(57) **Abstract:**
The presently disclosed and claimed inventive concept(s) relates generally to liquid-based coatings for writable-erasable surfaces, products that include such coatings, and methods for making and using the same.
Title: CLEAR COATINGS, ACRYLIC COATINGS

Abstract: The presently disclosed and claimed inventive concept(s) relates generally to liquid-based coatings for writable-erasable surfaces, products that include such coatings, and methods for making and using the same.
CLEAR COATINGS ACRYLIC COATINGS

CROSS REFERENCE TO RELATED APPLICATION

[0001] The present application claims benefit under 35 U.S. 119(e) of U.S. Provisional Patent Application Serial No. 61/495,736, filed June 10, 2011, the entire contents of which are hereby expressly incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Disclosed and/or Claimed Inventive Concepts

[0002] The presently disclosed and claimed inventive concept(s) relates generally to liquid-based coatings for writable-erasable surfaces, products that include such coatings, and methods for making and using the same.

2. Background

[0003] Dry erase boards are well known in the art. They are found in classrooms (replacing chalkboards) and in board rooms (often replacing flip charts). Smaller dry erase boards are used on doors, walls, and lockers, in homes, dormitories, restaurants, and various other places where people want to jot down notes. The user writes on the dry erase board with a dry erase marker and then simply wipes off the marking using a cloth or dry eraser.

[0004] Dry erase boards typically include a substrate, such as paper or board, and a coating, such as a lacquer coating, extending upon the substrate. The coating provides a writing surface that can be marked using dry erase marking pens. Dry erase marking pens, which are typically felt tip marking instruments, contain inks that not only can mark such surfaces, but also can be erased with minimal effort using, e.g., a dry eraser, cloth, or paper tissue.

[0005] The erasability of dry erase inks from the writing surfaces of dry erase boards can deteriorate over time, resulting in the formation of non-removable "ghost images." In addition, such surfaces can be incompatible with some dry erase markers, and can be permanently marked if inadvertently written on with a permanent marker.

[0006] Graffiti is a common problem encountered in areas of access to the general public for example, walls of a public restroom or portable restrooms or in a subway station. Moreover, generally, unwanted markings on surfaces can occur
almost anywhere. Graffiti is often in the form of paint, such as spray paint, but graffiti and other markings may be applied by markers, crayons, and other writing fluids. As used herein, the term "graffiti" will be used to refer broadly to unwanted markings, whether consisting of paint, such other fluids or other unwanted markings, scuff marks and the like.

[0007] Such markings are particularly troublesome because they are often very difficult to remove from the surfaces on which they have been applied. Thus, painted surfaces often must be repainted to cover up the markings and sometimes must be even stripped and then repainted. For example, graffiti often is applied with paint similar to that on the surface. Removal of the graffiti paint by abrasion or with a solvent therefore is impractical because it typically results in removal of at least a portion of the underlying paint. Unpainted surfaces sometimes must be sandblasted to remove the markings.

[0008] Other solutions also include coating the surface of the article that would serve as a barrier to permit easy removal of such marking, or coating the surface that may be resistant to graffiti. However, such solutions are expensive and labor intensive. Additionally, not all surfaces can be coated with graffiti-resistant coating.

DESCRIPTION OF THE PRESENTLY DISCLOSED AND/OR CLAIMED INVENTIVE CONCEPT(S)

[0009] The presently claimed and disclosed inventive concept(s) provide coatings having writable-erasable surfaces, products that include such coatings and methods of making and using the same. Generally, the coatings having the writable-erasable surfaces are produced from a base composition optionally in a carrier and a coating curing agent under ambient conditions. When the writing surface is marked with a marking material, such as a water- or solvent-based marking material, the marking material can be erased to be substantially invisible with little or no ghosting, even after prolonged and repeated use. The coatings can be also used to cover commercial buildings so that graffiti can be easily removed.

[0010] The coatings have many desirable attributes, including low surface roughness and porosity. Generally, while not intending to be bound by any theory, it is believed that the low porosity of the coatings makes the coatings substantially impervious to the marking materials, while the low surface roughness prevents the marking materials from becoming entrapped on the surface beyond effective reach of an eraser.

[0011] In one aspect of the presently claimed and disclosed inventive concept(s), a coating product includes a cured coating (such as cross-linked) extending upon a
substrate and having a writable-erasable surface. The coating is curable under ambient conditions, and can be formed from a base composition. A coating curing agent can be optionally used in the curing process. The base composition can be produced by reacting a hydroxyl-containing acrylic resin, an alcohol, a silane compound, water, and an acid catalyst.

[0012] The above hydroxyl-containing acrylic resin can be obtained by copolymerizing a hydroxyl-containing acrylic monomer with another ethylenically unsaturated group-containing monomer by a conventional method. The above hydroxyl-containing acrylic monomer is not particularly restricted but includes, among others, hydroxyalkyl (meth)acrylates such as 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate; Placcel FM1 (2-hydroxyethyl (meth)acrylate-caprolactone adduct, product of Daicel Chemical Industries); polyalkylene glycol mono (meth) acrylates and the like. These may be used singly or two or more of them may be used in combination. In the present specification, "(meth)acrylate" means "acrylate and/or methacrylate".

[0013] The above-mentioned other ethylenically unsaturated group-containing monomer is not particularly restricted but includes, among others, alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, dodecyl (meth)acrylate, phenyl (meth) acrylate, tolyl (meth)acrylate, benzyl (meth)acrylate and lauryl (meth)acrylate; aromatic vinyl monomers such as styrene and vinyltoluene; epoxy-containing monomers such as glycidyl (meth)acrylate; amino-containing monomers such as dimethylaminoethyl (meth)acrylate and diethylaminoethyl (meth)acrylate; acrylamide monomers such as (meth)acrylamide, N-ethyl(meth)acrylamide, N,N-butoxymethyl(meth)acrylamide and N-methylacrylamide; acrylonitrile, vinyl acetate, acryl acid, methacrylic acid, etc. These may be used singly or two or more of them may be used in combination.

[0014] In one embodiment, the alcohol can be any low molecular weight alcohol, including but not limited to methanol, ethanol, 1-propanol, 2-propanol, butanol and isobutanol, alone or in combination.

[0015] The silane compound can be represented by chemical formula (I):

\[R_nSi(OR')_{4-n} \]

(I)
wherein each \(R \) and \(R' \) independently represent a hydrocarbon group, and \(n \) is 0\(\leq n < 4 \). The silane compound is selected from the group consisting of tetramethoxysilane, tetrathoxysilane (TEOS), tetrapropoxysilane, tetrabutoxysilane, tetraacetoxysilane, methoxyethyltriethoxysilane, diethoxyethyltrimethoxysilane, \(\gamma \)-glycidoxypropyltrimethoxysilane, methyltrimethoxysilane, methyliethylmethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, acetoxyethyltriethoxysilane, \(\gamma \)-glycidoxypropylmethylmethoxysilane, \(\beta \)-(3,4-epoxy cyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, \(n \)-propyltriethoxysilane, decytrimethoxysilane, decyltrimethoxysilane, gamma-chloropropyltrimethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, \(t \)-butyltriethoxysilane, \(n \)-butyltriethoxysilane, iso-butyltriethoxysilane, iso-\(t \)-butyltrimethoxysilane, ethyltriisopropoxysilane, vinyltriisobutoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, 2-norbornanetriethoxysilane, 2-norbornanetriethoxysilane, octytriethoxysilane, methyltriallyloxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropylmethoxysilane, diisobutyldimethoxysilane, methylhexyldiethoxysilane, \(t \)-butylmethyldimethoxysilane, \(t \)-butylmethyltriethoxysilane, \(t \)-amylylmethyltriethoxysilane, dicyclopentylmethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, diphenyltriethoxysilane, bis(\(o \)-tolyl)dimethoxysilane, bis(\(m \)-tolyl)dimethoxysilane, bis(\(p \)-tolyl)dimethoxysilane, bis(\(p \)-tolyl)diethoxysilane, bisethylphenyldimethoxysilane, dicyclohexylmethoxysilane, cyclohexylmethyldiethoxysilane, 2-norbornanemethylmethoxysilane, tetrakis(2-methoxyethoxy)silane, trimethylmethoxysilane, trimethylethoxysilane, trimethylphenoxyxilane, and combinations thereof.

[0016] In one embodiment, a metal alkoxide can be used to form a base composition without silane compounds. In another embodiment, a metal alkoxide can be used in addition to silane compounds. One example of a metal alkoxide is tetraisopropyl titanate.

[0017] The acid catalyst can be either mineral acids or low molecular weight organic acids. In one embodiment, the acid catalyst can be hydrochloric acid, sulfuric acid, nitric acid, or phosphoric acid. In another embodiment, the acid catalyst can be formic acid, acetic acid or propionic acid; or functionalized version of these.

[0018] A base composition can be prepared as follows:

[0019] Add a hydroxy-containing acrylic resin, an alcohol and an acid catalyst into a container and stir to form a mixture. The mixture may be heated to about 20 to
about 90 degrees Celsius until the resin is completely solubilized in the alcohol. In one embodiment, the mixture can be heated to about 30 to about 70 degrees Celsius. Add a silane compound to the mixture and heat the container to about 65°C +/- 5°C. Add water containing the acid catalyst into the container to form a final mixture. Reflux the final mixture for about one hour and then cool the final mixture to room temperature to form the base composition.

[0020] The coating can be formed from the base composition optionally with a coating cure agent in a carrier. The carrier can be a water-based solvent, a non-water based solvent and combinations thereof. While not intending to be bound by theory, it is believed that solvents can be effective as a dispersive vehicle for the resins in a coating formulation prior to curing. During the application of the formulation, they aid in achieving an appropriate viscosity of the formulation. The solvents can include, but are not limited to 2-butoxyethanol, ethylene glycol, diacetone alcohol, ethyl benzene, xylenes, methyl amyl ketone, isopropyl alcohol, propylene glycol monomethyl ether, ethylene glycol monobutyl ether, butanol, paraffins, alkanes, polypropylene glycol, Stoddard solvent, toluene, ethoxylated alkylphenol, 1-methyl-2-pyrrolidinone, or 1-ethylpyrrolidin-2-one.

[0021] The coating curing agent if used, is not particularly restricted but includes, among others, organotin compounds such as dibutyltin laurate, dibutyltin octoate and dibutyltin diacetate; and metal chelate compounds such as aluminum tris(acetylacetonate), titanium tetrakis(acetylacetonate), titanium bis(acetylacetonate), titanium bis(butoxy)-bis(acetylacetonate), titanium bis(isopropoxy)-bis(acetylacetonate), zirconium bis(butoxy)-bis(acetylacetonate) and zirconium bis(isopropoxy)-bis(acetylacetonate). These may be used singly or two or more of them may be used in combination. Among them, organotin compounds are generally used.

[0022] The coating curing agent can be sulfonic acids. Examples of sulfonic acids include, but not limited to, benzenesulfonic acid, para-toluenesulfonic acid, dodecylbenzenesulfonic acid, and naphthalenesulfonic acid.

[0023] Fillers such as colloidal silica can be added into the coating mixture of the base composition optionally with the coating curing agent. Colloidal silica refers to silica in a single- or multi-solvent dispersion and particularly effective in enhancing abrasion resistance of the coating. The silica may be small spherical particles about 1 nm to about 200 nm in diameter. In one embodiment, the small spherical particles may be about 10 nm to about 100 nm in diameter. Such nano-sized silica particles have refractive indices particularly suitable for clear coatings. They impose limited
scattering or interference to light transmission. The silica particles can also have other shapes such as string-of-pearl particle shapes and elongated particle shapes. The solvent can be water for water-reducible coating systems. Suitable colloidal silica is either treated or surface-treated. The colloidal silica can be present in the coating mixture in an amount of about 0.01 to about 50 weight percent. In one embodiment, the colloidal silica can be present in the coating mixture in an amount of about 0.1 to about 2 weight percent.

[0024] A coating product includes a substrate and a cured coating extending upon the substrate. The coating has a writable-erasable surface. When the writable-erasable surface is marked with a marking material, the marking material can be erased from the writable-erasable surface to be substantially invisible, resulting in little or no ghosting, even after prolonged normal use.

[0025] The marking material can include a colorant (e.g., a pigment) and a solvent such as water, alcohol, alkoxy alcohol, ketone, ketonic alcohol, ester, mineral spirit, or mixtures thereof. The marking material can be selected from any of the industry standard dry-erase markers.

[0026] The materials that form the coating can be applied to many different types of substrates, including porous (e.g., paper) and non-porous substrates (e.g., densified ceramics). The substrate could be a flexible film or a rigid movable or immovable structure. Examples of the substrate include, but are not limited to, a polymeric material (such as polyester or polyamide), cellulosic material (such as paper), glass, wood, wall (such as plaster or painted), fiber board (such as a whiteboard in which the cured coating extends upon a fiber board), particle board (such as a chalkboard or blackboard), gypsum board, densified ceramics, stone (such as granite), and metal (such as aluminum or stainless steel). The substrate could be a newly built structure or even an old and worn out chalkboard, blackboard, or whiteboard. In some instances, the surface of the substrate can be cleaned by sanding the surface and priming the surface prior to application of the coating. In some instances, the surface can also be cleaned with a cleaning agent (e.g., a mild acid) in order to provide better adhesion of the coating to the surface.

[0027] The materials that form the coating, upon application to the substrates, typically cure under ambient conditions. Curing, here, refers to the process of setting of the materials that form the coating on the substrate. It could refer to the process of simple evaporation of the solvent from the materials that form the coating; the different methods of cross-linking among the materials that form the coating including, but not limited to, oxidative cross-linking and catalyzed polymerization. Cross-linking
between polymeric chains, either chemical or physical, can influence certain unique properties of coatings. In some optional implementations, the cure could be facilitated by UV-light, thermal means, initiators, or electron-beam. The coating can cure under ambient conditions in from about 4 hours to about a week.

[0028] In general, the coating can be formed by applying, e.g., rolling, painting, or spraying, a solution of the material in a water-based carrier that can have a sufficient viscosity such that the applied coating does not run soon after it is applied or during its curing. At the same time, the solution viscosity should be sufficient to permit easy application.

[0029] Advantageously, when the writable-erasable surface is marked with a marking material that includes a colorant and a solvent that includes one or more of water, alcohols, alkoxy alcohols, ketones, ketonic alcohols, esters, acetates or mineral spirits, the marking material can be erased from the writable-erasable surface to be substantially invisible. Mixtures of any of the noted solvents may be used. For example, mixtures of two, three, four or more of the noted, or other, solvents may be used.

[0030] In some implementations, the marking material can be erased from the writable-erasable surface to be substantially invisible by wiping the marks with an eraser that includes a fibrous material. For example, the eraser can be in the form of a disposable wipe or a supported (e.g., wood, plastic) felt. The eraser can also include, e.g., one or more of water, alcohols, alkoxy alcohols, ketones, ketonic alcohols, esters, acetates or mineral spirits. Mixtures of any two or more of these solvents may also be used.

[0031] Examples of alcohols include ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, and benzyl alcohol. Mixtures of any two or more of these solvents also represent alcohols. Examples of alkoxy alcohols include 2-(n-propanoxy) ethanol, 2-(n-butoxy) ethanol and 2-(n-propoxy) ethanol. Mixtures of any two or more of these solvents also represent alkoxy alcohols. Examples of ketones include acetone, methyl ethyl ketone and methyl n-butyl ketone. Mixtures of any two or more of these solvents may also be utilized. Examples of acetates include methyl acetate, ethyl acetate, n-butyl acetate and t-butyl acetate. Mixtures of any two or more of these solvents may also be utilized.

[0032] The following examples illustrate certain implementations of the presently disclosed and claimed inventive concept(s). These examples are not intended to limit the scope of the presently disclosed and claimed inventive concept(s).

Examples
Example 1 – X90-1072-59-26

164 g of Formula No. 2 (20% IBMA/20% MMA/50%H MAA/10%BA), 200 g of reagent alcohol (about 90 wt% of ethanol, 3.5-5.5 wt% of methanol and 4-6 wt% of 2-propanol) and two drops of concentrated H₂SO₄ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, claisen take-off adapter and temperature probes to separately measure the temperature of the pot contents and the head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. A mixture of TEOS/Octyltriethoxysilane/Dimethyl(dimethoxysilane) (396 g of TEOS, 25 g of octyltriethoxysilane and 1.2 g of dimethyl(dimethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 64 g of H₂O containing two drops of concentrated H₂SO₄ was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature and filtered as necessary.

Example 2 – X90-1072-27-18

45 g of Formula No. 1 (35% MMA/35% IBMA/30%H MAA), 150 g of reagent alcohol, 0.52 g of propylene glycol (0.5 wt% based on the total silane weight) and one drop of concentrated H₂SO₄ were charged into a 500 mL, single-neck, round bottom flask equipped with magnetic stir bar, two claisen adapters, condenser, addition funnel, and temperature probes to measure temperature of the pot. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/Dimethyl(dimethoxysilane) mixture (103 g of TEOS and 0.7 g of dimethyl(dimethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 16 g of H₂O containing one drop of concentrated H₂SO₄ was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour. Approximately 50 g of aliquot was taken out and the remaining material in the pot was concentrated and diluted with acetone.

Example 3 – X90-1072-31-19

102 g of Formula No. 1 (35% MMA/35% IBMA/30%H MAA), 200 g of reagent alcohol and two drops of concentrated H₂SO₄ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to separately measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. 417 g of TEOS was added. The pot contents were then heated to 65°C +/-5°C and 65 g of H₂O containing two drops of concentrated H₂SO₄ was added drop wise over a 1-2 hour
period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0038] Example 4 – X90-1072-36-21

[0039] 102 g of Formula No. 2 (20% IBMA/20% MMA/50%HMA/10%BA), 200 g of reagent alcohol and two drops of concentrated H$_2$SO$_4$ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/Isobutyltrimethoxysilane mixture (396 g of TEOS and 18 g of isobutyltrimethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 64 g of H$_2$O containing two drops of concentrated H$_2$SO$_4$ was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0040] Example 5 – X90-1072-38-22

[0041] 102 g of Formula No. 2 (20% IBMA/20% MMA/50%HMA/10%BA), 200 g of reagent alcohol and two drops of concentrated H$_2$SO$_4$ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/Octyltriethoxysilane mixture (396 g of TEOS and 28 g of octyltriethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 64 g of H$_2$O containing two drops of concentrated H$_2$SO$_4$ was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0042] Example 6 – X90-1072-42-23

[0043] 164 g of Formula No. 2 (20% IBMA/20% MMA/50%HMA/10%BA), 200 g of reagent alcohol and two drops of concentrated H$_2$SO$_4$ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/Octyltriethoxysilane mixture (396 g of TEOS and 28 g of octyltriethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 64 g of H$_2$O containing two drops of concentrated H$_2$SO$_4$ was added drop wise over a 1-2 hour
period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0044] Example 7 – X90-1072-43-24

[0045] 164 g of Formula No. 2 (20% IBMA/20% MMA/50%HMA/10%BA), 200 g of reagent alcohol and five drops of concentrated H₂SO₄ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/Octyltriethoxysilane mixture (396 g of TEOS and 28 g of octyltriethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 64 g of H₂O was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0046] Example 8 – X90-1072-51-25

[0047] 180 g of Formula No. 1 (35% MMA/35% IBMA/30%HMA), 200 g of reagent alcohol and two drops of concentrated H₂SO₄ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 30-70 degrees Celsius until the mixture was completely solubilized. 417 g of TEOS/Octyltriethoxysilane mixture (396 g of TEOS and 28 g of octyltriethoxysilane) was added. The pot contents were then heated to 65°C +/-5°C and 65 g of H₂O containing two drops of concentrated H₂SO₄ was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0048] Example 9 – X90-1067-99-11

[0049] 180 g of Formula No. 1 (35% MMA/35% IBMA/30%HMA), 200 g of ethanol and two drops of concentrated H₂SO₄ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to 70 degrees Celsius or until the mixture was completely solubilized. 417 g of TEOS was added slowly so the pot temperature was not below 50°C. The pot contents were then heated to 65°C +/-5°C and 65 g of H₂O containing two drops of concentrated H₂SO₄ was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.
[0050] Example 10 – X90-1067-55-7

[0051] 180 g of Formula No. 1 (35% MMA/35% IBMA/30%HMA), 833 g of TEOS, 411 g of ethanol and three drops of concentrated H$_2$SO$_4$ were charged into a 2000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were then heated to 65°C +/-5°C and 130 g of H$_2$O containing three drops of concentrated H$_2$SO$_4$ was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary. 50 mL of the material obtained above, 50 g isopropyl alcohol and 5 g tetraisopropyl titanate were added into a 250 mL glass bottle to form a solution. The solution was then drawn down on an aluminum plate and cured at ambient to form coatings.

[0052] Example 11 – X90-1078-2-39 (25% Acrylic with 10% OTEOS)

[0053] 100 g of Formula No. 3 (34% MMA/46% BA/30% HMA), 150 g of reagent alcohol and two drops of concentrated H$_2$SO$_4$ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltriethoxysilane) mixture (375 g of TEOS and 55.3 g of OTEOS) was added. The pot contents were then heated to 65°C +/-5°C and 63 g of H$_2$O containing two drops of concentrated H$_2$SO$_4$ for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0054] Example 12 – X90-1078-3-40 (25% Acrylic with 10% OTEOS)

[0055] 97.7 g of Formula No. 4 (10% MMA/27% MA/30% HMA/33% BA), 153 g of reagent alcohol and two drops of concentrated H$_2$SO$_4$ were charged into a 1000 mL, four-neck round bottom flask equipped with overhead mechanical stirrer, condenser, additional funnel, claisen take-off adapter and temperature probes to measure temperature of the pot and head space. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltriethoxysilane) mixture (380 g of TEOS and 55.3 g of OTEOS) was added. The pot contents were then heated to 65°C +/-5°C and 63 g of H$_2$O containing two drops of concentrated H$_2$SO$_4$ for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.
[0056] Example 13 – X90-1078-6-41 (45% Acrylic with 20% OTEOS)

[0057] 40.9 g of Formula No. 3 (34% MMA/46% BA/30% HEMA), 25 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltrithoxysilane) mixture (55.5 g of TEOS and 18.4 g of OTEOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.2 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0058] Example 14 – X90-1078-7-42 (45% Acrylic with 20% OTEOS)

[0059] 40.9 g of Formula No. 4 (10% MMA/27% MA/30% HEMA/33% BA), 25 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltrithoxysilane) mixture (55.5 g of TEOS and 18.4 g of OTEOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.3 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0060] Example 15 – X90-1078-10-43 (45% Acrylic with 20% OTEOS and Stripped)

[0061] 41.6 g of Formula No. 2 (20% MMA/20% IBMA/50% HEMA/10% BA), 33.3 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot and head space. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltrithoxysilane) mixture (52.1 g of TEOS and 23 g of OTEOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.1 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, concentrated to remove the majority of ethanol and reconstituted in acetone. The product was then cooled to room temperature, and filtered as necessary.
Example 16 – X90-1078-20-45 (45% Acrylic with 5% OTEOS/20% IBTMOS)

45.6 g of Formula No. 1 (35% IBMA/35% MMA/20% HEMA), 25 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS (Octyltriethoxysilane)/IBTMOS (Isobutyltrimethoxysilane) mixture (52.1 g of TEOS, 4.61 g of OTEOS and 11.9 g of IBTMOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.1 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

Example 17 – X90-1078-20-46 (45% Acrylic with 25% IBTMOS)

45.6 g of Formula No. 1 (35% IBMA/35% MMA/20% HEMA), 25 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/IBTMOS (Isobutyltrimethoxysilane) mixture (53.2 g of TEOS and 14.8 g of IBTMOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.1 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

Example 18 – X90-1072-64-27 (35% Acrylic with 5% OTEOS/5% IBTMOS)

30 g of Formula No. 1 (35% IBMA/35% MMA/20% HEMA), 36 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Octyltriethoxysilane)/(IBTMOS (Isobutyltrimethoxysilane) mixture (62.5 g of TEOS, 4.61 g of OTEOS and 3.0 g of IBTMOS) was added. The pot contents were then heated to 65°C +/-5°C and 10.5 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.
[0068] Example 19 – X90-1072-73-32 (45% acrylic resin with 25% OTEOS)

[0069] 41.6 g of Formula No. 2 (20% MMA/20% IBMA/50% HEMA/10% BA), 33.5 g of reagent alcohol and one drop of concentrated H₂SO₄ were charged into a 250 mL, one-neck round bottom flask equipped with magnetic stirrer, hot plate, two claisen adapters and temperature probes to measure temperature of the pot. The pot contents were heated to about 30-70 degrees Celsius until the mixture was completely solubilized. TEOS/OTEOS(Ocyltriethoxysilane) mixture (52.1 g of TEOS and 23.0 g of OTEOS) was added. The pot contents were then heated to 65°C +/- 5°C and 10.1 g of H₂O for 90% theoretical hydrolysis was added drop wise over a 0.5-2 hour period. The mixture was then refluxed for 1 hour, cooled to room temperature, and filtered as necessary.

[0070] Example 20 – Clear Coatings and Evaluations using X90-1072-73-32

[0071] Clear coatings were prepared using X90-1072-73-32 obtained from Example 19 with or without a coating curing agent as shown in Table 1. The coating curing agent used in the Example included 10% Dibutyltin dilaurate (DBTDL) in isopropyl alcohol (IPA), 10% tetraisopropyl titanate (TIPT) in IPA and 8% Zinc-Hex that was obtained from Air Products serving as source of zinc octoate.

<table>
<thead>
<tr>
<th>Table 1. Coating Mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>X90-1072-73-32, g</td>
</tr>
<tr>
<td>Curing Agents</td>
</tr>
<tr>
<td>None</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1 drop of 10% DBTDL</td>
</tr>
<tr>
<td>F-1072-91-DBTDL</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1 drop of 10% TIPT</td>
</tr>
<tr>
<td>F-1072-91-TIPT</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>1 drop of 8% ZincHex</td>
</tr>
<tr>
<td>F-1072-91-ZincHex</td>
</tr>
</tbody>
</table>

[0072] Each coating mixture in Table 1 was drawn down 5 mils over a Zinsser BIN primed drywall. The coating was cured at ambient conditions and heat aged at temperature of about 60°C and about 50% relative humidity for about 44 to about 48 hours.

[0073] The coatings thus obtained were graded and evaluated by the grading and evaluation methods described below. The results obtained are given in Table 2.

Grading and Evaluation Methods for Coatings

[0074] 1) Dry-Erase: As a testing protocol, a scale of 0-5 was used to quantify the removal of the dry-erase markers’ ink from each cured coating. The coating surface thereof was evaluated by the eye according to the following criteria:

0: Like paper, ink is essentially not removed;
1: Some ink is removed with wiping but color is still solid and dark;
2: Most ink is removed with wiping but color is still readily visible;
3: Almost all ink is removed but ghosting remains;
4: After wiping faint ghosting remains or ink can be completely removed but an unacceptable amount of rubbing is necessary;
5: Like glass, ink is completely removed with one or two passes.

[0075] (2) Cracking: A scale of A-E was used to quantify the coating surface’s cracking by visual examination according to the following criteria:

A: No cracking whatsoever;
B: Fine visible cracks in coating and/or minor flaking at the edges;
C: Readily visible cracks and/or significant flaking at the edges;
D: The coating has broken into dust-sized particles but some adhesion remains;
E: Complete failure of the coating, total flaking, practically no adhesion.

[0076] (3) Marker Abrasion Resistance: An EXPO® Original and EXPO® Low Odor (Sanford Corporation, Oakbrook, Illinois) marker was used to draw circles (about the size of a dime) repeatedly as hard as possible without completely ruining the marker in one spot for about 30 seconds on the surface of the cured coating. The marking material was dried for a few seconds and was wiped off using a paper towel. Marker abrasion resistance was qualitatively evaluated visually after wiping according to the following criteria:

+: No significant change in coating gloss, no residual staining, and no removal of coating from substrate;
0: Very slight reduction in coating gloss, no residual staining, and no removal of coating from substrate;
-: Significant reduction in coating gloss, residual ink staining, and/or removal of coating from substrate.

Table 2. Coating Grading and Evaluation

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dry-Erase</th>
<th>Cracking</th>
<th>Marker Abrasion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>F-1072-91-DBTDL</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>F-1072-91-TIPT</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>F-1072-91-ZincHex</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
</tbody>
</table>
Example 21 – Effect of Colloidal Silica Filler on Coatings Using X90-1072-59-26

Effect of colloidal silica filler in the properties of the final coatings were tested using the base composition X90-1072-59-26 obtained from Example 1. Two colloidal silica fillers - IPA ST and IPA ST-UP (Nissan Chemical) were used. IPA ST contains spherical particles with about 10-15 nm in diameter and has % solids of about 30-31 wt%. IPA ST-UP contains elongated particles with about 10-15 nm x 40-100 nm and has % solids of about 15-16 wt%. These two colloidal silica fillers were both in isopropyl alcohol. Different weight percentages of these two particles were added into the base composition XP-1072-59-26 to form mixtures as shown in Tables 3 and 4. The mixtures were formed in 15x150 mm test tubes and shaken by hand. The mixtures were then applied using a 5 mil draw down bar over an aluminum plate and a Zinsser BIN primed drywall. The coatings were cured at ambient conditions and heat aged at temperature of about 60°C and about 50% relative humidity for about 44 to about 48 hours. The coatings thus obtained were graded and evaluated by the grading and evaluation methods described in Example 20. The results obtained are given in Tables 5, 6, 7 and 8.

<table>
<thead>
<tr>
<th>Sample</th>
<th>X90-1072-59-26, g</th>
<th>IPA ST, wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-1</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-2</td>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-3</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-5</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>X90-1072-59-26, g</th>
<th>IPA ST-UP, wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-1</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-2</td>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-3</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-5</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 5. Coating Evaluation Containing IPA ST for Drywall

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dry-Erase</th>
<th>Cracking</th>
<th>Marker Abrasion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-1</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-2</td>
<td>4</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-3</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-4</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-5</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 6. Coating Evaluation Containing IPA ST for Aluminum Plate

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dry-Erase</th>
<th>Cracking</th>
<th>Marker Abrasion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-1</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-2</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-3</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-4</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-ST-5</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 7. Coating Evaluation Containing IPA ST-UP for Drywall

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dry-Erase</th>
<th>Cracking</th>
<th>Marker Abrasion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-1</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-2</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-3</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-4</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-5</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 8. Coating Evaluation Containing IPA ST-UP for Aluminum Plate

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dry-Erase</th>
<th>Cracking</th>
<th>Marker Abrasion Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-1</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-2</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-3</td>
<td>5</td>
<td>A</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-4</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
<tr>
<td>FX-1072-59-26-STUP-5</td>
<td>5</td>
<td>B</td>
<td>+</td>
</tr>
</tbody>
</table>

[0079] Example 22 - X90-1072-97-38

Charged JREZ 84-13 (10% MMA/27%MA/30% HEMA/33%BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claissen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/OTEOS (Octyltriethoxysilane) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing two drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (Readily visible cracks and flaking around the edges).

[0081] Example 23 - X90-1084-83-70

Charged acrylic 1088-3-A (37% Styrene, 13% 2-EthylHexyl Acrylate, and 50% HEMA), reagent alcohol, and 3 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claissen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Octyltrimethoxysilane (OTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 3 drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (discolored coating, marker pitted coating, wax flakes observed).

[0083] Example 24 - X90-1084-86-71
Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Octyltrimethoxysilane (OTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed slightly (slight carry-over of marker especially during grind testing).

Example 25 - X90-1084-81-69

Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, glass bead packed column, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Octyltrimethoxysilane (OTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour. After reflux, the material in the pot was stripped. Tertiary butyl acetate was added to the pot to replace the material removed. After as much ethanol as possible was removed, the contents were cooled to room temperature and bottled. Underperformed (during marker grind).

Example 26 - 1084-67-67

Charged F-1084-61-3 Acrylic (30% 2-Hydroxyethyl Methacrylate, 30% 2-Hydroxyethyl Acrylate, 30% Methyl Methacrylate, 10% Tert-Butyl Acrylate), reagent alcohol, and 4 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Octyltrimethoxysilane (OTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due
to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (Residual Marker Color, Grind Test Defect, Lost gloss).

0089 Example 27 - 1084-66-66

0090 Charged F-1084-59-2 Acrylic (50% 2-Hydroxyethyl methacrylate, 40% Methyl Methacrylate, 10% Tert-Butyl Acrylate), reagent alcohol, and 4 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Octyltrimethoxysilane (OTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (Swipe Test Left Marker, Grind Test Deformed coating, Slight cracking after 15 days in oven).

0091 Example 28 - 1084-64-65

0092 Charged F-1084-61-3 Acrylic (30% 2-Hydroxyethyl Methacrylate, 30% 2-Hydroxyethyl Acrylate, 30% Methyl Methacrylate, 10% Tert-Butyl Acrylate), reagent alcohol, and 4 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (Grind test pitted surface of some substrates, but not all; Performed well until 30 days when it cracked).

0093 Example 29 - 1084-63-64
Charged F-1084-59-2 Acrylic (50% 2-Hydroxyethyl methacrylate, 40%
Methyl Methacrylate, 10% Tert-Butyl Acrylate), reagent alcohol, and 4 drops of
concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead
mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and
temperature probes to measure temperature of the pot and head space. Heated the
pot contents to 30-70 degrees Celsius until the mixture was completely solubilized.
Added TEOS/Isobutyltrimethoxysilane (IBTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered
temperature. The pot contents were then heated to 65C +/- 5C and enough H20
(containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis was
added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled
to room temperature, and filtered. Underperformed (cracked after 5 days of cure).

Example 30 - 1084-55-63

Charged F-1084-51-1 Acrylic (50% 2-Hydroxyethyl Acrylate, 40% Methyl
Methacrylate, 10% Tert-Butyl Acrylate), reagent alcohol, and 4 drops of concentrated
H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical
stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes
to measure temperature of the pot and head space. Heated the pot contents to 30-
70 degrees Celsius until the mixture was completely solubilized. Added
TEOS/Isobutyltrimethoxysilane (IBTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature.
The pot contents were then heated to 65C +/- 5C and enough H20 (containing 2
drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise
over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room
temperature, and filtered. Underperformed (Cracked; Grind Test Failures).

Example 31 - 1084-54-62

Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA),
reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round
bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel,
Claisen take-off adapter, and temperature probes to measure temperature of the pot
and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture
was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBTMOS)
mixture at the highest rate that did not induce point of contact incompatibility or
incompatibility due to lowered temperature. The pot contents were then heated to
65C +/- 5C and enough H20 (containing 2 drops of concentrated H2SO4) for 90%
theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was
refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (Failed Light Erase Test; Marker absorbed into coating on grind test).

[00099] Example 32 - 1084-46-61
[00100] Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBT莫斯) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Slightly Underperformed (Very Slight cracking; Often passed swipe and grind tests with minimal marker residue).

[00101] Example 33 - 1084-34-58
[00102] Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBT莫斯)/Octyltriethoxysilane (OTEOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Good Performance (slight cracking observed on some substrates).

[00103] Example 34 - 1084-33-57
[00104] Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 2 drops of concentrated H2SO4 to a 1000ml, 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture
was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBTMOS)/Isobutyltriethoxysilane (IBTEOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 2 drops of concentrated H2SO4) for 90% theoretical hydrolysis was added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Underperformed (cracking on all substrates, passed some of the swipe and grind tests).

Example 35 - 1084-6-53

Charged JREZ 84-11 (20% IBMA/20% MMA/50% HEMA/10% BA), reagent alcohol, and 10 drops of concentrated H2SO4 to a 1000ml 4 neck round bottom flask equipped with overhead mechanical stirrer, condenser, addition funnel, Claisen take-off adapter, and temperature probes to measure temperature of the pot and head space. Heated the pot contents to 30-70 degrees Celsius until the mixture was completely solubilized. Added TEOS/Isobutyltrimethoxysilane (IBTMOS) mixture at the highest rate that did not induce point of contact incompatibility or incompatibility due to lowered temperature. The pot contents were then heated to 65C +/- 5C and enough H2O (containing 9 drops of concentrated H2SO4) for 90% theoretical hydrolysis were added drop wise over a 1-2 hour period. The mixture was refluxed for 1 hour, cooled to room temperature, and filtered. Outperformed when tested on aluminum substrates (performed good).
CLAIMS

What is claimed is:

1. A coating product comprising a cured clear acrylic coating extending upon a substrate and having a surface, wherein the coating is formed from a base composition in a carrier optionally with a coating curing agent.

2. The coating product of claim 1, wherein the coating is cured under ambient conditions.

3. The coating product of claim 1, wherein after the surface is marked with a marking material, the marking material can be erased from the surface to be substantially invisible.

4. The coating product of claim 1, wherein the base composition is produced by reacting a hydroxyl-containing acrylic resin, an alcohol, a silane compound, water, and an acid catalyst.

5. The coating product of claim 4, wherein the hydroxyl-containing acrylic resin is produced by copolymerizing a hydroxyl-containing acrylic monomer with another ethylenically unsaturated group-containing monomer.

6. The coating product of claim 4, wherein the alcohol is selected from the group consisting of methanol, ethanol, 2-propanol, butanol, isobutanol and combinations thereof.

7. The coating product of claim 4, wherein the silane compound has a general chemical formula: $R_iSi(OR')_4-n$, wherein each R and R' independently represent a hydrocarbon group, and n is 0≤n<4.

8. The coating product of claim 4, wherein the acid catalyst is selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and combinations thereof.
9. The coating product of claim 1, wherein the carrier is a water-based solvent, a non-water based solvent or combinations thereof.

10. The coating product of claim 3, wherein the marking material comprises a colorant and a solvent.

11. A method of making a coating product, comprising the step of applying a coating to a substrate, wherein the coating is formed from a base composition in a carrier and a coating curing agent and curable under ambient conditions.