(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2012/051262 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau V,&JMV
al
(43) International Publication Date \'{_5___,/
19 April 2012 (19.04.2012) PCT
(51) International Patent Classification:
GO6F 9/06 (2006.01) GO6F 9/38 (2006.01)
(21) International Application Number:
PCT/US2011/055917
(22) International Filing Date:
12 October 2011 (12.10.2011)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/392,391 12 October 2010 (12.10.2010) US
(71) Applicant (for all designated States except US): SOFT
MACHINES, INC. [US/US]; 3211 Scott Boulevard,
Suite 202, Santa Clara, CA 95054 (US).
(72) Inventor; and
(75) Inventor/Applicant (for US only): ABDALLAH, Mo-
hammad [US/US]; 3868 Suncrest Avenue, San Jose, CA
95132 (US).
(74) Agent: BARNES, Glenn D.; Murabito Hao & Barnes

LLP, Two North Market Street, Third Floor, San Jose,
CA 95113 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

00

e

(54) Title: AN INSTRUCTION SEQUENCE BUFFER TO ENHANCE BRANCH PREDICTION EFFICIENCY

302

Branch
Prediction

Y

Tahle

4 Branch Predictions

/[
[

)

)

Sequence

Predictor |

Bl:Addr ; B2:Addr ; B3:Addr ; B4:Addr

SEQ
Stability
Counter

B5:Rddr ; B6:Addr ; BT:Addr ; BS:Addr

B0 Sequence Prediction
{Entry point address)

B2:Addr

303

FIGURE 3

2012/0:51262 A2 | 00 O A0 OO A

<

W

(57) Abstract: A method for outputting alternative instruction sequences. The method includes tracking repetitive hits to deter-
mine a set of frequently hit instruction sequences for a microprocessor. A frequently miss-predicted branch instruction is identi-
fied, wherein the predicted outcome of the branch instruction is frequently wrong. An alternative instruction sequence for the
branch instruction target is stored into a buffer. On a subsequent hit to the branch instruction where the predicted outcome of the
branch instruction was wrong, the alternative instruction sequence is output from the buffer.

WO 2012/051262 PCT/US2011/055917

AN INSTRUCTION SEQUENCE BUFFER TO ENHANCE

BRANCH PREDICTION EFFICIENCY

FIELD OF THE INVENTION

[001] The present invention is generally related to digital computer systems, more
particularly, to a system and method for selecting instructions comprising an instruction

sequence.

BACKGROUND OF THE INVENTION

[002] Improving computer architecture performance is a difficult task.
Improvements have been sought through frequency scaling, Single Instruction Multiple
Data (SIMD), Very Long Instruction Word (VLIW), multi-threading and multiple
processor techniques. These approaches mainly target improvements in the throughput of
program execution. Many of the techniques require software to explicitly unveil
parallelism. In contrast, frequency scaling improves both throughput and latency without
requiring software explicit annotation of parallelism. Recently, frequency scaling hit a
power wall so improvements through frequency scaling are difficult. Thus, it is difficult to

increase throughput unless massive explicit software parallelization is expressed.

[003] With respect to single threaded program execution, program execution is
controlled by branching instructions that dictate the program control flow. Program
instruction sequences are dynamic when the branching instructions are conditional or the
branch target is indirect. In such cases, it is essential for the fetch logic of the processor to
find out for conditional branches if the branch is taken or not taken. This enables the fetch
logic to bring in the sequence of instructions that either follow the target of the branch or
those that follows the branch instruction itself. There exists a problem, however, in that at
the fetch stage, the outcome of the condition of the branch is not known before the branch

itself executes.

WO 2012/051262 PCT/US2011/055917

[004] In an attempt to overcome this problem, prior art designs have implemented
branch prediction logic to predict the outcome of a branch. At the fetch stage of the
microprocessor, the predicted outcome enables the fetch logic to anticipate where to bring
the next sequence of instructions from. Problems still exists, however, since this
processing needs to be sequential in nature. The current branch needs to be processed first
in order to know where to bring the next instruction sequence. Accordingly the sequential
nature of processing branches in the fetch stage imposes a performance bottleneck on the
single threaded execution speed of a microprocessor. Penalties for an incorrect branch
prediction typically involve flushing the whole pipeline of a microprocessor, accessing
caches and reloading with a new instruction sequence. These penalties greatly reduce the

incentives for predicting more than one branch at a time.

SUMMARY OF THE INVENTION

[005] Embodiments of the present invention implement an algorithm (e.g., a
method and an apparatus) that increases the efficiency of branch production processing of

instruction sequences.

[006] In one embodiment, the present invention is implemented as a method for
outputting alternative instruction sequences. The method includes tracking repetitive hits
to determine a set of frequently hit instruction sequences for a microprocessor. Where in a
frequently miss-predicted branch instruction is identified, where in the predicted outcome
of the branch instruction is frequently wrong. An alternative instruction sequence for the
branch instruction target is stored into a buffer. On a subsequent hit to the branch
instruction where the predicted outcome of the branch instruction was wrong, the

alternative instruction sequence is output from the buffer.

[007] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail; consequently, those skilled in the art will
appreciate that the summary is illustrative only and is not intended to be in any way
limiting. Other aspects, inventive features, and advantages of the present invention, as
defined solely by the claims, will become apparent in the non-limiting detailed description

set forth below.

WO 2012/051262 PCT/US2011/055917

BRIEF DESCRIPTION OF THE DRAWINGS

[008] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference

numerals refer to similar elements.

[009] Figure 1 shows an exemplary sequence of instructions operated on by one

embodiment of the present invention.

[010] Figure 2 shows the sequence instructions with the respective code segments

for each branch illustrated in accordance with one embodiment of the present invention.

[011] Figure 3 shows a flow diagram of an apparatus used to output alternative
instruction sequences for branches that are frequently hit and are frequently miss-predicted

in accordance with one embodiment of the present invention.

[012] Figure 4 shows an overview flowchart of the steps of a process for
outputting alternative instruction sequences in accordance with one embodiment of the

present invention.

[013] Figure 5 shows a diagram of an instruction sequence buffer in accordance

with one embodiment of the present invention.

[014] Figure 6 shows a diagram of an instruction sequence buffer that is used to
store instruction sequences for reliably predictable branches that are frequently hit in

accordance with one embodiment of the present invention.

[015] Figure 7 shows an overview flowchart of the steps of a process for
outputting reliably predictable instruction sequences in accordance with one embodiment

of the present invention.

[016] Figure 8 shows a diagram of an exemplary microprocessor pipeline in

accordance with one embodiment of the present invention.

WO 2012/051262 PCT/US2011/055917

DETAILED DESCRIPTION OF THE INVENTION

[017] Although the present invention has been described in connection with one
embodiment, the invention is not intended to be limited to the specific forms set forth
herein. On the contrary, it is intended to cover such alternatives, modifications, and
equivalents as can be reasonably included within the scope of the invention as defined by

the appended claims.

[018] In the following detailed description, numerous specific details such as
specific method orders, structures, elements, and connections have been set forth. It is to
be understood however that these and other specific details need not be utilized to practice
embodiments of the present invention. In other circumstances, well-known structures,
elements, or connections have been omitted, or have not been described in particular detail

in order to avoid unnecessarily obscuring this description.

[019] References within the specification to "one embodiment” or "an
embodiment" are intended to indicate that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at least one embodiment of the
present invention. The appearance of the phrase "in one embodiment” in various places
within the specification are not necessarily all referring to the same embodiment, nor are
separate or alternative embodiments mutually exclusive of other embodiments. Moreover,
various features are described which may be exhibited by some embodiments and not by
others. Similarly, various requirements are described which may be requirements for some

embodiments but not other embodiments.

[020] Some portions of the detailed descriptions, which follow, are presented in
terms of procedures, steps, logic blocks, processing, and other symbolic representations of
operations on data bits within a computer memory. These descriptions and representations
are the means used by those skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. A procedure, computer executed
step, logic block, process, etc., is here, and generally, conceived to be a self-consistent
sequence of steps or instructions leading to a desired result. The steps are those requiring

physical manipulations of physical quantities. Usually, though not necessarily, these

4

WO 2012/051262 PCT/US2011/055917

quantities take the form of electrical or magnetic signals of a computer readable storage
medium and are capable of being stored, transferred, combined, compared, and otherwise
manipulated in a computer system. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values, elements, symbols,

characters, terms, numbers, or the like.

[021] It should be borne in mind, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing” or "accessing” or "writing" or "storing" or
"replicating" or the like, refer to the action and processes of a computer system, or similar
electronic computing device that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers and memories and other
computer readable media into other data similarly represented as physical quantities within
the computer system memories or registers or other such information storage, transmission

or display devices.

[022] In one embodiment, the present invention implements an algorithm (e.g., a
method and an apparatus) for outputting alternative instruction sequences for branches that
are frequently hit and are frequently miss-predicted. The method includes tracking
repetitive hits to a branch instruction to determine a set of frequently hit instruction
sequences for a microprocessor. Then frequently miss-predicted branch instructions are
identified, wherein the predicted outcome of the branch instruction is frequently wrong.
An alternative instruction sequence for the branch instruction is stored into a buffer (e.g.,
an instruction sequence buffer). On a subsequent hit to the branch instruction where the
predicted outcome of the branch instruction was wrong, the alternative instruction
sequence is output from the buffer. The alternative instruction sequence thus saves the
microprocessor pipeline from being flushed in its entirety. The alternative instruction
sequence is provided directly from the buffer, as opposed to, for example, flushing the
whole pipeline, accessing caches and assembling a new instruction sequence. Figure 1

shows an exemplary sequence of instructions operated on by embodiments of the present

WO 2012/051262 PCT/US2011/055917

invention. Subsequently, Figure 2 shows a flow diagram of alternative instruction
sequences produced by multiple levels of branches, and Figure 3 shows an overview
flowchart of the steps of a process for outputting alternative instruction sequences in

accordance with one embodiment of the present invention.

[023] In an alternative embodiment, dual use of the storage resources of the
instruction sequence buffer is implemented. Instead of storing alternative instruction
sequences for frequently hit in frequently miss predicted branches, the storage resources of
the instruction sequence buffer are used to store instruction sequences for frequently hit
and reliably predicted branches. Thus, instead of storing alternative instruction sequences
for the taken case and the not taken case, the storage resources of the buffer 600 are used to
store the instruction sequences of a frequently hit and reliably predictable branch and a
number of the subsequent following branches. This alternative embodiment is shown and
described in Figure 6 below. The two embodiments can both exist together and share the

same storage buffer but in a different manner.

[024] Figure 1 shows an exemplary sequence of instructions operated on by one
embodiment of the present invention. As depicted in Figure 1, the instruction sequence
100 comprises 16 instructions, proceeding from the top of Figure 1 to the bottom. As can

be seen in Figure 1, the sequence 100 includes four branch instructions 101-104.

[025] One objective of embodiments of the present invention is to output
alternative instruction sequences for branches that are frequently hit and are frequently
miss-predicted. The alternative instruction sequences are output as a means of greatly
reducing the latency penalty of assembling an alternative instruction sequence from
scratch. In accordance with different embodiments, these instructions can comprise native
instructions (e.g., native instructions of the microprocessor architecture, such as x86
instructions, MIPS instructions, or the like). Alternatively, these instructions can comprise
microcode. As described earlier, the more branches a sequence of instructions include, the
more combinations and possible resulting sequences occur and need to be dealt with. This

characteristic is illustrated in Figure 2 below.

WO 2012/051262 PCT/US2011/055917

[026] Figure 2 shows the sequence instructions 100 with the respective code
segments for each branch illustrated in accordance with one embodiment of the present
invention. As described above, the more branches that are presented in a sequence of
instructions, the more combinations and possibilities of sequences of instructions that need

to be disambiguated.

[027] This is illustrated in Figure 2, which shows a first resulting sequence “1”
that occurs if branch c1 is taken. As referred to herein, a branch is taken if the program
execution flow moves to the target of the branch. This is indicated by the two digits within
parenthesis at the end of each of the branch instructions. For example, branch c1 has a
target of 11 and results in skipping the next 6 instructions. Similarly, branch c2 has a

target of 10 and results in skipping the next 2 instructions, and so on.

[028] Thus, a second resulting sequence “2” is shown, and occurs if branch ¢2 is
taken. A third resulting sequence “3” is shown as occurring if branch c3 is taken.

Similarly, the fourth resulting sequence “4” is shown as occurring if branch c4 is taken.

[029] Embodiments of the present invention output alternative instruction
sequences for branches that are frequently hit and are frequently miss-predicted. As shown
in Figure 2, a different instruction sequence occurs when any of the branches along the
predicted instruction sequence is miss-predicted. Embodiments of the present invention
advantageously store a number of these alternative instruction sequences in a buffer that is
located very close to the decoder hardware. The stored alternative instruction sequences
are output as a means of greatly reducing the latency penalty of assembling an alternative
instruction sequence from scratch. This algorithm is further diagrammed below in Figure

3.

[030] Figure 3 shows a flow diagram of an apparatus 300 used to output
alternative instruction sequences for branches that are frequently hit and are frequently
miss-predicted in accordance with one embodiment of the present invention. As depicted
in Figure 3, apparatus 300 includes a sequence predictor 301, a branch prediction table

302, and a sequence of stability counter 303.

WO 2012/051262 PCT/US2011/055917

[031] In the Figure 3 embodiment, the apparatus 300 functions by tracking
repetitive hits to determine a set of frequently hit branches and their corresponding
instruction sequences. These branches are illustrated as BO through B8 in Figure 3. As
described above, a predicted instruction sequence is assembled based upon the branch
predictions for the branches. Lines are shown connecting the first branch B0 to the
following branches B1 and B35, and from B1 and BS5 to their respective following branches

B2, B4 and B6, and so on.

[032] The branch prediction table 302 is used to keep track of the branch
predictions in order to determine which instruction sequences are often miss predicted and

which instruction sequences are very rarely miss predicted.

[033] In the Figure 3 embodiment, branches are analyzed three levels deep past
the initial branch B0O. Thus, for example, an alternative instruction sequence can be
assembled from B0 to B1, to B2 and on to B3. Depending upon the size of the buffer, a

greater or lesser number of levels of following branches can be analyzed and stored.

[034] The sequence predictor 301 functions by predicting the outcome of the
branches to assemble a predicted instruction sequences. Accordingly, the sequence
predictor can monitor the execution of these branches and identify frequently miss
predicted branch instructions. A different number of mechanisms can be used to identify
the frequently miss predicted branch instruction. In one embodiment, a tag structure such
as a sequence stability counter 303 is used to accumulate repetitive hits to the same
instruction sequences (e.g., frequently fetched sequences). Once a threshold as been
exceeded, a given branch instruction can be identified as and treated as a frequently miss

predicted branch instruction.

[035] Figure 4 shows an overview flowchart of the steps of a process 400 for
outputting alternative instruction sequences in accordance with one embodiment of the
present invention. Process 400 shows exemplary operating steps of, for example, an

instruction fetch module of a microprocessor.

WO 2012/051262 PCT/US2011/055917

[036] Process 400 begins in step 401, where accesses are tracked in order to
determine a set of frequently hit instruction sequences. As described above, the sequence
predictor assembles predicted instruction sequences. It can determine which instruction

sequences are frequently fetched.

[037] In step 402, out of that set, the sequence predictor identifies a frequently
miss-predicted branch instruction. As described above, the predicted outcome of this

branch instruction is frequently wrong.

[038] In step 403, an alternative instruction sequence for the branch instruction is
stored into a buffer. As described above, this inability to correctly and reliably predict the
outcome of this branch could lead to frequent pipeline flushes. However, in accordance
with embodiments of the present invention, alternative instruction sequences are stored

within an instruction sequence buffer.

[039] In step 404, on a subsequent hit to the branch instruction where the
predicted outcome was wrong, the alternative instruction sequence is output from the
buffer. The alternative instruction sequence thus saves the entire microprocessor pipeline
from being flushed. The alternative instruction sequence is provided directly from the
buffer, as opposed to, for example, flushing the whole pipeline, accessing caches and

assembling a new instruction sequence.

[040] It should be noted that in one embodiment, the branch prediction table can
be used to prequalify the instruction sequences that enter into the tag structure using a
saturating counter in the branch prediction table to count number of repetitive accesses to a
certain branch. Once that reaches saturation then the instruction sequence address that
starts at the outcome of that branch is entered into the tracking tag structure. This structure
has a smaller number of entries and has larger saturating counters. Once the counter
reaches a threshold of a large count that justifies storing the instruction sequence, then that

instruction sequence is entered into the buffer.

[041] Tt should be noted that in one embodiment, a different threshold might be

used if the sequences that are hit are based on well predicted branches or frequently miss

WO 2012/051262 PCT/US2011/055917

predicted branches. Thereafter, the instruction sequence is accessed from this buffer every
time the fetch hardware jumps to this particular instruction sequence and is indexed by the

address of the branch that leads to it.

[042] Figure 5 shows a diagram of an instruction sequence buffer 500 in
accordance with one embodiment of the present invention. As depicted in Figure 5, the
buffer 500 includes threes portions 501-503. The buffer 500 and the portions 501-503
show an example of embodiments of the present invention storing alternative instruction
sequences for each of the possible following branches that flow from branch BO. For each
of the branches B1 through B8, the possible resulting instruction sequences from each
branch being taken or not taken are stored. For example, instruction sequences for branch
B0 being taken (e.g., leading to B1) or not taken (e.g., leading to B5) are stored into the
buffer 500. Similarly, instructions for branch B1 being taken (e.g., leading to B2) are not
taken (e.g., leading to B4) are stored into the buffer 500, and so on for each of the

following branches.

[043] In this manner, the buffer 500 includes all the possible instruction sequences
that flow from branch BO. This attribute allows a very quick recovery from a miss
prediction of the branch B0O. For example, on a subsequent hit to the branch instruction
B0, where the predicted outcome of the branch instruction was wrong, an alternative
instruction sequence can be rapidly output from the buffer 500. This avoids the necessity
of flushing the whole pipeline, accessing caches and assembling a new alternative

instruction sequence from scratch (e.g., re-fetching the instructions, etc.).

[044] The Figure 500 embodiment shows how the portions 501-503 include
instruction sequences for both the taken case and the not taken case for each of the
branches B0 through BS. For example, portion 501 shows instructions for the taken case
stored on a first way of the portion on the left hand side. This is illustrated by the “T” at
the top of the portion. Instructions for the not taken case are stored on the right hand side,
as illustrated by the “NT” at the top of the portion. The taken and not taken cases represent

two ways into which the buffer portion, or cache, can be indexed. This is illustrated as

10

WO 2012/051262 PCT/US2011/055917

way 1 “W1” and way 2 “W2” at the top of the portion. These attributes are similarly
illustrated for each of the other portions 502-503.

[045] The lower portion of Figure 5 illustrates the manner in which the buffer 500
is indexed. In the Figure 5 embodiment, to access the alternative instruction sequences for
both the taken and not taken cases for each of the following branches, the address of a
given following branch is used to index the buffer 500. It should be noted that the
alternative instruction sequences are stored within the portions 501-503 in an orthogonal
manner. In other words, the alternative instruction sequences that can both possibly be
taken from a given branch do not reside within the same portion. For example, as depicted
in Figure 5, the alternative instruction sequences for branch B1 and B5 can reside within
the portion 501 because either the instruction sequence for branch B1 or branch B5 will
occur. This is because branch B0 will either be taken or not taken. Thus there is no
scenario in which instructions from both branch B1 and branch B5 will occur. Similarly,
at the next level removed from branch B0, the alternative instruction sequences for
branches B2, B4 and B6 can be stored within the portion 502. These alternative instruction
sequences are mutually exclusive in that only one of the three can possibly be executed.
Similarly, at the next level, portion 503 stores alternative instruction sequences for the

branches B3, B7 and BS.

[046] Figure 6 shows a diagram of an instruction sequence buffer 600 that is used
to store instruction sequences for reliably predictable branches that are frequently hit in
accordance with one embodiment of the present invention. As illustrated in Figure 6, the
buffer 600 comprises four portions 601-604. Each of the portions 601-604 is coupled to

respective compare logic components 611-614.

[047] Figure 6 illustrates an alternative use of the storage resources of the
instruction sequence buffer. In the Figure 6 embodiment, instead of storing alternative
instruction sequences for frequently hit in frequently miss predicted branches, the storage
resources are used to store instruction sequences for frequently hit and reliably predicted
branches. Thus, instead of storing alternative instruction sequences for the taken case and

the not taken case, the storage resources of the buffer 600 are used to store the instruction

11

WO 2012/051262 PCT/US2011/055917

sequences of a frequently hit and reliably predictable branch and a number of the

subsequent following branches.

[048] Storing the instruction sequences of a frequently hit and reliably predictable
branch and a number of the subsequent following branches provides a number of
advantages. On subsequent hits due the reliably predictable branch, the instruction
sequence of the predictable branch and a number of the subsequent following branches can
be provided directly from the buffer 600. This saves a number of cycles with respect to the
latency of assembling the reliably predictable branch instruction sequence from the normal
decoder module pipeline. In this manner, embodiments of the present invention take
advantage of those reliably predictable instruction sequences to cut out latency cycles by

providing such sequences directly from the buffer 600.

[049] Tt should be noted that the buffer 600 is essentially the same structure as the
buffer 500 of Figure 5. The difference is in the manner in which the buffer 600 is indexed.
As described above, the buffer 600 is used to store reliably predictable instruction
sequences that flow from multiple branches. The reliably predict the instruction sequences
are stored in multiple ways, shown as way 1 “W1” and way 2 “W2” at the top of each of
the portions 601-604. In one embodiment, the address of the branches (e.g., branch B1)
are used to index into the cache. For example, in a scenario where a reliably predictable
instruction sequence flows from B0 to B1 to B2 to B3, the address of the first following
branch B1 is used to index the buffer 600 with the following branches B2 and B3 being
used as tags. The following branches B2 and B3 would allow for the same index to be
accessed via two different ways with two different tags (b2 and b3). In one embodiment,
bits of the branch prediction (e.g., provided from the branch which in table 302) can also
be used as tags. In one embodiment, a hash of the following branch B1 and its respective

following branches B2 and B3 could be used to access the buffer 600.

[050] The compare logic components 611-614 functions by comparing branch
sequence predictions. The components 611-614 compare predictions with sequence hits to
score the relative merit of the reliably predictable sequences. For example, if a reliably

predictable sequence becomes not so strongly predictable for some reason, this component

12

WO 2012/051262 PCT/US2011/055917

will cause it to be evicted from the buffer 600. In one embodiment, if the reliably predict
will sequence becomes a frequently hit in frequently miss predicted sequence, the sequence
is moved from the accessing and storing methodology illustrated in Figure 6 to the

accessing and storing methodology illustrated in Figure 5.

[051] Tt should be noted that the buffer 600 can be implemented as a unified cache
architecture. In such an embodiment, instruction sequences for both the frequently hit in
frequently miss predicted instruction sequences and the frequently hit and reliably
predictable instruction sequences can both be stored within the common structure of buffer
600. The difference would be the methodology in which they are accessed, indexed and
retrieved. In such an embodiment, logic would need to be included to ensure that any

instruction sequences that become corrupted due to conflicts or the like are evicted.

[052] Alternatively, in one embodiment, the buffer 600 can be partitioned or
otherwise allocated such that storage resources are dedicated to frequently hit frequently
miss predicted instruction sequences and dedicated to reliably predictable instruction
sequences respectively. Such dedicated allocation would simplify the management of the

buffer 600 by making it less likely instruction sequences could corrupt one another.

[053] Figure 7 shows an overview flowchart of the steps of a process 700 for
outputting reliably predictable instruction sequences in accordance with one embodiment
of the present invention. Process 700 shows exemplary operating steps of, for example, an

instruction fetch module of a microprocessor.

[054] Process 700 begins in step 701, where accesses are tracked in order to
determine a set of frequently hit instruction sequences. As described above, the sequence
predictor assembles predicted instruction sequences. It can determine which instruction

sequences are frequently fetched.

[055] In step 702, out of that set, the sequence predictor identifies a branch
instruction having a series of subsequent following branch instructions that form a reliably

predictable instruction sequence.

13

WO 2012/051262 PCT/US2011/055917

[056] In step 703, a reliably predictable instruction sequence for the branch

instruction is stored into a buffer (e.g., buffer 600).

[057] In step 704, on a subsequent hit to the branch instruction, the reliably
predictable instruction sequence is output from the buffer. This saves a number of cycles
with respect to the latency of assembling the reliably predictable branch instruction
sequence from the normal decoder module pipeline. In this manner, embodiments of the
present invention take advantage of those reliably predictable instruction sequences to cut

out latency cycles by providing such sequences directly from the buffer 600.

[058] Figure 8 shows a diagram of an exemplary microprocessor pipeline 800 in
accordance with one embodiment of the present invention. The microprocessor pipeline
800 includes a fetch module 801 that implements the functionality of the process for
identifying and extracting the instructions comprising an execution, as described above. In
the Figure 8 embodiment, the fetch module is followed by a decode module 802, an
allocation module 803, a dispatch module 804, an execution module 805 and a retirement
modules 806. It should be noted that the microprocessor pipeline 800 is just one example
of the pipeline that implements the functionality of embodiments of the present invention
described above. One skilled in the art would recognize that other microprocessor
pipelines can be implemented that include the functionality of the decode module

described above.

[059] The foregoing description, for the purpose of explanation, has been
described with reference to specific embodiments. However, the illustrated discussions
above are not intended to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in view of the above teachings.
Embodiments were chosen and described in order to best explain the principles of the
invention and its practical applications, to thereby enable others skilled in the art to best
utilize the invention and various embodiments with various modifications as may be suited

to the particular use contemplated.

14

10

15

20

25

30

WO 2012/051262 PCT/US2011/055917

CLAIMS

What is claimed is:

1. A method for outputting alternative instruction sequences, comprising

tracking repetitive hits to determine a set of frequently hit instruction sequences for
a miCroprocessor;

identifying a frequently miss-predicted branch instruction, wherein the predicted
outcome of the branch instruction is frequently wrong;

store an alternative instruction sequence for the branch instruction into a buffer;

on a subsequent hit to the branch instruction where the predicted outcome of the

branch instruction was wrong, outputting the alternative instruction sequence from the

buffer.

2. The method of claim 1, wherein a plurality of miss-predicted branch target
instructions are identified, and a corresponding plurality of respective alternative

instruction sequences are stored in the buffer.

3. The method of claim 1, wherein alternative instruction sequences are stored a

number of levels of following branches deep.

4. The method of claim 3, wherein alternative instruction sequences are stored for

taken and not taken conditions of the following branches.

5. The method of claim 1, wherein outputting the alternative instruction sequence

from the buffer avoids causing a full flush of an instruction pipeline of the microprocessor.
6. The method of claim 1, wherein outputting the alternative instruction sequence

from the buffer reduces a performance penalty from wrongly predicting a branch

instruction.

15

10

15

20

25

30

WO 2012/051262 PCT/US2011/055917

7. The method of claim 1, wherein a tag structure is used to identify the set of

frequently hit instruction sequences.

8. A system for outputting alternative instruction sequences, said system
comprising:

a fetch module that accesses a plurality of instructions that comprise multiple
branch instructions;

a buffer that stores alternative instruction sequences;

wherein the fetch module tracks repetitive hits to determine a set of frequently hit
instruction sequences for a microprocessor;

where in the fetch module identifies a frequently miss-predicted branch instruction,
wherein the predicted outcome of the branch instruction is frequently wrong;

the fetch module stores an alternative instruction sequence for the branch
instruction into a buffer;

on a subsequent hit to the branch instruction where the predicted outcome of the
branch instruction was wrong, the fetch module outputs the alternative instruction

sequence from the buffer.
9. The system of claim 8, wherein a plurality of miss-predicted branch instructions
are identified, and a corresponding plurality of respective alternative instruction sequences

are stored in the buffer.

10. The system of claim 8, wherein alternative instruction sequences are stored a

number of levels of following branches deep.

11. The system of claim 10, wherein alternative instruction sequences are stored

for taken and not taken conditions of the following branches.

12. The system of claim 8, wherein outputting the alternative instruction sequence

from the buffer avoids causing a full flush of an instruction pipeline of the microprocessor.

16

10

15

20

25

30

WO 2012/051262 PCT/US2011/055917

13. The system of claim 8, wherein outputting the alternative instruction sequence
from the buffer reduces a performance penalty from wrongly predicting a branch

instruction.

14. The system of claim 8, wherein a tag structure is used to identify the set of

frequently hit instruction sequences.

15. A microprocessor that implements a method of identifying instructions, said
Microprocessor Comprises:

a microprocessor pipeline;

a fetch module included in the microprocessor pipe, wherein the fetch module; and

a buffer coupled to the fetch module:

wherein the fetch module tracks repetitive hits to determine a set of frequently hit
instruction sequences for a microprocessor;

where in the fetch module identifies a frequently miss-predicted branch instruction,
wherein the predicted outcome of the branch instruction is frequently wrong;

the fetch module stores an alternative instruction sequence for the branch
instruction into a buffer;

on a subsequent hit to the branch instruction where the predicted outcome of the
branch instruction was wrong, the fetch module outputs the alternative instruction

sequence from the buffer.

16. The microprocessor of claim 15, wherein a plurality of miss-predicted branch
instructions are identified, and a corresponding plurality of respective alternative

instruction sequences are stored in the buffer.
17. The microprocessor of claim 15, wherein alternative instruction sequences are

stored a number of levels of following branches deep, and wherein alternative instruction

sequences are stored for taken and not taken conditions of the following branches.

17

10

WO 2012/051262 PCT/US2011/055917

18. The microprocessor of claim 15, wherein outputting the alternative instruction
sequence from the buffer avoids causing a flush of an instruction pipeline of the

Mmicroprocessor.

19. The microprocessor of claim 15, wherein outputting the alternative instruction
sequence from the buffer reduces a performance penalty from wrongly predicting a branch

instruction.

20. The microprocessor of claim 15, wherein a tag structure is used to identify the

set of frequently hit instruction sequences.

18

WO 2012/051262 PCT/US2011/055917

1/8

1 | Inst A
2 | Inst B
J | Inst C 101
4 | Branch.c1 (11, 6)/
5 | Inst D
6 | Inst E 102
T | Branch.c2 (10, 2)/
8 | Inst F 103
9 | Branch.c3 (15, 5) —
10 | Inst G
11| Inst H
12 | Inst I
13 | Inst] 104
15 | Branch.ct (16, 1) —
15 | Inst K
16 | Inst L
FIGURE 1

SUBSTITUTE SHEET (RULE 26)

WO 2012/051262

O OO0 -1 OO O v Qo DO =

PCT/US2011/055917

2/8

Inst A
Inst B
Inst C
Branch.c1 (11, 6)
Inst D
Inst E
Branch.c2 (10, 2)
Inst F ‘

Inst |

Ts_K

Aot A T . 4
fostl | ..l/

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/055917

WO 2012/051262

3/8

¢08

\

Jqe,

ToNIIpAIg

[auRIg

¢ 3dNoOld

(ssaxppe yutod Anug)
W0T)AIPaIJ duanbag (g

- IDPY-94 - TPPY-GT | 1DPY-F - 1PPH-CQ - IPPE-24 - IPPY:IG

10)21paig
3)udnhag

,|¢¢L

/

008 IDPY:2
13)unoy)
bmqeis | 1ppy-9q * 1ppY-Iq
018
SUOL)IIPaIJ Youelq ¥

SUBSTITUTE SHEET (RULE 26)

WO 2012/051262 PCT/US2011/055917

4/8

[
[—1

Track accesses to determine a set of frequently hit
instruction sequences
401

'

Identify a frequently miss-predicted branch
instruction, wherein the predicted outcome the
branch instruction is frequently wrong
402

'

Store an alternative instruction sequence for the
branch instruction into a buffer
403

'

On a subsequent hit to branch instruction where the
predicted outcome was wrong, output the alternative
instruction sequence from the buffer
404

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/055917

WO 2012/051262

5/8

(89) ~yaqy
(19) -yaqy
(69) ~yaqy
AI
£08
IN L
M M

G 3dNOld

(99 yaqy
(b yaqy
(29 yaqy

IN
A

i
M

205

(69) -yaqy
(19 ~yaqy

IN
40\

i
M

109

[—4
[—4
[X]

SUBSTITUTE SHEET (RULE 26)

PCT/US2011/055917

WO 2012/051262

6/8

p19 €19

SU0T)AIP3Lg
udnbas yIueI|
dreduo)

SUOT)AIPAIL]
0uanhas yaueIq
dreduro

9 34dNOld

{(s9)|-{aaar}x{eg'og} {(c0)|-{aqr}x{eg'og}
{19 |-{aaar}x{eq g} {19 |-{wqar}x{eqeg}
- -
[[
709 £09
ch 1M ¢ IM

¢19

SU0T)AIP3Ig
3udnbas yaueI|
dreduo)

{(c9)|-{yaar}x{eg'og}
{09 [-(aar}x{egeg

¢09

ch 1M

0UaNhas yaueI|

SU0T)IIPAI]

dreduro)

{(s@) [{yaqr}x{ed'og}
{19 |{wqar}x{cqzg}

109

ch 1M

[—4
[—4
O

SUBSTITUTE SHEET (RULE 26)

WO 2012/051262 PCT/US2011/055917

1/8

[
[—1

Track accesses to determine a set of frequently hit
instruction sequences
101

'

Identify a branch instruction having a series of
subsequent frequently executed branch instructions
that form a reliably predictable instruction sequence
102

'

Store the reliably predictable instruction sequence
for the branch instruction into a buffer
103

'

On a subsequent hit to branch instruction, output the
reliably predictable instruction sequence from the
buffer
104

FIGURE 7

SUBSTITUTE SHEET (RULE 26)

WO 2012/051262

8/8

PCT/US2011/055917

Microprocessor Pipeline

Fetch Module
801

'

Decode Module
802

'

Allocation Module
803

'

Dispatch Module
804

'

Execution Module
805

'

Retirement Module
806

(==
—J
[—]

FIGURE 8

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings

