United States Patent

US006678885B2

(12) (10) Patent No.: US 6,678,885 B2
Reyna et al. 5) Date of Patent: Jan. 13, 2004
(549) SYSTEM AND METHOD FOR COMMON 5,987,513 A 11/1999 Prithviraj et al. 709/223
CODE GENERATION 5,996,010 A 11/1999 Leong et al. 709/223
5,999,948 A 12/1999 Nelson et al. 715/506
(75) Inventors: David Reyna, San Francisco, CA (US), 2788373;7‘ 2 gﬁggg E{i\;\’ien e: ai~ ~~~~~ ;(1)2%%;
: . ,009, etcher et al.
(SII}ZS‘;V n-Lin Dzeng, San Francisco, CA 6.028602 A 22000 Weidenfeller et al. 345/781
6,044,218 A 3/2000 Faustiniccccceeeeeen..
. . . 6,049,819 A 4/2000 Buckle et al.
(73) Assignee: Wind River Systems, Inc., Alameda, 6052527 A * 472000 Delcourt et al.
CA (US) 6054983 A 4/2000 Simonoff et al. ...
. . o . 6,141,792 A 102000 Acker et al.oeeeenn. 717/116
(*) Notice: Subject to any disclaimer, the term of this 6,298,354 Bl * 10/2001 Saulpaugh et al. 707/103 R
patent is extended or adjusted under 35 6,405,365 Bl 6/2002 Le€ ..ceververererearnennnnn 717/106
U.S.C. 154(b) by 477 days. 6,434,739 B1 * 8/2002 Branson et al. .. . 717/108
6,490,716 B1 * 12/2002 Gupta et al. 716/18
. 6,598,052 B1 * 7/2003 Saulpaugh et al. 707/102
(21) Appl. No.: 09/797,114 2001/0049757 AL * 122001 Litl wvvveeeeerrrenrrerennans 710/33
(22) Filed: Mar. 1, 2001 OTHER PUBLICATIONS
(65) Prior Publication Data Athanas et al, An Adaptive Hardware Machine
US 2002/0059565 Al May 16, 2002 Architecture . . ., 1991, IEEE, p. 397—400.*
Athanas et al, A Functional Reconfigurable
Related U.S. Application Data Architecture . . . , 1993, IEEE, p. 49-55.*
(60) Provisional application No. 60/186,560, filed on Mar. 2, . .
2000. cited by examiner
(51) Int. CL7 oo GO6F 9/45 Primary Examiner—John Chavis
(52) US.Cle oo 717147 (74) Atiorney, Agent, or Firm—Fay Kaplun & Marcin, LLP
(58) Field of Searchooooovvvvvimieeieeeeeens 717/147 (57) ABSTRACT
(56) References Cited A system and method improves a process of creating soft-
US. PATENT DOCUMENTS ware programs for a variety of ex1§t1ng cqmputmg plat-
forms. In particular, a developer receives an input file. The
4,613,946 A 9/1986 Forman 345/853 developer generates a formatted data file as a function of the
4,821,211 A 4/1989 Torres 345/853 input file. If the input file includes data, then the data
5,159,687 A 10/1992 Richburg e 7177106 contained within the formatted data file is stored in a
5262761 A 11/1993 Scandura et al. 345/581 predetermined format compatible with each of a plurality of
3,301,278 A+ 471994 Bowaler et al. woovoveno, 715 computing platforms. Then the developer generates a com-
5,546,522 A 8/1996 Nishida et al. 345/810 . o . .
5,644,736 A 7/1997 Healy et al. 3457784 ~ mon generation file using a predetermined programming
5,649,100 A 7/1997 Ertel et al. ...oooovvrnenee.n 7007225 language which is a lowest common denominator language
5,742,762 A 4/1998 Scholl et al. 709/200 utilized by each of the plurality of computing platforms. The
5,815,703 A 9/1998 Copeland et al. 707/102 common generation file is capable of creating a predefined
5,860,010 A 1/1999 Attal 7171137 output file compatible with each of the plurality of comput-
5,864,865 A 1/1999 Lakis ooooovoniinrinnns 707/103 R ing platforms. The formatted data file is modified to create
5,870,545 A . 2/1999 Davis et al. ... 709/201 a modified formatted data file. Finally, the common genera-
5872956 A 2/1999 Beal etal. ... - 709/224 tion file is compiled with the modified data file to generate
5,872,978 A = 2/1999 Hoskins e 7177158 the predefined output file for the corresponding platform
5,901,286 A 5/1999 Danknick et al. 7097203 ’
5,909,550 A 6/1999 Shankar et al. 7097227
5,931,917 A 8/1999 Nguyen et al. 709/250 18 Claims, 4 Drawing Sheets

U.S. Patent Jan. 13, 2004 Sheet 1 of 4 US 6,678,885 B2

Figure 1

10

23

Windows 9x User
Company

15
—
- 20
=4
(- Communication Network -
[__,E) |- =r
o=
Developer UNIX User

22

Windows NT User

U.S. Patent Jan. 13, 2004 Sheet 2 of 4 US 6,678,885 B2

40

GUI and/or Command
Line interface
Raw Input File Command Line

interface

46
Code Generation File 42
Code Generation File

/{ T R/\
42 2
Modified Fomatted Data Modified For‘matted Data

File File

46
46
\{ Code Generation File J { Code Generation File }/
\ 50

Qutput File

42

Figure 2

U.S. Patent Jan. 13, 2004 Sheet 3 of 4 US 6,678,885 B2

Figure 3

100

Customer provides a raw input file to a /)
developer

102
Developer generates a formatted data)

file based on the raw input file

A 104

Developer generates a code)
generation file

1Q6
Developer modifies the formatted data)
file to create a modified data file

The code generation file is compiled Q8
with the modified data file to create an

output file for each of predetermined
computing platform

U.S. Patent Jan. 13, 2004

Gul

Start |

Sheet 4 of 4

US 6,678,885 B2

Developer indicates that he wants to

edit a formatted data file

200 Figure 4

D.

ata is extracted from the formatted

data file using a code generation file

User provides modification using GUI
and/or a command line interface

206

What type of interface is
used for the computing
platform

Console

208

Q User provides modification using a
command line interface

210

Modified data is translated into
platform-independent format by the
code generation file

)

The modified data is written by the

code generation file into the modified

data file

1 212

US 6,678,885 B2

1

SYSTEM AND METHOD FOR COMMON
CODE GENERATION

This application claims the benefit of U.S. Provisional
Patent Application No. 60/186,560 filed on Mar. 2, 2000 and
entitled “Method and System for Modular Software Archi-
tecture for Peer-to-Peer Management of Network Devices”
and is expressly incorporated herein, in its entirety, by
reference. Additionally, the application entitled “System and
Method for utilization of a Command Structure
Representation”, Ser. No. 09/845,414, to the named inven-
tors Lee Chang and Shawn-Lin Dzeng, filed on an even date
herewith and the application entitled “System and Method
for Automatic Software Code Generation”, Ser. No. 09/797,
922, to the named inventors Lee Cheng and Shawn-Lin
Dzeng, filed on an even date herewith, both of which are
assigned to the Assignee of the present application, are
expressly incorporated herein, in their entirety, by reference.

BACKGROUND INFORMATION

A variety of computing platforms exist in today’s com-
puting environment (e.g., UNIX, DOS, MAC, Windows 3.x,
Windows 9x, Windows NT, Palm). Even more computing
platforms are being developed and will be developed in the
future. This wide variety of computing platforms may
present problems for software developers, for example,
requiring software developers to provide users with software
programs compatible with the existing computing platforms.

Requiring compatibility of the software programs with
multiple computing platforms often creates a number of
problems for software developers. For example, developers
may need to utilize programmers skilled in a variety of
computing platforms. Different programmers working on
the same software program may generate code that works
differently on different computing platforms. It is especially
hard to ensure that the code is identical to each other since
the code may be written in different languages for different
computing platforms.

Developing software programs compatible with several
platforms may significantly increase the cost of these pro-
grams and extend the time required to bring the program to
market. Also, there may be more expenses and difficulty to
update such software programs.

Another problem with existing technologies is that they
often utilize data files or data structures in binary format to
generate output files for a variety of computing platforms.
The binary format may cause problems as the processing
units of different computing platforms may encode numbers
in different byte orders (e.g., Motorola processors may
encode numbers differently than Intel processors), requiring
special flags and corresponding code to compensate for
these differences. In addition, data files in binary structure
form are fixed in size, requiring special fields and code to
accept changes in content. Including formatting rules as part
of each data file allows validation information to be con-
tained therein in a form consistent with each specific version
of the file. Otherwise, special efforts must be made to
continuously update consistency checks in differing mod-
ules. Having data in an extendible format compensates for
version skew in older project files and older programs.
Otherwise, special efforts must be made to compensate for
unexpected new fields and missing fields that have been
deprecated.

Thus, there is a need for a system and method that
simplifies the process of creating software programs for a
variety of existing computing platforms or, for example, of

10

15

20

25

30

40

45

50

55

60

65

2

developing code generation on different platforms intended
for the target platform.

SUMMARY OF THE INVENTION

The present invention relates to a system and method
improves a process of creating software programs for a
variety of existing computing platforms. In particular, a
developer receives an input file. The developer generates a
formatted data file as a function of the input file. In the input
file includes data, the data contained within the formatted
data file is stored in a predetermined format compatible with
each of a plurality of computing platforms. Then the devel-
oper generates a common generation file using a predeter-
mined programming language which is a lowest common
denominator language utilized by each of the plurality of
computing platforms. The common generation file is
capable of creating a predefined output file compatible with
each of the plurality of computing platforms. The formatted
data file is modified to create a modified formatted data file;
the modification are provided via an interface of a corre-
sponding one of the plurality of computing platforms.
Finally, the common generation file is compiled with the
modified data file to generate the predefined output file for
the corresponding platform. Another exemplary method is
where the developer provides the user with several devel-
opment programs, each working in a different computer
platform, with which creates the data that is then passed to
the common code generation file/module internal to the
program.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows an exemplary embodiment of a system
according to the present invention;

FIG. 2 shows a schematic diagram of a code-generation
process;

FIG. 3 shows an exemplary method according to the
present invention; and

FIG. 4 shows an exemplary embodiment of a modification
step of the method illustrated in FIG. 3.

DETAILED DESCRIPTION

The present invention may be further understood with
reference to the following description and the appended
drawings, wherein like elements are provided with the same
reference numerals. Throughout this specification, the exem-
plary embodiments of the present invention will be dis-
cussed with reference to embedded devices and the accom-
panying operating systems. However, those skilled in the art
will understand that the present invention is not limited to
embedded systems, and may be used with any computing
system. Additionally, the term developer is generally used
throughout this description to describe the individual
responsible for developing the operating system (e.g., add-
ing new commands, editing existing commands, etc.) The
term user is generally used to describe the individual that
may be using the operating system. However, the terms may
be used interchangeably throughout this description. For
example, the term user may also describe the individual
responsible for developing the operating system.

FIG. 1 depicts a company 10 which sells and/or makes
available a software application to users 20, 21, 22 and 23.
As part of this software application, the company 10 may
need to provide certain data regarding different resources for
use therewith. These resources may be a plurality of objects,
tables, etc. For example, the company 10 may want to

US 6,678,885 B2

3

provide to users 20-23 a tree description of a particular
product, a Simple Network Managed Protocol (“SNMP”)
table and a managed object abstract representation of the
users’ objects (e.g., anything that may need to be visible to
the outside world).

The users 2023 may be utilizing different platforms. For
example, user 20 may be using a UNIX platform, user 21
may be utilizing a DOS platform, while users 22 and 23 may
be utilizing Windows NT and Windows 9x platforms,
respectively. These computing platforms have different
input/output interfaces, e.g., UNIX and DOS may have
console interfaces, while the Windows NT and Windows 9x
platforms may have graphical user interfaces (“GUIs”).

The company 10 requests a developer 15 to develop a
software application which has input/output interfaces com-
patible with the various users’ platforms. The method and
system according to the present invention allows an
improvement in this process. In particular, according to the
present invention, code generation is separated as a special-
ized function by creating a single module that can be used
by a variety of development tools for a plurality of com-
puting platforms which have different levels of user inter-
faces (e.g., the GUI, a command line console interface, etc.).
As described below, this is achieved by (1) isolating code
generation routines into language modules that are in a
lowest common compatible language (e.g., language “C”);
(2) defining a common system-independent data format to
represent and convey the data from any parent program to
the code generation module; and (3) compiling the code
generation module into each program, insuring that output
results are identical.

FIGS. 2 and 3 show the method according to the present
invention. In step 100, the company 10 provides a raw input
file 40 to the developer 15. The raw input file 40 may include
any type of data, for example, data regarding attributes of the
resources which are going to be provided to users 20-23. In
alternative exemplary embodiment of the present invention,
the raw input file 40 may be a blank file containing no data.
In this case, the data is built up in a progressive manner.

The developer 15 generates a formatted data file 42 based
on the raw data file 40 (step 102). The formatted data file 42
has a predetermined format which is common (i.e., cross
computing platform compatible) to any of the users’ plat-
forms. Such platform-independent format may be, for
example, an XML file, an ASCII file, a binary file, etc. The
formatted data file 42 has a predetermined structure to store
the data. In other words, the data may be structured so that
new data fields can be added and old ones removed, and yet
the data as a whole is still readable by older programs from
any computing platform. The formatted data file 42 is
structured such that rules for formatting the data are
included or implied so that the data can be validated (e.g.,
XML). If the raw input file 40 is a blank file, then the
formatted data file 42 has no data, but may include infor-
mation about its data structure.

In step 104, shown in FIG. 3, the developer 15 writes a
code generation file 46. The code generation file 46 may be
written using a lowest common denominator language
which can be utilized by the computing platforms with
which the software application is to operate. One way to
choose such a language is to examine each of the computing
platforms involved and determine a language that may be
understood by all of these computing platforms. For
example, languages such as PASCAL and C may be under-
stood by a variety of existing computing platforms. Thus,
these languages may serve as the lowest common denomi-

10

15

20

25

30

35

40

45

50

55

60

65

4

nator languages for many applications. This lowest common
denominator language also should be able to process files
without necessarily displaying any messages to the user. In
addition, this language should be compatible with other
programs of the computing platforms.

The code generation file 46 is programmed to generate a
file accessible by each of the computing platforms. As an
input, the code generation file 46 accepts data saved in a
structured form. For example, the code generation file 46
may accept the name of the modified data file 42', its
structure and a desired type of computing platform. The
creation of modified data file 42' is described in greater
details below. Furthermore, the code generation file 46 may
read/write data from the formatted data file 42. Any modi-
fication to the data may be saved into the formatted data file
42 by the code generation file 46. One of the advantages of
utilizing the code generation file 46 is that it ensures that any
modifications to the data are preserved in its formatted
structure.

In an alterative exemplary embodiment of the present
invention, interpretation languages (such as TCL and
BASIC) or platform-independent languages (such as Java)
may be used instead of the lowest common denominator
languages (such as PASCAL and C), in which the common
code generation file/module may be written.

In step 106, the developer 15 modifies the formatted data
file 42 to create a modified data file 42'. The modifications
may be done in a variety of ways depending on the com-
puting platform that is being used. An exemplary modifica-
tion of the formatted data file 42 is described below and is
shown in FIG. 4.

First, the developer 15 indicates his intention to modify
the data stored in the formatted data file 42 (step 200). Then
the data is extracted from the formatted data file 42 accord-
ing to the predetermined data structure by the code genera-
tion file 46 (step 202). Depending on the computing platform
being utilized, the developer 15 may modify the data (step
204). If the developer 15 utilizes a computing platform such
as Windows NT, the developer 15 may modify the data via
the GUI and/or a command line (step 206). If on the other
hand, the user is utilizing a platform such as DOS, the user
may modify the data using the console by entering modifi-
cations via a command line only (step 208).

The modifications are received and processed by the code
generation file 46. In particular, the modifying data is
translated into the same platform-independent format (step
210). Subsequently, the code generation file 46 saves the
data into the modified formatted data file 42' in accordance
with the predetermined data structure (step 212).

In step 108, the code generation file 46 is compiled with
the modified formatted data file 42' to generate a predefined
output file 50. The predefined output file 50 may be acces-
sible using the corresponding computing platform. For
example, the output file 50 may be accessed using GUISs if
it was created for the Windows 9x platform. The output files
50 for different computing platforms may be created parallel
and simultaneously.

One of the advantages of the present invention is that the
code generation file 46 needs to be prepared only once by a
single developer and it is capable of generating an output file
50 for any desired computing platform. In other words, the
present invention allows a developer to maintain the code
generation function 46 as a separate module thus insuring
that each version of the output data file for each of the
computing platforms is identical.

Furthermore, a single change of the modified formatted
data file 42' may change the output file 50 for each of the

US 6,678,885 B2

5

desired computing platforms. Thus, the need to individually
create an output file 50 for each computing platform is
eliminated. The present invention also allows an automati-
cally coordinative generation for output files for different
computing platforms.

As described below, the present invention may be utilized
where there are two different computing platforms A and B.
In particular, a computing platform A may utilize the GUI
interface W and a command line interface X for code
generation development, while computing system B, utilizes
a proprietary GUI interface Y and a proprietary command
line interface Z for code development.

In conventional systems, the developer would need to
prepare four files—one of which is compatible with a
respective one of interfaces W, X, Y and Z. However, the
present invention allows a developer to utilize the same data
file to generate a formatted data file which can be edited via
the interfaces W, X, Y and Z. Since cach of the four
interfaces may utilize the same identical code generation file
to generate an output data file which is identified for both
computing platforms A and B. Thus, the present invention
allows the use of a common formatted data file and code
generation file to produce an identical output data file
regardless of the type of computing platform or user inter-
face employed by these computing platforms.

Those skilled in the art will understand that these tech-
niques may be used for variety of computer hardware
platforms. For example, the present invention may be uti-
lized to generate code for chips manufactured by different
hardware manufacturers.

There are many modifications to the present invention
which will be apparent to those skilled in the art without
departing form the teaching of the present invention. The
embodiments disclosed herein are for illustrative purposes
only and are not intended to describe the bounds of the
present invention which is to be limited only by the scope of
the claims appended hereto.

What is claimed is:

1. A method comprising the steps of:

(a) receiving an input file;

(b) generating a formatted data file as a function of the

input file;

(c) generating a common generation file using a prede-
termined programming language, the predetermined
programming language being a lowest common
denominator language utilized by each of a plurality of
computing platforms, the common generation file
adapted to create a predefined output file compatible
with each of the plurality of computing platforms;

(d) receiving information to modify the formatted data file
to create a modified formatted data file; and

(e) compiling the common generation file with the modi-
fied data file to generate the predefined output file for
the corresponding platform.

2. The method according to claim 1, wherein the lowest
common denominator language processes files without dis-
playing a message to a user.

3. The method according to claim 1, wherein the lowest
denominator language is one of C, C++ and PASCAL.

4. The method according to claim 1, wherein the format-
ted data file is one of an ASCII text file, an XML file and a
binary file.

5. The method according to claim 1, wherein the compil-
ing step is performed simultaneously for each of the plural-
ity of computing platforms.

6. The method according to claim 1, further comprising
the substep of adding, during the modification step, a field to
the formatted data file by the code generation file.

6

7. The method according to claim 1, further comprising
the substep of removing, during the modification step, a field
from the formatted data file by the code generation file.

8. The method according to claim 1, wherein step (d)

5 includes the following substeps:

reading the data according to the predetermined format by
the code generation file,

extracting the data from the formatted data file by the code

o generation file,
receiving modifications to the data by the code generation

file from an interface of the corresponding computing
platform;

storing by the code generation file the modified data into
the modified data file in accordance with the predeter-
mined format.
9. The method according to claim 8, wherein the interface
includes a command line interface.
10. The method according to claim 8, wherein the inter-
5o face includes a graphical user interface.
11. The method according to claim 1, wherein the input
file includes data.
12. The method according to claim 1, wherein the input
file is a blank file.
13. The method according to claim 11, wherein the step
(b) includes the substep of:

formatting the data with a predetermined format compat-
ible with each of a plurality of computing platforms.
14. The method according to claim 12, wherein the
formatted data file is a blank file with a predetermined
format compatible with each of a plurality of computing
platforms to generate into a blank.
15. A system, comprising:

15

30

a memory arrangement;

3 an input device receiving an input file; and

a generation unit processor generating a formatted data
file as a function of the input file, the processor gen-
erating a common generation file using a predetermined
programming language, the predetermined program-
ming language being a lowest common denominator
language utilized by each of the plurality of computing
platforms, the common generation file being capable of
creating a predefined output file compatible with a
corresponding one of the plurality of computing
platforms, the processor modifying the formatted data
file with the code generation file to create a modified
data file using an interface of a corresponding comput-
ing platform of the plurality of computing platforms,
the processor compiling the common generation file
with the modified data file to generate the predefined
output file for the corresponding platform.

16. The system according to claim 15, wherein the input

device includes data.

17. The system according to claim 16, wherein the data is
stored in a predetermined format compatible with a plurality
of computing platforms to generate the formatted data file.

18. A computer-readable storage medium storing a set of
instructions, the set of instructions capable of being
executed by a processor, the set of instructions performing
the steps of:

(a) receiving an input file;

(b) generating a formatted data file as a function of the

input file;

(c) generating a common generation file using a prede-
termined programming language, the predetermined
programming language being a lowest common

40

45

50

55

60

65

US 6,678,885 B2

7 8
denominator language utilized by each of the plurality an interface of a corresponding one of the plurality of
of computing platforms, the common generation file computing platforms; and
being capable of creating a predefined output file (€) compiling the common generation file with the modi-
compatible with each of the plurality of computing fied data file to generate the predefined output file for
platforms; 5 the corresponding platform.

(d) modifying the formatted data file to create a modified
formatted data file, the modification being provided via ¥ % % % %

