
(19) United States
US 2008O147981A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0147981 A1
Cricket al. (43) Pub. Date: Jun. 19, 2008

(54) RECOMMENDATIONS FOR INTELLIGENT
DATA CACHING

Darl Andrew Crick, Keswick
(CA); Cyrus Tishan E. Mills,
Scarborough (CA); Konstantinos
Kontogiannis, Kitchener (CA);
Man Fai Tang, Toronto (CA)

(76) Inventors:

Correspondence Address:
IBM CORPORATION
3039 CORNWALLIS RD, DEPT. T81 / B503, PO
BOX 12195
REASEARCH TRIANGLE PARK, NC 27709

(21) Appl. No.: 12/030,316

(22) Filed: Feb. 13, 2008

Related U.S. Application Data

(63) Continuation of application No. 11/088,377, filed on
Mar. 24, 2005.

(30) Foreign Application Priority Data

Apr. 21, 2004 (CA) 2,465,155

225

Dynamic
Content

Publication Classification

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl. 711/133; 707/E17. 12

(57) ABSTRACT

According to the present invention, there is provided a com
puter system, method and apparatus for making intelligent
recommendations for dynamic content caching. In one
embodiment of the present invention there is provided a com
puter implemented method for generating intelligent caching
recommendations related to dynamic web content for use on
a caching system. The method comprising extracting data
associated with the dynamic content of interest in accordance
with a predetermined data model. Next analyzing the
extracted data in accordance with a plurality of certainty
factors and a rule based expert System. Completing the analy
sis and generating a set of caching recommendations from the
analyzed data suitable for use by the caching system. Imple
menting the recommendations in the caching system are
repeated iteratively, as in a loop, automatically generating
intelligent caching recommendations related to the dynamic
web content for use on the caching system.

Weighting
Scheme

Rules Based
System

Enhanced
ODG

wfCacheability
Data

US 2008/0147981 A1 Jun. 19, 2008 Sheet 1 of 5 Patent Application Publication

US 2008/0147981 A1 Jun. 19, 2008 Sheet 2 of 5 Patent Application Publication

012

Patent Application Publication Jun. 19, 2008 Sheet 3 of 5 US 2008/0147981 A1

F G. 3A regular flow i
-0

configures Certainty
200 Factor rules

displays
report.html

maps unknown
objects to user
known objects displays

extended
ODG

V -Yi
user Can Choose to -
use sample content -...'

-' ...'

Sample mappings file -
'

mapfileSample.xml

315

FIG. FIG.

| FIG. 3

Patent Application Publication Jun. 19, 2008 Sheet 4 of 5 US 2008/0147981 A1

optional flow required flow
a co-------aa-a-a-a------o - - - - - - - - -)

“... user modifies the config files to
--- regenerate recommendations 340

config.properties
Output

configures cacheability report
thresholds, weights, 305
prior probabilities report.html generate output

generated cachespec.xml

cachespecSample.xml

user modifies the generated
cachespec.xml to add cachel
dependency/invalidation ID's -

user modifies the config
files to regenerate
recommendations

user modifies the
cachespec.xml
cachel dependencyl
invalidation ID's

.." ...'"

-1. tests modified cachespec.xml in
production server F G. 3 B

325

Patent Application Publication Jun. 19, 2008 Sheet 5 of 5 US 2008/0147981 A1

O O
S. N

O
CY)
v O

O
v

b
2

as

V

L

S

US 2008/O 147981 A1

RECOMMENDATIONS FOR INTELLIGENT
DATA CACHING

FIELD OF THE INVENTION

0001. The present invention relates generally to data cach
ing of web content on a computer system on a network and,
more specifically, for making automated recommendations
toward intelligent data caching of dynamic web page content.

BACKGROUND OF THE INVENTION

0002. The Internet and the World WideWeb (WWW) pro
vide intra-enterprise connectivity, inter-enterprise connectiv
ity and application hosting on a larger scale than ever before.
By exploiting the broadly available and deployed standards of
the Internet and the WWW, system users and designers can
leverage a single architecture to build client/server applica
tions for internal use that can reach outside to customers,
business partners and Suppliers.
0003. Each web site normally further provides a plurality
of web pages to be served to the local computer systems upon
request. Each local computer system may access the remote
web sites with web browser software.
0004. The WWW is a collection of servers on an IP (Inter
net Protocol) network, Such as the Internet, an Intranet or an
Extranet, that utilize the Hypertext Transfer Protocol
(HTTP). Hereinafter, “Internet” will be used to refer to any IP
network. HTTP is a known application protocol that provides
users with access to files, which can be in different formats,
Such as text, graphics, images, Sound, and Video, using a
standard page description language known as Hypertext
Markup Language (HTML). Among a number of basic docu
ment formatting functions, HTML allows software develop
ers to specify graphical pointers on displayed web pages,
commonly referred to as “hyperlinks.” that point to other web
pages resident on remote servers. Hyperlinks commonly are
displayed as highlighted text or other graphical image on the
web page. Selection of a hyperlink with a pointing device,
Such as a computer mouse, causes the local computer to
download the HTML associated with the web page from a
remote server. The browser then renders the HTML into the
displayed web page.
0005 Web pages accessed over the Internet, whether by a
hyperlink, opening directly via an “open' button in the
browser, or some other means, are commonly downloaded
into the Volatile cache of a local computer system. In a com
puter system, for example, the Volatile cache is a high-speed
buffer that temporarily stores web pages from accessed
remote web sites. The volatile cache thus enables a user to
quickly review web pages that were already downloaded,
thereby eliminating the need to repeat the relatively slow
process of traversing the Internet to access previously viewed
web pages. This is called local caching.
0006. On the serverside, the first web servers were merely
HTTP servers that resolved universal resource locators
(URLs) by extracting literally from the URL the path to a file
that contained the needed page, and transmitting the page
back to the browser. Such a server was very simple; it could
only be used to access static pages.
0007. A “static' page is a page which, each time it is
requested and served to a requester, has the same byte content.
That is, it does not depend upon which requester is requesting
the page, when the requester is requesting the page, etc.; the
byte content of that page remains the same. By contrast, a

Jun. 19, 2008

"dynamic page' is a page which has byte content that may
very well change depending upon the particular requestor,
when the page is being requested, etc. This will be discussed
further below. It is important that web pages be served as
quickly as possible, both to reduce the response time to a
single user, and to increase the number of users that can be
served concurrently. To improve the response time, the Web
server uses caches. Web server caches are used to store web
page responses in a readily accessible memory location So
that when the web page is requested by a user, a previously
cached web page response can be retrieved from cache and
served quickly to the user.
0008 Caching web page responses by the web server
works quite well for web page responses having static con
tent, i.e., content that doesn't change frequently. An example
of a static web page is one, at a company's web site, compris
ing a compilation of text and graphics objects describing that
company's history.
0009. In fact, classic web servers cache static pages quite
effectively. Specifically, classic web servers serve web page
responses, some of which are static, namely, responses com
prising HTML from the file system. Each of the static
responses has a last modified date associated with it that is
maintained by the file system. The contents of the response
and its associated last modified date are simply stored in the
cache for possible future use by the web server. When a
Subsequent request is received by the server for that page, the
server requests the latest modification date for that page from
the file system and compares the latest modification date with
the last modified date associated with the candidate cached
response. If the latest modification date is the same as the last
modified date associated with the candidate cached response,
the candidate cached response is considered to be “fresh' and
is served to the request (i.e., to the requesting user). If the
latest modification date is later than the last modified date
associated with the candidate cached response, the candidate
cached response is considered “stale” and a “fresh' response
is retrieved and built by the web server for serving to the
requesting user. The fresh response, along with its associated
last modified date, is cached to replace the stale response.
This caching scheme saves the time and server processor
cycles that otherwise would have been spent to build
requested pages which otherwise could have been cached
using this classic caching scheme.
0010. However, newer web servers provide not only static
web pages but also dynamic web pages, i.e., a page having
byte content that may very well change depending upon the
particular requester, when the page is being requested, etc.
Examples of dynamic web pages are pages containing con
tent from a number of different sources or pages having
computed content. For example, a page may contain macros
that compute content for the page, i.e., the page has "comput
able content. These macros may change the page content
each time the page is accessed. This makes it difficult to cache
that page using the classic caching method described above.
Macros or formulas are expressions that perform a function,
Such as determining field values, defining which documents
appear in a view, or calculating values for a column.
0011 Alternatively, the page may contain information
from a number of different sources, and that information may
or may not have associated last modified dates making it
difficult, if not impossible, to cache using the classic caching
method. For example, the page may comprise a composite of
a number of "parts including: other documents, designs from

US 2008/O 147981 A1

databases, content from databases, the present user's identity,
the current time, the current environment, etc. Some of these
parts are actual entities in the system, e.g., documents, data
bases, etc. Some parts though are “virtual and are used to
model the effects of the execution of macros or scripts, for
example, the user's identity may be accessed via one of a
number of macros for performing specialized. They can be
used to format text strings, generate dates and times, format
dates and times, evaluate conditional statements, calculate
numeric values, calculate values in a list, convert text to
numbers or numbers to text, or activate agents and actions.
These various part types are computable parts and have cor
respondingly various types of attributes that can not be
handled by the classic caching systems and methods.
0012 Clearly, it is more difficult to use caching as a
mechanism for improving user response time for pages with
dynamic content. This problem for the server is twofold. First,
after building a web page response, the server must determine
whether the response that it is preparing to serve the request
ing user is cacheable (i.e., determining its cacheability). Sec
ond, the server, upon receiving a request for a web page
whose previous response has been cached, must determine
whether the cached response is valid (i.e., determining its
validity) and applicable (i.e., determining its applicability).
For instance, web page responses containing macros that are
time-dependent may not be cacheable at all. Ifa page includes
a macro for providing the current time, then every access of
the page is unique and the page cannot be cached in memory
at all. Another example is where is a cached page is valid for
serving to Some users but not others. For instance, if the page
includes a macro for the user's name, then the page can be
cached for serving to that particular user, but not for serving
to others. (HTML representing a document is specific to a
user if macros are dependent on user name or user roles.
Using this user data, Some data may be made visible based on
which user is requesting it.)
0013 The term “Dynamic HTML (DHTML) needs to be
explained in the context of the embodiments of the present
invention. “Dynamic' as used in DHTML is referring prima
rily to the effect that the code has on the web page appearance
at the browser. For instance, the dynamic HTML may com
prise Scripts that run on the browser to change the appearance
of the web page Such as by displaying a button that, if pushed,
displays additional text or graphics. The key distinction is that
“dynamic’ in the DHTML sense refers to the browser, not the
server. From the server's point of view, a DHTML page may
still be “static' in that the byte content may be the same each
time the page is requested, so for the purposes of this inven
tion, a DHTML page may be “static' or “dynamic’ in the
sense of the invention. The content is not dependent on any
thing, e.g., the properties of the request, Such as the identity of
the particular user, the time of day that the request is made,
etc. “Dynamic' content, as used in the embodiments of the
present invention, refers to content that has such dependen
cies. Thus, “dynamic' in the DHTML sense is not related to
“dynamic’ in the sense of the embodiments of the present
invention.

0014. The problems may be further expressed as that of
not knowing which dynamic content such as that found in JSP
(Java server page) and ASP (active server page) technology
need to be cached and then how to cache effectively. Further
when implementing a manual cache configuration incorrect
assumptions may cause system performance degradation.
This problem arises when developers construct dynamic

Jun. 19, 2008

pages but do not cache them appropriately; which may then
lead to poor system performance. Additional decisions based
on the various dynamic properties of the page are required
regarding whether to not cache a particular dynamic page at
all or to cache it as a page fragment or a composite page
(including Sub-fragments). The drawback of these solutions
is the need for significant knowledge of the dynamic content
design and the system's dynamic content caching infrastruc
ture.

0015 AS can be readily seen, using caching as a means for
increasing server performance for responses which have
dynamic content has a number of complications and difficul
ties which have not been overcome by prior systems. As such,
HTML representing responses having dynamic content has
not been cached in the past. Accordingly, an embodiment to
cache content that can include dynamic content without Suf
fering from the drawbacks discussed above is needed. An
additional solution is required to make the caching process
simpler Such that developers can easily determine which
dynamic content needs to be cached and how the content
should be cached.

SUMMARY OF THE INVENTION

0016. According to the present invention, there is provided
a computer system, method and apparatus for making intel
ligent recommendations for dynamic content caching. In an
embodiment of the present invention there is a focus on four
main components. Included is a Scanner component that
takes a list of dynamic pages as input and based on a dynamic
page model (JSP, ASP, etc.) and XML definition file outputs
the dynamic page content as entities-relationships data
described in an XML file. This data is then fed into an Analy
Sercomponent to be analyzed using the certainty factor model
and rule based expert system implementation with user-de
fined object weighting schemes based on an Object Depen
dency Graph (ODG) model. The Analyzer then generates
caching recommendations in an analysis report with Cer
tainty Factors for each hypothesis, such as cached as a page
fragment, cached as a composite page or not cached at all. The
Analyser's output is in the form of an enhanced ODG with
additional attributes described by an XML file. This enhanced
ODG is then used by a Generator component to generate a
cache policy for the computer system based on the computer
system's cache policy model. The enhanced ODG may
optionally be passed to a Visualizer component providing a
graphical view of the cached objects and their dependencies.
There is also a cache advisor report which may be viewed
through the visualizer component.
0017 Embodiments of the present invention may be used
to minimize requirements for significant knowledge of page
design and cache infrastructure of a system. It may also be
used in place of using intuition to determine what needs to be
cached, as the certainty factor and rule based expert System
provides intelligent recommendations based on Supporting
evidence to optimize caching opportunities. Further by
design all components are logically separated affording
greater flexibility to plug in each component, such as the use
of a different Scanner, Analyzer, Generator, or Visualizer
component. Use of a tool Such as that which may be an
implementation of an embodiment of the present invention
may also provide for automatic generation of the cache
policy. Further instead of reading text or code, all object
dependencies may be visualized in a user-friendly graphical
user interface.

US 2008/O 147981 A1

0018. In one embodiment of the present invention there is
provided a computer implemented method for generating
intelligent caching recommendations related to dynamic web
content for use on a caching system, comprising: extracting
data associated with the dynamic content of interest in accor
dance with a predetermined data model; analyzing the
extracted data inaccordance with plurality of certainty factors
and a rules based expert System; and generating a set of
caching recommendations from the analyzed data Suitable for
use by the caching system.
0019. In another embodiment of the present invention
there is provided a computer system for generating intelligent
caching recommendations related to dynamic web content for
use on a caching system, comprising: a means for extracting
data associated with the dynamic content of interest in accor
dance with a predetermined data model; a means for analyZ
ing the extracted data inaccordance with plurality of certainty
factors and a rules based expert system; and a means for
generating a set of caching recommendations from the ana
lyzed data suitable for use by the caching system.
0020. In yet another embodiment of the present invention
there is provided an article of manufacture for directing a data
processing system generate intelligent caching recommenda
tions related to dynamic web content for use on a caching
system, the article of manufacture comprising: a computer
usable medium embodying one or more instructions execut
able by the data processing system, the one or more instruc
tions comprising: data processing system executable instruc
tions for extracting data associated with the dynamic content
of interest in accordance with a predetermined data model;
data processing system executable instructions for analyzing
the extracted data in accordance with plurality of certainty
factors and a rules based expert System; and data processing
system executable instructions for generating a set of caching
recommendations from the analyzed data suitable for use by
the caching system.
0021. Other aspects and features of the present invention
will become apparent to those of ordinary skill in the art upon
review of the following description of specific embodiments
of the invention in conjunction with the accompanying fig
U.S.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. In the figures, which illustrate embodiments of the
present invention by example only,
0023 FIG. 1 is a block diagram of a typical computer
system in which an embodiment of the present invention may
be implemented;
0024 FIG. 2 is block diagram showing the components of
an embodiment of the present invention of FIG. 1;
0025 FIG. 3 is component flow diagram depicting data
flow relationships among components of the embodiment of
FIG. 2; and
0026 FIG. 4 is a block diagram depicting interaction
among components of a system of FIG.1 and the embodiment
of FIG. 2.
0027. Like reference numerals refer to corresponding
components and steps throughout the drawings.

DETAILED DESCRIPTION

0028 FIG. 1 depicts, in a simplified block diagram, a
computer system 100 suitable for implementing embodi
ments of the present invention. Computer system 100 has a

Jun. 19, 2008

central processing unit (CPU) 110, which is a programmable
processor for executing programmed instructions, such as
instructions contained in memory 108. Memory 108 can also
include hard disk, tape or other storage media. While a single
CPU is depicted in FIG. 1, it is understood that other forms of
computer systems can be used to implement the invention,
including multiple CPUs. It is also appreciated that the
present invention can be implemented in a distributed com
puting environment having a plurality of computers commu
nicating via a suitable network 119, such as the Internet.
(0029 CPU 110 is connected to memory 108 either
through a dedicated system bus 105 and/or a general system
bus 106. Memory 108 can be a random access semiconductor.
Memory 108 is depicted conceptually as a single monolithic
entity but it is well known that memory 108 can be arranged
in a hierarchy of caches and other memory devices. FIG. 1
illustrates that operating system 120, may reside in memory
108. As well may components of an embodiment of the
present invention such as that of cache advisor tool 200 of
FIG 2.

0030 Operating system 120 provides functions such as
device interfaces, memory management, multiple task man
agement, and the like as known in the art. CPU 110 can be
Suitably programmed to read, load, and execute instructions
of operating system 120 and those of cache advisor tool 200.
Computer system 100 has the necessary subsystems and
functional components to implement testing of files as will be
discussed later. Other programs (not shown) include server
software applications in which network adapter 118 interacts
with the server Software application to enable computer sys
tem 100 to function as a network server via network 119 as
well as to provide data from remote instances Supporting
embodiments of cache advisor tool 200 and dynamic content
225.

0031 General system bus 106 supports transfer of data,
commands, and other information between various Sub
systems of computer system 100. While shown in simplified
form as a single bus, bus 106 can be structured as multiple
buses arranged in hierarchical form. Display adapter 114
supports video display device 115, which is a cathode-ray
tube display or a display based upon other Suitable display
technology that may be used to depict data. Output device 295
of FIG. 2 may be one of a family of such devices as device
115. The Input/output adapter 112 supports devices suited for
input and output, Such as keyboard or mouse device 113, and
a disk drive unit (not shown). Storage adapter 142 Supports
one or more data storage devices 144, which could include a
magnetic hard disk drive or CD-ROM drive although other
types of data storage devices can be used, including remov
able media for storing dynamic content 225 data as well as
intermediate data Such as files used to aid in processing of
Such data and for storing output in the form of reports and
caching recommendations as in cachespec.xml 325.
0032. Adapter 117 is used for operationally connecting
many types of peripheral computing devices to computer
system 100 via bus 106, such as printers, bus adapters, and
other computers using one or more protocols including Token
Ring, LAN connections, as known in the art. Network adapter
118 provides a physical interface to a suitable network 119,
such as the Internet. Network adapter 118 includes a modem
that can be connected to a telephone line for accessing net
work 119. Computer system 100 can be connected to another
network server via a local area network using an appropriate
network protocol and the network server can in turn be con

US 2008/O 147981 A1

nected to the Internet. FIG. 1 is intended as an exemplary
representation of computer system 100 by which embodi
ments of the present invention can be implemented. It is
understood that in other computer systems, many variations
in System configuration are possible in addition to those men
tioned here.
0033 Logical system architecture to effectively automate
the dynamic content recommendation process is established.
The following FIG. 2 is a block diagram depicting the com
ponents and their relationships of an embodiment of the
present invention which may be Supported within a system
configuration of FIG. 1. Scanner 201 extracts information
from the dynamic content pages based on a selected dynamic
page model, such as JSP or ASP Extraction uses information
regarding the dynamic page model from dynamic content
model 205 in conjunction with data contained in XML file
206. The relationships found are then documented as entities
relationships 210 supported by another XML file 215 and
related DTD 220. XML mapping 206 which represents
dynamic content model 205 in an XML format is used by
scanner 201 to parse different entity-relationships data 210.
0034 Output of the translated data is in a XML format to
be interpreted by analyser 230. Entities-relationships 210 is
then translated through analyser 230 into an enhanced ODG
(object dependency graph) model with cacheability data 250.
Analyser 230 analyzes extracted dynamic page entities-rela
tionships data 210 and extends ODG model 245 by attaching
attributes to ODG nodes, obtained through analysis of the
ODG 245 and the entire web application (with data from
XML file 215 and related DTD 220). Analyser 230 also
applies certainty factor model (probabilistic model) and
expert system (heuristics) used for caching dynamic web
content in conjunction with weighting scheme and XML
based rules 240 for the expert system. The rules may be
derived from various different cacheability indicators or evi
dence. Typical cacheability indicators are as follows:

0035 High Variability (HV). The number of invoca
tions of a dynamic page

0036 High External code (HEC). The amount of code
that accesses the database

0037 High Internal Code (HIC) The amount of code
that performs logic

0038 High Author-Time Reuse (HAR). The number
of times a dynamic page is dynamically included at
author-time

0039 High Run-Time Reuse (HRR). The number of
times a dynamic page is requested at run-time

0040 High Run-Time Invalidation (HRI). The num
ber of times a dynamic page is invalidated at run-time

0041. For example, using the JavaServer Pages (JSP)
dynamic page model:

0042. HV is determined based on the number of request
parameters (np) and the range of the parameters’ values
(rp).

0043 HEC is determined based on the number of Java
Bean's (n), Taglibs (nt) and Plugins (nP).

0044 HIC is determined based on the number of bytes
of Java code (nc) in the JSP file

0045 HAR is determined based on the number of times
a page is dynamically included in another page (ni)

0046 HRR is determined based on the number of times
an instance of a page is dynamically requested at run
time per hour (nr)

Jun. 19, 2008

0047 HRI is determined based on the frequency of
invalidation of a page at run-time per hour (fi)

0048. The above indicators or evidence may then be used
to compute the certainty factors as found in certainty factors
and rules based system 235 for a following hypothesis:
(Please see http://www.blutner.de/uncert/CertaintyFactor
Model.pdf for an introduction on the Certainty Factor Model)

0049 NC=Not Cached
0050 CwoF=Cached Without Fragments
0051. CwF=Cached With Fragments
0.052 CF=Certainty Factor
0053 MB=Measure of Belief
0054 MD=Measure of Disbelief
0.055 h-hypothesis
0056 e=evidence
0057 CF=(MB-MD)/1-min(MB, MD)
0.058 MBhle=1 if P(h)=1, otherwise MBhle=(max

P(hle), P(h)-P(h))/(1-P(h))
0059. MDhle=1 if P(h)=0, otherwise MDhle=(min

P(hle), P(h)-P(h))/-P(h)
0060 An initial set of CF's (rules), given certain evidence,
need to be created in order to provide more accurate CF's
given a combination involving any of these evidence. An
example may be provided as: CFCwoFIHAR & HRR)=0.9.
0061. As well, probabilities given certain evidence need to
be determined in the calculation of MB/MD as in the next
example of P(HV|np)=1 if (np>=MAXnp), otherwise
P(HV|np)=np/MAXnp
0062 Also, a prior probability (probability of an event
without any evidence) of a dynamic page is required for each
evidence. For example, Prior(HV) is the probability of any
page having HV without any evidence.
0063 Cacheability also takes into account a weighting
scheme based on user input, allowing an expert developer to
fine tune the algorithm. Prior probabilities for each evidence
and values such as MAXnp in the examples above can be
defined in a configuration file hence allowing the expert user
knowledge to play a role in the cacheability calculation of
different systems.
0064 Analyser 230 produces output of the analyzed data
in a XML format to be interpreted by Generator 260 for
producing a cache policy 270 XML file. Output from analyser
230 may also be sent as enhanced ODG 250 with or without
CA report 255 (cache advisor) to Visualizer 280 for a visual
representation. Visualizer 280 creates viewable objects 285
for use with application view 290 to be seen on output device
295.
0065 Generator 260 generates a cache policy based on the
analysis report of enhanced ODG 250 and information com
bined with cache policy model 265. For example, the IBM
product WebSphere Application Server Dynamic Cache uses
a cache policy in the form of an XML file (cachespec.xml)
and its cache policy model is the data type definition file
(cachespec.dtd) for the cachespec.xml. Several of cache
policy XML 270 may be generated based on a given confi
dence level.
0.066 Visualizer 280 provides a user with a graphical view
of object dependencies determined through analysis using a
colouring scheme to highlight relationships. For example
when displaying objects and dependencies, objects that
appear in blue may be JSPs, those in red may be Java beans,
pink may be for tag libraries, and HTML objects may be in
grey, while unknown object may appear in black. Similarly
dependencies could be shown as green to indicate they are

US 2008/O 147981 A1

dynamic, while cyan could indicate static includes, pink for
tag library links and grey for HTML anchors. Further any
object having an arrow pointing to it by another object is a
parent of that object while an object having a pointer to
another object is the child of that object. In the usual manner
clicking on an object or dependency will cause the properties
of that object or dependency to be displayed. In this way the
visualizer 280 provides the ability to view object information
at the nodes and at the edges (if dependencies and attributes
exist) of the enhanced ODG 250 and maps the analysis report
to highlight the important objects with priorities.
0067 Cache advisor report 255 is presented as a textual
display having rows of information related to the relation
ships and resulting recommendations.
0068 Referring now to FIG. 3 is an overview of the data
flow of an embodiment of the present invention as may be
used in a tool. In this embodiment of the present invention in
the form of tool, there may be seen three configuration files:
a mapfile.xml, a config.properties and a rules.xml. All three
files are configurable by the user of the tool. It would be
expected that one skilled in the art having knowledge of the
system before would be able to modify the config.properties
and rules.xml as these files may be provided with default

Jun. 19, 2008

values. In a similar manner a sample mapfile.xml called map
fileSample.xml may be provided to allow a user to use the
content within mapfileSample.xml as is by renaming the file
to mapfile.xml. In this manner the tool may be used rather
quickly and allowing further configuration or customization
to Suit the intended use situation.
0069. The file mapfile.xml is used to map unknown
objects to user known objects, for example where some
dynamically included page can become unknown, Such as the
case where the incfile below can be any value depending on
the value of the string include Dir which doesn’t get deter
mined until runtime. To overcome such problems, a user
defined mapping file to map unknown objects to user known
objects is provided.

&%
String incfile;
incfile = includedir + “CachedHeaderDisplay.jsp':

%>
<sp:include page=''<%=incfile%3’ flush="true's

0070
follows:

Sample syntax definition of a mapfile.xml may be as

<maplists is the root element that consists of a list of <mapping> elements
<mapping> is an element that defines a mapping of unknown objects to user known
objects
“from attribute defines the fully qualified path of the unknown object e.g.
<%=incfile%2 in any JSP's under directory FashionFlow will be defined as
from="<path to FashionFlows\FashionFlow\<%=incfile%-. Notice that the “a”
is defined as < and “s is defined as > in XML files
<destination> is an element that defines the destination mapping of the unknown
objects
“to attribute defines the fully qualified path of destination object e.g. if &%=incfile%3
really refers to FashionFlow\include\styles styles 1\CachedHeaderDisplay.jsp then
one would define the destination as
to="<path to FashionFlow\FashionFlow\include\styles style1\CachedHeaderDisplay.
JSp

0071. Following is a sample of the mapfile.xml file:

<?xml version=“1.0 encoding=UTF-82>
<maplists

<mapping
from="C:\WSADworkspace CAS Cache AdvisorWC Code\FashionFlow\;<%=incfile%->

<destination

to="C:\WSAD\workspace CAS\CacheAdvisorWC Code\FashionFlow\include\styles style1\HeaderDisplay

<destination

to="C:\WSAD\workspace CAS\CacheAdvisorWC Code\FashionFlow\include\styles style1\FooterDisplay
jsp/>

<destination

to="C:\WSAD\workspace CAS\CacheAdvisorWC Code\FashionFlow\include\styles style1\SidebarDisplay
jsp/>

</mapping>

US 2008/O 147981 A1

0072 The config.properties file contains information
needed to configure prior probabilities, weighting schemes,
and threshold values used by the analyser.
0073. Threshold values are values that determine if an
evidence is completely true, e.g. in the cacheability algorithm

Jun. 19, 2008

e.g. missing the information of number and range of request
parameters then the calculation of HV will use the prior
probabilities.
0076 A sample of the syntax definition of config.proper
ties follows:

threshold.max.params (denoted earlier by MAXnp) is the threshold value for the
number of request parameters
threshold.max.range is the threshold value for the range of request parameters
threshold.max.beans is the threshold value for the number of beans
threshold.max.tagLibs is the threshold value for the number of tag libraries
threshold.max.bytesCode is the threshold value for the number of bytes of the page
threshold.max.dynaInc is the threshold value for the number of dynamic includes of
the page
threshold.max.statDnc is the threshold value for the number of static includes of the
page
threshold.max.runTimeReuse is the threshold value for the number of runtime reuses
of the page (this value will not be used until runtime analysis is incorporated into the
tool)
threshold.max.runTimeInvalid is the threshold value for the number of runtime
invalidations of the page (this value will not be used until runtime analysis is
incorporated into the tool)

.numParams is the weight of the number of request parameters

...totalRange is the weight of the range of request parameters

.numBeans is the weight of the number of beans

.numTagLibs is the weight of the number of tag libraries

.numBytesCode is the weight of the number of bytes of the page

.numlynanc is the weight of the number of dynamic includes

.numStatinc is the weight of the number of static includes

..runTimeReuse is the weight of the runtime reuses (this value will not be used

weig
weig
weig
weig
weig
weig
weig
weig
until runtime analysis is incorporated into the tool)
weight.runTimeInvalid is the weight of the runtime invalidations (this value will not be
used until runtime analysis is incorporated into the tool)
prior variability is the prior probability of high variability
prior.extCode is the prior probability of high external code
priorintCode is the prior probability of high internal code
prior authTimeReuse is the prior probability of high author time reuse
prior runTimeReuse is the prior probability of high runtime reuse (this value will not
be used until runtime analysis is incorporated into the tool)
prior runTimeInvalid is the prior probability of high runtime invalidation (this value will
not be used until runtime analysis is incorporated into the tool)
prior.ncChild is the prior probability of having a non-cached child
prior.cwofChild is the prior probability of having a child that's cached without
fragments

rule P(HV|np)=1 if (np>=MAXnp), otherwise P(HV|np)-np/
MAXnp where MAXnp is the threshold value for np, the
probability of high variability given evidence of number of
request parameters is equal to 1 if the number of request
parameters is greater than or equal to the threshold value
defined by MAX.np, otherwise the probability of high vari
ability given evidence of number of request parameters is
equal to the number of request parameters divided by the
threshold value MAXmp.
0074 Weight schemes define the weighting of each
attribute contributing to the belief or disbelief of the evidence,
e.g. users can define how the number of request parameters
(np) and the range of the request parameters (rp) will contrib
ute to the calculation of high variability (HV). These weights
are expressed in the config.properties as percentages in the
form of decimals (30% or 0.3 weight for np and 70% or 0.7
weight for rp), therefore the weight of np+the weight of rp=1.
0075 Prior probabilities define the probabilities of an
event without any evidence support. These prior probabilities
are used in cases where there does not exist evidence Support,

0077. The following is an example of a config.properties
file containing settings for configuring prior probabilities,
weighting schemes, and threshold values. The threshold val
ues are values that determine if an evidence is completely
true, e.g. in the cacheability algorithm rule P(HV|np)=1 if (np
>=MAXnp), otherwise P(HV|np)-np/MAXnp where
MAXnp is the threshold value for np, the probability of high
variability given evidence of number of request parameters is
equal to 1 if the number of request parameters is greater than
or equal to the threshold value defined by MAX.np, otherwise
the probability of high variability given evidence of number
of request parameters is equal to the number of request
parameters divided by the threshold value MAXnp.
0078 Weight schemes define the weighting of each
attribute contributing to the belief or disbelief of the evidence,
e.g. users can define how the number of request parameters
(np) and the range of the request parameters (rp) will contrib
ute to the calculation of high variability (HV). These weights
are expressed in this config.properties as percentages in the

US 2008/O 147981 A1

form of decimals (30% or 0.3 weight for np and 70% or 0.7
weight for rp), therefore the weight of np+the weight of rp=1.
0079 Prior probabilities define the probabilities of an
event without any evidence support. These prior probabilities
are used in cases where there does not exist evidence Support,
e.g. missing the information of number and range of request
parameters then the calculation of HV will use the prior
probabilities.
0080
follows:

Sample syntax definition of a config.properties file

threshold.max.params (denoted earlier by MAXnp) is the threshold value for the
number of request parameters
threshold.max.range is the threshold value for the range of request parameters
threshold.max.beans is the threshold val ue for the number of beans
threshold.max.tagLibs is the threshold value for the number of tag libraries
threshold.max.bytesCode is the threshold value for the number of bytes of the page
threshold.max.dynaInc is the threshold value for the number of dynamic includes of
the page
threshold.max.statDnc is the threshold value for the number of static includes of the
page
threshold.max.runTimeReuse is the threshold value for the number of runtime reuses
of the page (this value will not be used until runtime analysis is incorporated into the
tool)
threshold.max.runTimeInvalid is the threshold value for the number of runtime
invalidations of the page (this value will not be used until runtime analysis is
incorporated into the tool)
weight.numParams is the weight of the number of request parameters
weight.totalRange is the weight of the range of request parameters
weight.numBeans is the weight of the number of beans
weight.numTagLibs is the weight of the
weight.numEytesCode is the weighto

number of tag libraries
he number of bytes of the page

weight.numlynanc is the weight of the number of dynamic includes
weight.numStatinc is the weight of the number of static includes
weight.runTimeReuse is the weight of
until runtime analysis is incorporated in
weight.runTimeInvalid is the weighto

he runtime reuses (this value will not be used
o the tool)
he runtime invalidations (this value will not be

used until runtime analysis is incorporated into the tool)
prior variability is the prior probability of high variability
prior.extCode is the prior probability of
priorintCode is the prior probability o
prior authTimeReuse is the prior probab
prior runTimeReuse is the prior probabi

high external code
high internal code
ility of high author time reuse
ity of high runtime reuse (this value will not

be used until runtime analysis is incorporated into the tool)
prior runTimeInvalid is the prior probab ility of high runtime invalidation (this value will
not be used until runtime analysis is incorporated into the tool)
prior.ncChild is the prior probability o having a non-cached child
prior.cwofChild is the prior probability of having a child that's cached without
fragments

0081 Following is an example of a default config.proper
ties file showing the settings with values:

...
if THRESHOLDS
...
threshold.max.params = 5
threshold.max.range = 1 OOOO
threshold.max.beans = 2
threshold.max.tagLibs = 3
threshold.max.bytesCode = 1 OOOO
threshold.max.dynanc = 4
threshold.max.statinc = 4
threshold.max.runTimeReuse = 600
threshold.max.runTimeInvalid = 60
...
if WEIGHTING SCHEMES
...
// -- Variability
weight.numParams = 0.3

Jun. 19, 2008

-continued

weight.totalRange = 0.7
if -- External Code
weight.numBeans = 0.95
weight.numTagLibs = 0.05
if -- InternalCode
weight.numBytesCode
if -- Author-time Reuse

1

-continued

weight.numlynanc = 0.5
weight.numStatnc = 0.5
if -- Run-time Reuse
weight.runTimeReuse = 1
if -- Run-time Invalidation
weight.runTimeInvalid = 1
...
if PRIOR PROBABILITIES
...
prior variability = 0.01
prior.extCode = 0.2
priorintCode = 0.01
prior authTimeReuse = 0.1
prior runTimeReuse = O.O
prior runTimeInvalid = O.O
prior.ncChild = 0.1
prior.cwofChild = O2

US 2008/O 147981 A1

0082. The rules.xml file contains specification of certainty
factor rules. These certainty factor rules need to be defined in
a rules.Xml file for Subsequent use by the cacheability algo
rithm. For example, the first rules within the rule list for CWF
is CFCwFIHV & HEC & HAR & HRR)=0.9.
0083 Sample syntax definitions for a rules.xml type of file
are as follows:

Jun. 19, 2008

tion in the form of a computer system tool containing specific
functions for managing cache data as described in FIG. 2.
Components tool GUI 355; report 345 and graph 350 corre
spond to elements as previously shown. Tool GUI 355 is used
to provide the display mechanism for reports Such as report.
html 335 as generated by generator 260. Certainty factor rules
contained within file rules.xml 300 are provided to analysis

<cacheadvisors is the root element that contains a list of <rulelists elements
<rulelist> element contains a list of <rules elements that define the Certainty Factors
for certain rules
“name attribute is the name of the hypothesis, e.g. CWF - Caching with fragments,
CWoF - Caching without fragments, NC - Not Cached
<rules element contains a proposition that defines the Certainty Factor rule
“cf attribute is the certainty factor for the rule
<proposition> element contains a list of <proposition> elements that define the
components in the rule
“type attribute is the operator of the proposition, the values can be conjunction (and
&), disjunction (or), atomic (without operator)
“negate' attribute is the negation of the proposition, the values can be true or false
“name attribute is the name of the evidence, the values can be:
variability - is determined by two page properties: number of request parameters and
the range (possibilities of values) of the request parameters
internalCode - is determined by the number of bytes (file size) of the dynamic page
externalCode - is determined by the number of beans and tag libraries of the dynamic
page
authortimeReuse - is determined by the number of times the page is dynamically
included
runtimeReuse - is determined by the number of times the page is hit at runtime
runtimeInvalidation - is determined by the number of invalidations of the page at
runtime
notCachedChildren - is determined by whether the page has a child that's not cached
CWoFChildren - is determined by whether the page has a child that caches without
fragments
CWFChildren - is determined by whether the page has a child that caches with
fragments
childRequested - is determined by whether the page is sending request parameters
to dynamically included child

0084. The following is an example of a portion of a default
rules.xml file showing two rules:

<?xml version=“1.0 encoding=UTF-82>
<cacheadvisors

&rulelist name="CWF's
&rule cf-'0.9'>

<proposition type="conjunction>
<proposition type="atomic name="variability's
<proposition type="atomic name="externalCode''>
<proposition type='atomic name=
“authoritimeReuse' >
<proposition type="atomic name="runtimeReuse' >

</proposition>
<rules
&rule cf-'0.7'>

<proposition type="conjunction>
<proposition type='atomic name=
“authoritimeReuse' >
<proposition type='atomic name=

“notCachedChildren' negate="true's
<proposition type="atomic name="CWoFChildren'
negate="true's

</proposition>
<rules
<rulelists

</cacheadvisors

0085 Having just described the more granular elements a
sample usage flow will now be described. Cache advisor 200
is an implementation of an embodiment of the present inven

functions of cache advisor 300. These rules comprise the
expert based rules system contained within the embodiment.
The value ranges from disbelief to belief and is not to be
confused with a probability. Config.properties 305 is also
used by cache advisor 200 functions as it contains data
regarding settings and values for thresholds, weights and
prior probabilities. Mapfile.xml 310 provides the third piece
of data to cache advisor 200 in the form of mapping entries.
These mapping entries resolve unknown entries to some user
known entry. The user can choose to use a sample set of data
as may be found in file mapfilesample.xml 315 or modify the
sample to provide more installation unique data. Optionally
the user may also modify settings contained within rules.Xml
300 and config.properties 305 as a means to generate different
recommendations.
I0086 Report 345 and graph 350 components of cache
advisor 200 may be viewed as part of visualizer 280 of cache
advisor 200. The file objects just described may be viewed
through report 345 and tool GUI 355 or other tool capable of
displaying files having XML data. Cache advisor 200 gener
ates output in the form of report.html 335 which is a cache
ability report and cachespecsample.xml containing recom
mended cache data. The user would further modify
cachespecsample.xml 330 by adding information regarding
cache, data dependency and invalidation identifiers to create
cache implementation file cachespec.xml 325. Cachespec.
xml 325 is further tested and modified by the user throughout
production cycles. Information from an implementation on

US 2008/O 147981 A1

server 320 further provides input to modifications of the
configuration files (rules.xml 300, config.properties 305 and
mapfile.xml 310) to regenerate recommendations as output in
cachespec.xml 325.
0087. Referring now o FIG. 4 is a block diagram showing
the relationship between cache advisor tool 200 of FIG. 2 and
computer system 100 of FIG.1. Beginning with runtime 400
is the environment in which the applications of interest
execute generating empirical data describing activity and
events. This information is collected in various forms such as
web logs by a statistics collector activity 410. Collector 410
may also collect other information regarding application
usage as defined by collection routines and capabilities of the
generating application and Support infrastructure. Informa
tion obtained through collector 410 is passed to evaluator 430.
Evaluator 430 combines the statistics describing application
activity with data obtained from caching system 420. Caching
system 420 may be at least one of a hardware, software or
combination thereof. A particular implementation is not
important as the ability to provide data on the functional
performance of the caching system itself. Evaluator 430 then
determines data regarding cache hit ratio, page invalidation
and reusability of pages and other cache related information
which may be of value in assessing and improving perfor
mance of the dynamic content being served. This evaluated
information is then fed into the analyser of cache advisor tool
200 as described in FIG. 2. Analysis of the received data is
performed in cache advisor tool 200 and recommendations
are provided and implemented in server 320 of FIG.3 oper
ating in runtime 400. All of this activity may occur within a
single system such as server 320 or it may be dispersed across
a number of physical systems of which FIG. 1 shows but one
example. The recommendation system as described may
operate as an automatic iterative feedback loop generating
collecting assessing and recommending change to tune or
improve the performance of serving dynamic content. The
user in the form of a system administrator also has the oppor
tunity to inject values into the process so as to manually
override recommendations provided by the cache advisor tool
2OO.
0088. Of course, the above described embodiments are
intended to be illustrative only and in no way limiting. The
described embodiments of carrying out the present invention
are Susceptible to many modifications of form, arrangement
of parts, details and order of operation. The invention, rather,
is intended to encompass all Such modification within its
Scope, as defined by the claims.

1-7. (canceled)
8. A computer system for generating intelligent caching

recommendations related to dynamic web content for use on
a caching System, comprising:

a means for extracting data associated with the dynamic
content of interest in accordance with a predetermined
data model;

a means for analyzing the extracted data in accordance with
plurality of certainty factors and a rules based expert
system; and

a means for generating a set of caching recommendations
from the analyzed data suitable for use by the caching
system.

9. The computer system of claim 8 wherein the means for
extracting the data comprises:

a dynamic content model in combination with dynamic
content descriptors; and

produces a plurality of entity-relationship data.

Jun. 19, 2008

10. The computer system of claim 8 wherein the means for
analyzing the extracted data comprises:
means for obtaining an object dependency model;
means for obtaining a weighting scheme;
means for creating an enhanced object dependency graph

model combined with cacheability data; and,
means for creating a cache advisor report.
11. The computer system of claim 8 wherein, the means for

generating a set of caching recommendations comprises:
means for obtaining a cache policy model for use with a

generator, and
means for generating a cache policy.
12. The computer system of claim 10, wherein the

enhanced object dependency graph model combined with
cacheability data and the cache advisor report may be option
ally viewed through a visualizer.

13. The computer system of claim 12, wherein optional
viewing through the visualizer provides color-keyed output
of the enhanced object dependency graph model combined
with cacheability data designating the inherent relationships
and properties of the enhanced object dependency model
combined with cacheability data.

14. The computer system of claim8, wherein the means for
extracting data associated with the dynamic content of inter
est in accordance with a predetermined data model, the ana
lyzing the extracted data in accordance with plurality of cer
tainty factors and a rules based expert System and the
generating a set of caching recommendations from the ana
lyzed data suitable for the caching system and implementing
the recommendations in the caching system are repeated
iteratively, as in a loop, automatically generating intelligent
caching recommendations related to the dynamic web con
tent for use on the caching system.

15. An article of manufacture for directing a data process
ing system generate intelligent caching recommendations
related to dynamic web content for use on a caching system,
the article of manufacture comprising:

a computer usable medium embodying one or more
instructions executable by the data processing system,
the one or more instructions comprising:

data processing system executable instructions for extract
ing data associated with the dynamic content of interest
in accordance with a predetermined data model;

data processing system executable instructions for analyZ
ing the extracted data in accordance with plurality of
certainty factors and a rules based expert System; and

data processing system executable instructions for gener
ating a set of caching recommendations from the ana
lyzed data Suitable for use by the caching system.

16. The article of manufacture of claim 15 wherein the data
processing system executable instructions for extracting the
data comprises:

a dynamic content model in combination with dynamic
content descriptors; and produces a plurality of entity
relationship data.

17. The article of manufacture of claim 15 wherein the data
processing system executable instructions for analyzing the
extracted data comprises:

data processing system executable instructions for obtain
ing an object dependency model;

data processing system executable instructions for obtain
ing a weighting scheme;

US 2008/O 147981 A1

data processing system executable instructions for creating
an enhanced object dependency graph model combined
with cacheability data; and,

data processing system executable instructions for creating
a cache advisor report.

18. The article of manufacture of claim 15 wherein, the
data processing system executable instructions for generating
a set of caching recommendations comprises:

data processing system executable instructions for obtain
ing a cache policy model for use with a generator, and

data processing system executable instructions for gener
ating a cache policy.

19. The article of manufacture of claim 17, wherein the
enhanced object dependency graph model combined with
cacheability data and the cache advisor report may be option
ally viewed through a visualizer.

20. The article of manufacture of claim 19, wherein
optional viewing through the visualizer provides color-keyed

Jun. 19, 2008

output of the enhanced object dependency graph model com
bined with cacheability data designating the inherent rela
tionships and properties of the enhanced object dependency
model combined with cacheability data.

21. The article of manufacture of claim 15, wherein the
data processing system executable instructions for extracting
data associated with the dynamic content of interest in accor
dance with a predetermined data model, the analyzing the
extracted data inaccordance with plurality of certainty factors
and a rules based expert system and the generating a set of
caching recommendations from the analyzed data Suitable for
the caching system and implementing the recommendations
in the caching system are repeated iteratively, as in a loop,
automatically generating intelligent caching recommenda
tions related to the dynamic web content for use on the cach
ing System.

