(54) Title: APPARATUS AND METHOD FOR THE CONDITIONING OF MUSCULAR FIBRILS REACTION COORDINATION CAPACITY BY MEANS OF BIOMECHANICAL STIMULATION

(57) Abstract: It is disclosed an apparatus and a method for the conditioning of muscular fibrils reaction coordination capacity in consequence of an original motor exciter pulse, by means of the application on the muscle in isometric contraction, even a light contraction, of a succession of mechanic pulses, comprising means for the production of pressure pulses, means for the application of said pulses on the epidermis adjacent the muscle and means for the transmission of said pulses from said production means to said application means, wherein said application means and said means for the transmission of said pulses from said production means to said application means constitute a closed circuit inside which a compressed fluid or a substantially uncompressible fluid is present.
The present invention concerns an apparatus for the conditioning of muscular fibrils reaction coordination capacity by means of a pressure wave, and aesthetic and therapeutic application thereof.

In the living being, the locomotor system constitutes one of the fundamental hinges of its existence. It is constituted by the skeleton, composed by a complex osseous system mainly articulated and by striated muscles constituting the motor thereof or, more correctly the motors, since muscles are distributed by districts and each muscle is appointed to carrying out a definite movement.

The set of the possible movements is determined by the coordination of the action of one or more muscles in different districts, action accomplished through contraction or relaxation caused by electric signals, produced by the central nervous system by means of voluntary or reactive pulse, which reach the neuromuscular receptors and produce the contraction or extension of the myofibrils that constitute the muscular structure.

The work developable by a muscle depends on its mass, its training and its coordination capacity of the reaction of the single muscle fibrils with respect to the original motor exciter pulse. Recent studies demonstrated that this last condition is priority in order to maintain optimal muscular tonus, work capacity and resistance to fatigue.

The optimization capacity of the motor pulse and the coordination of the myofibrils response to the stimulus can be obtained in sane subjects in a natural way by means of exercises and trainings asking for very long times.

As far as carriers of pathologies of different nature is concerned, comprising those arising from injuries of the central nervous system, said
pathologies can make it difficult or impossible the obtaining, even only acceptable, of the response of the muscular tissue to the stimulus through physical exercise.

A first, partial solution of said problem is constituted by electrical stimulation devices, i.e. devices provided of one or more electrical applicators, powered by a suitable generator, which can be positioned in direct contact with the skin of the patient in proximity of the muscle to be treated. The electric pulse, caused by the generator and transmitted to the muscle through the applicators, stimulates in the muscle a succession of involuntary contractions, in other words forces the muscles to an outside induced "training".

However, the results of this kind of devices have some limitations, due to the fact that the produced electric stimulus can involve only the most superficial muscles. A consequence of this feature is that the patient, after the termination of the treatment by means of this kind of devices, in any case is compelled to perform a physical activity 20% higher than before the treatment, otherwise the entire cycle of treatment is invalidated (cycles of at least thirty therapy sessions, repeatable countless times). Further, said treatments allow obtaining the increasing of the so-called power module, or MDF (i.e. the muscle capacity to overcome a negative resistance expressed in kg) very low, about 8-12%.

In order to solve this problem, apparatuses were realised to replace the external application of an electric stimulus with the application of a mechanical or electromechanical stimulus to the muscle. Such apparatuses expose the muscle to a stimulus of such features to induce an improvement of the coordination of the muscle fibrils reaction with respect to the given pulse.

In particular, already in 1978, the space administrations of the United States and of the Soviet Union used the vibration's action in order to obtain the astronauts physical conditions recover after the return from space missions. Americans used a vibrating footboard, while Russians hanged astronauts to a vibrating pivot, after slinging them like for a parachute.
At present, the most commonly used devices for normal applications having therapeutic or aesthetic purpose more simply provide for a mechanical or electromechanical pulse generator having a variable frequency and at least an applicator, which is positioned in direct contact with the skin, in correspondence with the muscle to be treated, said generator and said applicator being connected by means of a system providing for the transmission of the impulse.

In particular, devices are known where this kind of stimulus is given by means of an applicator provided with a plurality of sticks acting with light knocks directly on the skin of the patient, in proximity of the muscle to treat.

This first kind of device was later replaced by devices where a pressure impulse is transmitted by the generator to a volume of air that, through the transmission system, essentially constituted by pneumatic pipes, extends from the generator down to a transducer, namely a hollow body opened on one side, constituting the applicator. The correct application of this device provides for the open section of the transducer to be positioned on the skin of the person undergoing the treatment in such a way to retain the air inside the device by being substantially airtight.

Nevertheless, the known embodiments are affected by a series of drawbacks; in particular, because of their own typology, they have a fundamental limit, namely can be devoted to treat a single muscle at a time.

In fact, the known devices incur in difficulties in the transmission of the pressure pulse, fundamentally involving a progressive lowering of the pulse amplitude, from the generator down to the applicator. This is due to the methods of pulse transmission used up to now.

Further, the known devices does not allow to apply impulses of high amplitude on the muscle since, if said impulses overcome the compression capacity of the air, the transducer is taken off from the skin and the air escape towards the outside. The repeating of these taking off of the transducer, takes the same frequency of the transmitted pulse, at first causes a reddening of the skin and, after, can even arrive to cut it.
At present, the most commonly used devices for normal applications having therapeutic or aesthetic purpose more simply provide for a mechanical or electromechanical pulse generator having a variable frequency and at least an applicator, which is positioned in direct contact with the skin, in correspondence with the muscle to be treated, said generator and said applicator being connected by means of a system providing for the transmission of the impulse.

In particular, devices are known where this kind of stimulus is given by means of an applicator provided with a plurality of sticks acting with light knocks directly on the skin of the patient, in proximity of the muscle to treat.

This first kind of device was later replaced by devices where a pressure impulse is transmitted by the generator to a volume of air that, through the transmission system, essentially constituted by pneumatic pipes, extends from the generator down to a transducer, namely a hollow body opened on one side, constituting the applicator. The correct application of this device provides for the open section of the transducer to be positioned on the skin of the person undergoing the treatment in such a way to retain the air inside the device by being substantially airtight.

Nevertheless, the known embodiments are affected by a series of drawbacks; in particular, because of their own typology, they have a fundamental limit, namely can be devoted to treat a single muscle at a time.

In fact, the known devices incur in difficulties in the transmission of the pressure pulse, fundamentally involving a progressive lowering of the pulse amplitude, from the generator down to the applicator. This is due to the methods of pulse transmission used up to now.

Further, the known devices does not allow to apply impulses of high amplitude on the muscle since, if said impulses overcome the compression capacity of the air, the transducer is taken off from the skin and the air escape towards the outside. The repeating of these taking off of the transducer, takes the same frequency of the transmitted pulse, at first causes a reddening of the skin and, after, can even arrive to cut it.
As far as the pressure pulses production is concerned, different systems are used in the known devices. In particular, according to one of these systems, the pressure pulse is produced by a piston running inside a cylinder, moved by a system constituted by a connecting rod and by a driving handle connected by a rotary motor. Alternatively, a system constituted by a connecting rod and by a driving handle, connected by a rotary motor, can act on a membrane, which is forced to oscillate inside a pneumatic chamber, each oscillation causing a compression of the air present in the portion of the pneumatic chamber that is addressed to the transmission means.

The two described systems are equivalent for function and yield. Theoretically, they have the advantage of maintaining the pulse amplitude at a constant value, independently from the applied frequency, but, since this depends on the motor rotation velocity, in a ratio of one Hertz for each turn, they have big limitation as far as the maximum reachable frequency is concerned. In fact, in order to reach a pulse frequency of only 50 Hz, motor rotary regimes of 3000 rounds per minute are required.

Therefore, in practice, these pulse generation systems does not allow to produce oscillations having simultaneously the sufficient frequency and amplitude, the determination of a compromise amongst these two quantities becoming necessary. Since the frequency of the oscillations is directly influenced by the kind of treatment to which the muscle to be treated has to be submitted, the pulse amplitude is often sacrificed to the advantage of frequency.

This limit is further amplified, as it was already seen, by the pulse transmission method, because of the compressibility of the used transmission fluid, namely the air, and of the friction effect produced the quick movements of the pulse transmission fluid in contact with the walls of the transmission conduits, causes a further damping of the wave amplitude.

In order to solve these prior art problems, according to the present invention, an apparatus and a method are proposed for the treatment of one or more muscles, or of a same muscle in different places, by means of
the application of a mechanical vibration, namely a series of pressure pulses whose frequency can be modulated according to the necessities, due to the oscillation of a column of a fluid in correspondence of the muscles intersection spots, in proximity of tendons, where the mechanical neuroreceptors of the corresponding muscles are concentrated.

The pulse generator according to the invention provides for particulars schemes allowing obtaining oscillation frequency even if very high, without jeopardizing the amplitude of the produced vibration. Further, the pulses transmission system from the generator to the transducer allows for the reduction to the minimum of the damping of the transmitted wave amplitude.

In particular, in order to activate the connection circuit between muscle and brain, the muscle (or muscles) to which the treatment according to the present invention is applied, must be placed in a light isometric contraction.

In a more specific way, the solution according to the present invention aims at providing an apparatus and a method that can induce, in a very short time, in the neuromuscular system of sane persons, the optimization of tonus and a considerable increase of the force and resistance in physical exercise. Such feature of the device and method according to the present invention comes out to be particularly desirable in the case of athletes, who can obtain very good results by reducing training periods. The optimisation of muscular tonus further allows obtaining desirable results also from an aesthetic point of view.

The same apparatus, applied according to a different methodology, further allows carrying out rehabilitative therapies with interesting functional recovery on persons affected by pathologies of the skeletal muscle system, due to a nervous origin of the central nervous system, a traumatic origin or degenerative processes of the peripheral nervous system (ictus or multiple sclerosis).

In particular, the solution is addressed to aged persons, who, being affected by more or less generalised pains of different nature, are no more able to activate their motor capacity. The device of the present
invention can also be used in the so-called pain therapy (muscular relaxation).

It is therefore a specific object of the present invention an apparatus for the conditioning of muscular fibrils reaction coordination capacity as defined in claim 1.

Further features of the apparatus according to the present invention are specified in the following dependent claims 2 – 22.

Further specific objects of the present invention are the conditioning methods of muscular fibrils reaction coordination capacity defined in claims 23, 24 and 25.

The efficacy of the apparatus according to the invention is self evident, the advantages being in the possibility of maintaining the desired induced oscillation amplitude, without any frequency limitation, the frequency being able to reach values even of 2000 Hz, and consequently to simultaneously treat many muscular districts, possibly on different patients, with the result of an evident operative inexpensiveness in terms of time and consequently of money and by the fact that the oscillatory wave induction is able to transmit directly to the muscles neuroreceptors, and by the consequent ability of obtaining immediate results even with patients able to produce only a little isometric contraction.

Further, the independence of the single transducers gives the possibility of a correct placement on any single area in proximity of the muscle tendons region, where the mechanical neuroreceptors appointed to interact with the oscillatory event are concentrated. This feature allows for the treatment optimisation and for the obtaining of the best results in a very short time.

The present invention is now disclosed, for illustrative but not limitative purposes, according to its preferred embodiments, by particularly referring to the enclosed figures, in which:

- figure 1 shows a schematic view of the apparatus for the conditioning of muscular fibrils reaction coordination capacity according to the present invention,

- figure 2 shows an exploded schematic view of the essential
elements of an apparatus for the conditioning of muscular fibrils reaction coordination capacity according to the present invention, incorporating a first type of flux modulator,

- figure 3 shows the modulation element of the apparatus shown in figure 2,

- figure 4 shows a lateral section view of a second type of flux modulator, for the production of pressure pulses in the apparatus of figure 1,

- figure 5 shows a top plan section view of the flux modulator of figure 4,

- figure 6 shows a top plan section view of a third type of flux modulator, for the production of pressure pulses in the apparatus of figure 1,

- figure 7 shows a front perspective view of a variable volume pneumatic chamber, interposable between the flux modulator and the vibration transmission system according to the present invention,

- figure 8 shows a rear perspective view of the variable volume pneumatic chamber of figure 7,

- figure 9 shows a lateral section view of a fourth type of flux modulator, for the production of pressure pulses in the apparatus of figure 1, incorporating a second type of variable volume pneumatic chamber,

- figure 10 shows a schematic view of a first type of transducer of the apparatus of figure 1, and its connection to the pneumatic chamber of figures 7 and 8,

- figure 11 shows a schematic view of a second type of transducer of the apparatus of figure 1,

- figure 12 shows a section view, along line A-A, of the transducer of figure 11,

- figures 13-16 show schematic views of further kinds of flux modulators, for the production of pressure pulses in the apparatus of figure 1, e

- figure 17 shows a modulation element of the apparatuses shown in figures 13-16.
Referring preliminarily to figure 1, the apparatus 1 for the conditioning of muscular fibrils reaction coordination capacity is constituted by a compressor 2 and a flux modulator 3, for the production of a sequence of pressure pulses, by a plurality of transducers 4, for the application of said pulses on the skin of a user, in correspondence of the muscle or muscles to be treated, by a plurality of pneumatic conduits 5, for the transmission of said pulses from the system constituted by compressor 2 and modulator 3 to the transducers 4. The compressor 2 and the flux modulator 3 are connected through a first pneumatic conduit 6, connected to the compression exit of the compressor 2 and a second pneumatic conduit 7 connected to the aspiration inlet of the same compressor 2.

Figure 2 shows in explosion the essential elements of an apparatus 1 for the conditioning of muscular fibrils reaction coordination capacity according to the present invention. In particular, in the embodiment shown in figure 2, the flux modulator 3 is constituted by a modulation element 8 having a circular shape and a plurality of passages 9 placed in proximity of its perimeter. The modulation element 8 is interposed between the pneumatic conduits 6 and 7 outlets, respectively connected to the compression outlet and to the aspiration inlet of the compressor 2, and a conduit 20 of a first pneumatic chamber 10. Further, the shape and disposition of passages 9 of the modulation element 8 are chosen so that the conduit 20 of the first pneumatic chamber 10 is in communication alternatively with the compression pneumatic conduit 6 or the aspiration pneumatic conduit 7. In this way the first pneumatic chamber 10 undergoes a sequence of compression and aspiration phases, whose frequency is determined by the rotation velocity of the modulation element 8, which in turn is due to the action of a motor 11, provided with control means.

At the end of the first pneumatic chamber 10 which is opposed to the modulation element 8 is placed a second pneumatic chamber 12, having a variable volume and a plurality of connection openings towards the pneumatic conduits 5 and, through them, to the transducers 4, together with it constitutes a closed circuit, inside which a compressed
fluid or an incompressible fluid is located. The second pneumatic chamber 12, a variable volume one, transforms the sequence of compression and aspiration phases to which the pneumatic chamber 10 undergoes as a consequence of the connection determined by the modulation element 8, in a series of mechanic pulses, transmitted through the oscillation of the fluid contained in the closed circuit.

The figure 3 shows an alternative modulation element 8, provided with a first series of passages 9', close to the perimeter of the modulation element 8 and a second series of passages 9", placed in an intermediate position between the centre and the perimeter of the modulation element 8. The function of such a double series of passages is to allow simultaneously the production of pressure pulses with different frequencies, through the same modulator 3. It is possible to connect the first series of passages 9' to a first couple of compression and aspiration pneumatic conduits and the second series of passages 9" to a second couple of compression and aspiration pneumatic conduits. Both couples of compression and aspiration pneumatic conduits can be connected to the same compressor, otherwise to two different compressors.

In the embodiment shown in figures 4 and 5, the flux modulator 3 is constituted by a case 13 inside which a chamber 14 is defined. The chamber 14 is divided, by the modulation element 15, in this case with an annular shape, in two distinct portions, in the central portion of the chamber 14 a rotor 16 being present, in the body of which a first canal 17 and a second canal 18 are realised, respectively connected to a first pneumatic conduit 6, connected to the compression outlet of the compressor 2 and to a second pneumatic conduit 7 connected to the aspiration inlet of the same compressor 2.

The modulation element 15 is provided with a plurality of passages 19. The ends of the first canal 17 (compression) and of the second canal 18 (decompression) are placed substantially in contact with the internal surface of said modulation element 15. The disposition of the ends of canals 17 and 18 with respect to the passages 19 of said modulation element 15 is such that when, during the rotation of the rotor 16, the first
canal 17 is in correspondence of a passage 19 of the modulation element 15, the second canal 18 is in correspondence of an area of the modulation element 15 where no passages 19 are present. This way, the portion of said chamber 14, outside the modulation element 15, is linked, through one of the passages 19 of the modulation element 15 and respectively through said first canal 17 and said second canal 18, alternatively to the compression outlet and to the aspiration inlet of the compressor 2. Consequently, inside the chamber 14 a compression or an aspiration is alternatively produced. Through a conduit 20, connecting the chamber 14 to the pneumatic chamber 10, this sequence of phases is transmitted to the pneumatic chamber 10 and, consequently, by means of the series of devices shown with reference to previous figures, to the transducers 4.

Preferably, according to the present invention, the modulation element 15 is provided with is provided with an odd number of passages 19 and said canals 17 and 18 are placed along radial directions rotated by 180°.

With reference to figure 6, a further embodiment of the flux modulator 3 according to the present invention is shown. The fundamental element of the flux modulator 3 is constituted in this case by a hollow cylindrical stator 41, inside which a cylindrical modulation element 42 is present.

In this case, the conduit 20, connected to the pneumatic chamber 10, the first pneumatic conduit 6, connected to the compression outlet of the compressor 2 and the second pneumatic conduit 7 connected to the aspiration inlet of the same compressor 2 are placed adjacent one to the other to the stator 41, the conduit 20 being placed amongst the others. On the lateral surface of the modulation element 42 a plurality of passages 43 is present, having the shape of a curved cavity excavated in the modulation element 42; dimensions, number and relative distance of said passages 43 being such that, during the rotation of the modulation element 42, each passage 43 is able to link the conduit 20 with one at a time of pneumatic conduits 6 and 7.
In a preferred embodiment, a plurality of sets of three conduits of the same type and function of those shown with reference to figure 6 can be placed on the stator 41, so that each modulator 3 of this type can be used for the independent connection with a plurality of compressors 2 and/or of pneumatic chambers 10.

It can be easily understood that, in the embodiment of the flux modulator 3 shown in figure 2, in that shown in figures 4 and 5, and in that shown in figure 6, it is possible, acting on the rotation velocity of the mobile element with respect to the fixed element, to easily change the pressure pulses frequency in the pneumatic chamber 10. Not only, but the solution proposed also allows to reach without any difficulty frequency that are inconceivable by means of the devices available at present (even up to 2000 Hz maintaining a considerable amplitude).

Figures 7 and 8 show more in detail the variable volume pneumatic chamber 12. It is constituted by a hollow body, having a first face 21 facing the pneumatic conduits 5 and a second face 22 facing the first pneumatic chamber 10 and the flux modulator 3. Said first face 21 is provided with a plurality of openings 23, each being assigned to the airtight application of a pneumatic conduit 5, while said second face 22 is open and is covered with a membrane 24 in elastic material (preferably an Eastover). In such a way, the internal volume of the variable volume pneumatic chamber 12 can decrease or increase in consequence of the succession of the different compression and aspiration phases in the pneumatic chamber 10, but between the pneumatic chambers 10 and 12 a passage of material is not possible.

Figure 9 shows an alternative flux modulator 3, for the production of pressure pulses in the apparatus of figure 1. The modulator 3 at issue comprises a variable volume pneumatic chamber 25, delimited by a rigid upper cover 26 and by a flexible membrane 27. On the upper cover 26 one or more openings 28 are present, for the connection with the pneumatic conduits 5.

At the centre of the membrane 27 the upper portion of a hollow cylindrical piston 29 is placed, the piston being free to run inside a
cylindrical housing 30, realised in the lower part of the flux modulator 3. The cylindrical housing 30 is obtained inside a magnet 31. The lateral surface of the cylindrical piston 29 is covered with a series of coils of an electric cable 32.

Allowing an electric current to pass in the cable 32, the cylindrical piston 29 is attracted or repelled by the magnet 31, depending on the current flow direction, with a force directly proportional to the intensity of the applied electric current.

By alternating the electric current flow direction in the coils, the cylindrical piston 29 is therefore caused to move alternatively up and down, acting on the membrane 27 and consequently lowering or increasing the volume of the pneumatic chamber 25.

In a further embodiment, not shown, the flux modulator is constituted by a body comprising a variable volume pneumatic chamber of the previously seen kind or similar, in which the elastic membrane is replaced by a piezoelectric disc, constituted by piezoelectric ceramic material, fixed to the walls of said pneumatic chamber by means of a couple of metallic rings placed on the perimeter of both faces of said piezoelectric disc, and through supply means of said piezoelectric disc.

With reference to figure 10, a first embodiment of a transducer 4 according to the present invention is shown, together with the connection of the same with the pneumatic chamber 12, through a pneumatic conduit 5.

Transducers 4 are constituted each by a rigid hollow body 33, with an open side on which a membrane 34 is placed and provided with an opening 35 for the connection with the correspondent transmission conduit 5, so that between the pneumatic chamber 12, the pneumatic conduit 5 and the transducer 4 is constituted an airtight closed circuit. The membrane 34 is preferably realised in a hypoallergenic material, being assigned to the application on the epidermis.

With reference to the closed circuit between the pneumatic chamber 12, the pneumatic conduits 5 and the respective transducers 4, an advantage of the solution according to the present invention is due to
the possibility of containing inside this circuit a compressed fluid or also an
incompressible fluid, such as water. In fact, the incompressibility of water
or the substantial incompressibility of other used fluids allows to avoid the
damping to which are otherwise submitted the gases, in particular the air,
commonly used in this kind of devices, during the pulse transmission down
to the transducers 4. Not only, a transducer 4 full of a liquid or compressed
gas does not have shape or amplitude limitations, while the use of non-
compressed air, according to the known solutions, requires for the ratio
between the section of the transmission conduit 5 and that of the
respective transducer 4 not to be too little. An example of a solution that is
possible thanks to the present invention is the realisation of oblong
transducers, which are able to cover the entire muscle, involving a much
higher number of mechanoreceptors or mechanical neuroreceptors than
the transducers of the known kind.

With reference to figures 11 and 12 it is shown a transducer 4,
divided in two chambers 36 and 37 distinct and separate, connected
through respective openings 38 and 39, to two different transmission
conduits 5. The chambers 36 and 37 are divided by means of a wall 40
and are covered each by a sector 34', 34'' of the membrane 34 for
contacting the epidermis.

The advantage of realising multiple chambers transducers 4
consists in the possibility of working at different frequencies on different
sectors of the membrane surface in contact with the epidermis (said
solution combining for example with the embodiment of the pulse
generator rotor shown in figure 3). In fact, it is known that the voluntary
fibres (striated fibres) and the involuntary fibres (smooth fibres) are
sensible to different frequencies (higher for the striated fibres and lower for
the smooth ones).

The transducers 4 can be provided with at least a band (not
shown) in order to securing the keeping in contact with the epidermis and
can be connected to each other in parallel or in series.

Transducers 4 can be connected with said pulse production
means so to work in an asynchronous way.
Figures 13-16 show some alternative embodiments of the flux modulator 3, wherein the pressure circuit and the aspiration circuit are kept separated from each other down to the single connection points 44 with different pneumatic conduits 5. In particular, figure 13 shows a solution in which a rotor 45 and a rotor 46 are present connected respectively on the delivery and on the aspiration of a compressor 47. The rotation of the rotors 45 and 46 is synchronised by means of cogwheels 48 and 49, in contact with each other and respectively integral with the rotors 45 and 46. The realised configuration is such that when the rotor 45 on the pressure line is operative (allows the passage of the pressure fluid), then the rotor 46 on the aspiration line is not operative (passage is prevented). On the pressure and the aspiration line are also shown respective pneumatic chambers 50 and 51, having a variable number of outlets.

In figure 14 it is shown an embodiment in which the rotor on the aspiration line is not present. In this case the aspiration will work continuously.

Figures 15 and 16 respectively correspond to figures 13 and 14, but are connected to a single pneumatic conduit 5, by making the presence of the pneumatic chamber superfluous. This solution is particularly convenient for using the apparatus in the pain therapy.

Figure 17 shows an alternative embodiment of the fundamental element of the flux modulator 3, and is constituted in this case by a hollow cylindrical stator 52, inside which a cylindrical shape modulation element 53 is present, crossed by a plurality of radial passages 54. Finally, the inlet conduit 55 and the outlet conduit 56 are shown.

The preferred use of water as a means of transmission of the vibration is due to a series of considerations. First, at the working preferred frequencies of the apparatus according to the present invention, namely frequencies typical of sound waves, the produced pulse propagation velocity is about 320 m/s in the air and about 700 m/s in the water (in the human body the propagation velocity is about 1500 m/s). Since the main problem of this kind of devices consists in the damping of the amplitude of the vibration at the increase of the transmission conduit
length, the water presents the first advantage of compensating this
dropping with a higher propagation velocity.

The apparatus 1 can further comprise means for regulating the
frequency of the vibration and/or means for detecting the muscular
reaction to the given impulses, said means for regulating the frequency
being automatically regulated by said means for detecting the muscular
reaction.

Further, the apparatus 1 can comprise means of automatic
elaboration of the vibration frequency cycles.

The frequency of the vibrations applied by means of the apparatus
1 is generally lower than 400 Hertz, preferably is comprised between 10
and 400 Hertz and more preferably is comprised between 40 and 200
Hertz.

The disclosed apparatus allows the conditioning of muscular fibrils
reaction coordination capacity by means of a motor exciter pulse, obtained
through the application on the muscle in isometric contraction of a
mechanical vibration, where the vibration has a frequency comprised
between 1 and 400 Hz and is applied in one or more different areas of the
same muscle or of different muscles.

Further, the apparatus 1 allows for the application on the muscle in
isometric contraction of a mechanic vibration, having a frequency
comprised between 60 and 150 Hz and is applied in one or more different
areas of the same muscle or of different muscles.

Finally, the apparatus 1 allows for the conditioning of muscular
fibrils reaction coordination capacity by means of the application on the
muscle in isometric contraction of a mechanical vibration, having a
frequency comprised between 1 and 400 Hz and is applied in one or more
different areas of the same muscle or of different muscles.

The present invention was disclosed for illustrative, but not
limitative purposes, according to its preferred embodiments, but it is to be
understood that any variation and/or modification can be introduced by
those skilled in the field without for this reason departing from the related
protection scope, as defined by the enclosed claims.
CLAIMS

1. Apparatus for the conditioning of muscular fibrils reaction coordination capacity in consequence of an original motor exciter pulse, by means of the application on the muscle in isometric contraction, even a light contraction, of a succession of mechanic pulses, comprising means for the production of pressure pulses, means for the application of said pulses on the epidermis in correspondence of the muscle and means for the transmission of said pulses from said production means to said application means, characterised in that said application means and said means for the transmission of said pulses from said production means to said application means constitute a closed circuit inside which a compressed fluid or a substantially uncompressible fluid is present.

2. Apparatus according to claim 1, characterised in that said uncompressible fluid is water.

3. Apparatus according to any of claims 1 and 2, characterised in that said transmission means comprise at least a flexible pneumatic conduit and a variable volume pneumatic chamber, having a hollow rigid body, open on a side, on which an elastic membrane is placed with airtight, with at least an opening on the rigid body of the chamber for airtight connection with said at least one pneumatic conduit, said membrane being stressed directly or indirectly by said pressure pulses production means.

4. Apparatus according to any of previous claims, characterised in that said pressure pulses production means comprise at least a flux modulator.

5. Apparatus according to claim 4, characterised in that said pressure pulses production means further comprise a compressor and said flux modulator comprises a modulation element provided with a plurality of communication passages between a conduit of said pneumatic chamber on one side and a compression conduit and a decompression conduit on the other side, said compression and decompression conduits being respectively connected to the compression outlet and to the aspiration inlet of said compressor, the ends of said compression and
decompression conduits being substantially in contact with the surface of said modulation element, said modulation element being in relative movement with respect to said conduits so that the passages of said modulation element and the ends of said conduits are respectively placed in such a way that when one of the two compression and decompression conduits is placed in correspondence of a passage of the modulation element, therefore in connection with said conduit of said pneumatic chamber, the other of the two conduits is in correspondence of an area of the modulation element without passages.

6. Apparatus according to claim 5, characterised in that said compression conduit and said decompression conduit are placed on a rotating element, turning about an axis in coincident with the centre of said modulation element, said modulation element being provided with an odd number of passages.

7. Apparatus according to claim 5, characterised in that said compression conduit and said decompression conduit are fixed, said modulation element turning with respect to them.

8. Apparatus according to claim 4, characterised in that said flux modulator is constituted by a body comprising said variable volume pneumatic chamber, on the elastic membrane of which, externally to the pneumatic chamber, inside a cylindrical housing obtained inside a magnet, is placed a hollow cylindrical piston, at least partially covered with one or more coils of an electric cable and oscillatory moving, along said housing, in a direction perpendicular to that of development of the oscillating membrane, said oscillatory movement being produced by the passage of an alternative electric current in said electric cable.

9. Apparatus according to claim 4, characterised in that said flux modulator is constituted by a body comprising said variable volume pneumatic chamber, wherein the elastic membrane is replaced by a piezoelectric disc, constituted by a piezoelectric ceramic material, affixed to the walls of said pneumatic chamber by means of a couple of metallic rings placed on the perimeter of the two faces of said piezoelectric disc, and by means of supply of said piezoelectric disc.
10. Apparatus according to the previous claims, characterised in that said means for the application of said pulses on the epidermis comprise one or more transducers consisting each of a body having rigid walls, replaced on the side to be applied to the epidermis by a membrane, said walls and said membrane forming at least a storage chamber of said fluid, having an opening for the connection with said transmission means.

11. Apparatus according to claim 10, characterised in that said one or more transducers comprise a plurality of divided chambers, each independently connected with said transmission means and, through them, with different means for the production of said vibration.

12. Apparatus according to the previous claims characterised in that said means for the application of said pulses on the epidermis further comprise at least a band to maintain them in touch with the epidermis.

13. Apparatus according to claims 10-12, characterised in that, in the case of a plurality of transducers, they are connected to each other in parallel.

14. Apparatus according to claims 10-12, characterised in that, in the case of a plurality of transducers, they are connected to each other in series.

15. Apparatus according to claims 10-14, characterised in that, in the case of a plurality of transducers, they are independently connected to one or more variable volume pneumatic chambers.

16. Apparatus according to claim 14, characterised in that said transducers are connected with said pulse production means so to work in an asynchronous way.

17. Apparatus according to any of the previous claims, characterised by further comprising means for regulating of the vibration frequency.

18. Apparatus according to any of previous claims, characterised by further comprising means for detecting the muscular reaction to given stimulus.
19. Apparatus according to claims 17 and 18, characterised in that said means for regulating the frequency are automatically regulated by said means for detecting the muscular reaction.

20. Apparatus according to any of previous claims, characterised by further comprising means for the automatic elaboration of the vibration frequency cycles.

21. Apparatus according to the previous claims, characterised in that the vibration frequency is lower than 400 Hertz.

22. Apparatus according to the previous claims, characterised in that the vibration frequency is comprised between 10 and 400 Hertz.

23. Apparatus according to the previous claims, characterised in that the vibration frequency is comprised between 40 and 200 Hertz.

24. Method for the conditioning of muscular fibrils reaction coordination capacity in consequence of an original motor exciter pulse, by means of the application on the muscle in isometric contraction of a mechanic vibration, characterised in that said vibration has a frequency comprised between 1 and 400 Hz and is applied in one or more separated areas of the same muscle or of different muscles, possibly with different frequencies.

25. Method for the conditioning of muscular fibrils reaction coordination capacity in consequence of an original motor exciter pulse, by means of the application on the muscle in isometric contraction of a mechanic vibration, characterised in that said vibration has a frequency comprised between 60 and 150 Hz and is applied in one or more separated areas of the same muscle or of different muscles, possibly with different frequencies.

26. Method for the conditioning of muscular fibrils reaction coordination capacity in consequence of an original motor exciter pulse, by means of the application on the muscle in isometric contraction of a mechanic vibration, characterised in that said vibration has a frequency comprised between 1 and 400 Hz and is applied in one or more separated areas of the same muscle or of different muscles, possibly with different frequencies.
FIG. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>A61H9/00</th>
<th>A61H23/00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td>A61H23/02</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Maximum documentation searched (classification system followed by classification symbols)

| A61H | A61B | A61N |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DATABASE WPI</td>
<td>1, 2, 4, 5, 10</td>
</tr>
<tr>
<td></td>
<td>Section PQ, Week 199418</td>
<td>12-17, 21-23</td>
</tr>
<tr>
<td></td>
<td>Derwent Publications Ltd., London, GB; Class P36, AN 1994-149082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XP002376461 & SU 1 797 494 A3 (TEBIOM RES PRODN COOP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 February 1993 (1993-02-23)</td>
<td>8, 9, 18-20</td>
</tr>
<tr>
<td></td>
<td>column 5, line 27 - line 52; figure 1</td>
<td>3, 6, 7, 11</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 072 724 A (MARCUS ET AL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17 December 1991 (1991-12-17)</td>
<td>1, 2</td>
</tr>
<tr>
<td></td>
<td>column 4, line 61 - line 66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 6, line 65 - column 7, line 26; figures</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search: 11 April 2006

Date of mailing of the international search report: 26/04/2006

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HT Rijswijk Tel. (+31-70) 540-2040, Fax. (+31-70) 540-2016

Authorized officer: Michels, N
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2004/037155 A (OGAWA, HIDEKAZU; YAMASHITA, TETSUHIRO; CHIJIMATSU, YOSHIHIRO; OGINO, T) 6 May 2004 (2004-05-06)</td>
<td>8, 9</td>
</tr>
<tr>
<td>A</td>
<td>FR 2 652 499 A (FOUCHIER PATRICK) 5 April 1991 (1991-04-05) page 3, line 23 - page 4, line 7; figure 1</td>
<td>1-20</td>
</tr>
</tbody>
</table>
Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **X** Claims Nos.: 24-26 because they relate to subject matter not required to be searched by this Authority, namely:

 Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

2. **☐** Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. **☐** Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. **☐** As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. **☐** As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. **☐** As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. **☐** No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- **☐** The additional search fees were accompanied by the applicant’s protest.
- **☐** No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SU 1797494</td>
<td>A3</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5072724</td>
<td>A</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2004037155</td>
<td>A</td>
<td>AU 2003268691 A1</td>
<td>13-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2503537 A1</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1691928 A</td>
<td>02-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1561446 A1</td>
<td>10-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004141384 A</td>
<td>20-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005187071 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2503537 A1</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1691928 A</td>
<td>02-11-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004037155 A1</td>
<td>06-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004141384 A</td>
<td>20-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005187071 A1</td>
<td>25-08-2005</td>
</tr>
<tr>
<td>FR 2652499</td>
<td>A</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>