0678 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

6 February 2003 (06.02.2003) PCT WO 03/010678 A1l

(51) International Patent Classification”: GO6F 15/16 (74) Agents: LUTTON, Katherine, Kelly et al; Fish &
Richardson, P.C., 500 Arguello Street, Suite 500, Red-

(21) International Application Number: PCT/US02/23417 wood City, CA 94063 (US).
(22) International Filing Date: 22 July 2002 (22.07.2002) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(25) Filing Language: English AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
’ CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
(26) Publication Language: English HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,

(30) Priority Data:

09/911,902 23 July 2001 (23.07.2001) US

(71) Applicant: AUSPEX SYSTEMS, INC. [US/US]; 2800
Scott Boulevard, Santa Clara, CA 95050 (US).

(72) Inventors: GADIR, Omar, M., A.; 1527 Grackle
Way, Sunnyvale, CA 94087 (US). SUBBANNA, Kar-
tik; 737 Golden Oak Court, #8, Sunnyvale, CA 94086
(US). VAYYALA, Ananda, R.; 20030 Rodrigues Av-
enue, #C, Cupertino, CA 95014 (US). SHANMUGAM,
Hariprasad; 3655 Pruneridge Avenue, Apt. 65, Santa
Clara, CA 95051 (US). BODAS, Amod, P.; 444 Saratoga
Avenue #8H, Santa Clara, CA 95050 (US). TRIPATHY,
Tarun, Kumar; 40301 Strawflower Lane, Fremont, CA
94538 (US). INDURKAR, Ravi, S.; 2909 Rubino Circle,
San Jose, CA 95125 (US). RAO, Kurma, H.; 2250
Monroe Street, Apt. 228, Santa Clara, CA 95050 (US).

LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
TI, ™M, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: HIGH-AVAILABILITY CLUSTER VIRTUAL SERVER SYSTEM

(57) Abstract: Systems and methods, including computer program products, providing high-availability in server systems. In one
implementation, a server system is cluster of two or more autonomous server nodes, each running one or more virtual servers. When
~~ a node fails, its virtual servers are migrated to one or more other nodes. Connectivity between nodes and clients is based on virtual
IP addresses, where each virtual server has one or more virtual IP addresses. Virtual servers can be assigned failover priorities, and,
in failover, higher priority virtual servers can be migrated before lower priority ones. Load balancing can be provided by distributing
virtual servers from a failed node to multiple different nodes. When a port within a node fails, the node can reassign virtual IP
addresses from the failed port to other ports on the node until no good ports remain and only then migrate virtual servers to another

node or nodes.

10

156

20

25

30

WO 03/010678 PCT/US02/23417

HIGH-AVAILABILITY CLUSTER VIRTUAL SERVER SYSTEM

BACKGROUND OF THE INVENTION

The invention relates to high-availability file server systems, which are
colloquially referred to as file servers.

High-availability server systems are systems that continue functioning even
after a failure of system hardware or software. The usual way of providing high
availability is to duplicate system components. If some component becomes
unavailable, another can be used instead. Robust, high-availability systems have no
single point of failure. A single point of failure is a component whose failure renders
the system unavailable. High-availability file server systems generally consist of a
cluster of two or more servers (nodes). The nodes of a cluster have network
connections between themselves and clients, and each node is connected, directly or
indirectly, to one or more disk storage units.

A high-availability implementation can be based on a shared-disk model or a
non-shared-disk model. In the shared-disk model, data is simultaneously shared by
cluster nodes and a lock manager is used for access control. In the non-shared-disk
model, access to data is shared; but at any point in time, each disk volume is
permanently owned by one of the nodes. The shared-disk model is the approach most
commonly used. When disks are not shared, data has to be replicated between two
sets of unshared disks which adds some risk and complexity.

Nodes in a high-availability system typically consist of one or more
instruction processors (generally referred to as CPUs), disks, memory, power
supplies, motherboards, expansion slots, and interface boards. In a master-slave
design, one node of the system cluster is called the primary or master server and the
others are called the secondary, takeover, or slave servers. The primary and
secondary nodes have similar hardware, run the same operating system, have the same
patches installed, support the same binary executables, and have identical or very
similar configuration. The primary and secondary nodes are connected to the same
networks, through which they communicate with each other and with clients. Both
kinds of nodes run compatible versions of failover software. In some configurations,

in addition to shared disks, each node has its own private disks. Private disks

10

15

20

25

30

WO 03/010678 PCT/US02/23417

typically contain the boot information, the operating system, networking software and
the failover software. In some implementations the private disks are mirrored, or a
redundant disk is provided.

The nodes of the system continuously monitor each other so that each node
knows the state of the other. This monitoring can be done using a communication
link called a heartbeat network. Heartbeat networks can be implemented over any
reliable connection. In many implementations heartbeat is based on an Ethernet
connection. A heartbeat network can also be implemented using something like a
serial line running a serial protocol such as PPP (Point-to-Point Protocol) or SLIP
(Serial Line Internet Protocol). Heartbeat can also be provided through shared disks,
where a disk, or disk slice, is be dedicated to the exchange of disk-based heartbeats.
A server learns about a failure in a heartbeat partner when the heartbeat stops. To
avoid single points of failure, more than one heartbeat network can be implemented.
Some implementations run the heartbeat on a private network (i.e., a network used
only for heartbeat communications); others, on a public network. When a heartbeat
stops, failover software running on a surviving node can cause automatic failover to
occur transparently.

After failover, the healthy node has access to the same data as the failed node
had and can provide the same services. This is achieved by making the healthy node
assume the same network identity as the failed node.and granting the healthy node
access to the data in the shared disks while locking out the failed node.

NICs (Network Interface Cards) fail from time to time. Some
high-availability systems have redundant network connectivity by providing backup
NICs. NICs can have one or more network ports. In the event of a network port
failure, the network services provided by the failed network port are migrated to a
backup port. In this situation, there is no need for failover to another node.
Redundant network connectivity can be provided for both public and private heartbeat
networks.

Some high-availability systems support virtual network interfaces, where more
than one IP (Internet Protocol) address is assigned to the same physical port. Services
are associated with network identities (virtual network interfaces) and file systems
(storage). The hardware in a node (physical server) provides the computing resources
needed for networking and the file system. The virtual IP address does not connect a

client with a particular physical server; it connects the client with a particular service

10

15

20

25

30

WO 03/010678 PCT/US02/23417

running on a particular physical server. Disks and storage devices are not éssociated
with a particular physical server. They are associated with the file system. When
there is a failure in a node, the virtual network interfaces and the file system are
migrated to a healthy node. Because these services are not associated with the
physical server, the client can be indifferent as to which physical server is providing
the services. Gratuitous ARP (Address Resolution Protocol) packets are generated
when setting a virtual IP address or moving a virtual IP address from one physical
port to another. This enables clients, hubs, and switches to update in their cache the
MAC (Media Access Control) address that corresponds to the location of the virtual
IP address.

All failovers cause some client disruption. In some cases, after failover is
completed, the system has less performance than before failover. This can occur
when a healthy node takes the responsibility of providing services rendered by the

failed node in addition to its own services.

SUMMARY OF THE INVENTION

In general, in one aspect, the invention provides high-availability cluster
server systems having a cluster of two or more autonomous servers, called nodes or
physical servers, connected to storage devices, and computer program products and
methods for operating such systems. One of the nodes is the master and the rest are
the slaves. Each node runs one or more virtual servers. A virtual server consists of
network resources and file systems. When one of the nodes fails, its virtual servers
are transparently transferred to one or more other nodes. This is achieved by
providing two sets of seamless connectivities. The first set is between the nodes and
the clients. The second is between the nodes and the storage systems. The first
connectivity is based on virtual IP technology between clients and the nodes. The
second connectivity, the backend connectivity, can be implemented using Fibre
Channel, SCSI (Small Computer System Interface), iSCSI (Small Computer Systems
Interface over IP), InfiniBand™ Architecture, or any other such technologies, or using
a combination of them.

Nodes communicate with each other through a heartbeat network to determine
the health of each other. The heartbeat can operate over an IP or a SAN (Storage
Area Network) infrastructure, or over both, to determine the availability of nodes. If

10

15

20

25

30

WO 03/010678 PCT/US02/23417

one of the nodes or one of its components fails so that a virtual server running in that
node goes down, failover occurs.

In a failover, the virtual sever of the failed node is migrated to another node.
Under certain failure conditions, the seamless connectivities and redundant hardware
and software components allow access to the file system to be maintained without
invocation of the failover process. Virtual servers can be assigned priorities and
higher priority virtual servers can be brought up before lower priority ones following
failover. Load balancing can be provided by distributing virtual servers from a failed
node to multiple different nodes.

In general, in another aspect, the invention provides systems, programs, and
methods where more than one virtual server resides on a single physical server. Each
virtual server exclusively owns one or more file systems and one or more virtual IP
addresses, and it cannot see resources that are exclusively owned by other virtual
servers. Virtual servers are managed as separate entities and they share physical
resources on a physical server.

In general, in another aspect, the invention provides systems, programs, and
methods where services that are not important can optionally not be migrated from a
failed node. Setting priorities of virtual servers and preventing migration of less
important virtual servers can be done by administrator configuration.

In general, in another aspect, the invention provides systems, programs, and
methods where the loading of nodes is monitored so as to identify nodes that are less
loaded than others. This information is used to perform load balancing. After
failover, virtual servers are migrated to nodes that are less loaded in preference to
nodes that are more heavily loaded. Because nodes can support multiple virtual
servers, load balancing can be performed in this way during normal operation as well,
even in the absence of a failure.

In general, in another aspect, the invention provides systems, programs, and
methods where, to minimize occurrence of failover, each node has multiple network
ports within a single subnet or within different subnets. (A subnet is a portion of a
network that shares a common address component by providing the IP address with
the same prefix.) If one of the ports fails, services are moved to one of the surviving
ports. This allows multiple network port failures to occur without invocation of

failover, so that failover occurs only when there is no surviving port.

10

15

20

25

30

WO 03/010678 PCT/US02/23417

Implementations of the invention can realize one or more of the following
advantages. Failover used only as a last resort, and consequently the disruption
caused by failover to the accessibility of services is limited. Total system
performance is improved through load balancing. Total system performance is
improved through the optional elimination of low priority services when a failure
occurs.

The details of one or more implementations of the invention are set forth in the
accompanying drawings and the description below. Other features and advantages of
the invention will become apparent from the description, the drawings, and the

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a black diagram of a high-availability server system according to one
aspect of the present invention.

FIG. 2 is a diagram illustrating how network failover is used prior to virtual
server failover.

FIG. 3 is an embodiment of the invention based on network failthrough before
virtual server failover.

FIG. 4 is the same embodiment illustrated in FIG. 3 after failover.

FIG. 5 illustrates a storage infrastructure for a high-availability server cluster.

FIG. 6 is a flowchart illustrating initialization of a high-availability server
cluster.

FIG. 7 is a flowchart illustrating network port failure recovery.

FIG. 8 is a flowchart illustrating bringing down of a virtual server.

FIG. 9 is a flowchart illustrating bringing up a virtual server.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION
FIG. 1 illustrates the components of a high-availability server in accordance
with the invention. The server has a cluster of nodes, Node A 101, Node B 102, ...,
Node J 103. Each node has one or more virtual servers. Node A has nl virtual
servers labeled VSA1, VSA2, ... VSAnl. Node B has n2 virtual servers labeled
VSBI1 VSB2, ... VSBn2. Node J has n3 virtual servers labeled VSI1, VSJI2, ..., and

VSJn3. Each node is connected to one or more storage systems over a storage

10

15

20

25

30

WO 03/010678 PCT/US02/23417

network 110. The server has some number of storage systems 121, 122, 123. As
shown in FIG. 1, each virtual server owns one or more file systems 121a, 121b, 121c,
122a, 122b, 122¢, 123a, 123b, 123c. There is a shared disk 124 that is accessible to
all the nodes. This shared disk is called the scribble disk; it contains status and
configuration data. The storage network 110 can be Fibre Channel, SCSI, iSCSI,
InfiniBand or any other such technologies. Clients 105, 106 and 107 are connected to
the nodes through one or more networks 104 such as Network 1, Network 2, ...
Network N. Each node has at least one physical port, and more than one virtual
address can reside on the same physical port. The RAID storage interface 112
provides logical volume support to all the nodes. Each logical volume can be made
up of multiple disks — for example, in RAID 0, 1, 5, 140, or 5+0 configurations.

Virtual servers OWn file systems and virtual IP addresses exclusively of other
virtual servers. They share the other physical resources on a physical server. Virtual
servers cannot see resources that are exclusively owned by other virtual servers, and
they are managed as separate entities. Using virtual servers to group resources
(virtual IP addresses and file systems) facilitates moving resources during failover and
is more efficient than handling each resource individually.

Each node can have multiple network ports, also called physical IP ports
(PIPs). If one port fails, the node will recover as long as there are healthy network
ports on the node. Failure of the last port on a node causes failover to a healthy node.

A node in the cluster can act as either a master or a slave. There is only one
master; the rest of the nodes are slaves (or, being in a state of transition, for example,
be neither). The master coordinates the activities of the slaves. The slaves report the
resources they control to the master. The slave servers are only aware of their own
resources and state. The master maintains state information for the entire cluster. It
also maintain information about the loading of the servers, which is used during load
balancing, in which the system attempts to divide its work more or less evenly among
the healthy nodes.

During normal operation each node measures its CPU usage and its total

number of IOPS (“I/O operations per second”). The number of IOPS indicates the

total load on the node when accessed by clients. This information is communicated to
the master by way of the shared disk or network. When the CPU usage and/or the
number of IOPS on a particular node exceeds a threshold, the master will examine the

loading of other nodes. If there are nodes in the system that can handle more work,

10

15

20

25

30

WO 03/010678 PCT/US02/23417

the master will migrate some of the virtual servers to them. The objective is to divide
the work more or less evenly among the healthy nodes. The threshold for CPU and/or
TOPS loads at which load balancing is triggered is a configurable parameter that can
be controlled through an administration interface to the system.

Within the same node, load balancing across the network ports can optionally
be performed by redistributing virtual interfaces among healthy network ports.
Software in the node monitors the load on the physical ports of the node. If one port
is handling substantially more network traffic than other ports, some of its virtual
interfaces are moved to ports that are less busy. The selection of which virtual
interface or interfaces to move can be based on how much traffic each of the virtual
interfaces is carrying.

In the cluster, the resources are monitored by a heartbeat protocol that
operates over the network connection between nodes and over the shared disk to
determine the availability of each server. A node knows about the failure of another
node when it stops receiving heartbeat messages. Heartbeat over the network
connection is based on the master probing the slaves using pings and/or RPC (Remote
Procedure Call) calls. Pings can be implemented on either private or public networks.
Heartbeat based on RPC can be sent using public networks.

If the master does not receive a response from a slave within a specified time
(e.g., 3 sec), then the slave cannot be reached or there may be other problems with the
slave. If the master stops sending pings or RPC, the slaves assume that the master
could not be reached or that there may be other problems with the master. When one
of the surviving nodes in the cluster determines that there are connectivity or other
problems with one of the nodes, the surviving node must still determine whether the
other node is really dead or is simply unreachable.

After heartbeat through ping and/or RPC detects node failure, heartbeat
through shared disk is used to find out whether the failed node is really dead or just
unreachable. If the dead node is the master, one of the slaves becomes the new master.
To handle the possibility of a loss of all network connections, heartbeat through a
shared disk (scribble disk) is implemented. Nodes exchange information about their
status by scribbling, in other words, by writing to, and reading the scribble disk. The
scribbling period for masters and slaves changes with the state of the cluster. During
normal operation the master scribbles slowly, e.g., at the rate of one scribble per 60

second. When the master loses a slave it scribbles faster, e.g., at the rate of one

10

15

20

25

30

WO 03/010678 PCT/US02/23417

scribble every 3 seconds. A slave that is controlled by a master does not scribble. A
slave that recently lost a master scribbles quickly, e.g., at the rate of one scribble
every 3 seconds. A node that is neither a master nor a slave scribbles slowly, e.g., at
the rate of once every 60 seconds.

FIG. 2 illustrates how one implementation deals with network failure. If a
node has multiple network ports and if one of the ports fails, the node recovers
without failover. FIG. 2 shows Node 1, Node 2, ..., Node N. Node 1 has nl network
ports labeled 1PIP1, 1PIP2, 1PIP3, ..., 1PIPn-1, 1PIPnl. Node 2 has n2 network ports
labeled 2PIP1, 2PIP2, 2PIP3, ..., 2PIPn2. Node N, has nn ports labeled NPIP1,
NPIP2, NPIP3, ..., NPIPnn. As an example, assume that node 1 has a virtual IP
address, VIP1, that is attached to a virtual server. When port 1PIP1 fails, VIP1 is
moved to 1PIP2, as shown by the arrow. This will not cause failover because it is
within the same Node 1. The same happens when 1PIP2, 1PIP3, ... 1PIPn-1 fail.
However, when 1PIPn1 fails, after all the other PIPs on Node 1 have failed, and
failover occurs and VIP1 is moved to 2PIP1 in Node 2. The same happens for other
nodes; that is, a virtual IP address moves to another physical port within the same
node and failover occurs only when all the physical ports in the current node fail.
Within a node or otherwise, a virtual IP address can be moved to a port within the
same subnet as the failed port or to a port in a different subnet. In one
implementation, a port within the same subnet will be selected in preference to a port
in a different subnet.

In the preceding example, the virtual server was described as having only one
virtual IP address. However, a single virtual server can be attached to more than one
virtual IP address, and a node can have many physical and virtual IP addresses.

FIG. 3 and FIG. 4 illustrate another technique for moving virtual network
interfaces without forcing failover. The diagrams show two nodes running two sets of
virtual servers: VSAL, ..., VSAnl and VSBI, ..., VSBn2. InFIG. 3, two virtual IP
addresses, VA11 and VA12, are attached to the virtual server VSA1. To simplify the
diagram, virtual IP addresses attached to the other virtual servers are not shown. Netl
and Net2 are different subnets. Client 305 is a client connected to Net 1 and client
306 is a client connected to Net 2. HB1 and HB2 are network hubs or switches.
Client 306 communicates with the virtual servers in Node A over Net2.

FIG. 4 shows what happens when communication over Net2 fails. Virtual IP
address VA12 is migrated from Node A 310 to the physical port PIP3 in Node B 320.

10

15

20

25

30

WO 03/010678 PCT/US02/23417

Network failthrough is used rather than virtual server failover, because it is less
disruptive to clients. As mentioned earlier, gratuitous ARP packets are generated
whenever a virtual IP address is attached to a physical interface and when a virtual
address is migrated to another interface.

As shown in FIG. 4, after the failure of Net2, data from client 306 is received
by Node B through PIP3, to which VA12 has been migrated. Routing software 322 in
Node B forwards the data to Node A by way of PIP4. Data from Node A is
forwarded through PIP1 to client 306 by way of PIP4 and PIP3 in Node B.

In one implementation that supports NFS file systems, NFS file locks are
stored in the shared disk. Each virtual server owns the corresponding NFS$ file locks.
During failover, ownership of the locks follows the virtual servers. Thus, the virtual
servers and the corresponding NFS locks are migrated to a healthy node. Asa
consequence there is no need for the clients to manage NFS locks.

FIG. 5 elaborates the underlying storage infrastructure upon which a cluster is
built. Nodes 700, 702, ..., and 770 are the nodes of a cluster. These nodes can deploy
bus adapters, of appropriate protocol, to connect to a shared storage bus or fabric 704,
such as a SCSI, Fibre Channel Arbitrated Loop, Fibre Channel fabric, InfiniBand,
iSCSI, or other suitable bus or fabric. Multiple links 706 and 708, 710 and 712, 720
and 722 connect each node to the shared bus or fabric 704. Such multiple links
enable the system to tolerate one link failure. Further links can be provided. Shared
storage units (multiple storage systems) 718 can be one or more fault tolerant shared
storage units (such as RAID 5 or RAID 1 arrays) that are connected to the bus or
fabric 704 by at least two links 714 and 716. This infrastructure will survive a single
point of failure. Multiple failures could result in complete loss of access to the shared
storage units 718.

In one advantageous implementation, dual Fibre Channel arbitrated loop host
bus adapters in the cluster nodes connect to dual Fibre Channel arbitrated loops. This
enables Fibre Channel targets such as FC-AL (Fibre Channel — Arbitrated Loop)
RAID (Redundant Array of Independent Disks) boxes to be attached to the Fibre
Channel arbitrated loop host. Shared storage units, such as RAID 5 (parity) or RAID
1 (mirror) arrays, are defined on the RAID box.

The shared storage units 718 are accessible from each cluster node but
generally by different routes for the different nodes. Thus, it is advantageous to

recognize each shared storage unit on each node with a cluster-wide name. This

10

(3

20

25

30

WO 03/010678 PCT/US02/23417

obviates difficulties in binding a device name to shared storage space when local
device names are used, which are reflective of the route information, because routes
to the same storage space could be different on different cluster nodes. To achieve
this, a unique identifier associated with each shared storage unit 718 is used. A
suitable identifier is the World Wide ID (WWID) of a FC RAID controller, upon
which shared storage units 718 are defined. A globally-accessible name server
database is used to associate a administrator-chosen name with the unique identifier of
each shared storage unit. The database can be stored in any convenient,
globally-accessible location, such as in the scribble disk or in a server outside the
cluster but accessible to all cluster nodes. The name server is consulted by the cluster
nodes after they have discovered the shared storage unit and have inquired about the
shared storage unit’s unique identifiers. By consulting the name server, the cluster
nodes resolve the shared storage units (of which there can be, and generally are, more
than one) to cluster-wide device names.

Because cluster nodes have multiple paths to the shared storage unit, it is
advantageous to perform load balancing by alternating I/O (that is, input/output or
data transfer) requests to the same shared storage unit, but by different routes. For
example, cluster node 700 can load balance by alternating data transfer requests
between links 706 and 708. This benefits the cluster node by increasing the overall
bandwidth available to access the shared storage unit.

The design can be configured to survive a single or more points of failure.
The robustness of the design depends three factors. The first is the number of links
between each node and the shared storage bus or fabric 704. The second factor is the
number of links between the shared storage bus or fabric 704 and the data storage
units 718. With only two links between each pair of elements, as shown in FIG. 5, the
design can tolerate a single point of failure. With multiple bus adapters in a cluster
node, a bus adapter can fail and data transfer requests to the shared storage unit can
continue at half bandwidth performance. Associated physical interfaces (such as
cables) can also fail. Any single point failure of a cable is tolerated similarly. Single
point of failure tolerance, due to the number of links being two, can be improved to
better tolerance by increasing the number of links. The shared storage units are fault
tolerant RAID arrays that can tolerate failure of a member drive. If multiple RAID
controllers are used to control the same shared storage unit, then a failure of a RAID

controller is tolerated.

10

10

15

20

25

30

WO 03/010678 PCT/US02/23417

Shared storage units are protected by node ownership locking to guarantee
exclusive node usage. Each node is aware of the shared storage unit ownership of the
other nodes. If it determines that a shared storage unit is owned by some other node,
it marks the shared storage unit as unusable on that node.

Storage abstraction such as virtual storage technology allows nodes to span a
virtual storage unit across multiple shared storage units. This improves fault tolerance
as well as performance. Virtual storage devices are created on nodes using multiple
shared storage units. These virtual storage devices are able to span across multiple
shared storage units, controlled by different storage controllers, and support efficient
data protection and data transfer performance features. The virtual storage devices
can be concatenations, mirrors, or stripes of multiple shared storage units.

The advantage that a concatenation provides is expansion of capacity. When a
shared storage unit is concatenated with another shared storage unit, the second
shared storage unit is used when the first one is full.

With stripes of shared storage units, sequential I/O requests alternate among
the various member shared storage units. Striped virtual storage devices provide
expansion as well as performance. Because data transfer requests are distributed in
parallel across different shared storage units, a node experiences higher throughput as
compared to use of a single shared storage unit.

With a virtual storage mirror (RAID 1) of 2 different shared storage units, I/O
operations are duplicated on each member shared storage unit. Read operations from
a mirror are enhanced by reading from the member with a predetermined least seek
time. Mirror synchronization is automatic when it is determined that a mirrof was
damaged and the damaged member was correctly replaced. A mirrored virtual
storage device gives an extra layer of fault tolerance by tolerating the complete loss of
a shared storage unit. By deploying mirrored virtual storage devices, the fault
tolerance capability of the cluster is increased two-fold.

FIG. 6 illustrates the initialization of a high-availability system in accordance
with the invention. In step 1100, all the nodes in the system cluster are configured to
point to the same shared storage unit, which will be used as the scribble disk. In step
1101, one node is assigned to initialize the scribble disk. Initialization involves
extracting data from a configuration file. In step 1102, the high-availability software
is started in one of the nodes. This node becomes the master server for the cluster. In

step 1103, the high-availability software is started on all other nodes. These nodes are

11

10

15

20

25

30

WO 03/010678 PCT/US02/23417

the slaves in the cluster. In step 1104, the master assigns virtual servers to the slaves.
This step can be done manually if desired.

FIG. 7 shows how a node with multiple network ports detects and handles
network failure. It does this by testing each of its ports as will now be described. In
step 1200, the node sends a ping packet at frequent intervals (such as every 3 seconds)
to a previously reachable external port using the port being tested. The frequency of
pinging is configurable. In decision step 1202, the node determines whether a
response to the ping was received within a predetermined wait time (such as 250 msec
(milliseconds)). The wait time is also configurable. If a response was received, the
port being tested is marked as good in step 1201. Otherwise, in step 1203 the
reachable external IP addresses known to the node are divided into groups. The total
number of addresses in a group is configurable. In step 1204, ping messages are sent
to the addresses in each group one group at a time. This is done, rather than using
broadcast, because broadcast is more costly. In decision step 1205, the node
determines if any address within the group was reached within a wait time. If one
was, the port being tested is marked as good and execution continues at step 1201. If
no address in all groups was reachable, execution continues at step 1206. In step
1206, a broadcast message is sent. In decision step 1207, if any response is received
within a wait time, the port being tested is marked as good and execution continues at
step 1201. Otherwise, the node concludes that the port being tested is bad, and the
port is marked bad in step 1208.

In decision step 1302, the node determines whether there is a healthy network
port in the node. If there is, in step 1304 the virtual address of the failed node is
migrated to the healthy network port. Otherwise, in step 1303 failover is invoked to
another node in the cluster.

The process of FIG. 7 is performed for each physical port that the node has
marked as good.

The failure of a network port is only one of the possible reasons to invoke
failover. Other events that can cause failover include hardware failure, power failure
in one of the nodes or the storage systems, failure in the links between a node and the
storage system, unrecoverable failures within the storage bus or fabric, and failure in
the links between the shared storage units and the storage bus or fabric. Failover can

also be initiated manually. After the problem which caused failover is rectified, a

12

10

15

20

25

30

WO 03/010678 PCT/US02/23417

manual failback command can be executed to migrate the virtual servers to their
original node.

For example, if a shared storage unit, which contains file systems, is not
accessible for any reason from a node (e.g., due to a complete breakage of the
connection between the node and the unit, such as the failure of links 706 and 708
with reference to node 700 in the specific configuration illustrated in FIG. 5), then
the virtual server which contains the inaccessible file systems is migrated to another
physical node that can access storage unit and therefore the file systems, if such an
alternative node exists.

FIG. 8 shows the steps performed when a virtual server is shut down in a node
prior to its migration to another node. In this example, the virtual server has both an
NFS file system and a CIFS file system. In step 1401, all virtual interfaces belonging
to the virtual server are brought down. In step 1402, any NFS shares are
de-initialized. In step 1403, NFS lock cleanup is performed. In step 1404, virtual
CIFS (Common Internet File System) server and shares are de-initialized. In step
1405, all file systems belonging to the virtual server are un-mounted.

FIG. 9 illustrates the steps needed to bring up a virtual server. Again, in this
example, the virtual server has both an NFS file system and a CIFS file system. In
step 1501, the node mounts all file systems belonging to the failed virtual server. In
step 1502, the virtual interfaces belonging to the virtual server are brought up. In step
1503, the NFS shares are initialized. In step 1504, NFS lock recovery is performed.
In step 1505, the virtual CIFS server and shares are initialized.

The system can serve various file systems simultaneously. A file system may
fail due to internal file system meta data inconsistency, sometimes referred to as file
system degradation. In one implementation of the system, when degradation is
detected — which is generally done by the file system itself — software in the nodes
handles the repair of the file system without complete disruption to clients accessing
the file system using the NFS protocol. In the event of file system degradation, access
to the file system is temporarily blocked for NFS clients. The NES protocol by its
nature continues sending requests to a server. After blocking the file system for NFS
access, the software prevents clients from accessing the file system and then repairs it
(e.g., by running a utility such as fsck). After repairing the file system, the software
makes it accessible again to clients. Then the NFS blocking is removed, so that NFS

13

10

15

20

25

30

WO 03/010678 PCT/US02/23417

requests from clients can again be served. As a result, applications on clients may
freeze for a while without failing, but resume once the file system comes back online.

Administrative configuration of the system can be done in any conventional
way. For example, an application program running on a system node or on an
independent personal computer can define and modify parameters used to control the
configuration and operation of the system. In the implementation described above,
such parameters are stored in a configuration file located on the scribble disk;
however, the configuration data can be stored in any number of files, in a database, or
otherwise, and provided to the system through any suitable means.

In certain aspects, the invention can be implemented in a computer program
product tangibly embodied in a machine-readable storage device for execution by a
programmable processor; and method steps of the invention can be performed bya
programmable processor executing a program of instructions to perform functions of
the invention by operating on input data and generating output. Suitable processors
include, by way of example, both general and special purpose MiCroprocessors.
Generally, a processor will receive instructions and data from a read-only memory
and/or a random access memory. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of non-volatile memory,
including by way of example semiconductor memory devices; magnetic disks such as
internal hard disks and removable disks; magneto-optical disks; and CD-ROM disks.
Any of the foregoing can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

To provide for interaction with a user, aspects of the invention can be
implemented on a computer system having a display device such as a monitor or LCD
screen for displaying information to the user and a keyboard and a pointing device
such as a mouse or a trackball by which the user can provide input to the computer
system. The computer system can be programmed to provide a graphical user
interface through which computer programs interact with users.

The invention has been described in terms of particular embodiments. Other
embodiments are within the scope of the following claims. For example, steps of the
invention can be performed in a different order and still achieve desirable results.

What is claimed is:

14

10

15

20

WO 03/010678 PCT/US02/23417

CLAIMS

1. A file server system, comprising:
two or more nodes, each node configured to run two or more virtual servers,
each virtual server having as exclusive resources a virtual interface to clients and one

or more file systems.
2. The system of claim 1, wherein the virtual interface comprises a virtual IP address.

3. The system of claim 1, wherein the virtual interface comprises two or more virtual

TP addresses.

4. The system of claim 1, wherein clients access the file systems using NFS or CIFS

protocols.

5. The system of claim 1, further comprising failover computer program instructions
operable to be executed to cause the system to:
detect a failure of a first node;'and

migrate each virtual server on the first node to a different node in the system.

6. The system of claim 5, wherein each virtual server has an associated failover
priority, and the failover instructions further comprise instructions to:

migrate virtual servers in order of their respective priorities.

7. The system of claim 5, wherein the failover instructions further comprise
instructions to:

recognize a virtual server that is identified as not to be migrated in the event of
node failure and prevent migration of a so-identified virtual server when itison a

node that fails.

15

10

16

20

25

30

WO 03/010678 PCT/US02/23417

8. The system of claim 1, further comprising rerouting computer program instructions
operable to be executed to cause the system to:

detect a failure in a first subnet connected to a first node, the first node having
a network connection to a first client;

identify a second node having a network connection to the first client and a
connection over a second, different subnet to the first node;

use the second node as a router in response to the detected failure to route data

between the first client and the first node.

9. The system of claim 8, wherein before failure in the first subnet, the connection

between the first client and the first node is through a first virtual IP address assigned

to a port on the first node, the rerouting instructions further comprising instructions to:
migrate the first virtual IP address to a port on the second node connected to

the second subnet.

10. The system of claim 1, further comprising failover computer program instructions
operable to be executed to cause the system to:

detect a failure of a physical port on a first node;

determine whether any other physical port on the first node is good;

migrate all virtual IP addresses associated with the failed physical port to a
good physical port on the first node if there is such a good port; and

migrate all virtual IP addresses associated with the failed physical port along
with all virtual servers attached to such virtual IP addresses to a different, second

node if there is no such good port on the first node.

11. The system of claim 10, wherein the failed physical port is on a first subnet and

the good physical port is on a different, second subnet.

12. The system of claim 1, wherein the system comprises load-balancing computer
program instructions operable to be executed to cause the system to:

calculate a balanced distribution of the virtual server loads across the nodes of
the system, excluding any failed nodes; and

perform load balancing by migrating one or more virtual servers from heavily

loaded nodes to less heavily loaded nodes.

16

10

15

20

25

WO 03/010678 PCT/US02/23417

13. The system of claim 1, further comprising computer program instructions
operable to be executed on a first node to:

determine a load on each physical port on the first node; and

redistribute the virtual interfaces on the first node among the physical ports of
the first node for load balancing over the physical ports.

14. The system of claim 1, further comprising computer program instructions
operable to be executed to cause the system to:

detect an inability on a first node to access of shared storage unit; and

in response to detection of the inability to access the shared storage unit,
migrate all virtual servers containing file systems on the shared storage unit to an
alternative node that can access the storage unit if such an alternative node exists in

the system.

15. The system of claim 12, wherein the load-balancing instructions are further

operable to determine a load on each virtual server.

16. The system of claim 12, wherein the load-balancing instructions are further

operable to determine a load on each physical server.

17. The system of claim 12, wherein the nodes include a master node and the

load-balancing instructions are operable to be executed on the master node.

18. The system of claim 12, wherein the load-balancing instructions are operable to
migrate a first virtual server and a second virtual server from a first node, the first
virtual server being migrated to a second node of the system and the second virtual

server being migrated to a different, third node of the system.

19. The system-of claim 12, wherein the load-balancing instructions are operable to

balance system load as part of a failover process.

20. The system of claim 12, wherein the load-balancing instructions are operable to

balance system load independent of any failover occurring.

17

10

15

20

25

30

WO 03/010678 PCT/US02/23417

21. The system of claim 1, further comprising computer program instructions
operable to be executed to cause the system to:

detect without user intervention a file system degradation of a first file system;
and

block access to the first file system in response to the detection of the
degradation, repair the first file system, and then permit access to the first file system,

all without user intervention.

22. A file server system, comprising:
a node configured with a virtual server having two or more simultaneously

active virtual IP addresses.

23. The system of claim 22, wherein the node is configured with a second virtual

server having two or more other simultaneously active virtual IP addresses.

24. A file server system, comprising:
two or more nodes, each node being configured to run a virtual server having a
virtual IP address, and each node being configured with two or more physical ports;
wherein a first node is further configured to:
detect a failure of a physical port on the first node;
determine whether any other physical port on the first node is good;
migrate all virtual IP addresses associated with the failed physical port
to a good physical port on the first node if there is such a good port; and
migrate all virtual IP addresses associated with the failed physical port
along with all virtual servers attached to such virtual IP addresses to a different,

second node if there is no such good port on the first node.

25. A computer program product, tangibly stored on a computer-readable medium or
propagated signal, for execution in multiple nodes of a file server system cluster,
comprising instructions operable to cause a programmable processor to:

detect a failure of a first node of the cluster; and

migrate each of multiple virtual servers on the first node to a different node in

the cluster.

26. The product of claim 25, further comprising instructions to:

migrate virtual servers in order of their respective priorities.

18

10

15

20

25

30

WO 03/010678 PCT/US02/23417

27. The product of claim 25, further comprising instructions to:
recognize a virtual server that is identified as not to be migrated in the event of
node failure and prevent migration of a so-identified virtual server when it is on a

node that fails.

28. The product of claim 25, further comprising insfructions to:

detect a failure in a first subnet connected to a first node, the first node having
anetwork connection to a first client;

identify a second node having a network connection to the first client and a
connection over a second, different subnet to the first node;

use the second node as a router in response to the detected failure to route data

between the first client and the first node.

29. The product of claim 235, further comprising instructions to:

detect a failure of a physical port on a first node of the cluster;

determine whether any other physical port on the first node is good;

migrate all virtual IP addresses associated with the failed physical port to a
good physical port on the first node if there is such a good port; and

migrate all virtual IP addresses associated with the failed physical port along
with all virtual servers attached to such virtual IP addresses to a different, second

node of the cluster if there is no such good port on the first node.

30. The product of claim 29, wherein before failure in the first subnet, the connection

between the first client and the first node is through a first virtual IP address assigned

to a port on the first node, the rerouting instructions further comprising instructions to:
migrate the first virtual IP address to a port on the second node connected to

the second subnet.

31. The product of claim 25, further comprising load-balancing instructions to:
determine a load produced by each virtual server;
calculate a balanced distribution of the virtual server loads across the nodes of
the server, excluding any failed nodes; and '
perform load balancing by migrating one or more virtual servers from heavily

loaded nodes to less heavily loaded nodes.

19

10

15

20

25

WO 03/010678 PCT/US02/23417

32. The system of claim 31, wherein the nodes include a master node and the

load-balancing instructions are operable to be executed on the master node.

33. The system of claim 31, wherein the load-balancing instructions are operable to
migrate a first virtual server and a second virtual server from a first node, the first
virtual server being migrated to a second node of the system and the second virtual

server being migrated to a different, third node of the system.

34. A computer program product, tangibly stored on a computer-readable medium or
propagated signal, for execution in a node of a file server system cluster in which
virtual servers have virtual IP addresses associated with physical ports, the product
comprising instructions operable to cause a programmable processor to:

detect a failure of a physical port on a first node of the cluster;

determine whether any other physical port on the first node is good;

migrate all virtual IP addresses associated with the failed physical port to a
good physical port on the first node if there is such a good port; and

migrate all virtual IP addresses associated with the failed physical port along
with all virtual servers attached to such virtual IP addresses to a different, second

node if there is no such good port on the first node.

35. A computer program product, tangibly stored on a computer-readable medium
or propagated signal, for execution in a file server node in which one or more virtual
servers each have one or more virtual IP addresses associated with physical ports, the
product comprising instructions operable to cause a programmable processor to:

detect a failure of a physical port on a file server node, the node having two or
more physical ports, the node having one or more virtual servers each have one or
more virtual IP addresses associated with physical ports;

identify one or more other physical ports on the file server node as being good;
and

migrate each virtual IP addresses associated with the failed physical port to a

good physical port on the file server node.

20

10

15

20

25

30

WO 03/010678 PCT/US02/23417

36. The product of claim 35, further comprising instructions to:

determine a load on each physical port on the first node; and

use the determined load for load balancing over the good physical ports when
migrating the virtual IP addresses associated with the failed physical port to the good
physical ports of the file server node.

37. The product of claim 35, wherein:

each physical port of the file server node is within a one of a plurality of
subnets; and

virtual IP addresses are migrated preferentially to good physical port that is in
the same subnet as the failed physical port.

38. A file server node, comprising:

two or more physical ports;

the node being configured to run two or more virtual servers, each virtual
server having as exclusive resources a virtual interface to clients and one or more file
systems, each virtual interface comprising a virtual IP address;

the node being further configured to detect a failure of a first physical port,
determine which other physical port or ports of the node is healthy, and to migrate all
virtual IP addresses associated with the failed first physical port to a good physical
port of the first node. ‘

39. The file server node of claim 38, further configured to:

determine a load on each physical port; and

use the determined load for load balancing over the good physical ports when
migrating the virtual IP addresses associated with the failed physical port to the good
physical ports of the node.

40. The file server node of claim 38, wherein:

each physical port of the file server node is within a one of a plurality of
subnets; and

virtual IP addresses are migrated preferentially to good physical port that is in
the same subnet as the failed physical port.

21

WO 03/010678

_*,

PCT/US02/23417

177
105 106 107
N N N
-
NETWORKN
104 J NETWORK 2
NETWORK 1
Node A Node B Node J
| | | | |
VSA||VSA| _|VSA VSBY||VSB|. . |vSB|] . VSJ||VSJ| . [VSJ
1 2 ni 1 2 n2 1 2 n3
| T | | | I T T]
1 |]]] 1 |]]
101—" | | 1 102 | | I 103— 1 | |
1 | l r——- | i l l l
1M10— | [| | === I | | |
I |] | | | I i |
| | | | : STORAGE l | | |
|] I | | | | I
| | | [NETWORK I | | |
N | 1 |RAID STORAGE| I |
| | i | | INTERFACE | |] |
l | I P e o — | | | |
| I | LH — 4 | | | l }
1 | l | ! 1 | | i
Scribble|] one or |} one or |} one or one or || one or || one or oneor || one or || one or
Disk more more || more more || more || more more || more more
(shared file file file file file file file file file
disk) systems | |systems| |systems| }{[systems||systems| [systems systems||systems||systems
\ \STORAGE kSYSTEM /1 \STORAGE SYSTEM/ 2 \STORAGE SYSTEM /K
N124 1213 \12117 \\122&: 122y \-123a 123?
121 121c 122 122¢ 123 123c

FIG._1

WO 03/010678 PCT/US02/23417

+

2/7
NODE 1
VP 1PIP1
< VIP1 1PIP2
g VIP1 1PIP3
I, .
1 L
v L]
> vipt 1PIPn-1
,C/ i1 1PIPN1
NODE 2
N\ VIP1 2;—:1191
i1 2PIP2
2PIP3
' opipn2
[]
e
[]
NODE N
NPIP1
NPIP2
NPIP3
NPIPnn

FIG._2

WO 03/010678 PCT/US02/23417

3/7
305\ 306\
NET 1 Y \\
NET 2 TEo
310\ f320
PIP1| [PIP2 |PIP3{ |PIP4|
T VA12
VA11/
VSA1 |--+|VSANn1 VSB1 |-+ |VSBn2
: Node A : : Node B :
| I |]
x I | }
[| l |
305\ 306\
NET 1 Y \\
NETZ ... HB2
310\ X /320
PIP1 PIP2 PIP3 PIP4
N
VA12
VA1 ‘ \
I 322 Rerouter
VSA1 |-+ |VSAn1 VSB1 |-++|VSBn2
T Node A Node B

I
]
l
|
!

FIG._4

WO 03/010678

‘,_

700
N

417

Node 1

FIG._5

PCT/US02/23417

770
N
Node N

WO 03/010678 PCT/US02/23417

+

5/7

1100
~

Configure all nodes to point to the
same shared disk (scribble disk).

l . 1101

Assign one node to initialize the scribble disk.

l ~ 1102

Start high availability software on only one node.
This node becomes the master server for the cluster.

l ‘ — 1103

Start high availability software on all other nodes.
These nodes become slaves.

l ~ 1104

When the slave node comes up, the master
assigns virtual servers to the slave nodes.

FIG._6

WO 03/010678

+

6/7

PCT/US02/23417

FIG._7 i

Send a ping packet from the port to
a previously reachable IP address

1202
Yes

Response

1200
4

1201

~

Mark the port as good
A

'

received within
wait time

?
No

1203

Divide reachable IP addresses in a node into groups.

Y

Send ping packets to one group at a time.

1204
Va

1205

Next group
Yes

(If any) Any

ports rgached

No

206
-

Send a broadcast

1207
Yes

Any

ports reached
?

Mark the port as bad

Another
good pg)rt exists

No

Invoke failover
to another node

1304
/‘

Migrate the virtual
IP to the good port

l /- 1305

Generate gratuitous
ARP packet

WO 03/010678

_,.

Ve 1401

Bring down all virtual interfaces
belonging to the virtual server

l - 1402

De-initialize NFS shares

l ~ 1403

Perform NFS lock cleanup

l ~ 1404

De-initialize virtual
CIFS server and shares

l ~ 1405

Un-mount all file systems

belonging to the virtual server

FIG._8

717

PCT/US02/23417

1501
K

The node mounts all file systems

belonging to the failed over virfual servers

l s 1502

Bring up all the virtual interfaces
belonging to the virtual servers

l ~ 1503

Initialize NFS shares

l ~ 1504

Perform NFS lock recovery

l ~ 1505

Initialize virtual CIFS
server and shares

FIG._9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/23417

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOG6F 15/16
US CL 714/4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 714/4

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 6,243,825 B1 (GAMACHE et. al) 05 June 2001 (05.06.2001), see entire document 1,2,5,8,9,11-
—— 13,19,21,23-
A 25,28,29,30,34-40
3,4,6,7,10,14-
18,20,22,26,27,31-33
X US 5,513,314 A (KANDASAMY et al.) 30 April 1996 (30.04.1996), see entire document 1-4,22,24,25,34,35,38
X US 6,108,300 A (COILE et al.) 22 August 2000 (22.08.2000), see entire document. 1-40
X US 5,592,611 A (MIDGELY et al.) 07 January 1997 (07.01.1997), see entire document. 1-5, 8-11, 14, 21-25,
28-30, 34-40
X US 6,006,259 A (ADELMAN et al.) 21 December 1999 (21.12.1999), see entire document. 1-40
ALE US 6,434,627 B1 (MILLET et al.) 13 August 2002 (13.08.2002), see entire document 1-40
A US 6,247,057 B1 (BARRERA, III) 12 June 2001 (12.06.2001), see entire document. 1-40

& Further documents are listed in the continuation of Box C.

[]

See patent family annex.

* Special categories of cited documents:

“A" document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O" document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

s later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y» document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

20 August 2002 (20.08.2002)

Date of mailing of the international search report

11 SEP 7007

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized of’gcﬁ‘r ol
/ .,
Robert Beausoliel ;’iﬁ?‘.«wﬁ. ﬁ /ﬁiﬁmﬂw

Telephone No. (703)305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

PCT/US02/23417

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 5,113,519 A (JOHNSON et al.) 12 May 1992 (12.05.1992), see entire document

1-40

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

