«» UK Patent Application « GB « 2251 164..A

(43) Date of A publication 24.06.1992

(21) Application No 9112159.0 (51) INTCL®
GO6F 15/72

(22) Date of filing 06.06.1991
(52) UK CL (Edition K)

(30) Priority data HA4T TCHA
(31) 632015 (32) 21.12.1990 33) US
(56) Documents cited
None
(71) Applicant (58) Field of search
Sun Microsystems Inc UK CL (Edition K) H4T TCHA TCHD TCHX
INT CL® GO6F

(Incorporated in the USA — Delaware)

2550 Garcia Avenue, Mountain View, California 94043,
United States of America

(72) inventors
John McDonald
Steven E Golson
Edward H Frank

(74) Agent and/or Address for Service
Potts, Kerr & Co
15 Hamilton Square, Birkenhead, Merseyside, L41 6BR,
United Kingdom

(54) Method and apparatus for writing directly to a frame buffer in a computer having a windowing system
controlling its screen display

(57) A method for writing directly to a frame buffer 14 providing signals to an output display 15 in a computer system having
afirst processor 12 running a window management program controlling furnishing of data in a first format to the frame
buffer, and a second processor 17 running application programs in a second format for display, including the steps of
providing a signal from the second processor 17 to the window management program indicating that an application program
running on the second processor 17 has information to be displayed, setting up a window for the display of said application
program running on the second processor 17 under control of the window management program, informing the second
processor 17 of the window's existance, its position and clipping, setting up a data structure for the window including a
frame buffer address and clipping information for each address to be generated for displaying said application program, and
transferring data from the application program running on the second processor to addresses in the frame buffer 14 pointed

to by the addresses in the data structure.
VGA
— Main Memory)
processor|{|| DFB L | featus
Data
Structure 30
17

1
N3z 18

Processo

12 14 15

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

V91 162 ¢ 89

1/3

vea Display
] ™1 Memory
///—~l9
Processor
12 10
FIG. | o |
. Display
—» Memory [—
14 15
VGA Display
Memory
— Main Memory)
Status
Processor DFB > Word
Data
Structure 30
17
1
Nz 18
Processore s ™
12 14 15

2/3

31 24 23 16 15 8 7 0

aPixel mask—sr- Display Address -

FIG. 3

|31 28|27 24|23 20 |19 1615 1211 8 |7 b3 0
Pixel 7] P6 P5 P4 P3 P2 P1 [Pixel 0

FIG. 4

Processor 17 signals
Window MP that
program to be
displayed

Window MP sets
up window &
signals processor 17

Information on window
position & clipping
used to construct
data structure.

3/3

Processor sends data

data structure & to
shared memory

to frame buffer using

Window MP monitors
window movement &
signals processor 17
if VGA window
affected.

FIG. 5

Reposition &
Update Windows

A

Processor 17 stops
sending data to
frame buffer

2251154
METHOD AND APPARATUS FOR WRITING DIRECTLY TO A FRAME BUFFER IN A
COMPUTER LAVING A WINDOWING SYSTEM CONTROLLING ITS SCREZM DISPLAY

BACKGROUND OF THE JINVENTION

i. Field Of The Invention:

This invention relates to multitasking computer systems
having windowing programs controlling access to the frame
buffer and, more particularly, to methods and apparatus for

writing directly to the frame buffer in such a system.

2. History Of The Prioxr Art:

In its simplest form, a computer writes information from
a single program to a frame buffer which stores the
information so that it may be written to an output display.
Usually, the display of this single program covers the entire
output display. When it is desired to display more than one
program at a time on an output display, each program is B
presented in a small portion of the display called a window
(usually a rectangle). When a number of different programs
are running on a computer system, a number of windows will
appear on the screen of the output display. These windows
may be moved about, may be changed in size (and sometimes in
shape), and may often overlap one another. When one window
overlaps another window in which a program is running, data
must not be written to the portion of the window which is
overlapped and in the background; that data must be clipped

so that data in the foreground is not overwritten.

It is necessary, among other things, when running
application programs in a plurality of windows to somehow set
up the different windows into which each program is to fit,
to direct the information from each application program to
the correct window, and to take care of the overlapping of
different windows so that the correct portions of each

program are displayed.

If all of these tasks are done by the individual
application programs, then there must be a great deal of
checking among the programs to make sure that the different
programs do not interfere with one another. This tends to
slow the operation of the system and allows poorly designed
software to distort the operation of the system. For this
reason, more advanced computer systems have designéd window
management programs which take over the entire operation of

writing to the frame buffer to control what is displayed.

A window management program controls the entire display,
sets up the windows into which different programs may be
written, controls the positioning of those windows,
determines which information is displayed when windows
overlap, and does all of the operations necessary to allow
the simultaneous display of a number of application programs
on a single output display device. When a program operating

through a window management program desires to present

information on the output display, it signals the window
management program. The window management program assigns to
it a particular portion of the display and sets up the window
in which the program is to be displayed. Then, typically, as
each pixel of information is furnished by the application
program for presentation, the window management program
determines the position on the screen at which that pixel is
to appear, checks to see whether the pixel is obscured by
some other window, and furnishes the results of the
computation to the frame buffer for display on the output
display. The window management program controls the
positioning and repositioning of windows and any problems
caused by overlapping. This guarantees that programs operate
correctly in presenting their displays and relieves a
programmer of the necessity of writing most of the procedures

required for display purposes.

In such a system, only by going through the window
management program can a program have its results displayed.
Normally this is desirable because the window management
program does all of the housekeeping which is necessary for a
windows display and keeps the different programs from
overwriting one another and otherwise interfering with each
other on the display. However, such a method of presenting
information has a significant overhead so that the frame

buffer from which data is actually written to the display can

be updated only about ten times a second. A computer system
running such a windows management program does not update the

frame buffer as rapidly as do individual programs in a system

without a windows management program.

Many individuval computer programs provide more
satisfactory performance when the frame buffer is updated
more rapidly than is possible using a windows management
program. For example, live video such as television and
animation programs require updating at a much faster rate
than ten times a second. In general, thirty frames of video
information are presented every second. If this information
is to be presented in a window on an output display
controlled by a window management program in which the frame
buffer can only be updated ten times per second, the video
picture which is presented will be distorted. It may appear
to jump from one frame to the next, and frame tears may occur
in which parts of different video frames appear on the

display at once.

One way to present rapidly changing graphics information
which is not distorted in a system using a window management
program to control the display would be to bypass the window
management program and write directly to the frame buffer.
However, doing so creates all of the problems which a window

management program was devised to solve. If an application

program writes directly to the display, it may overwrite
other programs or interfere in other ways with those other
programs or may itself be overwritten by the window
management program. Moreover, such a program must somehow
overcome the delay caused by all of the cross-checking
necessary to allow its existence with programs controlled by

the window management program,

It is, therefore, an object of the present invention to
provide a method and apparatus for allowing a program running
in a system having a window management program to write

directly to a frame buffer.

It is another more specific object of the present
invention to provide a method and apparatus for allowing a
program running in a system having a window management
program to write directly to a frame buffer without
interfering with the other programs controlled by the window
management program or having its presentation interfered with

by other programs.

These and other objects of the present invention are

realized in a method for writing directly to a frame buffer

providing signals to an output display in a computer system
having a processor running a window management program
controlling the furnishing of data to the frame buffer, and a
second source of graphics information to be displayed
comprising the steps of providing a signal from the second
source to the window management program indicating that the
second source has graphics information to be displayed,
setting up under control of the window management program a
window for the display of the graphics information to be
furnished by the second source, signalling the second source
that the window exists and providing information regarding
its position and clipping, setting up a data structure for
the window including a frame buffer address and clipping
information for each address to be generated for displaying
the graphics information provided by the second source in the
window constructed, and transferring the graphics information
from the second source to addresses in the frame buffer

pointed to by the addresses in the data structure.

These and other objects and features of the invention
will be better understood by reference to the detailed
description which follows taken together with the drawings in
which like elements are referred to by like designations

throughout the several views.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a prior art computer

system utilizing a window management program.

Figure 2 is a block diagram of a computer system

constructed in accordance with the present invention.

Figure 3 represents a format used in a status word used

in the present invention.

Figure 4 illustrates the manner in which data for eight
four-bit pixels is stored in a system utilizing the
invention.

Figure 5 is a flow chart describing the method of the

invention.

Some portions of the detailed descriptions which follow
are presented in terms of symbolic representations of
operations on data bits within a computer memory. These
descriptions and representations are the means used by those

skilled in the data processing arts to most effectively

convey the substance of thei: work to others skilled in the
art. The operations are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred,
combined, compared, and otherwise manipulated. It has proven
convenient at times, principally for reasons of common usage,
to refer to these signals as bits, values, elements, symbols,
characters, terms, numbers, or the like. It should be borne
in mind, however, that all of these and similar terms are to
be associated with the appropriate physical quantities and

are merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred
to in terms, such as adding or comparing, which are commonly
associated with mental operations performed by a human
operatof. No such capability of a human operator is
necessary or desirable in most cases in any of the operations
described herein which form part of the present invention;
the operations are machine operations. The operations of the
present invention are usually performed by general purpose
digital computers or other similar devices. In all cases the
distinction between the method operations in operating a
computer and the method of computation itself should be borne
in mind. The present invention relates to apparatus and to

method steps for operating a computer in processing

electrical or other (e.g. mechanical, chemical) physical

signals to generate other desired physical signals,

RETAILED DESCRIPTION OF THE JINVENTION

Typically a window management program receives a signal
indicating that an application program desires to present
information on a computer output display. Of course, it is
not necessary that the information to be presented come from
an application program. Live video or animation might be
presented by other sources of information such as a source of
television signals providing information to a frame grabber.
In all of these cases, the window management program selects
a particular portion of the display and sets up the window in
which the information from the program orrother source (all
of which are referred to hereinafter as application programs)
will be displayed. It then notifies the source and waits to.

receive the data.

Each piece of data which is to be presented in the
window on the display has an address at which the data is to
be furnished by the application program. The address
presented by the application program for the data is an
address which presumes that the output display for that

particular program is presented in a particular format. The

address probably also presumes that in that particular format
the output display for that particular program will occupy
the entire screen. For this purpose, the application program
presumes that the display is of a particular standard format
and size, the information describing which is held in memory.
For example, if the program is one normally presented in an
IBM personal computer format, the application program may
expect its output to be displayed in the VGA format of 640 X
480 pixels or in some other standard IBM PC format. Thus,
the application program expecting its output to be presented
on a computer output display in this format furnishes
addresses for its graphics data which would place the data in
the proper position on such a VGA display were the
application program to utilize the entire display. When a
window management program such as Microsoft Windows,
manufactured and sold by Microsoft Corporation, is used in a
VGA display system to control a VGA display, then the
addresses for the application program need only be translated
by the window management program into addresses which place

the data in the correct screen positions within the window.

However, if the program is actually being presented on a
computer system having a different larger display format
(e.g., one displaying 1152 X 1024 pixels), then the addresses
for the data on the display must first be translated by the

window management program into the same format as that used

10

by the display. In addition to being translated into
addresses in the format of the display, the addresses must
also be translated into addresses which place the data into
the correct screen positions within the window. If an
address is in a position on the output display which is
covered by a program being displayed in another window, the
window management program must determine this and make sure
that the data does not overwrite the data in the other

window.

However, if an application program is to write directly
to the frame buffer and bypass the window management program,
then the application program (or some associated program)
must translate addresses as necessary because of a difference
in the formats, must translate addresses as necessary to
place the application program output in tﬁe correct position
within a window, and must somehow communicate with the window
management program so that it does not interfere with windows
from other application programs being displayed under control

of the window management program.

Figure 1 is a block diagram which illustrates a portion
of a computer system 10 of the prior art. The system 10
includes a primary central processing unit 12 which runs a

primary operating system. The operating system includes a

11

window management program which controls the data written to

a frame buffer 14 for display on an output display device 15.

The system 10 may be adapted to run application programs
in a plurality of operating system environments. For
example, an Intel 80386 microprocessor is capable of running
Unix as a primary operating system and simultaneously running
MS DOS applications as windows on the output display.
Discussion of an arrangement for presenting application
programs in multiple formats through a window management
program using a single processor is contained in an article
entitled "DOS on the Sun 386i," published by Sun Microsystems
in 1988 in Sun Technology, In such an arrangement, the
processor 12 runs as a part of its primary operating system a
monitor program which in turn runs individual virtual MS-bOS
machines. The monitor program is especially designed to
allow the virtual machines to run in association with the
processor 12. 1In effect, the program is specially written to
intercept and trap the output signals from the virtual
machines and translate those output signals to signals which
may be interpreted by the primary operating system as though
they were typical control signals furnished by an application

program running on the primary operating system.

In order to make use of the graphics output provided by

the virtual MS DOS machines, the system 10 includes emulation

12

circuitry 19 which emulates the graphics controller used in a
typical IBM format computer. The emulation circuitry 19
allows the processor 12 and the DOS operating system to treat
the output from the DOS application programs designed for the
IBM PC format as it would be treated by a typical IBM
personal computer and to furnish the results of those
programs provided by the emulation circuitry 19 to the window
management program of the primary operating system running on
the processor 12 so that it may display those results in a
window on the output display 15. To accomplish this, the
emulation circuitry 19 may include the elements of a typical
VGA graphics controller and its display memory, a number of

which are well known in the prior art.

The primary operating system directs all d;ta to be
presented on the display 15 to its windowrmanagement program,
and the window management program controls all elements of
the display 15. The output to be displayed by the
application program being run on the virtual DOS machines by
the processor 12 is, therefore, presented by the emulation
circuitry 19 to the windows management program of the primary
operating system for display. The windows management program
directs the data to a portion of memory where it is stored
awaiting display. The window management program sets up an
area of the display as a window into which the application

program is to be written; determines which, if any, overlaps

13

with other windows are present; and ultimately writes the
information from the memory, doing whatever address
translation is necessary to present the pixels in the correct

places in the window on the display 15.

However, because the windows management program must do
this same thing for all of the application programs being
displayed, it is capable of updating the frame buffer 14 at
most only about ten times per second. The application
programs in the IBM format and information such as live video
and animation from other sources, on the other hand, are
structured to write directly to a frame buffer and expect to
be able to update the frame buffer as often as thirty times
per second. If the programs of IBM format which run on the
virtual machines by the processor 12 must go through the
window management program of the system 16, their output
appears sluggish in operation. Some programs which require
very rapid wpdating of the frame buffer cannot be run
satisfactorily through the window management program at all.
For this reason, improvements to the system 10 have been
devised in accordance with the present invention which allow
the application programs run in the secondary format to be

written directly to the frame buffer 14.

These improvements are illustrated in the circuit 30 of

Figure 2. Figure 2 is a block diagram which illustrates a

14

portion of a computer system 30 of the present invention.

The system 30 includes a primary central processing unit 12
which runs a primary operating system. The operating system
includes a window management program which controls the data
written to a frame buffer 14 for display on an output display
device 15. BAn exemplary system 30 might be one of the Sun
SPARC workstations, manufactured by Sun Microsystems,
Mountain View, California, which has an operating system that
includes a window management program for controlling the data

written to the output display.

The system 30 may be adapted to include as a portion
thereof a second processor 17 such as the 1486 processor
manufactured by Intel Corporation, Santa Clara, California.
The processor 17 is joined éo the processor 12 by a bus 18
and emulation circuitry 32 which allows the transfer of
information therebetween. The processor 17 is arranged to
run a secondary operating system (such as MS DOS) which
controls its operations. The operating system used by the
processor 12 may include an SDOS kernel (driver) which is a
program especially designed to allow the second processor 17
to run in association with the processor 12. 1In effect, the
SDOS kernel is a program specially written to intercept and
trap the output signals from the processor 17 and translate
those output signals provided on the bus 18 to signals which

may be interpreted by the SunOS operating system. For

15

example, certain of the signals may be made to appear to the
SunOS operating system as though they were typical control
signals furnished by an application program running on the
SunOS operating system. Also included is emulation circuitry
32 which emulates the graphics controller used in a typical
IBM format computer. The emulation circuitry 32 allows the
processor 17 and its DOS operating system to run application
programs designed for the IBM PC format and to furnish the
results of those programs to the window management program of
the operating system running on the processor 12 so that it
may display those results in a window on the output display
15. The emulation circuitry 32 may include the elements of a
typical VGA graphics controller . As pointed out above, the
second processor 17 might be replaced by circuitry for
presenting live video or animation for display or by some
other source of graphics information which for some reason it

is desired to write directly to the output display.

As in the prior art system discussed above, the basic
SunOS operating system directs all data to be presented on
the display 15 to its window management program, and the
window management program controls all elements of the
display 15. In order to allow the IBM or other format
programs to write directly to the frame buffer 14, there are
at least two major problems which must be solved. First, the

processor 17 in writing data which is to be displayed

16

furnishes addresses for that data which are chosen to present
the data at the correct position on an output display which
is of some standard IBM format or other format which is not
the format used by the operating system. For the purpose of
this description, it will be presumed that the format in
which the graphics information is furnished is the VGA format
of 640 X 480 pixels; it might be any other display format,
and a number of formats may all be used in accordance with
this invention. On the other hand, the output display is
presumed to be in some Sun format which might display, for
example, 1152 X 1024 pixels. The output of the application
program is to be displayed in a window of the display 15
presenting that Sun format. Consequently, a system 30 for
accomplishing this must provide some means for converting the
pixel &ddresses presented in an IBM format to pixel addresses
within a window in a Sun format. This is accomplished in the
present invention by circuitry in an emulation module 32 and
software which augments the functionality of the window
management address translation system of the Sun OS operating

system.

The particulars of conversion from the IBM format VGA
addresses to SunOS operating system display addresses are
well known. As pointed out, this conversion is normally
handled by the window management program of the Sun 0OS

operating system. Basically, the VGA addresses provided by

17

the processor 17 are linear addresses in a format in which
each address is represented by a value (640 x X) + Y, where X
is the horizontal row of the display and Y is the vertical
column of the display at which a pixel is to appear in the
particular IBM format. Each such address is converted to a
display address (1152 x X') + ¥' where X' is the horizontal
row of the display and Y' is the vertical column of the
display at which a pixel is to appear in the Sun format.

This address is also offset, however, by additional X' and Y!
values which position the window on the output display of the
system 30. As pointed out, the conversion process is well

known and is not by itself the subject of this invention.

For the particular example given here of an IBM format
program, a peculiarity of the VGA format must also be handled
by the conversion circuitry used in the emulation
arrangement. In various presentation modes of the VGA format
(and other IBM format programs), a single address and data
are provided for only the first of eight linear addresses at
which pixels are to be placed. 1In the IBM format program,
the address is the first address for eight sequential pixels.
The data in the IBM format program appears as a single byte
of information which is sufficient using the various
translation techniques available to furnish pixel values for
the eight sequential pixels addressed. When the single

address is converted, it represents the actual address of

18

only the first pixel of the eight and must be incremented to
provide the addresses of the following seven pixels in the

sequence.

Meanwhile, the data representing the eight pixels coded
in the single byte associated with the address are converted
by the emulation circuitry to eight four-bit pixel values
(this is typical of the VGA format), one representing each of
the pixels in the sequence of eight pixels having the same
starting address. These eight four-bit values must then be
converted by means of a color lookup table to an eight bit
value (which is the normal value used in the Sun system), and
each eight bit pixel be written to the frame buffer as the

addresses in the sequence are counted out.

In other modes of the VGA format, eight bits of data and
a2 single address represent a single pixel on the display.

This format must also be presented on the display.

All of the foregoing are typical translations of IEM
format to Sun format in order that the information may be
presented on a Sun display controlled by a windows management
program of the SunOS operating system. The translation
mechanism is merely moved to emulation circuitry 32 and
software running on the processor 17. However, because the

conversion of addresses takes a substantial period of time

19

wherever it is done, the SDOS driver of the present invention
is used to accomplish the translation of addresses from one
format to another before any individual translation is
required. Essentially, the processor 17 runs the SDOS driver
software (this driver which communicates between the two
systems could also be run by the processor 12) which receives
information regarding the window to be displayed (including
how it is to be clipped) from the window management program.
The SDOS driver creates a data structure in memory in which
the address conversion of each VGA address to a display
address has already been accomplished. This data structure
includes a status word for each pixel address (every eighth
address when eight pixels are included with a single address)
within the window provided by the window management program.
Each status word includes an address within the window for
each VGA address which may be furnished by the application
program. Each VGA address provided by the processor 17
points to a status word in the data structure. The status
word includes a frame buffer address already converted to
place the pixel at the appropriate display address within the
window using the standard conversion formulae. Consequently
no time consuming conversion needs to occur when each vVGa
address is presented by the processor 17; merely a simple

lookup needs to be accomplished.

20

In the preferred embodiment of the invention, the status
word consists of thirty-two bits. A representation of such a
status word is shown in Figure 3. Twenty-four of these bits
are used for the frame buffer address, and eight bits
represent masking values for the eight pixels represented by
the address in the typical VGA format. Thus, a one in a mask
bit position representing a pixel may indicate that a
particular pixel is masked (obscured) by the data presented
within another window on the display while a zero may
indicate that the particular pixel represented by the bit is
to be written to the frame buffer. In this manner the

overlapping of windows on the display may be controlled.

When writing directly to the frame buffer, an IBM format
address is provided for eight sequential pixels by the
processor 17. Along with the address, a data byte
representing the information for each of the eight sequential
pixels is provided. The data is converted by the VGA
emulation circuitry 32 into eight four-bit pixel
representations (see Figure 4), and the address is converted
by the emulation circuitry 32 using the data structure to the
address indicated by the appropriate status word (Figure 3)
for the first of the pixels. With the address, the status
word furnishes the eight bits of masking information for the
eight pixels. The first pixel position in the frame buffer

15 is addressed, and the first four bits representing a pixel

21

are converted to an eight bit pixel value. If the mask bit
'is a zero, the data is written to the pixel address in the
frame buffer. The converted frame buffer address is then
incremented by one, and the second four bits of data are
converted to an eight bit pixel value. If the second mask
bit is a zero, the data is written to the incremented address
in the frame buffer. If either mask bit is a one, the data
is obscured by another window and is not written to the frame
buffer. This process continues through the sequence until
the eight pixels are exhausted, and another address and its

associated data are furnished by the processor 17.

It will be recognized that the use of a data structure
as described in this specification allows the very rapid
translation of addresses from one format to another because
it does not require that the translation formulae be applied
to each pixel as it is furnished by the processor 17.
Moreover, the data structure allows any of the IBM formats
(or formats of whatever computer display system is producing
the addresses) to be translated by simply selecting the
appropriate formulae for the particular translation. If the
particular application program is producing addresses in CGA
format rather than the VGA format, then only 320 pixels occur
on a line of the display and only 200 lines appear on the
display. A set of formulae for this translation is selected

in initializing the emulation module 32 for the particular

22

application program and when the data structure is created by
the SDOD driver, these formulae are used to provide the

status words.

An additional advantage of the translation accomplished
by the present invention is that a data structure may be
created and stored in memory for each individual application
program being run on the processor 17. In this manner, all
of the IBM format programs may be written directly to the
frame buffer 14. However, the data structures by themselves
only solve one part of the problem, how to accomplish the
translation of addresses rapidly. They do, however, provide
the vehicle for solving the second part of the problem, how
to keep the application programs in IBM format from
interfering with each other and the other programs oﬁ-the

display 15.

It will be recognized that by placing the masking bits
for each of the eight sequential pixels with the address for
the first of those pixels in each status word, all of the
necessary elements to allow the IBM format program to
cooperate with the other elements of the screen display are
provided. This is true so long as the window position of the
IBM format program does not change and no other window moves
to obscure it or to remove obscuring pixels. When these

things happen, the data structure must be reconstructed to

23

change the converted addresses held in the status words (and
possibly the masking bits if the window moves) or to change
the masking bits if some other window moves and changes the
clipping necessary. It will be appreciated that the
reconstruction of the data structure requires cooperation

with the window management program of the operating system.

As pointed out above, the SDOS driver is constructed so
that the SunOS operating system and its window management
program treat the IBM format program running on the processor
17 as merely another application program accessing the output
display through the window management program. In order to
accomplish this, the SDOS driver (the SDOS kernel) responds
to the window management program in the same manner as would
an application program so that the window ﬁanagement program
of the SunOS operating system is in complete control of the
placement of windows on the output display. When the
processor 17 signals that it has an IBM format program which
it wishes to run in a window, the window management program

sets up and assigns the window structure to the IBM format

program.

The window management program keeps track of the window
structure assigned to the IBM format program in the same way
it keeps track of all other window structures assigned to

other programs. The window management program signals the

24

SDOS driver running on the processor 17 that the window has
been set up, and furnishes the emulator module 32 the details
of its window including the portions of the window which are
to be clipped. The SDOS driver uses this information to
build the data structure for the area assigned for the window
and stores that data structure in memory. The processor 17
then starts to transfer the VGA addresses and associated data
to what it believes is VGA controller memory addresses. In
fact, the VGA addresses are translated by the emulator module
32 to frame buffer addresses; and the emulator module 32
starts transferring the IBM format program data (translated
to eight bit data by the standard conversion process) to the
addresses specified by the status words of the data

structure.

Not only is each pixel transferred to the frame buffer

14 in the manner described above, but a separate set of data
and addresses representing each pixel is sent at the same
time (or earlier in the preferred embodiment) to be stored in
an area in shared memory reserved for the IBM format program.
The pixel data is always written to this shared memory
regardless of the contents of the mask in the data structure.
In the preferred embodiment of the invention, this shared
memory stores the pixels in the four bit per pixel VGA format
discussed earlier and illustrated in Figure 4. This separate

block of memory allows the IBM format program to accomplish

25

read/modify/write operations on the data to be displayed. It
is also used by the SDOS driver to help reconstruct the
graphics data displayed in a window when that window is moved

to a new position on the output display.

In the meantime, the window management program monitors
the entire window structure including the portions of windows
which overlap one another and indicates when the data
structure of the present invention needs to be updated.
Whenever any window is moved, the window management program
consults the overall window control structure it has created.
If the window in which the IBM format program is running is
involved in the window movement, the window management
program sends a signal to the driver working with the
emulator module 32 runﬁing the IBM format program. This
signal cuts off the operation by which the IBM format program
writes directly to the frame buffer and to the shared memory.
The window management program then assigns the new window
structure and informs the emulator module 32, providing
information regarding the position and clipping. Given the
new window positions, the SDOS driver reconstructs the data
structure for the IBM format program so that the window
addresses are correct and so that the masking bits for each
sequence of pixels associated with each address are correct.
When the window movement is completed, the window management

program signals the driver running on the processor 17, and

26

the emulator module 32 then signals the IBM format program to

begin writing to the frame buffer again.

Figure 5 is a flow chart describing the operation of the
system 30 in writing an IBM format program directly to the
frame buffer 14 from the processor 17. As may be seen, the
SDOS driver running on the processor 17 signals the windows
management program that an IBM format program is to be
displayed. The windows management program sets up the window
and signals the driver the position of and the clipping in
the window. The SDOS driver constructs the data structure
including the status words for accomplishing the address
translations into the format being displayed. The emulator
module 32 signals the processor, and the processor sends
addresses and data in IBM format for display. The data is
translated in accordance with the particular IBM format into
pixel data. The addresses and data are sent to the windows
management program for storage in shared memory and to the
data structure for translation to addresses in display
format. When translated, the data is written directly to

translated addresses of the frame buffer 14 for display.

If the window into which the IBM format application
program is being written is affected in some way by window
movement (either of that window or another window), the

window management program signals the driver running on the

27

brocessor 17. The driver Stops the use of the data structure
for address translation and the transfer of data to the
shared memory. The windows management program then
repositions the particular window, updates its windows
control structure, ang provides information to the driver
regarding the window position and clipping. The SDOS driver
reconstructs the data structure, signals the processor 17,
and begins translating addresses uses the new data structure.
Although the present invention has been described in
terms of a preferred embodiment, it will be appreciated that
various modifications and alterations might be made by those
skilled in the art without departing from the spirit and
scope of the invention. The invention should therefore be

measured in terms of the claims which follow.

28

CLATMS

1. A method for writing directly to a frame buffer
providing signals to an output display in a computer system
having a processor running a window management program
controlling the furnishing of data to the frame buffer, and a
source of graphics data for display on the output display
comprising the steps of providing a signal indicating that
graphics data from the source is to be displayed, setting up
a window for the display of the graphics data from the source
under control of the window management program, signalling
the source of graphics data that the window exists and
providing information regarding its position and clipping,
setting up a data structure for the window including a frame
buffer address and clipping data for each address to be
generated for displaying the graphics data furnished by the
source in the window constructed, and transferring the
graphics data from the source to addresses in the frame

buffer pointed to by the addresses in the data structure.

29

2. A method for writing directly to a frame buffer as
claimed in Claim 1 further comprising the steps of stopping
the writing to the frame buffer when the window for the
display of the graphics data from the source under control of
the window management program is affected by any other window
controlled by the window management program, reconstructing
the data structure to reflect the way in which the window is
affected, and restarting the transfer of graphics data from
the source to addresses in the frame buffer pointed to by the

addresses in the reconstructed data structure.

3. A method for writing directly to a frame buffer as
claimed in Claim 1 in which the step of setting up a data
structure for the window including a frame buffer address and
clipping data for each address to be generated for displaying
the graphics data furnished by the source in the window
constructed comprises generating a data word comprising the
frame buffer address and masking bits for any data to be

stored at the address indicating whether the data is to be

displayed or not.

30

4.7 A method for writing directly to a frame buffer as
claimed in Claim 3 in which the step of generating a data
word comprising the frame buffer address and masking bits for
any data to be stored at the address indicating whether the
data is to be displayed or not comprises generating a single
masking bit for each address to which data is to be written.
3. A method for writing directly to a frame buffer as
claimed in Claim 1 further comprising the step of writing the
graphics data from the source memory to provide information
which may be manipulated for display by the source of

graphics data.

31

6. A method for writing directly to a frame buffer
providing signals to an output display in a computer system
having a first processor running a window management program
controlling furnishing of data furnished in a first format to
the frame buffer, and a second processor running application
programs in a second format for display comprising the steps
of providing a signal indicating that an application program
running on the second processor has information to be
displayed, setting up a window for the display of the
application program running on the second processor under
control of the window management program, signalling the
second processor that the window exists and providing
information regarding its position and clipping, setting up a
data structure for the window including a frame buffer
address and clipping information for each address to be
generated for displaying the application program running on
the second processor in the window constructed, and
transferring data from the application program running on the
second processor directly to addresses in the frame buffer

pointed to by the addresses in the data structure.

32

7. A method for writing directly to a frame buffer as
claimed in Claim 6 further comprising the steps of stopping
the writing to the frame buffer when the window for the
display of the application program running on the second
processor under control of the window management program is
affected by any other window controlled by the window
management program, reconstructing the data structure to
reflect the way in which the window is affected, and
restarting the transfer of data from the application program
running on the second processor to addresses in the frame

buffer pointed to by the addresses in the reconstructed data

structure.

8. A method for writing directly to a frame buffer as
claimed in Claim 6 in which the step of setting up a data)
structure for the window including a frame buffer address and
clipping data for each address to be generated for displaying
the application program running on the second processor in
the window constructed comprises generating a data word
comprising the frame buffer address and masking bits for any

data to be stored at the address indicating whether the data

is to be displayed or not.

33

9. A method for writing directly to a frame buffer as
claimed in Claim 8 in which the step of generating a data
word comprising the frame buffer address and masking bits for
any data to be stored at the address indicating whether the
data is to be displayed or not comprises generating a single

masking bit for each address to which data is to be written.

10. A method for writing directly to a frame buffer as
claimed in Claim 6 further comprising the step of writing the
data from the application program running on the second
processor to memory to provide information which may be

manipulated for display by the second processor.

34

11. Apparatus for writing directly to a frame buffer
providing signals to an output display in a computer system
having a processor running a window management program
controlling the furnishing of data to the frame buffer, and a
source of graphics data for display on the output display
comprising means for providing a signal indicating that
graphics data from the source is to be displayed, means for
setting up a window for the display of the graphics data from
the source under control of the window management program,
means for signalling the source of graphics data that the
window exists and providing information regarding its
position and clipping, means for setting up a data structure
for the window including a frame buffer address and clipping
data for each address to be generated for displaying the
graphics data furnished by the source in the window
constructed, and means for transferring the graphics data
from the source to addresses in the frame buffer pointed to

by the addresses in the data structure.

35

12. BApparatus for writing directly to a frame buffer as
claimed in Claim 11 further comprising means for stopping the
writing to the frame buffer when the window for the display
of the graphics data from the source under control of the
window management program is affected by any other window
controlled by the window management program, means for
reconstructing the data structure to reflect the way in which
the window is affected, and means for restarting the transfer
of graphics data from the source to addresses in the frame

buffer pointed to by the addresses in the reconstructed data

structure.

13. Apparatus for writing directly to a frame buffer as
claimed in Claim 11 in which means for setting up a data
structure for the window including a frame buffer address and
clipping data for each address to be generated for displaying
the graphics data furnished by the source in the window
constructed comprises means for generating a data word
comprising the frame buffer address and masking bits for any

data to be stored at the address indicating whether the data

is to be displayed or not.

36

14. Apparatus for writing directly to a frame buffer as
claimed in Claim 13 in which the means for generating a data
word comprising the frame buffer address and masking bits for
any data to be stored at the address indicating whether the
data is to be displayed or not comprises means for generating
a single masking bit for each address to which data is to be

written.

15. Apparatus for writing directly to a frame buffer as
claimed in Claim 11 further comprising means for writing the
graphics data from the source to memory to provide
information which may be manipulated for display by the

source of graphics data.

16. Apparatus for writing directly to a frame buffer as
claimed in Claim 11 in which the source of graphics data
comprises an application program.

17. A method for writing directly to a frame buffer providing
signals to an output display in a computer system substantially.as
hereinbefore described with reference to the accompanying drawings.

18. Apparatus for writing directly to a frame buffer providing

signals to an output display in a computer system substantially as
hereinbefore described with reference to the accompanying drawings.

37

‘ e
>— -
. ! . 0
__] 7
=}

S in
m M

on number
Search Exa

i
9112159.0

Applicat

-~
o]
et)
7..“ s..,
3
mu]
@
o L
i =
: e
s X
8] B
& Al
N e
X
e
e .
3 & |
[S
£ :
N r.u
I o
[c :

N
[
r—— —-—
™.
i
=s

R) o

:
MW (&) 73 l
RS = =
o [o
O a mw.
e o O B
Ha A

bt |
— 5w
O @ __ >
v badand S
N L1\ _ 5 3
oty N -p - ¢
-] 2D o
-~ = @ i B
o = oo = _ A
: Y= _ @

——
P

\wp51\doc9s\fil000147

lgp - ¢

< 1

—]
Category {dentity of document and relevant passages Relevant
to claim(s)
Categories of documents
X: Document indicating lack of novelty or of P: Document published on or after the declared
inventive step. priority date but before the filing date of the

. resent application.
Y: Document indicating lack of inventive step if P PP

combined with one or more other documents of the E: Patent document published.c.m or after, but with
same category. priority date earlier than, the filing date of the
present application.

A:D indicati ical back .
and/g?;?;?: :)lfng:: Ztr'ﬁg technological background &: Member of the same patent family,

corresponding document.

Databases: The UK Patent Office database comprises classified collections of GB, EP, WO and US

patent specifications as outlined periodically in the Official Journal (Patents). The on-line databases
considered for search are also listed periodically in the Official Journal (Patents).

Published 1992 at The Patent Office, Concept House. Cardiff Road, Newport, Gwent NP9 1RH. Further copics may be obtained from

Sales Branch, Unit 6. Nine Mile Point. Cwmfclinfach, Cross Keys. Newport. NP1 7HZ. Printed by Multiplex techniques ltd. St Mary Cray. Kent.

