsecured area of the memory, there
is no need for authentication before the CRL can be obtained by the host. Because the CRL
is stored in the public area of the memory device, the reading of the CRL is controlled by the
host device 24. The host in turn sends the CRL with the certificate to be verified to the
memory device (block 654) and proceeds to the next phase unless it receives a failure notice
from the memory device 10 (block 656). In reference to Fig. 31, the memory device receives

the CRL and certificate from the host (block 658) and checks whether the certificate serial

WO 2008/013655 PCT/US2007/015301
55

number is on the CRL (block 660), as well as in other respects (e.g. whether the CRL has
expired). If the certificate serial number is found on the CRL or fails for other reasons, the
memory device then sends a fail notice to the host (block 662). In this manner, different
hosts can obtain the CRL stored in the public area of the memory device, because the same
CRL can be used for the authentication of different hosts. As noted above, the certificate that
is to be verified using the CRL may also be stored together with the CRL preferably in an
unsecured area of memory device 10 for convenience of the uéer. However, the certificate is
usable for authentication to the memory device only by the host to which the certificate is

1ssued.

[00233] Where the CRL contains in its fields a time for the ﬁext update as illustrated in
Fig. 32, SSA in device 10 also checks the current time against this time to see if the current
time is after this time; if it is, then the authentication also fails. The SSA thus preferably
checks both the time for the next update as well as the CET against the current time (or

against the time when the CRL is received by the memory device 10).

[00234] As noted above, if the CRL contains a long list of identifications of revoked
certificates, processing (e.g. hashing) and searching the list for the serial number of the
certificate presented by the host may take a long time, especially if the processing and
searching are carried out in sequence. Thus, to speed up the process, these may be carried out
concurrently. Furthermore, if the entire CRL needs to be received before it is processed and
searched, the process may also be time consuming. The applicants recognized that the
process can be expedited by processing and searching portions of the CRL as they are
received (on-the-fly), so that when the last portions of the CRL are received, the process is

about to be completed.

[00235] Figs. 33 and 34 illustrate the above features of revocation schemes. At the
authenticating entity (e.g. a memory device such as a memory card), the certificate and CRL
are received from the entity wishing to be authenticated (block 702). Portions of: the
unencrypted CRL are processed (e.g. hashed) and a search is performed on such portions
concurrently for identification (e.g. serial number) of the certificate presented. The processed
(e.g. hashed) CRL portions are compiled into a hashed complete CRL, which is compared to
the complete decrypted and hashed CRL formed by compiling the decrypted CRL portions
from the portions received from the entity wishing to be authenticated. Authentication fails if

the comparison indicates there is not a match in the comparison. The authenticating entity

WO 2008/013655 PCT/US2007/015301
56

also checks both the time for the next update as well as the CET against the current time
(blocks 706, 708). Authentication also fails if the identification of the certificate presented is
found to be on the CRL, or if the current time is not within the CET, or if time for the next
“updated CRL has passed (block 710). Storing the hashed CRL portions and the decrypted
hashed CRL portions for the compilations in some implementations may not require a large

amount of memor Y space.

[00236] When an entity (e.g. the host) wishes to be authenticated, it will send to the
authenticating entity its certificate and CRL (block 722), and proceed to the next phase (block
724). This is illustrated in Fig. 34.

[00237] A process similar to that above can be implemented if the entity presents a
certificate chain for authentication. In such event, the above described process will need to
be repeated for each certificate in the chain, along with its corresponding CRL. Each
certificate and its CRL may be processed as they are received without waiting for receipt of

the rest of the certificate chain and their corresponding CRLs.
Identity object (IDO)

[00238] The identity object is a protected object designed to allow the memory device
10 such as a flash memory card to store an RSA key-pair or other types of cryptographic IDs.
The identity object includes any type of cryptographic ID-that can be used to sign and verify
identities, and encrypt and decrypt data. The identity object includes also a certificate from a
CA (or a certificate chain from multiple CAs) that certifies that the public key in the key pair
is genuine. The identity object may be used to provide proof of identity either of an external
entity or an internal card entity (Le. the device itself, an internal application, etc. referred to
as the owner of the identity object). Therefore, the card is not using the RSA key-pair or
other types of cryptographic IDs to authenticate the host through a challenge response
mechanism, but rather as a proof of identification through signing data streams. provided to it.
In other words, the identity object contains the cryptographic ID of its owner. To access the
cryptographic ID in the identity object, the host will first need to be authenticated. As
described below, the authentication process is controlled by means of an ACR. After the host
has been successfully authenticated, the cryptographic ID can be used by the identity object
owner to establish the identity of the owner to another party. For example, the cryptographic

ID (e.g. the private key of a public-private key pair) can be used to sign data presented

WO 2008/013655 PCT/US2007/015301
57

through the host by the other party. The signed data and the certificate in the identity object
are presented on behalf of the identity 6bject owner to the other party. The public key of the
public-private key pair in the certificate is certified to be genuine by a CA (i.e. a trusted
authority), so that the other party can trust that this public key is genuine. The other party can
then decrypt the signed data using the public key in the certificate, and compare the decrypted
data with the data sent by the other party. If the decrypted data matches the data sent by the
other party, this shows that the owner of the identity object does have access to the genuine

private key, and is therefore truly the entity it is representing to be.

[00239] A second usage of the identity object is to protect data designated to the owner
of the IDO using the cryptographic ID such as the RSA key itself. The data is expected to be
encrypted using the IDO public key. The memory device 10 such as a memory card will use

the private key to decrypt the data.

[00240] The IDO is an object that can be created for any type of ACR. In one
embodiment, an ACR may have only one IDO object. Both the data signing and protection
features are services the SSA system is providing to any entity capable of authenticating to
the ACR. The protection level of the IDO is as high as the ACR’s login authentication
scheme. Any authentication algorithm can be chosen for an ACR that is bound to have an
IDO. 1t is up to the creator (host) to decide and evaluate which algorithm can better protect
the IDO usage. An ACR with an IDO provides its Certificate chain in response to a command

to get the TDO public key.

[00241] When the IDO is being used for data protection, the decrypted data outputted
from the card may need further protection. In such case, the host is encouraged to use a

secure channel established through anyone of the available authentication algorithms.

[00242] When creating the IDO, the key length, as well as the PKCS#!1 version, are
selected. In one embodiment, the public and the private keys are using the (exponent,

modulus) representation as defined in the PKCS#1 v2.1;

[00243) In one embodiment, the data included during creation of an IDQO is the RSA
key pair in the selected length, and a chain of certificates that, recursively, attests to the

authenticity of the public key.

WO 2008/013655 PCT/US2007/015301
58

[00244] The ACR that owns the IDO will allow signing of user data. This is done

through two SSA commands:
. Set user data: Provides a free format data buffer to be signed.

. Get SSA signature. The card will provide an RSA signature (using the ACR private
key). The format and size of the signature may be set according to PKCS#1 V1.5 or V2.1
depending on the object type.

[00245] The operation using an IDO is illustrated in Figs. 35-37, where the memory
device 10 is a flash memory card, and the card is the owner of the IDO. Fig. 35 illustrates a
process carried out by the card in signing data sent to a host. Referring to Fig. 35, after a host
is authenticated (block 802) as controlled by an ACR at a node of a tree structure described
above, the card waits for a host request for a certificate (diamond 804). After receiving the
request, the card sends the certificate and returns to diamond 804 for the next host request
(block 806). If a chain of certificates needs to be sent to certify the public key of the IDO
owned by the card, the above actions are repeated until all the certificates in the chain have:
been sent to the host. After each certificate has been sent to the host, the card waits for other
commands from the host (diamond 808). If no command is received from the host within a
preset time period, the card returns to diamond 804. Upon receiving data and a command
from the host, the card checks to see if the command is for signing data (diamond 810). If the
command is for signing data, the card signs the data with the private ke;y in the IDO and then
sends the signed data to the host (block 812) and returns to diamond 804. If the command
from the host is not for signing the data from the host, the card uses the private key in the

IDO to decrypt the received data (block 814), and returns to diamond 804.

[00246] Fig. 36 illustrates a process carried out by the host in the card’s signing of data
to be sent to the host. Referring to Fig. 36, the host sends authentication information to the
card (block 822). After successful authentication as controlled by an ACR at a node of a tree
structure described above, the host sends requests to the card for the certificate chain and
receives the chain (block 824). After the public key of the card has been verified, the host
sends data to the card for signing and receives the data signed by the card’s private key
(block 826).

[00247] Fig. 37 illustrates a process carried out by the host when the host encrypts data
using the card’s public key and sends the encrypted data to the card. Referring to Fig. 37, the

WO 2008/013655 PCT/US2007/015301
59

host sends authentication information to the card (block 862). After authentication as
controlled by an ACR is successfully performed, the host sends requests to the card for the
certificate chain (block 864) needed to verify the card’s public key in the IDO, and sends
requests to the card for data. After the public key of the card in the IDO has been verified,
the host encrypts data from the card using the verified public key of the card and sends it to
the card (blocks 866, 868).

QUERIES

[00248] Hosts and applications need to posses certain information regarding the
memory device or card they are working with in order to execute system operations. For
example, hosts and applications may need to know which applications stored on the memory
card are available for invocation. The information needed by the host is sometimes not
public knowledge meaning that not everyone has the right to possess it. So to differentiate
between the authorized and non-authorized users there is a need to provide two methods of

Queries that can be used by a host.
General Information Query

[00249] This query gives out system public information without restrictions.
Confidential information stored in the memory devices comprises two portions: a shared
portion, and an unshared portion. One portion of the confidential information includes
information that may be proprietary to individual entities, so that each entity should be
allowed to access only his or her own proprietary information, without being able to access
the proprietary confidential information of others. This type of confidential information is

not shared and forms the unshared part or portion of the confidential information.

[00250] Certain information normally thought to be public might in some cases be
regarded as confidential such as the names of applications residing in the card and their life
cycle state. Another example for this might be Root ACR names which are considered public
but could be confidential for some SSA use cases. For these cases the system shall provide
the option to keep this information available only to all authenticated users, but not to
unauthenticated users, in response to a general information query. Such information
constitutes the shared portion of the confidential information. An example of the shared
portion of the confidential information may include a Root ACR List — list of all Root ACRs

currently present on the device.

WO 2008/013655 PCT/US2007/015301
60

[00251]} Access to public information through the general information query does not
need the host/user to be logged into an ACR. Thus anyone knowledgeable with the SSA
standard can execute and receive the information. In SSA terms this query command is
handled without a Session number. However, if access to the shared portion of the
confidential information by an entity is desired, the entity needs to be first authenticated
through any of the control structures (e.g. any of the ACRs) controlling access to data in the
memory device. After a successful authentication, the entity will be able to access the shared
portion of the confidential information through a general information query. As explained

above, the authentication process will result in a SSA session number or id for the access.
Discreet Information Query

[00252] Private information regarding individual ACRs and their system access and
assets is considered to be discreet and needs explicit authentication. So this kind of query
calls for ACR login and authentication (if authentication is specified by the ACR) before

receiving authorization for information query. This query needs a SSA Session number.

[00253] Before the two types of queries are described in detail, it will be useful to first

describe the concept of index groups as a practical solution for implementing the queries.
Index Groups

[00254] Applications running on potential SSA hosts are requested by the operating
system (OS) on the host and system drivers to specify the number of sectors intended to be
read. This in turn means that the host application needs to know how many sectors need to be

read for every SSA read operation.

[00255] Because the nature of query operations is to supply information which is
‘generally not known to the one who requests it, there is a difficulty for the host application to

issue the query and guessing the amount of sectors needed for this operation.

[00256] To solve this problem the SSA query output buffer consists of only one sector
(512 bytes) per query request. Objects that are part of the output information are organized in
what is called Index Groups. Each type of object may have a different byte size which

accounts for the number of objects that may fit to a single sector. This defines this object’s

WO 2008/013655 PCT/US2007/015301
61

Index group. If an object had a size of 20 bytes then the Index group for this object would
contain up to 25 objects. If there where a total of 56 such objects they would have been
organized in 3 Index groups where object 'O’ (the first object) would start the first Index
group, object 25’ would start the second Index group and Object 50 would start the 3rd and

last Index group.
System Query (General Information Query)

[00257] This query provides general public information regarding the supported SSA
system in the device and the current system that is setup like the different Trees and
applications running on the device. Similar to the ACR Query (discreet query) described

below, the system query is structured to give several query options:
. . General — SSA supported version.

. SSA Applications — list of all SSA applications currently present on the device

including their running state.

[00258] The above listed information is public information. As with the ACR Query,
to forgo the need of the host to know how many sectors to read for the query output buffer
there will be one sector sent back from the device while still enabling the host to further
query additional Index groups. So if the number of Root ACR objects exceeds that of the
output buffer size for Index Group '0' the host can send another query request with the

following Index group ('1").
ACR Query (Discreet Information Query)

[00259] The SSA ACR Query command is intended to supply the ACR user with
information about the ACR's system resources like key and application IDs, Partitions and
child ACRs. The Query information is only about the logged in ACR and nothing concerning
other ACRs on the system Tree. In other words, access is limited to only that portion of the

confidential information which is accessible under the permissions of the ACR involved.
[00260] There are three different ACR objects that the user can query:
. Partitions — name and access rights (Owner, Read, Write).

. Key IDs and application IDs — name and access rights (Owner, Read, Write).

WO 2008/013655 PCT/US2007/015301

62
. Child ACRs — ACR and AGP name of a direct child ACR.
. IDOs and Secure Data Objects (described below) — name and access rights
(Owner, Read, Write).
[00261] Because the number of objects connected with an ACR may vary and the

information might be more then 512 bytes — one sector. Without knowing in advance the
number of objects, the user has no way of knowing how many sectors are needed to be read
from the SSA system in the device in order to get the full list. So each object list provided by
the SSA system is divided into Index groups, similar to the case of system queries described
above. An Index group is the number of objects that fit into on sector i.e. how many objects
can be sent in one sector from SSA system in the device to the host. This lets the SSA system
in the device to send one sector of a requested Index group. The host/user will receive a
buffer of the queried objects, the number of objects in the buffer. If the buffer is full then the

user can query for the next object Index group.

[00262] Fig. 38 is a flow chart illustrating an operation involving a general information
query. In reference to Fig. 38, when the SSA system receives a general information query
from an entity (block 902), the system determines whether the entity has been authenticated
(diamond 904). If it has been, then the system supplies the entity with public information and
the shared portion of the confidential information (block 906). If it has not been, the system

supplies the entity with only public information (block 908).

[00263] Fig. 39 is a flow chart illustrating an operation involving a discreet
information query. In reference to Fig. 39, when the SSA system receives a discreet
information query from an entity (block 922), the system determines whether the entity has
been authenticated (diamond 924). If it has been, then the system supplies the entity with
confidential information (block 926). If it has not been, the system denies access of the entity

to confidential information (block 928).
FEATURE SET EXTENSION (FSE)

[00264] In many cases it is very advantageous to run data processing activities (e.g.

DRM license object validation) inside the SSA on the card. The resulting system will be more

WO 2008/013655 PCT/US2007/015301
63

secure, more efficient, and less host dependent relative to an alternative solution where all of

the data processing tasks are executed on the host.

[00265] The SSA security system comprises a set of authentication algorithms and
authorization policies designed to control the access to, and usage of, a collection of objects
stored, managed, and protected by the memory card. Once a host gains access, the host will
then carry out processes on the data stored in the memory device, where the access to the
memory device is controlled by the SSA. It is assumed, however, that data is, by nature, very
application specific and, therefore, neither the data format, nor data processing is defined in

the SSA, which does not deal with the data stored on the devices.

[00266] One embodiment of the invention is based on the recognition that the SSA
system can be enhanced to permit hosts fo execute some of the functions normally performed
by the hosts in the memory card. Hence some of the software functions of the hosts may be
split into two parts: with one part still performed by the hosts and another part now performed
by the card. This enhances the security and efficiency of the data processing for many
applications. For this purpose, a mechanism known as FSE may be added to enhance the
capabilities of the SSA. The host applications in FSE executed by the card in this manner are

also referred herein as internal applications, or device internal applications.

[00267] The enhanced SSA system provides a mechanism to extend the basic SSA
command set, which provides authentication and access control, of the card via introduction
of the card application. A card application is assumed to implement services (e.g. DRM
schemes, eCommerce transactions) in addition to those of the SSA. The SSA feature set
extension (FSE) is a mechanism designed to enhance the standard SSA security system with
data processing software/hardware modules, which can be proprietary. The services defined
by the SSA FSE system enable host devices to query the card for available application, select
and communicate with a specific application, in addition to the information that can be
obtained using the queries described above. The general and discreet queries described

above may be used for this purpose.
Two methods to extend the card feature set in SSA FSE are utilized:

{00268] . providing services —This feature is enabled through allowing
authorized entities to communicate directly with the internal application using a command

channel known as communication pipe, which can be proprietary.

WO 2008/013655 PCT/US2007/015301
64

. extensions of the SSA standard access control policies — This feature is enabled
through associating internal protected data objects (e.g. CEKs, secure data objects or SDOs
described below) with internal card applications. Whenever such an object is accessed, if the
standard SSA policies defined are satisfied, the associated application is invoked to thereby
impose at least one condition in addition to the standard SSA policies. This condition
preferably will not conflict with the standard SSA policies. Access is granted only if this
additional condition is satisfied as well. Before the capabilities of the FSE are further
elaborated, the architectural aspects of FSE as well as the communication pipe and SDO will

now be addressed. The SSM Module and Related Modules

[00269] Fig. 40A is a functional block diagram of the system architecture 1000 in a
memory device 10 (such as a flash memory card) connected to a host device 24 to illustrate
an embodiment of the invention. The main components of the software modules in memory

device of card 20 are as follows:
SSA Transport Layer 1002

[00270] The SSA transport layer is card protocol dependent. It handles the host side
SSA requests (commands) on the protocol layer of the card 10 and then relays them to the
SSM APIL All host-card synchronization and SSA command identification is done at this
module. The transport layer is also responsible for all SSA data transfer between host 24 and
card 10.

Secure Services Module Core (SSM Core) 1004

[00271] This module is an important part of the SSA implementation. The SSM core
implements the SSA architecture. More specifically the SSM Core implements the SSA Tree
and ACR system and all of the corresponding rules described above that make up the system.
The SSM core module uses a cryptographic library 1012 to support the SSA security and

cryptographic features, such as encryption, decryption and hashing.
SSM Core API 1006

[00272] This is the layer in which host and internal applications will interface with the
SSM core to carryout SSA operations. As shown in Fig. 40A, both host 24 and internal

device applications 1010 will use the same APL.

WO 2008/013655 PCT/US2007/015301
65

Secure Application Manager Module (SAMM) 1008

[00273] SAMM is not part of the SSA system but it is an important module in the card

that controls internal device applications interfacing with the SSA system.

[00274] The SAMM manages all internal device running applications which include:
1. Application lifecycle monitor and control.

2. Application initialization.

3. Application/Host/SSM interface.

Device Internal Applications 1010

[00275] These are applications approved for running on the card side. They are
managed by SAMM and may have access to the SSA system. The SSM Core also provides a
communication pipe between the host side applications and the internal applications.
Examples for such internal running applications are DRM applications and one time

password (OTP) applications as explained further below.
Device Management System (DMS) 1011

[00276] This is a module that contains the processes and protocols needed to update
the card’s system and application firmware as well as add/remove services, in a post

shipment (commonly referred to as post issuance) mode.

[00277] Fig. 40B is a functional block diagram of the internal software modules of the
SSM core 1004. As shown in Fig. 40B, core 1004 includes a SSA command handler 1022.
Handler 1022 parses the SSA commands originating from the host or from the device internal
applications 1010 before the commands are passed to the SSA manager 1024. All of the SSA
security data structures such as AGPs and ACRs as well as all SSA rules and policies are
stored in the SSA database 1026. SSA manager 1024 implements the control exerted by the
ACRs and AGPs and other control structures stored in database 1026. Other objects such as
IDOs, and secure data objects are also stored in the SSA database 1026. SSA manager 1024
implements the control exerted by the ACRs and AGPs and other control structures stored in
database 1026. Non-secure operations that do not involve SSA are handled by the SSA non-

secure operations module 1028. Secure operations under the SSA architecture are handled by

WO 2008/013655 PCT/US2007/015301
66

the SSA secure operations module 1030. Module 1032 is an interface that connects module
1030 to the cryptographic library 1012. 1034 is a layer that connects modules 1026 and 1028
to the flash memory 20 in Fig: 1.

Communication (or Pass-Through) Pipe

[00278] The. Pass-Through Pipe objects enable authorized host side entities to
communicate with the internal applications, as controlled by the SSM core and SAMM. Data
transfer between the host and the internal application is carried over the SEND and
RECEIVE commands (defined below). The actual commands are application specific. The
entity (ACR) creating the Pipe will need to provide the Pipe name and the ID of the
application it will open a channel to. As with all other protected objects, the ACR becomes its
owner and is allowed to delegate usage rights, as well as ownership, to other ACR according

to the standard delegation rules and restrictions.

[00279] An authenticated entity will be allowed to create Pipe objects if the
CREATE_PIPE Permissions is set in its ACAM. Communication with the internal
application will be allowed only if the Write or Read Pipe Permissions are set in its PCR.
Ownership and Access rights delegation is allowed only if the entity is the Pipe owner or
Delegate access rights is set in its PCR. As with all other Permissions when delegating
ownership rights to another ACR, the original owner will preferably be stripped from all its

permissions to this device application.

[00280] Preferably only one communication pipe is created for a specific application.
An attempt to create a second Pipe and connect it to an application which is already
connected will preferably be rejected by the SSM system 1000. Thus, preferably there is a
one-to-one relationship between one of the device internmal applications 1010 and a
communication pipe. However, multiple ACRs may communicate with one device internal
application (via the delegation mechanism). A single ACR may communicate with several
device applications (either via delegation or ownership of multiple Pipes connected to
different applications). The ACRs controlling different pipes are preferably located in nodes

of trees that are entirely separate, so that there is no crosstalk between the communication

pipes.

[00281] Transferring data between the host and a specific application is done using the

following Commands:

WO 2008/013655 PCT/US2007/015301

67
. WRITE PASS THROUGH — Will transfer an unformatted data buffer from the host to
the device internal application.
. READ PASS THROUGH - Will transfer an unformatted data buffer from the host to

the device internal application and, once the internal processing is done, will output an

unformatted data buffer back to the host.

[00282] Write and read pass through commands provide as parameter the ID of the
device internal application 1008 the hosts wish to communicate with. The entities permission
will be validated and if the requesting entity (i.e. the ACR hosting the session this entity is
using) has the Permission to use the Pipe connected to the requested application the data

buffer will be interpreted and the command executed.

[00283] This communication method allows the host application to pass
vendor/proprietary specific commands to an internal device application through the SSA

ACR session channel.
Secure Data Object (SDO)
[00284] A useful object that can be employed in conjunction with FSE is the SDO.

[00285] The SDO serves as a general purpose container for secure storage of sensitive
information. Similar to CEK objects, it is owned by an ACR, and access rights and ownership
can be delegated between ACRs. It contains data which is protected and used according to
predefined policy restrictions and, optionally, has a link to a device internal application 1008.
The sensitive data is preferably not used, nor interpreted, by the SSA system, but rather, by
the object’s owner and users. In other words, the SSA system does not discern information in
the data handled by it. In this manner, owners and users of the data in the object can be less
concerned about loss of sensitive information due to the interface with the SSA system, when
data is passed beiween hosts and the data objects. Hence, SDO objects are created by the
host system (or internal applications), and assigned a string ID, similar to the way CEKs are
created. Upon creation the host provides, in addition to the name, an application ID for the
application linked to the SDO and a data block which will be stored, integrity verified, and
retrieved by the SSA.

WO 2008/013655 PCT/US2007/015301
68

[00286] Similar to CEKs, SDO(s) are preferably only created within a SSA session.
The ACR used to open the session becomes the owner of the SDO and has the rights to delete
it, write and read the sensitive data, as well as, delegate the ownership and the permission to

access the SDO to another ACR (either its child or within the same AGP).

[00287] The Write and Read operations are reserved exclusively for the owner of the
SDO. A Write operation overwrites the existing SDO object data with the provided data

buffer. A Read operation will retrieve the complete data record of the SDO.

[00288] The SDO access operations are allowed to non-owner ACRs which have the

proper access permissions. The following operations are defined:

. SDO Set, application ID is defined: The data will be processed by the internal
SSA application with the application ID. The application is invoked by the association with

the SDO. As an optional result, the application will write the SDO object.

. SDO Set, application ID is null: This option is not valid and will prompt an

illegal command error. The Set command needs an internal application running in the card.

. SDO Get, application ID is defined: The request will be processed by the
device internal application with the application ID. The application is invoked by the
association with the SDO. The output, although not defined, will be sent back to the

requestor. The application will optionally read the SDO object.

. SDO Get, application ID is null: This option is not valid and will prompt an

illegal command error. The Get command needs an internal application running in the card.

. SDO related permissions: An ACR can be an SDO owner or just have access
permissions (Set, Get or both). In addition, an ACR can be permitted to transfer his access
rights, to an SDO it does not own, to another ACR. An ACR may be explicitly permitted to

create SDO(s) and to delegate access rights if it has ACAM permission.
Internal ACR

[00289] The internal ACR is similar to any ACR with a PCR, except that external
entities to the device 10 cannot log in to this ACR. Instead, the SSA manager 1024 of Fig.

40B automatically logs in to the internal ACR when the objects under its control or

WO 2008/013655 PCT/US2007/015301
69

applications associated with it are invoked. Since the entity trying to gain access is an entity
internal to the card or memory device, there is no need for authentication. The SSA manager

1024 will simply pass a session key to the internal ACR to enable internal communication.

[00290] The capabilities of FSE will be illustrated using two examples: one time
password generation and digital rights management. Before the one time password
generation example is described, the issue of dual factor authentication will first be

addressed.

OTP Embodiment

Dual Factor Authentication (DFA)

[00291] DFA is an authentication protocol designed to enhance the security of personal
logins into, as an example, a web services server by adding to the standard user credentials
(namely user name and password) an additional secret, a “second factor.” The second secret
is typically Something stored in a physical secure token that the user has in his possession.
During the process of login the user needs to provide proof of possession as part of the login
credential. A commonly used way to prove possession is using a One Time Password (OTP),
a password good for a single login only, which is generated by, and outputted from, the
secure Token. If the user is able to provide the correct OTP it is considered as a sufficient
proof of possession of the token since it is cryptographically infeasible to calculate the OTP
without the Token. Sine the OTP is good for one login only, the user should have the Token
at the time of login, since usage of an old password captured from a previous login will not

do any good any more.

[00292] The product described in the following sections is making use of the SSA
security data structure, plus one FSE design to calculate the next password in the OTP series,
to implement a flash memory card with multiple “virtual” secure Tokens, each one is
generating a different series of passwords (which can be used to login into different web

sites). A block diagram of this system is depicted in Figure 41.

[00293] The complete system 1050 comprises an authentication server 1052, an
Internet server 1054 and a user 1056 with token 1058. The first step is to agree on a shared
secret between the authentication server and the user (also referred to as seed provisioning).

The user 1056 will request a secret or seed to be issued and will store it in the secure token

WO 2008/013655 PCT/US2007/015301
70

1058. The next step is to bind the issued secret or seed with a specific web services server.
Once this is done, the authentication can take place. The user will instruct the Token to
generate an OTP. The OTP with the user name and password are sent to Internet server
1054. The Internet server 1054 forwards the OTP to the authentication server 1052 asking it
to verify the user identity. The authentication server will generate an OTP as well, and since
it is generated from a shared secret with the Token, it should match the OTP generated from
the Token. If a match is found the user identity is verified and the authentication server will
return a positive écknowledgement to the Internet server 1054 which will complete the user

login process.

[00294) The FSE implementation for the OTP generation has the following
characteristics:

. The OTP seed is securely stored (encrypted) in the card.

° The password generation algorithm is executed inside the card.

. The device 10 can emulate multiple Virtual Tokens each of them stores

a different seed and may use different password generation algorithms.

° The device 10 is providing a secure protocol to transport the seed from

the authentication server into the device.

[00295] The SSA features for OTP seed provisioning and OTP generation are
illustrated in Fig. 42, where solid line arrows illustrate ownership or access rights, and broken
line arrows illustrate associations or links. As shown in Fig. 42, in the SSA FSE system
1100, software program code FSE 1102 may be accessed throﬁgh one or more
communication pipes 1104 which is controlled by each of N application ACRs 1106. In the
embodiments described below, only one FSE software application is illustrated, and for each
FSE application, there is only one communication pipe. It will be understood, however, that
more than one FSE application may be utilized. While only one communication pipe is
illustrated in Fig. 42, it will be understood that a plurality of communication pipes may be
used. All such variations are possible. In reference to Figs. 40A, 40B and 42, the FSE 1102
may be an application used for OTP provisioning and form a subset of the device internal
applications 1010 of Fig. 40A. The control structures (ACRs 1101, 1103, 1106, 1110) are

part of the security data structures in SSA and are stored in the SSA database 1026. Data

WO 2008/013655 PCT/US2007/015301
71

structures such as IDO 1120, SDO objects 1122, and communication pipe 1104 are also
stored in the SSA database 1026. '

[00296] In reference to Figs. 40A and 40B, security related operations (e.g. data
transfer in sessions, and operations such as encryption, decryption and hashing) involving the
ACRs and data structures are handled by module 1030, with the assistance of interface 1032
and cryptographic library 1012. SSM Core APT 1006 does not distinguish between operations
involving ACRs that interact with hosts (external ACRs) and the internal ACRs that do not,
and thus does not distinguish between operations involving the hosts versus the device
internal applications 1010. In this manner, the same control mechanism is used for
controlling access by host side entities and access by device internal applications 1010. This
lends flexibility for dividing data processing between host side applications and device
internal applications 1010. The internal applications 1010 (e.g. FSE 1102 in Fig. 42) are
associated with and are invoked through the control of the internal ACRs (e.g. ACR 1103 in
Fig. 42).

. [00297] Furthermore, the security data structures such as ACRs and AGPs with the
associated SSA rules and policies preferably control access to important information such as
the content in or information that can be derived from the content in SDOs, so that outside or
internal applications can only access this content or information in accordance with the SSA
rules and policies. For example, if two different users can invoke an individual one of the
device internal applications 1010 to process data, internal ACRs located in separate
hierarchical trees are used to control access by the two users, so that there is no crosstalk
between them. In this manner, both users can access a common set of device internal
applications 1010 for processing data without fear on the part of owners of the content or
information in the SDOs of losing control of the content or information. Fof example, access
to the SDOs storing data accessed by the device internal applications 1010 can be controlled
by ACRs located in separate hierarchical trees, so that there is no crosstalk between them.
This manner of control is similar to the manner by which SSA controls access to data
described above. This provides security of data stored in the data objects to content owners

and users.

[00298] In reference to Fig. 42, it is possible for a portion of the software application
code needed for the OTP related host application to be stored (e.g. pre-stored prior to or

loaded after memory card issuance) in the memory device 10 as the application in FSE 1102.

WO 2008/013655 PCT/US2007/015301
72

To execute such code, the host will need to first authenticate through one of the N
authentication ACRs 1106, N being a positive integer, in order to gain access to pipe 1104.
The host will also need to provide an application ID for identifying the OTP related
application it wishes to invoke. After a successful authentication, such code can be accessed
for execution through pipe 1104 associated with‘ the OTP related application. As noted
above, there is preferably a one-to-one relationship between a pipe 1104 and a specific
application, such as an OTP related internal application. As shown in Fig. 42, multiple ACRs

1106 may share control of a common pipe 1104. An ACR can also control more than one

pipe.

[00299] Secure data objects SDO 1, SDO 2 and SDO 3 referred to collectively as
objects 1114 are illustrated in Fig. 42, each containing data, such as a seed for OTP
generation, which seed is valuable and preferably encrypted. The links or association 1108
between the three data objects and FSE 1102 illustrate an attribute of the objects, in that,
when any one of the objects is accessed, the application in FSE 1102 with an application 1D
in the SDQO’s attribute will be invoked, and the application will be executed by the memory

device’s CPU 12 without requiring receipt of any further host commands (Fig. 1).

[00300] In reference to Fig. 42, before a user is in a position to start the OTP process,
the security data structures (ACRs 1101, 1103, 1106 and 1110) are already created with their
PCRs for controlling the OTP process. The user will need to have access rights to invoke an
OTP device internal application 1102 through one of the authentication server ACRs 1106.
The user will also need to have access rights to the OTP that will be generated, through one
of the N user ACRs 1110. The SDOs 1114 may be created during the OTP seed provisioning
process. The IDO 1116 is preferably already created and controlled by the internal ACR
1103. The internal ACR 1103 also controls the SDOs 1114 after they are created. When the
SDOs 1114 are accessed, the SSA manager 1024 in Figs 40B automatically logs in to the
ACR 1103. The internal ACR 1103 is associated with FSE 1102. The SDOs 1114 can
become associated with the FSE during the OTP seed provisioning process as shown by the
broken lines 1108. After the association is in place, when the SDOs are accessed by the host,
the association 1108 will cause the FSE 1102 to be invoked without a further request from the
host. The SSA manager 1024 in Figs 40B will also automatically logs in to the ACR 1103,

when communication pipe 1104 is accessed through one of the N ACRs 1106. In both cases

WO 2008/013655 PCT/US2007/015301
73

(accessing SDO 1114 and pipe 1104), the SSA manager will pass a session number to the
FSE 1102, which session number will identify the channel to the internal ACR 1103.

[00301] The OTP operation involves two phéses: a seed provisioning phase illustrated
in Fig. 43 and an OTP generation phase illustrated in Fig. 44. Reference to Figs. 40-42 will
also be made where it aids the description. Fig. 43 is a protocol diagram illustrating the seed
provisioning process. As shown in Fig. 43, various actions are taken by the host such as host
24 as well as by the card. One entity on the card taking various actions is the SSM system of
Figs. 40A and 40B, including the SSM core 1004. Another entity on the card taking various
actions is the FSE 1102 shown in Fig. 42.

[00302] In dual factor authentication, the user requests a seed to be issued and once the
seed is issued, the seed is to be stored in a secure token. In this example, the secure token is
the memory device or card. The user authenticates to one of the authentication ACRs 1106 in
Fig. 42 to gain access to the SSM system (arrow 1122). Assuming that authentication is
successful (arrow 1124), the user then requests for a seed (arrow 1126). The host sends the
request to sign the seed request to the card by selecting a particular application 1102 for
signing the seed request. If the user is not aware of the particular application I.D. that needs
to be invoked, this information can be obtained from device 10, for example, through a
discreet query to the device. The user then inputs the application 1.D. of the application that
should be invoked, thereby also selecting a communication pipe corresponding to the
application. The user command is then forwarded in a pass through command to the
application specified by the application LD. from the user (arrow 1128) through the
corresponding communication pipe. The application that is invoked requests a signature by
means of the public key in the specified IDO, such as TDO 1112 in Fig. 42.

[00303] The SSM system signs the seed request using the public key of the IDO and
notiﬁes the application that the signing is completed (arrow 1132). The invoked application
then requests the certificate chain of the IDO (arrow 1134). In response, the SSM system
provides the certificate chain of the IDO as controlled by the ACR 1103 (arrow 1136). The
invoked application then provides the signed seed request and the certificate chain of the IDO
through the communication pipe to the SSM system which forwards the same to the host
(arrow 1138). The sending of the signed seed request and IDO certificate chain through the

communication pipe is through a callback function that is established between the SAMM

WO 2008/013655 PCT/US2007/015301
74

1008 and the SSM core 1004 of Fig. 40A, where the callback function will be elaborated

below.

[00304) The signed seed request and IDO certificate chain received by the host are
then sent to the aunthentication server 1052 shown in Fig. 41. The certificate chain provided
by the card certified that the signed seed request originates from the trusted token so that the
authentication server 1052 is willing to provide the card with the secret seed. The
authentication server 1052 therefore sends the seed encrypted with the public key of the IDO
together with the user ACR information to the host. The user information indicates which
one of the N user ACRs under which the user has rights for accessing the OTP to be
generated. The host invokes an OTP application in FSE 1102 by supplying the application
1.D., thereby also selecting the communication pipe corresponding to the application, and
forward the user ACR information to the SSM system (arrow 1140). The encrypted seed and
the user ACR information are then forwarded through the communication pipe to the
application selected (arrow 1142). The invoked application sends a request to the SSM
system for decryption of the seed using the private key of the IDO (arrow 1144). The SSM
system decrypts the seed and sends a notice to the application that decryption has been
completed (arrow 1146). The invoked application then requests a creation of a secured data
object and the storing of the seed in the secured data object. It also requests that the SDO be
associated with ID of the OTP application (which can be the same application that is doing
the requesting) for generating the one time password (arrow 1148). The SSM system creates
one of the SDOs 1114 and stores the seed inside the SDO and associates the SDO with the ID
of the OTP application, and sends notice to the application when completed (arrow 1150).
The application then requests the SSM system to delegate access rights by the internal ACR
1103 for accessing the SDO 1114 to the appropriate user ACR based on user information
supplied: by the host (arrow 1152). After delegation has been completed, the SSM system
notifies the application (arrow 1154). The application then sends the name of the SDO (slot
ID) through the communication pipe to the SSM system through a call back function (arrow
1156). SSM system then forwards the same to the host (arrow 1158). The host then binds

the name of the SDO to the user ACR, so that the user can now access the SDO.

[00305] The process of OTP generation will now be described in reference to the
protocol diagram in Fig. 44. To obtain the one time password, the user will log in the user

ACR to which it has access rights (arrow 1172). Assuming that the authentication is

WO 2008/013655 PCT/US2007/015301
75

successful, the SSM system notifies the host and the host sends a “get SDO” command to the
SSM (arrows 1174, 1176). As noted above, the SDO that stores the seed has been associated
with an application for generating the OTP. Therefore instead of selecting an application
through the communication pipe as before, the OTP generation application is invoked by
means of the association between the SDO that' is accessed by the command in arrow 1176
.and the OTP generation application (arrow 1178). The OTP generation application then
requests the SSM system to read the content (i.e. the seed) from the SDO (arrow 1180).
Preferably, the SSM is not aware of the information that is contained in the content of the
SDO, and will simply process the data in the SDO as instructed by the FSE. If the seed is
encrypted, this may involve decrypting the seed before reading as commanded by the FSE.
The SSM system reads the seed from the SDO and provides the seed to the OTP generation
application (arrow 1182). The OTP generation application then generates the OTP and
provides it to the SSM system (arrow 1184). The OTP is then forwarded by the SSM to the

host (arrow 1186) which in turn forwards the OTP to the authentication server 1052 to

complete the dual factor authentication process.
Callback Function

[00306] A generic callback function is established between the SSM core 1004 and
SAMM 1008 of Fig. 40A. Different device internal applications and communication pipes
may be registered with such function. Thus when a device internal application is invoked,
the application can use this callback function to pass data after processing to the SSM system

through he same communication pipe that was used to pass a host command to the

application.
DRM System Embodiment
[00307] Fig. 45 is a functional block diagram illustrating a DRM system employing

communication pipe 1104°, CEKs 1114 with links 1108’ to FSE applications 1102’ and
control structures 1101°, 1103°, 1106’ for controlling the functions to implement DRM
functions. As will be noted, the architecture in Fig. 45 is quite similar to that of Fig. 42,
except that the security data structure now includes license server ACRs 1106’ and playback
ACRs 1110, instead of authentication server ACRs and user ACRs, and CEKs 1114’ instead
of SDOs. In addition, the IDO is not involved and is thus omitted in Fig. 45. The CEKs

1114’ may be created in the license provisioning process. Protocol diagram Fig. 46 illustrates

WO 2008/013655 PCT/US2007/015301
76

a process for license provisioning and content download where the key is provided in the
license object. As in the OTP embodiment, a user wishing to acquire a license will first need
to acquire access rights under one of the N ACRs 1106’ and one of the N ACRs 1110’ so that
content can be rendered by means of a media player such as a media -player software

applicalioh.

[00308] As shown in Fig. 46, the host authenticates to a license server ACR 1106’
(arrow 1202). Assuming that authentication is successful (arrow 1204) the license server
provides a license file together with a CEK (key ID and key value), to the host. The host also
selects the application to be invoked by supplying the application ID to the SSM system on
the card. The host also sends player information (e.g. information on a media player software
application). (arrow 1206). The player information will indicate which one of the N
playback ACRs 1110’ under which the player has access rights. The SSM system forwards
to the DRM application the license file and the CEK through the communication pipe
corresponding to the application selected (arrow 1208). The application invoked then
requests the SSM system to write the license file to the hidden partition (arrow 1210). When
the license file has been so written, the SSM system notifies the application (arrow 1212).
The DRM application then requests a CEK object 1114° be created and stores in it the key
value from the license file. The DRM application also requests that the CEK object be
associated with ID of a DRM application that checks licenses associated with the key
provided (arrow 1214). The SSM system completes these tasks and so notifies the
application (arrow 1216). The application then requests that read access rights to the CEK
1114’ be delegated to a playback ACR to which the player has permission to access content
based on player information sent by host (arrow 1218). The SSM system performs the
delegation and so natifies the application (arrow 1220). A message that the storage of the
license has been completed is sent by the application through the communication pipe to the
SSM system and the SSM system forwards it to the license server (arrows 1222 and 1224). A
call back function is used for this action through the communication pipe. Upon receiving
this notice, the license server then provides the content file encrypted with the key value in
the CEK provided to the card. The encrypted content is stored by the host in the public card
area. The storing of the encrypted content file does not involve security functions so that the

SSM system is not involved in the storing.

WO 2008/013655 PCT/US2007/015301
77

[00309] The playback operation is illustrated in Fig. 47. The user authenticates to the
appropriate playback ACR (i.e. the playback ACR to which read rights has been delegated
above in arrows 1152 and 1154) through the host (arrow 1242). Assuming that
authentication is successful (arrow 1244) the user then sends a request to read the content
associated with the key ID (arrow 1246). Upon receiving the request, the SSM system will
discover that a DRM application ID is associated with the CEK object being accessed and so
will cause the identified DRM application to be invoked (arrow 1248). The DRM application
requests the SSM system to read data (i.e. the license) associated with the key ID (arrow
1250). The SSM is not aware of the information in the data it is requested to read, and
simply processes the request from the FSE to perform the data reading process. The SSM
system reads the data (i.e. license) from the hidden partition and provides the data to the
DRM application (arrow 1252). The DRM application then interprets the data and checks the
license information in the data to see if the license is valid. If the license is still valid, the
DRM application will so inform the SSM system that content decryption is approved (arrow
1254). The SSM system then decrypts the content requested using the key value in the CEK
object and supplies the decrypted content to the host for playback (arrow 1256). If the

license is no longer valid, the request for content access is denied.

[00310] In the event that no key is provided in the license file from the license server,
the license provisioning and content download will be somewhat different from tﬁat
" illustrated in Fig. 46. Such a different scheme is illustrated in the protocol diagram of Fig.
48. The identical steps between Figs. 46 and 48 are identified by the same numerals. Thus
the host and the SSM system first engage in authentication (arrows 1202, 1204). The license
server provides the license file and the key ID but without the key value to the host, and the
host will forward the same together with the application ID of the DRM application it wishes
to invoke to the SSM system. The host also sends along player information (arrow 1206’).
The SSM system then forwards the license file and key ID through the communication pipe
corresponding to the selected application, to the selected DRM application (arrow 1208).
The DRM application requests that the license file be written to the hidden partition (arrow
1210). When the license file has been so written, the SSM system notifies the DRM
application (arrow 1212). The DRM application then requests that the SSM system generate
a key value, create a CEK object, store the key value therein and associate the CEK object
with the ID of a DRM application (arrow 1214°). After the request has been complied with,
the SSM system sends a notice to the DRM application (arrow 1216). The DRM application

WO 2008/013655 PCT/US2007/015301
78

will then request the SSM system to delegate read access rights to the CEK object to the
playback ACR based on the player information from the host (arrow 1218). When this is
completed, the SSM system so notifies the DRM application (arrow 1220). The DRM
application then notifies the SSM system that the license has been stored where the notice is
sent through the communication pipe by means of a callback function (arrow 1222). This
notice is forwarded by the SSM system to the license server (arrow 1224). The license server
then sends the content file associated with a key ID to the SSM system (arrow 1226). The
SSM system encrypts the content file with the key value identified by the key ID, without
involving any applications. The content so encrypted and stored on the card may be played

back using the protocol of Fig. 47.

[00311] In the OTP and the DRM embodiments above, the FSE 1102 and 1102’ can
contain many different OTP and DRM applications for selection by host devices. Users have
the choice of selecting and invoking the desired device internal application. Nonetheless, the
overall relationship between the SSM module and the FSE remains the same, so that users
and data providers can use standard set of protocols for interacting with the SSM module and
for invoking the FSE. Users and providefs do not have to become involved in the
particularities of the many different device internal applications, some of which may be

proprietary.

[00312] Furthermore, the provisioning protocols can be somewhat different, as is the
case in Figs. 46 and 48. The license object contains a key value in the case of Fig. 46, but no
key value in the case of Fig. 48. This difference calls for slightly different protocols as
illustrated above. However, the playback in Fig. 47 is the same irrespective of how the
license was provisioned. Hence, this difference will only matter to content providers and
distributors, but not typically to consumers, who typically are only involved in the playback
phase. This architecture thus provides great flexibility to content providers and distributors to
customize protocols, while remaining easy to use by consumers. Obviously information
derived from the data provisioned by more than two sets of provisioning protocols may still

be accessible using the second protocol.

[00313) Another advantage provided by the embodiments above is that while outside
entities such as users and the device internal applications can share the usage of data
controlled by the security data structure, the user is able only to access the results derived by

the device internal applications from the store data. Thus, in the OTP embodiment, the user

WO 2008/013655 PCT/US2007/015301
79

through the host devices is able only to obtain the OTP, but not the seed value. In the DRM
embodiment, the user through the host devices is able only to obtain the rendered content, but
not access to either the license file or the cryptographic key. This feature permits

convenience to consumers without compromising security.

[00314] In one DRM embodiment, neither the device internal applications nor hosts
have access to the cryptographic keys; only the security data structure has such access. In
other embodiments, entities other than the security data structure can also access the
cryptographic keys. The keys can also be generated by means of the device internal

applications, and then controlled by the security data structure.

[00315] Access to the device internal applications and to information (e.g. OTP and
rendered content) is controlled by the same security data structure. This reduces complexity

in the control systems and costs.

[00316] By providing the ability to delegate access rights from the internal ACR
controlling access to the device internal applications to an ACR controlling the access by
hosts to the information obtained from invoking the device internal applications, this feature

makes it possible to achieve the features and functions above.
Application specific Revocation Scheme

[00317] The access control protocol of the security data structure can also be modified
when a device internal application is invoked. For example, The Certificate Revocation
protocol may be either a standard one using CRL or a proprietary protocol. Thus, by
invoking a FSE, the standard CRL revocation protocol can be replaced by an FSE proprietary

protocol.

[00318] In addition to supporting the CRL revocation scheme, SSA enables a specific
internal-application residing in the device to revoke hosts through a private communication
channel between the device internal application and the CA or any other Revocation
Authority. The internal application proprietary revocation scheme is bounded in the

relationship of the host-application.

[00319] When application-specific revocation scheme is configured, the SSA system
~will REJECT the CRL (if provided) ELSE will use the Certificate and the proprietary

WO 2008/013655 PCT/US2007/015301
80

application data (previously provided through an application specific com pipe) to decide

whether the given certification revoked or not.

[00320] As noted above, an ACR specifies which of three revocation schemes (no
revocation scheme, the standard CRL scheme, and application-specific revocation scheme) is
adopted by specifying a revocation value. When the application-specific revocation scheme
option is chosen, the ACR will also specify an ID for the internal application ID in charge of
the revocation scheme, and the value in the CET/APP_ID field will correspond to the internal
application ID in charge of the revocation scheme. When authenticating the device, SSA

system will then adhere to the proprietary scheme of the internal application.

[00321] Instead of replacing one set of protocols by another, the invocation of a device
internal application may impose additional access conditions to the access control already
exerted by the SSA. For example, the right to access a key value in CEK can be further
scrutinized by an FSE. After the SSA system determines that an ACR has access rights to a
key value, the FSE will be consulted before the access is granted. This feature allows great

flexibility to the content owner to control access to the content.

[00322] While the invention has been described above by reference to various
embodiments, it will be understood that changes and modifications may be made without
departing from the scope of the invention, which is to be defined only by the appended claims

and their equivalent.

WO 2008/013655 PCT/US2007/015301
81

WHAT IS CLAIMED IS:

1. A method for verifying a certificate using a certificate revocation list, wherein
portions of said certificate revocation list are received from an entity at a device, comprising:

processing said portions of a certificate revocation list sequentially using said device;
and

searching for a reference to the certificate on said list using said device, wherein said .

processing and searching are performed concurrently.

2. The method of claim 1, wherein portions of said list are received in a time
sequence from the entity, and said processing is performed on the fly as the portions of the

list are received.

3. The method of claim 1, wherein said processing discards portions of the

certificate revocation list after they have been processed.

. 4, The method of claim 1, wherein said processing includes hashing the portions
of the list as they are received by means of a hashing algorithm to obtain a hashed certificate

revocation list.

5. The method of claim 4, wherein portions of an encrypted hashed certificate
revocation list are received at the device, said processing includes decrypting the encrypted
hashed portions to obtain a decrypted and hashed certificate revocation list and comparing the

hashed certificate revocation list with the decrypted and hashed certificate revocation list.

6. The method of claim 1, wherein said portions include serial numbers of

revoked certificates on the list.

7. A method for authenticating a host to a memory system configured to be
removably connected to the host, said memory system comprising:
a non-volatile memory storing at least one certificate revocation list, said non-volatile

memory capable of storing data; and

WO 2008/013655 PCT/US2007/015301
82

a controller controlling access by the host to said data through an authentication
process, in which the host presents at least one certificate to the memory system; said method
comprising:

providing said at least one certificate revocation list to the host in response to a
request from the host without authenticating the host;

receiving said at least one certificate presented by the host and said at least one
certificate revocation list;

checking whether the at least one certificate presented by the host is on the at least
one certificate revocation list, and

failing the authentication process when the at least one certificate presented by the

host is on the at least one certificate revocation list.

8. A method for mutual authentication between a non-volatile memory device
and a host, said non-volatile memory device removably connected to said host, wherein:

presenting to the memory device by the host a first certificate and a certificate
revocation list for verification of the first certificate by the memory device; and

presenting to the host by the memory device a second certificate for verification by

the host without a certificate revocation list.

9. The method of claim 8, wherein the non-volatile memory device stores the
certificate revocation list for the host, said method further comprising the host obtaining the

certificate revocation list from the non-volatile memory device.

10. The method of claim 9, further comprising the non-volatile memory device
receiving said certificate revocation list from the host for authenticating the first certificate

from the host.

11. A method for authenticating a host device by a memory system, comprising:
removably connecting the memory system to the host device; and
sending a certificate and a certificate revocation list from the host device to the

memory system.

12. A memory system configured to be removably connected to a host,

comprising:

WO 2008/013655 PCT/US2007/015301
83

a non-volatile memory storing at least one certificate revocation list, said non-volatile
memory capable of storing data; and

a controller controlling access by the host to said data through an authentication
process, in which the host presents at least one certificate to the memory system, and said
controller checks whether the at least one certificate presented by the host is on the at least
one certificate revocation list, and fails the authentication process when the at least one

certificate presented by the host is on the at least one certificate revocation list.

13. The memory system of claim 12, said non-volatile memory including an
unprotected area available for access to the host without being authenticated through the
authentication process, wherein said at least one certificate revocation list is stored in said

unprotected area.

14. A non-volatile memory device removably connected to a host that sends
sequentially portions of a certificate revocation list to the memory device for verification of a
certificate, said memory device comprising a controller that verifies the certificate revocation
list, processes said portions of the certificate revocation list sequentially, and searches for an
identification of a certificate on said list, wherein said processing and searching are

performed concurrently.

15. The device of claim 14, wherein said controller performs said processing on

the fly as the portions of the list are received from the host.

16. The device of claim 14, wherein said controller discards portions of the

certificate revocation list after the portions have been processed.

17. The device of claim 14, wherein said controller processes the portions of the

list as they are received by hashing the portions to obtain a hashed certificate revocation list.

18. The device of claim 17, wherein portions of an encrypted hashed certificate
revocation list are received at the device, and said controller processes portions of an
encrypted hashed certificate revocation list by decrypting the encrypted hashed portions to
obtain a decrypted and hashed certificate revocation list, and compares the hashed certificate

revocation list with the decrypted and hashed certificate revocation list.

WO 2008/013655 PCT/US2007/015301
84

19. The device of claim 14, wherein said portions include serial numbers of

revoked certificates on the list.

PCT/US2007/015301

1/33

WO 2008/013655

e —————

_
Kiowa yse|4 _ﬂom } 'Old Pé~] eomeqisoq
_

M\W\Hmmm:u.iu!..i:-u!..i...i!.uh%w..!.:n..Mw\.mlmmu‘\8

|
|
|
|
|
“ - . |
_ H\H\mm_%m_“_ 8 P 4misoy |
_ 92
e Wvyg el
“ Jjsousnbag 0 . «. m _
| 3/1 yse|4 Snd 150K "
_ mm\\ a4V _
|
O4did or [|
“ N "
| VA |y aulbux-o)diu VYINQ 04l |
“ | useld I0U3-01aAID > yson [_
4 o

I .

|
]| Sewibay NdO o NINg sijsibay sesoy | |1
| } . “
“ E] J z I T _ e “

J A

| K A « “
“ sinpopy sseooy [esayduad \ 44 “
|

i
_ 0 H
_) _\ (4 \NF "
|
_ |
, J

PCT/US2007/015301

WO 2008/013655

2/33

¢ Ol

WH| ¥ (wy
$9)91j0d SS90y

>|’
~
[]
®
: day v
€ [onuo) | 84 peay
100100 $s900y paseg | cddy Wy |
E R B |ddy s8|0Y 10y

jauinuag
pied
|y} s|

suibug | ddy
adhy {ree oy f x|y uojjeaRUBLINY
L18sn pied
t MYy M- @W gddy
\
A A A »’ &“ V\. (074
®
[]
]
Zd
wojsny
SJUIMS PO~
peays . U0
SNIM pa8)0.id R
pesy pied | ld
— 404 Peays
r WYdO/ as
0d ealy Jasn (s)ealy pajosjold pien

Spde) uofjesauss) map ysiques

PCT/US2007/015301

WO 2008/013655

3/33

v Old

£ -1ed

€ Aoyl

¢ -1ed

3 9jid asid

uoniped waisiAg

A

 uolped
- €d

€ Ol
| uopiEd
- 2d

| uoniued
- 1d

uoniued
> 2Ignd
-0d

uonied ¢4

uohiyed zd

uoniyed Ld

uoHed
aang 0d

uonied WejsAg

PCT/US2007/015301

WO 2008/013655

4/33

S "OId

s d0d
/

+ h pesy c# abuajeyo - J)
_ Koy
| Sy Ql Aoy 23mea Ml NG
< PoIoW wyoBly |8V
! ek d uoneanuayiny Slenuapaid u_mS_,q
" al uonied
| _ b>lol 4 -
| .
| \ sjybiry jo53u0) ss800Y)
[:ajepdn/eieieqeleal)
. “ sulewo(] 'sdoy :ajejaq/eessd
| soljsusjoeIRYY) UOIOY -
_ ST = asl Rey~angnd IMd - »
pesy L# —
I < pOuIS wyyoBy | dOV
-1 ajli\VPERY CH uoESRUBNY sjejuapai) m__.mo.__<
Sl al ey
l#d b=10)4
QI uojiped x
pesy o#
pEay] o ssed paysey | piomssed | promssed E)‘
syb <
i Qi ey D POUIal sjeguapaig | Wauoby v
t#d uoneajuayiny | urbo
_ Qi uoned YoV Y,
_ dov)
waysAs yss

PCT/US2007/015301

WO 2008/013655

5/33

/7

o
Q0
<

ACR

/

\\ /
Zlle||lx
OHOIO
<<

120
|

-

—

Level 3

Level 3

Level 1

FIG. 6

WO 2008/013655 PCT/US2007/015301

6/33

AGP
Level n

AGP
Level 3

AGP
tLevel 2

AGP
Level n

AGP AGP
Level 1 Level 2

AGP
Level 1

AGP
Level 2
AGP
Level 2

f
|

LLevel 3

Level 1
Level 1
- Root
FIG. 7

Level 3

["= 5D Gin LR ED GIN GED GED GEP GID GED D GED NGNS GNP LED GED MNS EES Gt S S e wme wme mme

WO 2008/013655

Create System ACR
Host Side

Issue SSA Command to
Create System ACR

l \- 202

Read SSA Status
\-216

218

Card

Status OK
?

/- 222

Issue SSA Command to
Define System ACR
Login Credential

l e 226

Issue SSA Command:
System ACR Ready

FIG. 8A

7/33

Return Failure
Status and Stop

Return Failure
Status and Stop

System ACR
Cannot Be
Updated or

Replaced

PCT/US2007/015301

Create System ACR
Card Side

Create System ACR
Command Received

\- 204
206

System
ACR Already

Exist
?

210

System
ACR Creation

Allowed
?

Yes

Return OK Status and Wait
for System ACR Credentials

1 s 224

System ACR Credentials
Command Received:
Update System ACR

Record, Return Status OK,
and Wait for Creation Done

l /- 228

System ACR Creation Done
Command Received: Retumn
OK Status, Mark System
ACR as Existing and Active

FIG. 8B

WO 2008/013655

PCT/US2007/015301

8/33
246
Adding Root
AGP Enabled
250 Does
System Yes Ad(.jing Root
ACR Exists AGP Require System ACR?
? (Set to Controlied)
Yes
252 No
/—
Authenticate through System ACR
and Establish a Secure Channel
254
=
Use SSA Commands to Create Lo
Root AGP and Root ACRs

l /- 256

Switch the AGPs to Operational

Mode. Existing ACRs in AGP(s)

Cannot Be Updated, No Addition
of New ACRs to the Root AGP

—= Feature: Additional AGP

258

| Disable Root AGP Addition

. FIG. 9

Cannot Be Created

, — 270 ProcessUsed)
Authenticate Through an Existing ACR | /~ to Create
m1, m2, s1,
Y y 272 s2
H | Request to Create Account (ACR)
. > FIG. 10
c Authorized Stop

?

Y

es 276
ACR Created

H/IC

WO 2008/013655 PCT/US2007/015301

9/33
Create 2 ACRs (m1, m2) in Marketing AGP, 2ACRs (s1, s2) in Sales AGP
Level 1 Level 2
Marketing AGP w Sales AGP
m1 (ACR) AGP s1 (ACR)
m2 (ACR) / s2 (ACR)\

=~
' ~ -~
R Onlyl \R/W R Onl)/ \R Only
4
Marketing

FIG. 11 | information R Only >~ _ 4| Price List

Specify Accounts for 280
Delegation of Specific Rights |/~

Marketing AGP - s1(ACR)
. o~ | m1 (ACR)
Stop m2 (ACR)
Yes
284 '
s Price List

Rights Delegated

FIG. 12 FIG. 13

H | Authenticate Through an ACR

!

Request to Create Key, Va 304
Provide Reference Name

306 -
¢ Stop 1 310
? L]
Assign Rights Creator Has All

H L Rights
Yes and Permissions (R/W Delegate..)

s 308
;312 - Share Rights with
Other Accounts

» Share Keys

c Create Random Key with
Reference Name for Account - C Modify PCR

FIG. 14

WO 2008/013655 PCT/US2007/015301

10/33
H/C Authentication Process | /~ 330
332
=
H Specify Account
334
-
H Request Deletion of Access
Rights/Pemission of Another Account
c Stop
Access Rights or
c Permission Deleted F I G' 15
H Request Access | /~ 350
c Stop (Access
Rights Deleted)
Yes 354
/"
H Specify Account
356
-
H Request Protected Content
358
c Authorized Stop (Permission
? Deleted or Expired)
Yes 260
/-

Cc Permission Granted FI G . 1 6

PCT/US2007/015301

WO 2008/013655

11/33

g.} "9Old

V. “Old

SuoISSag Jaul0 _ uoissas uadp
$5920Y 9214 QNVYN a a $S800Y 8314 ANVN
[2 U\
zZ =z : .
[}
ON
oLy
X Q1 heyl S3A
I pUB V UOISSAS
pip- | Buisn ssaooy on
]
oLy
Bjeq paleIoossy AENER >
b cwac%_wom M_me | m_ m_ m_ J1 xai Aoy Buisn sse22y m
B 8 -— * Q
434 _ m m m 80r _ M 1SOH
n &) n @
X @l Aoy <- X 2l 7L X al fey <- 3iid o}
905/ Y Y Y oo T
- R - [11
X Qi ASY Uim LONEONUBLIN X Q1 A9 uim suoneanuayn
pop - | ©lid Ss800Y | 204 HeoRUsUINY vov\ 3|14 SS8%0Y NovH Heousny

SUOISS8S JAYJQ "SA UO|sseg uadQ

SU0ISS9S 4830 'SA uojsses uado

PCT/US2007/015301

WO 2008/013655

12 /33

8} "Old

joy sy usuon
oyi0edg Aay 10 |BqO|9

1S %0€|g 40)Y

uone Wi

SUON Jo

117 %0€|g 10 SjYM

19} suiensuo?) [eqo|s
SS00Y

Pajied [eqo|o jusund
$S900V/ pazioyiny-un
JO 18qWINN 8AloNIISUOD
Pajie4 |eqojO xep
pazuoyiny Ajjnyssaoang
10 J9quINN ulpy :sS800Y
Jo8j04d dnyjoeg

AU |8uuey) ainoag
anjep Aoy

awieN souaI9)ey a|pueH

9JejS Waiin)

Xep Jo uipy

("018 Ja)Uno)

‘swil| ‘sa)Aqy|) adA

sulensuon

Aoy Juajuon

90UdJ8)8Y SUIBJLISUOY
J]auuey) 2n28g 89404
uonebajaq ssedoy
(010

‘Bl ‘peay) spybry

s8}9)0d

%301qun 0] |ejuapaig
JO JaquinN Ui
s|enuapai)
Buioolqun o) Joy
abesn pajie juaung
abesn pajie4

JO JaquinN Xepy

(018

'vSY ‘'S3v) poyieiy
(018 ‘desmun

‘ublg ‘yiny) abesn
(piomssed ‘Aay) adAL

sjeguapaln

WO 2008/013655 PCT/US2007/015301
13/33
Login/Password Type
Host Card
Specify Account
Send Password >

FIG. 19

g

Check if Password
and Account Match

No:
Increment
Error Counter
for Account

Yes:

Set Account

as Authenticated
etc.

Return Status

WO 2008/013655

14 /33

PCT/US2007/015301

Host Root
I-(ilt-)st 1IC;;\ I—(II(_)st n CA
evel 2 ee e evel 2)
504 S Cert Va Cert
508 /\
. I-(iost 1 c,)A)
Level 3
Host Cert Cert Host Cert
506" 510/ S
A1 i, C1
Host Cert
512 /
FIG. 20 B1
Device Root
Device 1 CA Device n CA
/ (Manufacturer) (X (Manufacturer)
522 Cert / Cert
526
Device Cert Device Cert
524 / 528 /]
A2 B2

FIG. 21

N— 514

PCT/US2007/015301

WO 2008/013655

15/33

¢¢ "Old

\ Nw.m \.va
g ([)
[~\
L9 dwo) ol o) S18|dwo)
uoRedYRUILINY, 353V e anomss) L9 SAY L ABA < wofeoypuaiiny,
aj9|dwo? uoiedRUaYINY g
,uoissag uelg, TEYN - et - <—{ U0ISSOS LES,
S uels K SESEL parpvepre SS) 4 3-s3v S ke
} UoISSaS HElS $
1 1
A8y uoisseg le—1aquinN wopuey—={ 1dAoug — »11dAioaq — Aoy uoissag
— éé6 QWD INSS
z9¢ * 101088 I8)SB|\-31d 80IAe(] }89) 4 I\ poc 9SeYd uonesid
\ A8y uoissag
I]
,
095\ A
a1edwo)) [e———— Ajuop |e £
- ¢& QND INSS Aoy 1soH Ausp 95
PSS~} 85— » \. aseyd
Jaquin) wopuey f—¢ : & ubig |uonedyIspn
L _ &6 AND NSS abusjjey) soineq 189 —w £y 8jenild)
[1
(ajeoyIpe)
= 5D
Ay dljand 42 aseyd
6vS AN TumoI ﬂ......w 4 uoledljuuaA
L 256" =) 42 QND NSS @1eoa] 1SOH 198 Koy dand
I
ajeoyIan =
g5e /] 100y 1SOH m tbua Asy = =}
GS
(uoneanuayiny Aem-suQ) 0 LyS
s|enuapaln YoV 4 Uleyd ajeouya) jsoH | Ay sjenld 1soH \
9 walsAs WSS y \ wajsAg JsoH Yy,

PCT/US2007/015301

WO 2008/013655

16 /33

- ™
sjeoya)
———) o) - ——<¢ -\
Aoy dland £y 2and
I1SOH ELITEYg
ajeoya)
Y9 ; Iy
=k 20 QN0 WSS =L e
Sjedyia) DINQ 19D gjeayan ;
| 30I1A3(]
Ruap fe—g —\= ase
= - ud
* sjealyiuan Qmwm_mmﬁou%wm@w UONESULIBA
. . £ay a1gnd
_ I1soH !
Y,
m S =) ﬁ Wpbua E <> m |
ejeoye) | "M S1BNd | yieyq sjeoyiag| Ao ureyd ajeoyad | Aey sjend | ejeoynag
100Y }SOH aolneQg 1SOH 1SOH 100y 83IA8Q
(uoesnuayny [eninpy)
 slenuapal) Yoy
Wwa)sA
L S NSS) L waysAg JsoH
ve€C ‘Old _mmwnmm_

£2 'Ol |-~

_%N Q.t

PCT/US2007/015301

WO 2008/013655

17 /33

g¢¢ "Old

\Nvm \.cwm
a J \)
(¢ =)
Splawey . - Slejdwo)
uojeduaLInY, g EXEl Tor oo wes) LISV [Aken [wojehunueuny,
8)9|dwon uonesnuaYINY 9
[oisseg Jeig, 1) CELAS -S3Y [=—] uoISSaS HElS,
S vels Muisp a-s3v 551 OO NSS) 3-s3v S beig
} UoISSag HelS !
| _ i 1
A3y uoissa 1dAi10aQ) | JdAuoug fe—1aquiny wopuey| |Asy uoisseg
S d ¢ QND NSS 3 A7TN vPpred
121098 J3JSB\-aid ISOH J8S
JaquinN wopue »11dliou &—»11dA10ag
PN Hoptey I 3 & QWO NSS I
J01098 Ja)SeYy-81d 301A8(18D aseyd uonesi
£y uoisss
\ AUOISSSS)
L |
([) J)
€ = Aus € » aJedwo)
L anoes - LA 4 ;
fey ao1naq A/ H
ubig je ¢ € . € JaquinN wopuey
S ¢é QWD INSS 1) N
.H abualiey) 1soH 195
aredwo) Ausp e ﬁ Te ﬁ ﬁ
: 1 ¢6 AND NSS
oy 1soH Ajtap
ase
JOqUINN WopuEyf—¢ ¢ € — € > ubig co;moum_g
¢ QO NSS) Ko% oie
L abuajiey) so1naQ 19 A 2 m~m>_&\

PCT/US2007/015301

WO 2008/013655

18733

¢€ "Old

140 aj)eoliua)
JaquinN wyobyy {awiy ayepdn| | - | wypoby Loy /Y09 | Jequnp
SIMeUBIS | ehagjoten | ubig XaN IMEUBS | ks | onang |eleq dxa| feuss
9UQ jse ay) | uleyo ayy Bl
Ul 9jedliue) juaund ji | eja10s1g BUILS L 2
sejeoipu) bejy syl | (B S,
sajAg ul fay sa)ig u) .
sleoyped jo yibueq | POl | spgeeoypey | ¢ | MO
adf| sweN Yibua | 19840
Sjusuiwiod ‘Bay swnbiy ‘Biy | ailg
ve 'Old 065
665 165 ,G66 £65 169
e --_.--:.\:--4_.\.._
[| _ | _ |
‘ | _ _ _ _
Canal - T bl oS
6)06S 1)068 ¢loes £)06s 4)06S
(¢)oss

(8)o6s

(9)065

(¥)o6s

WO 2008/013655

19/33

CERTIFICATE CHAIN

Card
(Card Authenticating Host)

Receiving Sequentially
Certificate Chain
From Entity Being
Authenticated

:

Verifying Each of
Certificates Received

l

Aborting the Process
if Any One of
Certificates Fails
to be Verified and
Notify Entity

r__‘ Ve 602

604
/

606
/

608

Has

Last Certificate

Been Received

and Verified
?

Yes

Proceed to

Next Phase 610
After Certificate K

Verification

FIG. 26

PCT/US2007/015301

CERTIFICATE CHAIN

Host
(Card Authenticating Host)

Send Next
Certificate in
Chain

620
/

622

Has
Failure Notice
Been Received

From Card
?

Stop

626

Has

Last Certificate

Been Sent
?

Proceed to .

Next Phase / 628
After Certificate

Verification

FIG. 27

WO 2008/013655

20/33

CERTIFICATE CHAIN

Card Actions
(Host Authenticating Card)

630
Start /

Py

632

Receive
Request for
Next Certificate
in C;\ain

Yes

Send Next 634
Certificate e
in Chain

Has

"~ Failure
Notice Been
Received

PCT/US2007/015301

CERTIFICATE CHAIN

Host _
(Host Authenticating Card)

Send Request for| /~ 640

Last Certificate

Been Sent
?

Proceed to 639

Next Phase /
After Certificate

Verification

FIG. 28

Next Certificate
in Chain

Y

Verify Each
Certificate Ve 642
Received, Abort
and Notify if Fails

644

Has
Last Certificate
Been Received and
Successfully

Verified
?

Proceed to 646

Next Phase /
After Certificate

Verification

FIG. 29

WO 2008/013655

21/33

Host
(CRL on Card)

Reads CRL

From Card / 652

User(Public)
Partition

!

Sends CRL 654
and Cerificate /
to Card

!

Proceed to
Next Phase / 656
Unless Receive

Failure Notice

FIG. 30

PCT/US2007/015301

Card
(CRL on Card)

Receive CRL 58
From Host / 6
with Certificate

!

Check Whether 660
Cerificate /
SN.isonCRL]

l

Send Failure
Notice to Host /‘ 662
if Certificate
S.N.ison CRL

FIG. 31

WO 2008/013655

22 /33

REVOCATION

At Authenticating
Entity (Card)

Receive Certificate | /~ 702
and CRL From Entity

l

Process Portions of CRL
and Search for Certificate 704
S.N. in CRL Concurrently, | /~
Processing Includes
Hashing CRL Portions
and Comparing to
Decrypted Hashed Portions

1

Checking if Current Time Ve 706
is not Within CRL
Expiration Time Period

!

Check Whether Time 708
for Next Updated CRL |/~
in CRL has Passed

1

Authentication fails if
Certificate S.N. is on CRL, 710
or if Current Time /
is not Within CRL
Expiration Time
Period, or Time for Next
Updated CRL has Passed

FIG. 33

PCT/US2007/015301

At Entity to be
Authenticated (Host)

" Send Certificate 722
and CRL 4

4

Proceed to Next

724
Phase After /
Certificate and CRL
Verification

FIG. 34

WO 2008/013655

23/33

Card
Host Sends Data to Card

Authenticate Host

802
s

PCT/US2007/015301

806
/-

Send
Certificate
to Host

804

Has
Host Request
for Certificate Been

Received
l)

Yes

808

Has
Data and

Command Been No

Received From
Hgst

810

Is

Command

for Signing

Data
?

Yes

12
/—8

Sign and

Return Data

FIG. 35

—1

814
/- .

Use Private
Key to
Decrypt Data

WO 2008/013655 PCT/US2007/015301

24 /33
Host - Host
Host Receives Signed Data Host Sends Data to Card
Send Authentication |/~ 822 Send Authentication | /~ 862
Information Information to Card
1 Request and Receive
Reguestand | -~ 824 Certificate Chain | ~ 864
Receive to Certify Card
Certificate Chain Public Key

| !

EncryptData } 866

Send Data and 826 ~ -
Receive Signed L~ Using Public Key
Data Back l

868
Send Encrypted e
Data to Card

FIG. 36 FIG. 37

WO 2008/013655 PCT/US2007/015301

25/33

Receive General Information / 902
Query From Entity

904

Has
Entity Been
Authenticated
?

Supply Public 908 Supply Public and 906
information to / Shared Confidential /
Entity Information to Entity

FIG. 38

Receive Discreet / 922
Information Query

924

Has
Entity Been
Authenticated
?

928
Deny |~ Supply Only Portion 926
Access of Confidential L
Information Allowed
by Control Structure

FIG. 39

WO 2008/013655 PCT/US2007/015301

261733 -

24
\(Host e 1000

Host Side
Bl I e i e >
IL Card Side
10
1002 SSA Protocol A N DMS
Transport Layer [N\
‘ 1011
1006 H N
(" s5M Core API SAMM
1008

1004 SSM Core A;> o

Device Internal Applications
\ PP
i
- 1010
1012 — FIG. 40A
Cryptographic Library :
4 ﬁ — 1022 SSM Core)
SSA Command Handler
1024
b~
SSA
Manager
102 — 1028
lfvoso @rasl]
SSA SSA SSA Non
Secure |e— Database Secure
Operations Operations
1032 1034
IT e 3E o 3T
To
CryptFlash To SNDK Layer
LIB FIG. 40B

WO 2008/013655

27133

1054

PCT/US2007/015301

Internet 50
Service / 10
1052
1056
Authentication 1058
Service
Physical
Token
OTP GENERATION USING SEED FSE
CARD Controlled by
HOST SSM SYSTEM FSE ACR
User Authentication
to User ACR K" 1172
Authentication Successful /"‘ 1174
L FSE with
Forward with FSE 1D Assoc.
Get SDO Associated with SDO FSE ID
/ > (Invoked
1176 Request to Read — 1178
Seed From SDO T 1180
>
Seed Read From SDO A 1182
»1 Generate
1052 OTP From
(Seed
Authenti-
cation
Server | Forward _OTP e n 1184
B 1186 —

FIG. 44

PCT/US2007/015301

[3s4
No:\ dlo

e A N:: \::\E:
_

— _ —\
_ -Gz

oas /oas /aas

Q
2
a

vorr | E
[e)
O

28/33

WO 2008/013655

904~ L 0LLL
dov =10}/ =10}
(Buiuorsinoig) (leussyu)) L dov
lonleg 384 d10 1350 uoljelauss)
uonesuUaYINYy di0
dOV 100y 004

WO 2008/013655

PCT/US2007/015

301

29/ 33
1102
SEED PROVISIONING \
FSE
CARD Controlied by
HOST SSM SYSTEM OTP FSE ACR
Authentication Request 1122
to Authentication ACR y<B
1
Authentication Successful 1~ 1124
Generate [
Seed Send Request to Sign Seed Forward Request Through FSE
Request |Request, Select COMM. PIPE] COMM. PIPE invoked
_/ >] 1128
1126 Request Signature by Key B
in IDO A 1730
€
Signing Completed T 1132
 Request IDO Certificate Chain T~ 1134
s 1052 IDO Certificate Chain Provided 1~ 7736
Authenti- Signed Seed Request and
cation IDO Certificate Chain
Server Forward Through COMM. PIPE T 1138
N <
Seed Encrypted with
Authenti- | Assy ID Public Key and
cation User ACR Information L — 1142
Server | Select COMM. PIPE Forward Through COMM. PIPE/ FSE
— — > , > invoked
K 1052 1140 Request Decryption of Seed
~Using Private Key in Assy ID 1~ 1144
Decryption Completed 4" 1146
Request Creation of SDO and
Storing Seed Therein, Request
to Associate SDO with FSE ID -~ 7748
<€
SDO Creation, Seed Storing,
Association with FSE ID
Completed <B 1150
-3
Request to Delegate Access
Rights to SDO to User ACR 1~ 1192
L < 1154
Binds ti L
Siot ID Delegation Completed /;
to SDO Name (Slot ID) Through
User ACR| Forward COMM. PIPE A 1156
1158 _

FIG. 43

PCT/US2007/015301

WO 2008/013655

30/33

/] Wya
2011 e 90i1
N B A
AN FEo Jus0 J3E0
[
a2
a \
£ \
YOLL £ /
O
8] \
\
\
\
/
904~ (90N L OLLL
. \
dov =10} 4 dov
(Buluoisinoig) (reusayu)) N 1 45y
JETNE! oeqfe Jeghe
mmcmo_w.d IS4 WHa/ \MoegAe|d Xoegae|d 3OBQAEI
ooy
Sy 'Ol o /| \ ey
dov looy

WO 2008/013655 PCT/US2007/015301

31/33

LICENSE PROVISIONING AND CONTENT

DOWNLOAD, KEY IN LICENSE OBJECT FSE ’

CARD Controlled by
HOST SSM SYSTEM DRM ACR
Authenticate to License
Server ACR y<B 1202
>
<Authentic:ation Successful 1~ 1204
License File, CEK (Key ID,
Key Value)
License SELECT COMM. PIPE Forward License File, CEK FSE
Server Player Information Through COMM. PIPE Invoked
g 1206 > 2] 1208
Request to Write License File 1210
| (o Hidden Partition yd
License File Written T 1212
>
Create CEK Object, Store Key
Value in Object, Associate CEK 1214
Object with FSE ID Attribute 1™
CEK Object Creation, Key Storing,
Association Completed T 1216
Delegate Read Access Rights
| lo CEK Object to Playback ACR 1~ 1218
Access Rights Delegation
Completed < 1220
License | License Stored Through
Server | Forward 1224 | COMM. PIPE A 1222
<1 £ < L
Write Content File Encrypted
License with Key Value in CEK
Server_t to Public Card Area
:
1226 —

FIG. 46

WO 2008/013655 PCT/US2007/015301

32 /33
PLAYBACK
FSE
CARD . Controlled by
HOST SSM SYSTEM DRM ACR
Authenticate
to Playback ACR P 1242
Authentication Successful T~ 1244
€
Read Content Associated FSE with ID Associated with FSE
with Key 1D _| KeyIDin CEK | Invoked
1246 — Request to Read License — 1248
rAssociated with Key ID A 1290
Read License From
Hidden Partition P 1252
Check
License
| Content Decryption Approved 1™ 1254
Content Playback
—
1256 —

FIG. 47

WO 2008/013655 PCT/US2007/015301

33733

LICENSE PROVISIONING AND CONTENT
DOWNLOAD, KEY CREATED BY CARD

FSE
. CARD Controlled by
HOST SSM SYSTEM DRM ACR
Authenticate to License
Server ACR T 1202
>
Authentication Successful T 1204
<
License File, Key ID
License SELECT COMM. PIPE Forward License File, Key ID FSE
Server Player Information Through COMM. PIPE Invoked
— T > L 1208
1206 Request to Write License File | 1210
to Hidden Partition yd
g
License File Written 1T 1212
I
Generate Key Value, Create
CEK Obiject, Store Key Value
in Object, Associate CEK 1214

‘Object with FSE ID Attribute]

Key Value Generation, CEK
Creation, Storing in CEK Object, ,
Association with FSE ID

Attribute Completed T 1216

»

Delegate Read Access Rights
to CEK Object to Playback ACR A~ 1218
<

Access Rights Delegation

Completed — 1220
P 4
License License Stored Through
Server Forward 1224 | COMM. PIPE — 1222
i« i <]
Security System E t
License Write Content File Cﬁﬁ!tje',t,){ Fi},: V?,,rt?, Kr;c;r)@)a'sue
. Server Associated with Key ID q Identified by Key ID
1226 Y

FIG. 48

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings

