

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2009268505 B2

(54) Title
2-methylene-19, 26-dinor-(20S, 22E, 25R)-vitamin D analogs

(51) International Patent Classification(s)
C07C 401/00 (2006.01) **A61P 17/06** (2006.01)
A61K 31/593 (2006.01) **A61P 29/00** (2006.01)
A61P 3/04 (2006.01) **A61P 35/00** (2006.01)
A61P 17/00 (2006.01) **A61P 37/02** (2006.01)

(21) Application No: **2009268505** (22) Date of Filing: **2009.07.09**

(87) WIPO No: **WO10/006169**

(30) Priority Data

(31) Number (32) Date (33) Country
12/171,120 **2008.07.10** **US**

(43) Publication Date: **2010.01.14**
(44) Accepted Journal Date: **2014.01.16**

(71) Applicant(s)
WISCONSIN ALUMNI RESEARCH FOUNDATION

(72) Inventor(s)
Clagett-Dame, Margaret;Chiellini, Grazia;Plum, Lori A.;Deluca, Hector F.;Grzywacz, Pawell

(74) Agent / Attorney
Golja Haines & Friend, PO Box 1417, West Leederville, WA, 6901

(56) Related Art
WO 2008/039751
WO 2007/092720
WO 2007/092721

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 January 2010 (14.01.2010)

(10) International Publication Number
WO 2010/006169 A3

(51) International Patent Classification:

C07C 401/00 (2006.01) A61P 17/06 (2006.01)
A61K 31/593 (2006.01) A61P 29/00 (2006.01)
A61P 3/04 (2006.01) A61P 35/00 (2006.01)
A61P 17/00 (2006.01) A61P 37/02 (2006.01)

(74) Agents: WOZNY, Thomas M. et al.; Andrus, Sceales, Starke & Swall, LLP, 100 East Wisconsin Avenue, Suite 1100, Milwaukee, WI 53202-4178 (US).

(21) International Application Number:

PCT/US2009/050106

(22) International Filing Date:

9 July 2009 (09.07.2009)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12/171,120 10 July 2008 (10.07.2008) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DELUCA, Hector, F. [US/US]; 1809 Highway BB, Deerfield, WI 53531 (US). CHIELLINI, Grazia [IT/US]; 5 Schlough Court, Madison, WI 53717 (US). GRZYWACZ, Pawell [PL/US]; 436 West Wilson Street, Apt. 2, Madison, WI 53709 (US). PLUM, Lori, A. [US/US]; 6139 Highway H, Arena, WI 53503 (US). CLAGETT-DAME, Margaret [US/US]; 1809 Highway BB, Deerfield, WI 53531 (US).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(88) Date of publication of the international search report:

15 April 2010

WO 2010/006169 A3

(54) Title: 2-METHYLENE-19, 26-DINOR-(20S, 22E, 25R)-VITAMIN D ANALOGS

(57) Abstract: This invention discloses 2-methylene-19,26-dinor-(20S,22E,25R)- vitamin D analogs, and specifically 2-methylene-19,26-dinor-(20S,22E,25R)- α , α ,25- dihydroxyvitamin D3, and pharmaceutical uses therefor. This compound exhibits transcription activity as well as pronounced activity in arresting the proliferation of undifferentiated cells and inducing their differentiation to the monocyte thus evidencing use as an anti-cancer agent and for the treatment of skin diseases such as psoriasis as well as skin conditions such as wrinkles, slack skin, dry skin and insufficient sebum secretion. This compound also shows no activity in vivo on bone calcium mobilization and relatively low intestinal calcium transport activity compared to the native hormone α , α ,25-dihydroxyvitamin D3, and therefore may be used to treat autoimmune disorders or inflammatory diseases in humans as well as renal osteodystrophy. This compound may also be used for the treatment or prevention of obesity.

2-METHYLENE-19,26-DINOR-(20S,22E,25R)-VITAMIN D ANALOGS

BACKGROUND OF THE INVENTION

[0001] This invention relates to vitamin D compounds, and more particularly to 2-methylene-19,26-dinor-(20S,22E,25R)-vitamin D analogs and their pharmaceutical uses.

[0002] The natural hormone, $1\alpha,25$ -dihydroxyvitamin D₃ and its analog in ergosterol series, i.e. $1\alpha,25$ -dihydroxyvitamin D₂ are known to be highly potent regulators of calcium homeostasis in animals and humans, and their activity in cellular differentiation has also been established, Ostrem et al., Proc. Natl. Acad. Sci. USA, 84, 2610 (1987). Many structural analogs of these metabolites have been prepared and tested, including 1α -hydroxyvitamin D₃, 1α -hydroxyvitamin D₂, various side chain homologated vitamins and fluorinated analogs. Some of these compounds exhibit an interesting separation of activities in cell differentiation and calcium regulation. This difference in activity may be useful in the treatment of a variety of diseases such as renal osteodystrophy, vitamin D-resistant rickets, osteoporosis, psoriasis, and certain malignancies.

[0003] Another class of vitamin D analogs, i.e. the so called 19-nor-vitamin D compounds, is characterized by the replacement of the A-ring exocyclic methylene group (carbon 19), typical of the vitamin D system, by two hydrogen atoms. Biological testing of such 19-nor-analogs (e.g., $1\alpha,25$ -dihydroxy-19-nor-vitamin D₃) revealed a selective activity profile with high potency in inducing cellular differentiation, and very low calcium mobilizing activity. Thus, these compounds are potentially useful as therapeutic agents for the treatment of malignancies, or the treatment of various skin disorders. Two different methods of synthesis of such 19-nor-vitamin D analogs have been described (Perlman et al., Tetrahedron Lett. 31, 1823 (1990); Perlman et al., Tetrahedron Lett. 32, 7663 (1991), and DeLuca et al., U.S. Pat. No. 5,086,191).

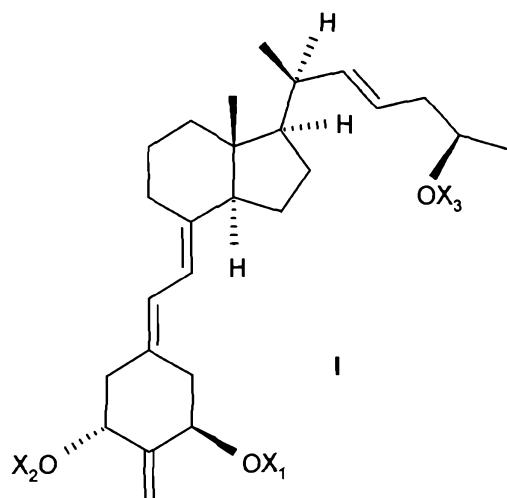
[0004] In U.S. Pat. No. 4,666,634, 2 β -hydroxy and alkoxy (e.g., ED-71) analogs of $1\alpha,25$ -dihydroxyvitamin D₃ have been described and examined by Chugai group as potential drugs for osteoporosis and as antitumor agents. See also Okano et al., Biochem. Biophys. Res. Commun. 163, 1444 (1989). Other 2-substituted (with

hydroxyalkyl, e.g., ED-120, and fluoroalkyl groups) A-ring analogs of $1\alpha,25$ -dihydroxyvitamin D₃ have also been prepared and tested (Miyamoto et al., *Chem. Pharm. Bull.* 41, 1111 (1993); Nishii et al., *Osteoporosis Int. Suppl.* 1, 190 (1993); Posner et al., *J. Org. Chem.* 59, 7855 (1994), and *J. Org. Chem.* 60, 4617 (1995)), as have analogs with a cyclopropyl group in the side chain (e.g. MC-903 known as calcipotriene and described in Nishii et al U.S. Patent 5,063,221).

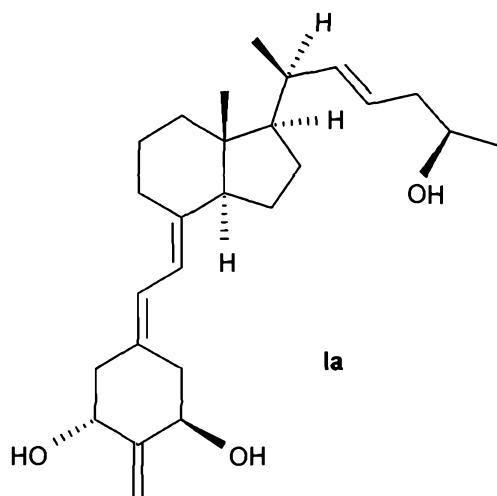
[0005] 2-substituted analogs of $1\alpha,25$ -dihydroxy-19-nor-vitamin D₃ have also been synthesized, i.e. compounds substituted at 2-position with hydroxy or alkoxy groups (DeLuca et al., U.S. Pat. No. 5,536,713), with 2-alkyl groups (DeLuca et al U.S. Patent No. 5,945,410), and with 2-alkylidene groups (DeLuca et al U.S. Patent No. 5,843,928), which exhibit interesting and selective activity profiles. All these studies indicate that binding sites in vitamin D receptors can accommodate different substituents at *C*-2 in the synthesized vitamin D analogs.

[0006] In a continuing effort to explore the 19-nor class of pharmacologically important vitamin D compounds, analogs which are characterized by the presence of a methylene substituent at carbon 2 (C-2), a hydroxyl group at carbon 1 (C-1), and a shortened side chain attached to carbon 20 (C-20) have also been synthesized and tested. 1α -hydroxy-2-methylene-19-nor-pregnacalciferol is described in U.S. Patent 6,566,352 while 1α -hydroxy-2-methylene-19-nor-homopregnacalciferol is described in U.S. Patent 6,579,861 and 1α -hydroxy-2-methylene-19-nor-bishomopregnacalciferol is described in U.S. Patent 6,627,622. All three of these compounds have relatively high binding activity to vitamin D receptors and relatively high cell differentiation activity, but little if any calcemic activity as compared to $1\alpha,25$ -dihydroxyvitamin D₃. Their biological activities make these compounds excellent candidates for a variety of pharmaceutical uses, as set forth in the '352, '861 and '622 patents.

[0007] 17-ene vitamin D compounds as well as vitamin D compounds having a double bond in the side chain thereof are also known, and have been proposed for various pharmacological uses. Bone diseases such as osteoporosis, skin disorders such as psoriasis, cancers such as leukemia and cosmetic conditions such as wrinkles are


just some of the applications proposed for such compounds. 17-ene compounds are described in U.S. Patents 5,545,633; 5,929,056 and 6,399,797 while 2-alkylidene compounds having a side chain with a double bond therein are described in, for example, U.S. Patent 5,843,928.

[0008] 19-nor vitamin D compounds substituted at the carbon-2 position of ring A with an alkyl group such as methyl, or an alkylidene group such as methylene, and having a side chain lacking one or more of the standard vitamin D₃ substituents, are also known, and have been proposed for various pharmacological uses. For example, numerous 2 α -methyl-19,26,27-trinor analogs are described in published U.S. Application No. 2007/028704 and in published U.S. Application No. 2007/0270391, and numerous 2-methylene-19,26,27-trinor analogs are described in published U.S. Application No. 2007/0249567. In addition, 2 α -methyl-19-nor-(20S)-1 α -hydroxy-bishomopregnacalciferol is described in published U.S. Application No. 2007/0254857, and numerous 2-methylene-19,26-dinor vitamin D analogs are described in published U.S. Application No. 2007/0191317 and in published U.S. Application No. 2007/0191316.


SUMMARY OF THE INVENTION

[0009] The present invention is directed toward 2-methylene-19,26-dinor-(20S,22E,25R)-vitamin D analogs, their biological activity, and various pharmaceutical uses for these compounds. These new vitamin D compounds not known heretofore are the 19-nor-vitamin D analogs having a methylene group at the 2-position (C-2), a hydroxyl substituent attached to the 25-position (C-25) in the side chain, the methyl group normally located at the 26 position (C-26) in the side chain replaced with a hydrogen atom, and a double bond located between carbon atoms 22 and 23 (C-22 and C-23) in the side chain. The preferred vitamin D analog is 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃ (hereinafter referred to as "SOR-1").

[0010] Structurally these 2-methylene-19,26-dinor-(20S,22E,25R)-vitamin D analogs are characterized by the general formula I shown below:

where X_1 , X_2 and X_3 , which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group. The preferred analog is 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃ which has the following formula **Ia**:

The above compounds I, particularly Ia, exhibit a desired, and highly advantageous, pattern of biological activity. These compounds are characterized by relatively high binding to vitamin D receptors, which is only slightly less than that of the native hormone 1 α ,25-dihydroxyvitamin D₃. These compounds have relatively low ability to promote intestinal calcium transport *in vivo*, especially at the recommended lower doses. They would be classified as having lower activity and thus lower potency *in vivo* in stimulating intestinal calcium transport activity, as compared to that of 1 α ,25-dihydroxyvitamin D₃. These compounds I, and particularly Ia, also have very little ability to mobilize calcium

from bone, and they would be classified as having substantially no bone calcium mobilizing activity as compared to 1 α ,25-dihydroxyvitamin D₃. It is undesirable to raise serum calcium to supraphysiologic levels when suppressing the preproparathyroid hormone gene (Darwish & DeLuca, Arch. Biochem. Biophys. 365, 123-130, 1999) and parathyroid gland proliferation. These analogs having relatively no bone calcium mobilization activity while very active on cell differentiation are expected to be useful as a therapy for suppression of secondary hyperparathyroidism of renal osteodystrophy.

[0011] The compounds I, particularly Ia, of the invention have also been discovered to be especially suited for treatment and prophylaxis of human disorders which are characterized by an imbalance in the immune system, e.g. in autoimmune diseases, including multiple sclerosis, lupus, diabetes mellitus, host versus graft rejection, and rejection of organ transplants; and additionally for the treatment of inflammatory diseases, such as rheumatoid arthritis, asthma, and inflammatory bowel diseases such as celiac disease, ulcerative colitis and Crohn's disease. Acne, alopecia and hypertension are other conditions which may be treated with the compounds of the invention.

[0012] The above compounds I, and particularly Ia, are also characterized by relatively high cell differentiation activity and in promoting transcription. Thus, these compounds also provide a therapeutic agent for the treatment of psoriasis, or as an anti-cancer agent, especially against leukemia, colon cancer, breast cancer, skin cancer and prostate cancer. In addition, due to their relatively high cell differentiation activity, these compounds provide a therapeutic agent for the treatment of various skin conditions including wrinkles, lack of adequate dermal hydration, i.e. dry skin, lack of adequate skin firmness, i.e. slack skin, and insufficient sebum secretion. Use of these compounds thus not only results in moisturizing of skin but also improves the barrier function of skin.

[0013] The compounds of the invention of formula I, and particularly formula Ia, are also useful in preventing or treating obesity, inhibiting adipocyte differentiation, inhibiting SCD-1 gene transcription, and/or reducing body fat in animal subjects. Therefore, in some embodiments, a method of preventing or treating obesity, inhibiting

adipocyte differentiation, inhibiting SCD-1 gene transcription, and/or reducing body fat in an animal subject includes administering to the animal subject, an effective amount of one or more of the compounds or a pharmaceutical composition that includes one or more of the compounds of formula I. Administration of one or more of the compounds or the pharmaceutical compositions to the subject inhibits adipocyte differentiation, inhibits gene transcription, and/or reduces body fat in the animal subject.

[0014] One or more of the compounds may be present in a composition to treat the above-noted diseases and disorders in an amount from about 0.01 μ g/gm to about 1000 μ g/gm of the composition, preferably from about 0.1 μ g/gm to about 500 μ g/gm of the composition, and may be administered topically, transdermally, orally, rectally, nasally, sublingually or parenterally in dosages of from about 0.01 μ g/day to about 1000 μ g/day, preferably from about 0.1 μ g/day to about 500 μ g/day.

BRIEF DESCRIPTION OF THE DRAWINGS

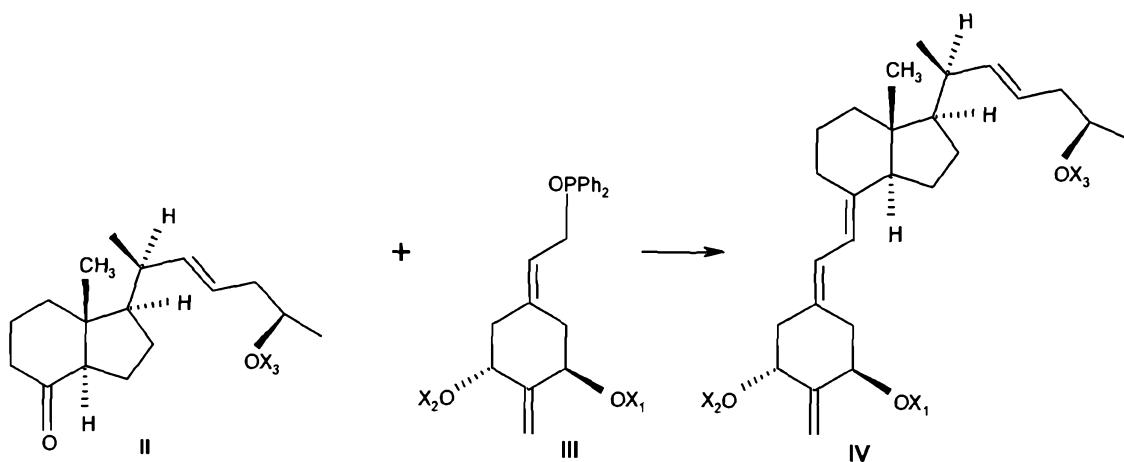
[0015] In the drawings:

[0016] Figures 1-5 illustrate various biological activities of 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃, hereinafter referred to as "SOR-1", as compared to the native hormone 1 α ,25-dihydroxyvitamin D₃, hereinafter "1,25(OH)₂D₃."

[0017] Figure 1 is a graph illustrating the relative activity of SOR-1 and 1,25(OH)₂D₃ to compete for binding with [³H]-1,25-(OH)₂-D₃ to the full-length recombinant rat vitamin D receptor;

[0018] Figure 2 is a graph illustrating the percent HL-60 cell differentiation as a function of the concentration of SOR-1 and 1,25(OH)₂D₃;

[0019] Figure 3 is a graph illustrating the in vitro transcription activity of 1,25(OH)₂D₃ as compared to SOR-1;


[0020] Figure 4 is a graph illustrating the bone calcium mobilization activity of 1,25(OH)₂D₃ as compared to SOR-1 in a group of animals; and

[0021] Figure 5 is a graph illustrating the intestinal calcium transport activity of 1,25(OH)₂D₃ as compared to SOR-1 in a group of animals.

DETAILED DESCRIPTION OF THE INVENTION

[0022] 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃ (referred to herein as "SOR-1") a 19-nor vitamin D analog which is characterized by the presence of a methylene substituent at the carbon 2 (C-2), a hydroxyl substituent attached to the 25-position (C-25) in the side chain, the methyl group normally located at the 26 position (C-26) in the side chain replaced with a hydrogen atom and a double bond located between carbon atoms 22 and 23 (C-22 and C-23) in the side chain, was synthesized and tested. Such vitamin D analog seemed an interesting target because the relatively small methylene group at the C-2 position should not interfere with binding to the vitamin D receptor. Structurally, this 19-nor analog is characterized by the general formula **Ia** previously illustrated herein, and its pro-drug (in protected hydroxy form) is characterized by general formula I previously illustrated herein.

[0023] The preparation of 2-methylene-19,26-dinor-(20S,22E,25R)-vitamin D analogs having the structure **I** can be accomplished by a common general method, i.e. the condensation of a bicyclic Windaus-Grundmann type ketone **II** with the allylic phosphine oxide **III** to the corresponding 2-methylene-19-nor-vitamin D analog **IV** followed by deprotection at C-1, C-3 and C-25 in the latter compound (see Schemes I, II, III and IV herein):

In the structures **II**, **III** and **IV**, groups X₁, X₂ and X₃ are hydroxy-protecting groups, preferably t-butyldimethylsilyl, it being also understood that any functionalities that might be sensitive, or that interfere with the condensation reaction, be suitably

protected as is well-known in the art. The process shown above represents an application of the convergent synthesis concept, which has been applied effectively for the preparation of vitamin D compounds [e.g. Lythgoe et al., J. Chem. Soc. Perkin Trans. I, 590 (1978); Lythgoe, Chem. Soc. Rev. 9, 449 (1983); Toh et al., J. Org. Chem. 48, 1414 (1983); Baggolini et al., J. Org. Chem. 51, 3098 (1986); Sardina et al., J. Org. Chem. 51, 1264 (1986); J. Org. Chem. 51, 1269 (1986); DeLuca et al., U.S. Pat. No. 5,086,191; DeLuca et al., U.S. Pat. No. 5,536,713].

[0024] The hydrindanone of the general structure **II** is not known. It can be prepared by the method shown in Schemes I, II, III and IV herein (see the preparation of compound RR-22).

[0025] For the preparation of the required phosphine oxides of general structure **III**, a synthetic route has been developed starting from a methyl quinicate derivative which is easily obtained from commercial (1R,3R,4S,5R)-(-)-quinic acid as described by Perlman et al., Tetrahedron Lett. 32, 7663 (1991) and DeLuca et al., U.S. Pat. No. 5,086,191.

[0026] The overall process of the synthesis of compounds **I** and **Ia** is illustrated and described more completely in U.S. Patent No. 5,843,928 entitled "2-Alkylidene-19-Nor-Vitamin D Compounds" the specification of which is specifically incorporated herein by reference.

[0027] As used in the description and in the claims, the term "hydroxy-protecting group" signifies any group commonly used for the temporary protection of hydroxy functions, such as for example, alkoxy carbonyl, acyl, alkylsilyl or alkylarylsilyl groups (hereinafter referred to simply as "silyl" groups), and alkoxy alkyl groups. Alkoxy carbonyl protecting groups are alkyl-O-CO- groupings such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl or allyloxycarbonyl. The term "acyl" signifies an alkanoyl group of 1 to 6 carbons, in all of its isomeric forms, or a carboxyalkanoyl group of 1 to 6 carbons, such as an oxanyl, malonyl, succinyl, glutaryl group, or an aromatic acyl group such as benzoyl, or a halo, nitro or alkyl substituted benzoyl group. The word "alkyl" as used in the description or

the claims, denotes a straight-chain or branched alkyl radical of 1 to 10 carbons, in all its isomeric forms. Alkoxyalkyl protecting groups are groupings such as methoxymethyl, ethoxymethyl, methoxyethoxymethyl, or tetrahydrofuranyl and tetrahydropyranyl. Preferred silyl-protecting groups are trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, dibutylmethylsilyl, diphenylmethylsilyl, phenyldimethylsilyl, diphenyl-t-butylsilyl and analogous alkylated silyl radicals. The term "aryl" specifies a phenyl-, or an alkyl-, nitro- or halo-substituted phenyl group.

[0028] A "protected hydroxy" group is a hydroxy group derivatised or protected by any of the above groups commonly used for the temporary or permanent protection of hydroxy functions, e.g. the silyl, alkoxyalkyl, acyl or alkoxy carbonyl groups, as previously defined. The terms "hydroxyalkyl", "deuteroalkyl" and "fluoroalkyl" refer to an alkyl radical substituted by one or more hydroxy, deuterium or fluoro groups respectively.

[0029] More specifically, reference should be made to the following illustrative example and description as well as to Schemes I, II, III and IV herein for a detailed illustration of the preparation of compound SOR-1.

[0030] In this example specific products identified by Arabic numerals (1, 2, 3) refer to the specific structures so identified in the Schemes I, II, III and IV.

EXAMPLE

[0031] Chemistry. Ultraviolet (UV) absorption spectra were recorded with a Hitachi Model 60-100 UV-vis spectrometer in the solvent noted. ¹H nuclear magnetic resonance (NMR) spectra were recorded at 500 MHz with a Bruker AM-500 FT spectrometer in deuteriochloroform. Chemical shifts (δ) are reported downfield from internal Me₄Si (δ 0.00). Mass spectra were recorded at 70 eV on a Kratos DS-50 TC instrument equipped with a Kratos MS-55 data system. Samples were introduced into the ion source maintained at 120-250 °C via a direct insertion probe. High-performance liquid chromatography (HPLC) was performed on a Waters Associates liquid chromatograph equipped with a Model 6000A solvent delivery system, a Model 6 UK Universal injector, a Model 486 tunable absorbance detector, and a differential R 401 refractometer.

[0032] Example 1

[0033] **Preparation of (3*R*)-1-*p*-Toluenesulfonyloxy-3-triethylsilyloxybutane (2).**

[0034] To a stirred solution of the (*R*)-(−)-1,3-butanediol **1** (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et₃N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) *p*-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 °C. The reaction mixture was stirred at 4 °C for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na₂SO₄) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.17 g, 80% yield) as a colorless oil.

[0035] To a stirred solution of the tosylate (2.17 g, 8.9 mmol) and 2,6-lutidine (1.14 mL, 1.05 g, 9.8 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2 mL, 2.35 g, 8.9 mmol) was added at -50 °C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na₂SO₄) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product **2** (3.16 g, 99% yield) as a colorless oil:

[0036] $[\alpha]_D$ - 20.7 (c 1.62, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (2H, d, J = 8.2 Hz, *o*-H_{Ts}), 7.33 (2H, d, J = 8.2 Hz, *m*-H_{Ts}), 4.10 (2H, t, J = 6.1 Hz, 1-H₂), 3.90 (1H, m, 3-H), 2.43 (3H, s, Me_{Ts}), 1.72 (2H, m, 2-H₂), 1.10 (3H, d, J = 6.2 Hz, 4-H₃), 0.88 (9H, t, J = 7.9 Hz, 3 x SiCH₂CH₃), 0.50 (6H, q, J = 7.9 Hz, 3 x SiCH₂CH₃); ¹³C NMR (100 MHz) δ 144.62 (s, *p*-C_{Ts}), 133.02 (s, *i*-C_{Ts}), 129.72 (d, *m*-C_{Ts}), 127.82 (d, *o*-C_{Ts}), 67.78 (t, C-1), 64.45 (d, C-3), 38.46 (t, C-2), 23.81 (q, C-4), 21.51 (q, Me_{Ts}), 6.71 (q, SiCH₂CH₃), 4.76 (t, SiCH₂CH₃); MS (EI) *m/z* 359 (0.5, MH⁺), 329 (59, M⁺ - C₂H₅), 285 (24), 258 (71), 229 (22), 212 (14), 199 (12), 159

(28), 145 (45), 115 (72), 91 (100); exact mass calculated for $C_{15}H_{25}O_4SSi$ (M^+ - C_2H_5) 329.1243, found 329.1248.

[0037] **Preparation of (3*R*)-1-Iodo-3-triethylsilyloxy-butane (3).**

[0038] To a stirred solution of the tosylate **2** (3.15 g, 8.8 mmol) in anhydrous acetone (50 mL) potassium iodide (8 g, 48 mmol) was added and the reaction mixture was refluxed for 10 h. Water (30 mL) was added and the solution was extracted with ethyl acetate. The combined organic phases were dried (Na_2SO_4) and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to give the alcohol **3** (2.6 g, 94% yield) as a colorless oil:

[0039] $[\alpha]_D$ - 39.5 (c 1.75, $CHCl_3$); 1H NMR (400 MHz, $CDCl_3$) δ 3.89 (1H, m, 3-H), 3.22 (2H, t, J = 7.0 Hz, 1-H₂), 1.91 (2H, m, 2-H₂), 1.16 (3H, d, J = 6.1 Hz, 4-H₃), 0.96 (9H, t, J = 7.9 Hz, 3 x $SiCH_2CH_3$), 0.61 (6H, q, J = 7.9 Hz, 3 x $SiCH_2CH_3$); ^{13}C NMR (100 MHz) δ 68.14 (d, C-3), 43.24 (t, C-2), 23.46 (q, C-4), 6.87 (q, $SiCH_2CH_3$), 5.00 (t, $SiCH_2CH_3$), 3.37 (t, C-1); MS (EI) m/z 314 (1, M^+), 299 (3, M^+ - CH_3), 285 (100, M^+ - C_2H_5), 257 (78, M^+ - C_4H_9), 228 (56), 212 (99), 184 (65), 157 (70), 129 (46), 115 (46); exact mass calculated for $C_8H_{18}OISi$ (M^+ - C_2H_5) 285.0172, found 285.0167.

[0040] **Preparation of (3*R*)-Hydroxybutyl-triphenylphosphonium iodide (4).**

[0041] To a stirred solution of the iodide **3** (1.24 g, 3.9 mmol) in acetonitrile (50 mL) triphenylphosphine (3.1 g, 11.8 mmol) was added and the reaction mixture was refluxed for 2 days. Acetonitrile was evaporated under reduced pressure, ethyl acetate (50 mL) was added and the mixture was stirred at room temperature for 4 h. After removal of the solvent by filtration the solid was washed with ethyl acetate, filtered off and dried. The pure phosphonium salt **4** (1.74 g, 96% yield) was obtained as white crystals:

[0042] 1H NMR (400 MHz, CD_3OD) δ 8.00 - 7.70 (15H, m, H_{Ph}), 3.89 (1H, m, 3-H), 3.48 (2H, m, 1-H₂), 1.73 (2H, m, 2-H₂), 1.19 (3H, d, J = 6.2 Hz, 4-H₃); ^{13}C

NMR (100 MHz) δ 136.41 (d, *p*-C_{Ph}), 134.99 (d, J_{C-P} = 10.1 Hz, *m*-C_{Ph}), 131.70 (d, J_{C-P} = 12.1 Hz, *o*-C_{Ph}), 120.03 (s, J_{C-P} = 86.5 Hz, *i*-C_{Ph}), 67.94 (d, J_{C-P} = 17.1 Hz, C-3), 32.52 (t, J_{C-P} = 4.0 Hz, C-2), 23.38 (q, C-4), 19.85 (t, J_{C-P} = 54.3 Hz, C-1); exact mass calculated for C₂₂H₂₄OPI (M⁺) 335.1565, found 335.1562.

[0043] Preparation of (8*S*,20*S*)-des-A,B-20-(hydroxymethyl)pregnan-8-ol (5).

[0044] Ozone was passed through a solution of vitamin D₂ (3 g, 7.6 mmol) in methanol (250 mL) and pyridine (2.44 g, 2.5 mL, 31 mmol) for 50 min at -78 °C. The reaction mixture was then flushed with an oxygen for 15 min to remove the residual ozone and the solution was treated with NaBH₄ (0.75 g, 20 mmol). After 20 min the second portion of NaBH₄ (0.75 g, 20 mmol) was added and the mixture was allowed to warm to room temperature. The third portion of NaBH₄ (0.75 g, 20 mmol) was then added and the reaction mixture was stirred for 18 h. The reaction was quenched with water (40 mL) and the solution was concentrated under reduced pressure. The residue was extracted with ethyl acetate and the combined organic phases were washed with 1M aq. HCl, saturated aq. NaHCO₃, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane/ethyl acetate (75:25) to give the diol **5** (1.21 g, 75% yield) as white crystals:

[0045] m.p. 106-108°C; $[\alpha]_D$ +30.2° (c 1.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.08 (1H, d, J = 2.0 Hz, 8 α -H), 3.63 (1H, dd, J = 10.5, 3.1 Hz, 22-H), 3.38 (1H, dd, J = 10.5, 6.8 Hz, 22-H), 1.99 (1H, br.d, J = 13.2 Hz), 1.03 (3H, d, J = 6.6 Hz, 21-H₃), 0.956 (3H, s, 18-H₃); ¹³C NMR (100 MHz) δ 69.16 (d, C-8), 67.74 (t, C-22), 52.90 (d), 52.33 (d), 41.83 (s, C-13), 40.19 (t), 38.20 (d), 33.53 (t), 26.62 (t), 22.54 (t), 17.36 (t), 16.59 (q, C-21), 13.54 (q, C-18); MS (EI) *m/z* 212 (2, M⁺), 194 (34, M⁺ - H₂O), 179 (33, M⁺ - H₂O - CH₃), 163 (18, M⁺ - CH₂OH - H₂O), 135 (36), 125 (54), 111 (100), 95 (63), 81 (67); exact mass calculated for C₁₃H₂₂O (M⁺ - H₂O) 194.1671, found 194.1665.

[0046] Preparation of (8*S*,20*S*)-des-A,B-8-benzyloxy-20-(hydroxymethyl)pregnane (6).

[0047] Benzoyl chloride (1.2 g, 1 mL, 8.5 mmol) was added to a solution of the diol **5** (0.6 g, 2.8 mmol) and DMAP (15 mg, 0.1 mmol) in anhydrous pyridine (10 mL) at 0 °C. The reaction mixture was stirred at 4 °C for 24 h, diluted with methylene chloride (100 mL), washed with 5% aq. HCl, water, saturated aq. NaHCO₃, dried (Na₂SO₄) and concentrated under reduced pressure. The residue (1.65 g) was treated with a solution of KOH (1g, 15.5 mmol) in anhydrous ethanol (30 mL) at room temperature. After stirring of the reaction mixture for 3 h, ice and 5% aq. HCl were added until pH=6. The solution was extracted with ethyl acetate (3 × 50 mL) and the combined organic phases were washed with saturated aq. NaHCO₃, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane/ethyl acetate (75:25) to give the alcohol **6** (0.78 g, 88% yield) as a colorless oil:

[0048] $[\alpha]_D +56.0$ (*c* 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃ + TMS) δ 8.08-8.02 (2H, m, *o*-H_{Bz}), 7.59-7.53 (1H, m, *p*-H_{Bz}), 7.50-7.40 (2H, m, *m*-H_{Bz}), 5.42 (1H, d, *J* = 2.4 Hz, 8*α*-H), 3.65 (1H, dd, *J* = 10.5, 3.2 Hz, 22-H), 3.39 (1H, dd, *J* = 10.5, 6.8 Hz, 22-H), 1.08 (3H, d, *J* = 5.3 Hz, 21-H₃), 1.07 (3H, s, 18-H₃); ¹³C NMR (125 MHz) δ 166.70 (s, C=O), 132.93 (d, *p*-C_{Bz}), 130.04 (s, *i*-C_{Bz}), 129.75 (d, *o*-C_{Bz}), 128.57 (d, *m*-C_{Bz}), 72.27 (d, C-8), 67.95 (t, C-22), 52.96 (d), 51.60 (d), 42.15 (s, C-13), 39.98 (t), 38.61 (d), 30.73 (t), 26.81 (t), 22.91 (t), 18.20 (t), 16.87 (q, C-21), 13.81 (q, C-18); MS (EI) *m/z* 316 (5, M⁺), 301 (3, M⁺ - Me), 299 (1, M⁺ - OH), 298 (2, M⁺ - H₂O), 285 (10, M⁺ - CH₂OH), 257 (6), 230 (9), 194 (80), 135 (84), 105 (100); exact mass calculated for C₂₀H₂₈O₃ 316.2038, found 316.2019.

[0049] Preparation of (8*S*,20*S*)-des-A,B-8-benzyloxy-20-formylpregnane (7).

[0050] Sulfur trioxide pyridine complex (0.97 g, 6.1 mmol) was added to a solution of the alcohol **6** (320 mg, 1.01 mmol), triethylamine (0.70 mL, 0.51 g, 5.05

mmol) in anhydrous methylene chloride (5 mL) and anhydrous DMSO (1 mL) at 0 °C. The reaction mixture was stirred under argon at 0 °C for 1 h and then concentrated. The residue was diluted with ethyl acetate, washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (95:5) to give the aldehyde 7 (251 mg, 79% yield) as an oil:

[0051] ¹H NMR (400 MHz, CDCl₃+TMS) δ 9.60 (1H, d, J = 3.1 Hz, CHO), 8.05 (2H, m, *o*-H_{Bz}), 7.57 (1H, m, *p*-H_{Bz}), 7.45 (2H, m, *m*-H_{Bz}), 5.44 (1H, s, 8α-H), 2.39 (1H, m, 20-H), 2.03 (2H, dm, J = 11.5 Hz), 1.15 (3H, d, J = 6.9 Hz, 21-H₃), 1.10 (3H, s, 18-H₃); ¹³C NMR (100 MHz) δ 204.78 (d, CHO), 166.70 (s, C=O), 132.78 (d, p-Bz), 130.69 (s, i-Bz), 129.50 (d, o-Bz), 128.38, (d, m-Bz), 71.66 (d, C-8), 51.30 (d), 50.95 (d), 49.20 (d), 42.38 (s, C-13), 39.62 (t), 30.47 (t), 25.99 (t), 22.92 (t), 17.92 (t), 13.90 (q), 13.35 (q); MS (EI) *m/z* 314 (1, M⁺), 299 (0.5, M⁺ - Me), 286 (1, M⁺ - CO), 285 (5, M⁺ - CHO), 257 (1, M⁺ - C₃H₅O), 209 (10, M⁺ - PhCO), 192 (38), 134 (60), 105 (100), 77 (50); exact mass calculated for C₂₀H₂₆O₃ 314.1882, found 314.1887.

[0052] **Preparation of (8*S*,20*R*)-des-A,B-8-benzyloxy-20-(hydroxymethyl)pregnane (8).**

[0053] The aldehyde 7 (182 mg, 0.6 mmol) was dissolved in methylene chloride (10 mL) and a 40% aq. n-Bu₄NOH solution (0.73 mL, 0.72 g, 1.12 mmol) was added. The resulting mixture was stirred under argon at room temperature for 16 h, diluted with methylene chloride (15 mL), washed with water, dried (Na₂SO₄) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (95:5) to afford a mixture of aldehyde 7 and its 20-epimer (146 mg, 80% yield) in ca. 1:2 ratio (by ¹H NMR).

[0054] This mixture of aldehydes (146 mg, 0.45 mmol) was dissolved in THF (5 mL) and NaBH₄ (32 mg, 0.85 mmol) was added, followed by a drop wise addition of ethanol (5 mL). The reaction mixture was stirred at room temperature

for 30 min and it was quenched with a saturated aq. NH₄Cl solution. The mixture was extracted with ether (3 × 20 mL) and the combined organic phase was washed with water, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane/ethyl acetate (96:4 → 80:20) to give the desired, pure (20*R*)-alcohol **8** (80 mg, 55% yield) as an oil and a mixture of **8** and its 20-epimer **6** (63 mg, 43% yield) in ca. 1:3 ratio (by ¹H NMR).

[0055] [α]_D +50.1 (c 1.09, CHCl₃); ¹H NMR (400 MHz, CDCl₃ + TMS) δ 8.05 (2H, m, *o*-H_{Bz}), 7.55 (1H, m, *p*-H_{Bz}), 7.44 (2H, m, *m*-H_{Bz}), 5.41 (1H, s, 8α-H), 3.77 (1H, dd, J = 10.4, 3.3 Hz, 22-H), 3.45 (1H, dd, J = 10.4, 7.4 Hz, 22-H), 1.067 (3H, s, 18-H₃), 0.973 (3H, d, J = 6.6 Hz, 21-H₃); ¹³C NMR (100 MHz) δ 166.36 (s, C=O), 132.61 (d, *p*-C_{Bz}), 130.63 (s, *i*-C_{Bz}), 129.39 (d, *o*-C_{Bz}), 128.23 (d, *m*-C_{Bz}), 71.97 (d, C-8), 66.42 (t, C-22), 52.65 (d), 51.38 (d), 41.58 (s, C-13), 39.16 (t), 37.45 (d), 30.38 (t), 26.29 (t), 22.35 (t), 17.89 (t), 16.42 (q, C-21), 13.78 (q, C-18); MS (EI) *m/z* 316 (16, M⁺), 301 (5, M⁺ - Me), 299 (2, M⁺ - OH), 298 (3, M⁺ - H₂O), 285 (9, M⁺ - CH₂OH), 257 (5), 242 (11), 230 (8), 194 (60), 147 (71), 105 (100); exact mass calculated for C₂₀H₂₈O₃ 316.2038, found 316.2050.

[0056] **Preparation of (8*S*,20*R*)-des-A,B-8-benzoyloxy-20-formylpregnane (9).**

[0057] Sulfur trioxide pyridine complex (122 mg, 0.77 mmol) was added to a solution of the alcohol **8** (40 mg, 0.13 mmol), triethylamine (88 μL, 64 mg, 0.6 mmol) in anhydrous methylene chloride (5 mL) and anhydrous DMSO (1 mL) at 0 °C. The reaction mixture was stirred under argon at 0 °C for 1 h and then concentrated. The residue was diluted with ethyl acetate, washed with brine, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography on silica gel with hexane/ethyl acetate (95:5) to give the aldehyde **9** (30 mg, 76% yield) as an oil:

[0058] [α]_D +28.8 (c 0.88, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.55 (1H, d, J = 5.0 Hz, CHO), 8.02 (2H, m, *o*-H_{Bz}), 7.54 (1H, m, *p*-H_{Bz}), 7.43 (2H, m, *m*-

H_{Bz}), 5.42 (1H, s, 8 α -H), 2.35 (1H, m, 20-H), 2.07 (1H, m), 1.87 (1H, m), 1.05 (3H, s, 18-H₃), 1.04 (3H, d, J = 7.8 Hz, 21-H₃); ^{13}C NMR (125 MHz) δ 205.51 (d, CHO), 166.34 (s, C=O), 132.76 (d, *p*-C_{Bz}), 130.62 (s, *i*-C_{Bz}), 129.47 (d, *o*-C_{Bz}), 128.35, (d, *m*-C_{Bz}), 71.52 (d, C-8), 52.08 (d), 51.08 (d), 48.40 (d), 41.55 (s, C-13), 38.54 (t), 30.41 (t), 25.28 (t), 22.08 (t), 17.68 (t), 14.49 (q), 13.38 (q); MS (EI) *m/z* 314 (2, M⁺), 285 (3, M⁺ - CHO), 209 (8, M⁺ - PhCO), 192 (30, M⁺ - PhCOOH), 177 (14), 134 (45), 105 (100), 77 (50); exact mass calculated for C₁₉H₂₅O₂ (M⁺ - CHO) 285.1855, found 285.1849.

[0059] Preparation of (8*S*,20*S*)-des-A,B-8-benzoyloxy-20-[(4*R*)-hydroxy-pent-(1*E*)-en-yl]pregnane (10).

[0060] To a stirred suspension of the phosphonium salt **4** (97 mg, 0.29 mmol) in anhydrous THF (5 mL) butyllithium (1.6 M, 317 μ L, 0.50 mmol) was added at -20 °C. The solution turned deep orange. After 1 h a precooled (-20 °C) solution of the aldehyde **9** (30 mg, 96 μ mol) in anhydrous THF (2 mL) was added and the reaction mixture was stirred at -20 °C for 3 h and at room temperature for 18 h. The reaction was quenched with water and the mixture was extracted with ethyl acetate. Combined organic phases were washed with brine, dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel with hexane/ethyl acetate (95:5) to give the product **10** (22 mg, 61% yield):

[0061] $[\alpha]_D$ -28.8 (*c* 0.8, CHCl₃); ^1H NMR (400 MHz, CDCl₃) δ 8.05 (2H, m, *o*-H_{Bz}), 7.55 (1H, m, *p*-H_{Bz}), 7.44 (2H, m, *m*-H_{Bz}), 5.41 (1H, s, 8 α -H), 5.50 - 5.30 (2H, m, 22-H and 23-H), 3.84 (1H, m, 25-H), 1.20 (3H, d, J = 6.2 Hz, 27-H₃), 1.04 (3H, s, 18-H₃), 0.93 (3H, d, J = 6.6 Hz, 21-H₃); ^{13}C NMR (100 MHz) δ 166.45 (s, C=O), 140.74 (d, C-22), 132.67 (d, *p*-C_{Bz}), 130.86 (s, *i*-C_{Bz}), 129.53 (d, *o*-C_{Bz}), 128.32 (d, *m*-C_{Bz}), 123.33 (d, C-23), 72.08 (d, C-8), 67.70 (d, C-25), 56.33 (d), 51.48 (d), 42.46 (t), 41.94 (s, C-13), 40.16 (d), 39.48 (t), 30.60 (t), 26.86 (t), 22.74 (q, C-27), 22.50 (t), 21.46 (q, C-21), 17.81 (t), 13.89 (q, C-18); MS (EI) *m/z* 370 (8, M⁺), 355 (1, M⁺ - CH₃), 326 (2, M⁺ - C₂H₄O), 284 (12, M⁺ - C₅H₁₀O), 265 (2, M⁺ -

PhCO), 248 (28, M⁺ - PhCOOH), 230 (9), 204 (14), 189 (10), 162 (63), 135 (71), 105 (100); exact mass calculated for C₂₄H₃₄O₃Na (MNa⁺) 393.2406, found 393.2407.

[0062] Preparation of (8*S*,20*S*)-des-A,B-8-benzyloxy-20-[(4*R*)-*tert*-butyldimethylsilyloxy-pent-(1*E*)-enyl]pregnane (11).

[0063] *tert*-Butyldimethylsilyl trifluoromethanesulfonate (29 μL, 34 mg, 0.13 mmol) was added to a solution of the alcohol **10** (22 mg, 59 μmol) and 2,6-lutidine (30 μL, 27 mg, 0.26 mmol) in anhydrous methylene chloride (3 mL) at -20 °C. The mixture was stirred under argon at 0 °C for 1 h. The reaction was quenched with water and extracted with methylene chloride. The combined organic phases were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was chromatographed on silica gel with hexane and hexane/ethyl acetate (97:3) to give the product **11** (24 mg, 84%):

[0064] ¹H NMR (400 MHz, CDCl₃ +TMS) δ 8.05 (2H, m, *o*-H_{Bz}), 7.54 (1H, m, *p*-H_{Bz}), 7.42 (2H, m, *m*-H_{Bz}), 5.41 (1H, s, 8α-H), 5.40 – 5.20 (2H, m, 22-H and 23-H), 3.78 (1H, m, 25-H), 1.11 (3H, d, J = 6.0 Hz, 27-H₃), 1.02 (3H, s, 18-H₃), 0.88 (9H, s, Si-*t*-Bu), 0.82 (3H, d, J = 6.5 Hz, 21-H₃), 0.04 (6H, s, SiMe₂); ¹³C NMR (100 MHz) δ 166.52, 138.87, 132.66, 130.90, 129.55, 128.33, 124.17, 72.15, 68.74, 56.38, 52.18, 42.89, 41.88, 40.08, 34.86, 30.61, 26.98, 25.80, 23.67, 22.68, 18.61, 18.48, 18.03, 13.78, -4.47, -4.75; exact mass calculated for C₃₀H₄₈O₃SiNa (MNa⁺) 507.3267, found 507.3254.

[0065] Preparation of (8*S*,20*S*)-des-A,B-20-[(4*R*)-*tert*-butyldimethylsilyloxy-pent-(1*E*)-enyl]pregnan-8-ol (12).

[0066] A solution of sodium hydroxide in ethanol (2.5M, 2 mL) was added to a stirred solution of the benzoate **11** (24 mg, 48 μmol) in anhydrous ethanol (5 mL) and the reaction mixture was refluxed for 18 h. The mixture was cooled to room temperature, neutralized with 5% aq. HCl and extracted with dichloromethane. Combined organic phases were washed with saturated aq.

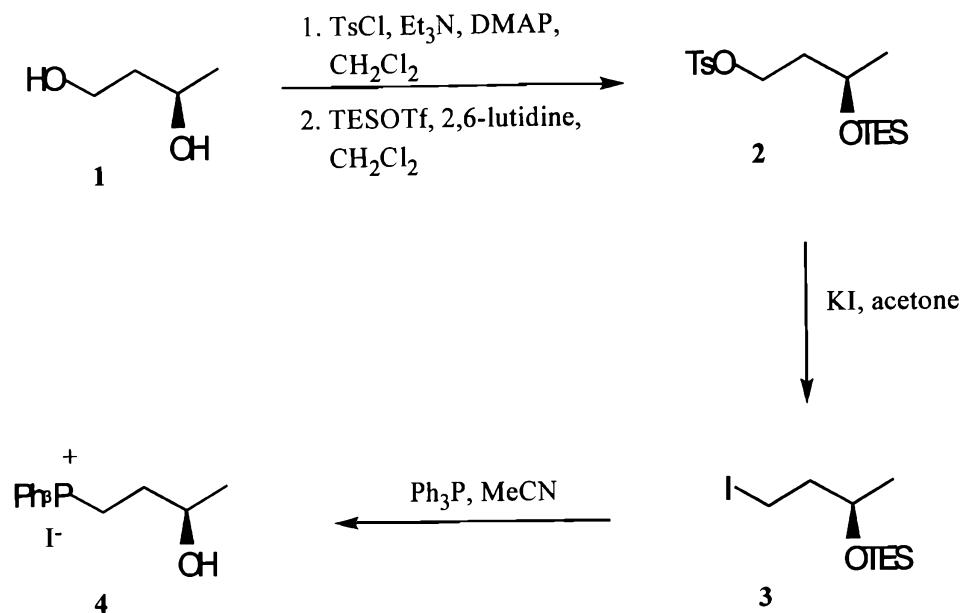
NaHCO₃, dried (Na₂SO₄) and evaporated. The residue was chromatographed on silica gel with hexane/ethyl acetate (95:5) to give the alcohol **12** (12 mg, 65% yield):

[0067] ¹H NMR (400 MHz, CDCl₃) δ 5.40-5.25 (2H, m, 22-H and 23-H), 4.02 (1H, d, J = 1.8 Hz, 8α-H), 3.73 (1H, m, 25-H), 1.11 (3H, d, J = 6.1 Hz, 27-H₃), 0.92 (3H, s, 18-H₃), 0.88 (9H, s, Si-*t*-Bu), 0.81 (3H, d, J = 6.6 Hz, 21-H₃), 0.04 (6H, s, SiMe₂); ¹³C NMR (100 MHz) δ 138.87, 124.15, 69.45, 68.94, 56.43, 52.66, 42.89, 41.68, 40.08, 39.63, 33.54, 27.60, 25.80, 23.24, 22.48, 18.78, 18.16, 17.43, 13.68, -4.39, -4.69.

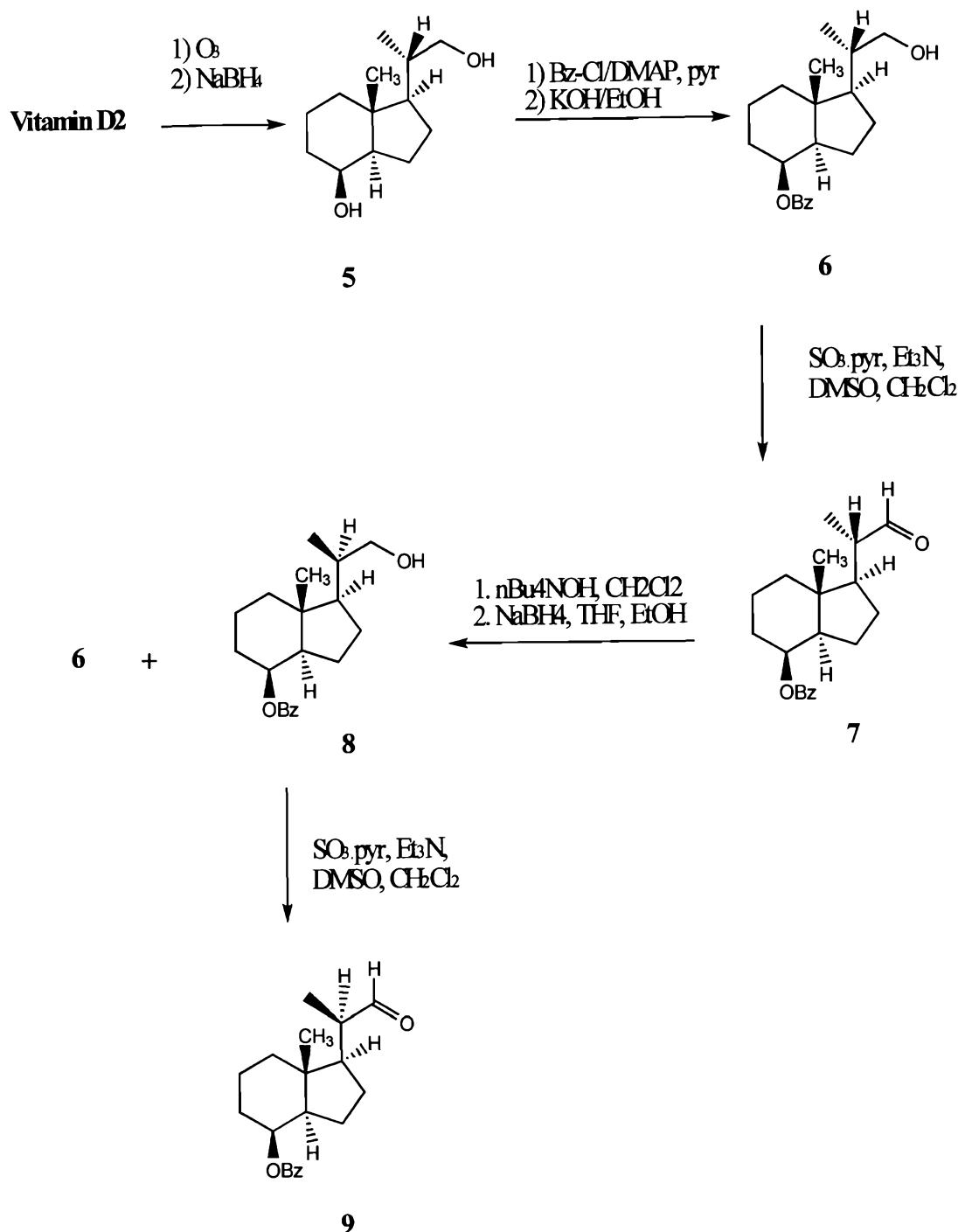
[0068] **Preparation of (20*S*)-des-A,B-20-[*(4R*)-*tert*-butyldimethylsilyloxy-pentyl]pregnan-8-one (13).**

[0069] Pyridinium dichromate (51 mg, 138 μmol) was added to a solution of the alcohol **12** (10 mg, 26 μmol) and pyridinium *p*-toluenesulfonate (2 mg, 8 μmol) in anhydrous methylene chloride (5 mL). The resulting suspension was stirred at room temperature for 3 h. The reaction mixture was filtered through a Waters silica Sep-Pak cartridge (5 g) that was further washed with hexane/ethyl acetate (8:2). After removal of solvents the ketone **13** (6.7 mg, 67 % yield) was obtained as a colorless oil:

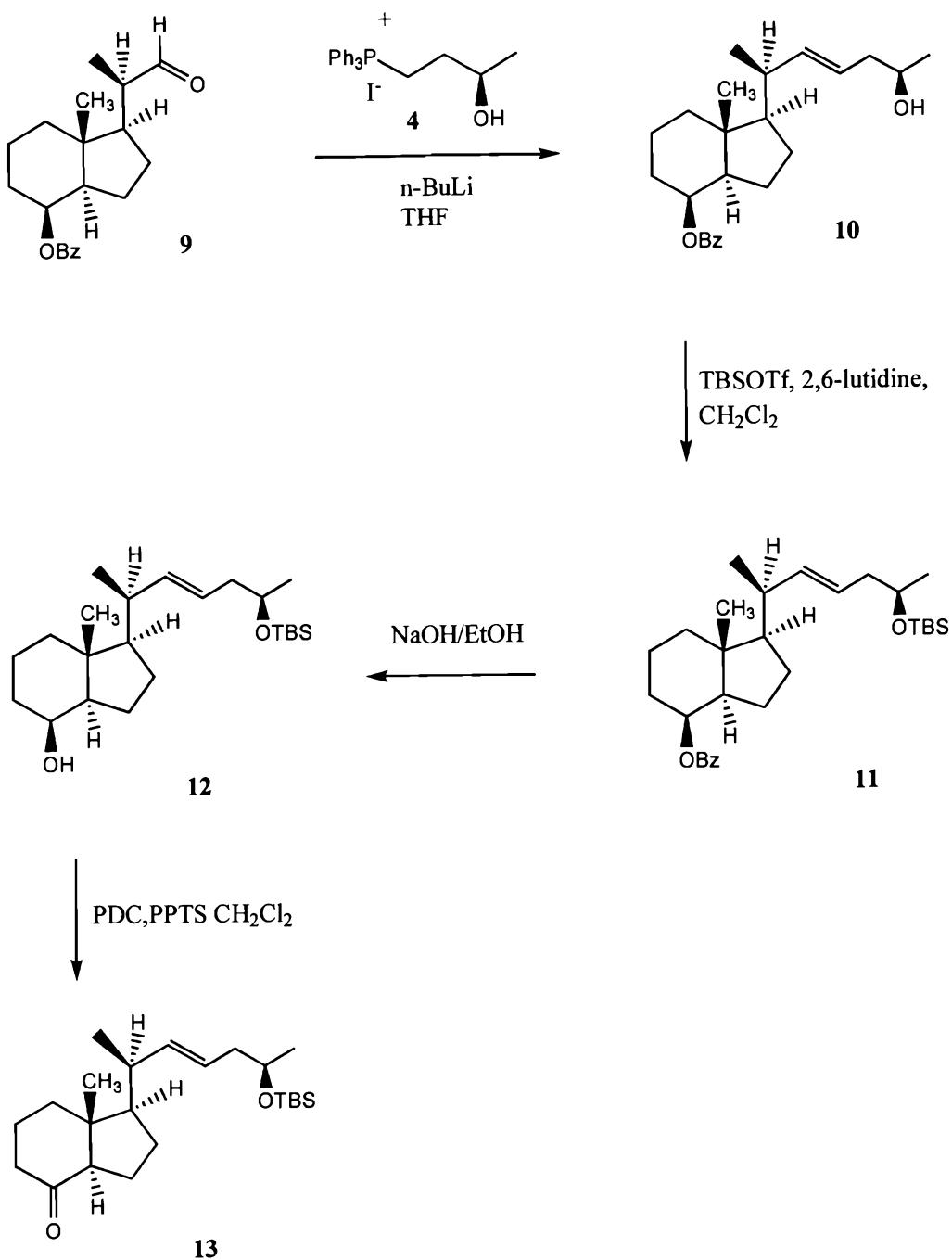
[0070] ¹H NMR (400 MHz, CDCl₃) δ 5.35-5.22 (2H, m, 22-H and 23-H), 3.74 (1H, m, 25-H), 2.41 (1H, dd, J = 11.5, 7.6 Hz), 1.13 (3H, d, J = 6.1 Hz, 27-H₃), 0.89 (9H, s, Si-*t*-Bu), 0.84 (3H, d, J = 5.9 Hz, 21-H₃), 0.63 (3H, s, 18-H₃), 0.053 (6H, s, SiMe₂); ¹³C NMR (100 MHz) δ 212.13, 139.12, 124.44, 68.66, 62.22, 56.49, 50.04, 42.66, 41.05, 40.18, 33.85, 27.13, 25.89, 24.03, 23.78, 21.61, 18.93, 18.16, 12.70, -4.38, -4.70; exact mass calculated for C₂₃H₄₂O₂SiNa (MNa⁺) 401.2852, found 401.2848.


[0071] **Preparation of (20*S*,25*R*)-2-Methylene-19,26-dinor-22-(E)-ene-1α,25-dihydroxyvitamin D₃ (15).**

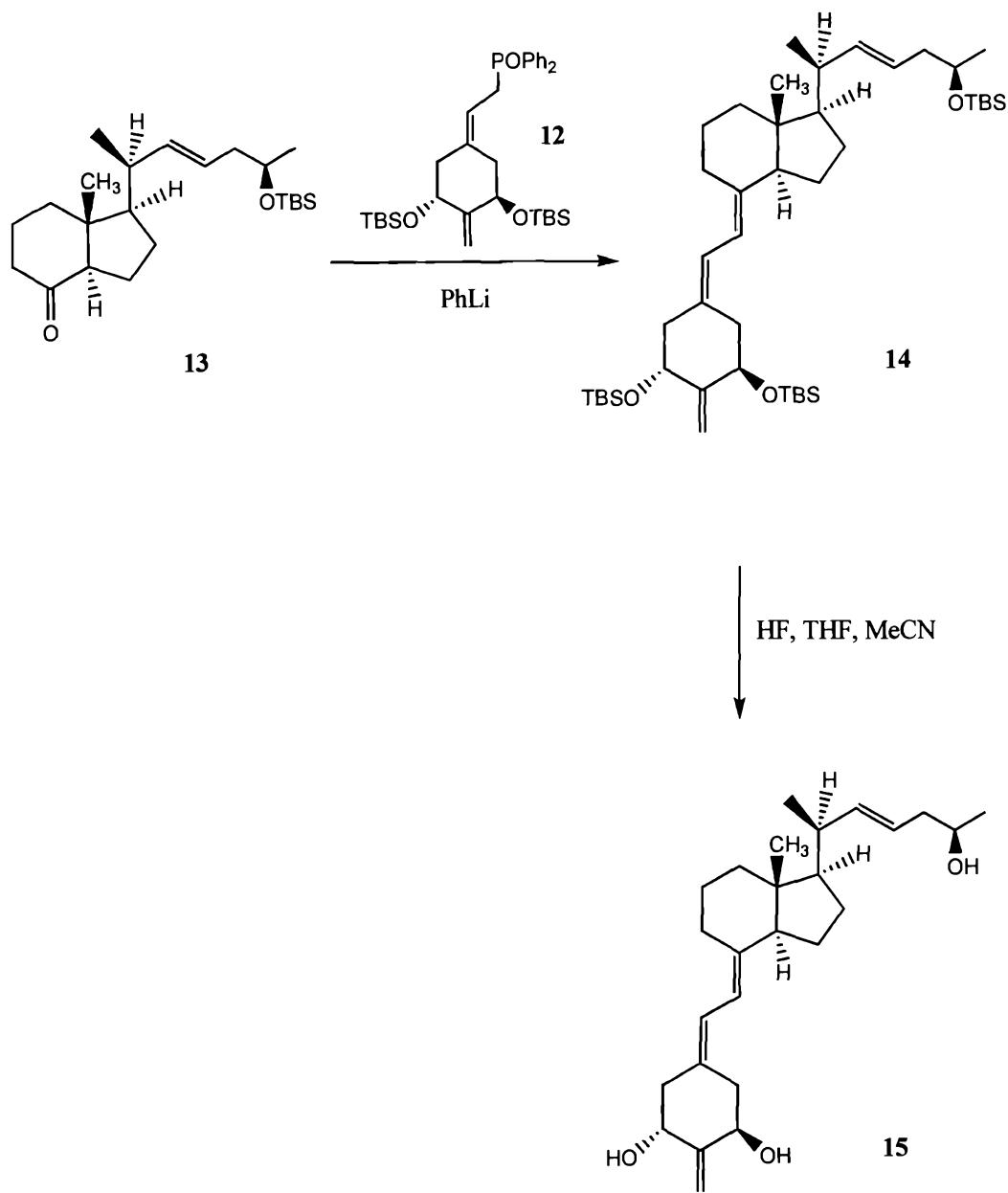
[0072] To a solution of phosphine oxide **14** (25 mg, 43 μ mol) in anhydrous THF (400 μ L) at -20 $^{\circ}$ C was slowly added PhLi (1.8 M in di-n-butylether, 34 μ L, 61 μ mol) under argon with stirring. The solution turned deep orange. After 30 min the mixture was cooled to -78 $^{\circ}$ C and a precooled (-78 $^{\circ}$ C) solution of ketone **13** (6.5 mg, 17 μ mol) in anhydrous THF (200 + 100 μ L) was slowly added. The mixture was stirred under argon at -78 $^{\circ}$ C for 3 h and at 0 $^{\circ}$ C for 18 h. Ethyl acetate was added, and the organic phase was washed with brine, dried (Na_2SO_4) and evaporated. The residue was dissolved in hexane and applied on a Waters silica Sep-Pak cartridge (2 g). The cartridge was washed with hexane and hexane/ethyl acetate (99.5:0.5) to give 19-norvitamin derivative **15** (6 mg, 48% yield). Then the Sep-Pak was washed with ethyl acetate to recover diphenylphosphine oxide **14** (11 mg). For analytical purpose a sample of the protected vitamin **15** was further purified by HPLC (9.4 \times 250 mm Zorbax Sil column, 4 mL/min, hexane/2-propanol (99.9:0.1) solvent system, R_t = 3.70 min):


[0073] UV (in hexane) λ_{max} 262.6, 253.0, 244.8 nm; ^1H NMR (600 MHz, CDCl_3) δ 6.22 and 5.84 (each 1H, each d, J = 11.2 Hz, 6- and 7-H), 5.38-5.27 (2H, m, 22-H and 23-H), 4.97 and 4.91 (each 1H, each s, = CH_2), 4.43 (2H, m, 1 β - and 3 α -H), 3.77 (1H, m, 25-H), 2.83 (1H, dm, J = 12.6 Hz, 9 β -H), 2.52 (1H, dd, J = 13.2, 6.0 Hz, 10 α -H), 2.46 (1H, dd, J = 12.6, 4.5 Hz, 4 α -H), 2.33 (1H, dd, J = 13.2, 2.9 Hz, 10 β -H), 2.18 (1H, dd, J = 12.6, 8.3 Hz, 4 β -H), 1.12 (3H, d, J = 6.0 Hz, 27-H₃), 0.898 (9H, s, Si-*t*-Bu), 0.892 (9H, s, Si-*t*-Bu), 0.867 (9H, s, Si-*t*-Bu), 0.84 (3H, d, J = 6.5 Hz, 21-H₃), 0.54 (3H, s, 18-H₃), 0.082 (3H, s, SiMe), 0.067 (3H, s, SiMe), 0.052 (9H, s, 3 x SiMe), 0.027 (3H, s, SiMe); ^{13}C NMR (125 MHz) δ 152.98, 141.22, 138.98, 132.74, 124.74, 122.40, 116.11, 106.25, 72.53, 71.65, 68.74, 56.62, 56.19, 47.61, 45.67, 38.57, 36.13, 35.92, 28.76, 27.37, 26.13, 25.84, 25.78, 23.67, 23.45, 22.32, 20.80, 18.76, 18.25, 18.17, 12.23, -4.38, -4.71, -4.87, -5.09; exact mass calculated for $\text{C}_{44}\text{H}_{82}\text{O}_3\text{Si}_3\text{Na} (\text{MNa}^+)$ 765.5468, found 765.5461.

[0074] The protected vitamin **15** (4.5 mg, 6.0 μ mol) was dissolved in THF (2 mL) and acetonitrile (2 mL). A solution of aq. 48% HF in acetonitrile (1:9 ratio, 2 mL) was added at 0 °C and the resulting mixture was stirred at room temperature for 6 h. Saturated aq. NaHCO₃ solution was added and the reaction mixture was extracted with ethyl acetate. The combined organic phases were washed with brine, dried (Na₂SO₄) and concentrated under reduced pressure. The residue was diluted with 2 mL of hexane/ethyl acetate (8:2) and applied on a Waters silica Sep-Pak cartridge (2 g). An elution with hexane/ethyl acetate (8:2) and later with ethyl acetate gave the crude product **16** (2 mg). The vitamin **16** was further purified by reverse phase HPLC [9.4 \times 250 mm Zorbax Eclipse XDB-C18 column, 3 mL/min, methanol/water (85:15) solvent system, R_t = 11.76 min.] to give a colorless oil (1.0 mg, 43% yield):


[0075] UV (in EtOH) λ_{max} 262.1, 252.6, 244.1 nm; ¹H NMR (900 MHz, CDCl₃) δ 6.28 and 5.81 (each 1H, each d, J = 11.7 Hz, 6- and 7-H), 5.38-5.25 (2H, m, 22-H and 23-H), 5.04 and 5.02 (each 1H, each s, =CH₂), 4.40 (2H, m, 1 β - and 3 α -H), 3.76 (1H, m, 25-H), 2.78 (1H, dd, J = 13.5, 4.5 Hz, 10 β H), 2.73 (1H, brd, J = 13.5 Hz, 9 β -H), 2.51 (1H, dd, J = 13.5, 4.5 Hz, 4 α -H), 2.27 (1H, dd, J = 13.5, 6.3 Hz, 4 β -H), 2.22 (1H, dd, J = 12.6, 8.1 Hz, 10 α -H), 1.11 (3H, d, J = 6.3 Hz, 27-H₃), 0.87 (3H, d, J = 6.3 Hz, 21-H₃), 0.45 (3H, s, 18-H₃); exact mass calculated for C₂₆H₄₀O₃Na⁺ (MNa⁺) 423.2875, found 423.2881.

Scheme I


Scheme II

Scheme III

Scheme IV

BIOLOGICAL ACTIVITY OF 2-METHYLENE-19,26-DINOR-(20*S*,22*E*,25*R*)-
VITAMIN D ANALOGS

[0076] The introduction of a methylene group to the 2-position, as well as a hydroxyl substituent attached to the 25-position (C-25) in the side chain, and replacing the methyl group normally located at the 26 position (C-26) in the side chain with a hydrogen atom bonded to the carbon atom at position 25 in the side chain, and the introduction of a double bond located between carbon atoms 22 and 23 (C-22 and C-23) in the side chain, had little effect on binding of SOR-1 to the full length recombinant rat vitamin D receptor, as compared to $1\alpha,25$ -dihydroxyvitamin D₃. The compound SOR-1 bound with almost the same affinity to the nuclear vitamin D receptor as compared to the standard $1,25$ -(OH)₂D₃ (Figure 1). It might be expected from these results that compound SOR-1 would have equivalent biological activity. Surprisingly, however, compound SOR-1 is a highly selective analog with unique biological activity.

[0077] Figure 5 shows that SOR-1 has relatively low ability to increase intestinal calcium transport activity *in vivo*. It clearly has lower potency *in vivo* as compared to that of $1,25$ -dihydroxyvitamin D₃ ($1,25$ (OH)₂D₃), the natural hormone, in stimulating intestinal calcium transport, especially at the recommended lower doses.

[0078] Figure 4 demonstrates that SOR-1 has very little, if any, bone calcium mobilization activity, as compared to $1,25$ (OH)₂D₃. SOR-1 demonstrated no bone calcium mobilization activity even at very high doses that were about 3 times higher than the dose of $1,25$ (OH)₂D₃ (2,340 pmol/day of SOR-1 versus 780 pmol/day of $1,25$ (OH)₂D₃). Thus, SOR-1 clearly has significantly lower potency in mobilizing calcium from bone as compared to $1,25$ (OH)₂D₃, at all doses tested.

[0079] Figures 4 and 5 thus illustrate that SOR-1 may be characterized as having low intestinal calcium transport activity, and substantially no bone calcium mobilization activity.

[0080] Figure 2 illustrates that SOR-1 is about 3 times more potent than $1,25$ (OH)₂D₃ on HL-60 cell differentiation, i.e. causing the differentiation of HL-60 cells into monocytes. Thus, SOR-1 may be an excellent candidate for the treatment of psoriasis and cancer, especially against leukemia, colon cancer, breast cancer, skin cancer and prostate cancer. In addition, due to its relatively high cell differentiation

activity, this compound provides a therapeutic agent for the treatment of various skin conditions including wrinkles, lack of adequate dermal hydration, i.e. dry skin, lack of adequate skin firmness, i.e. slack skin, and insufficient sebum secretion. Use of this compound thus not only results in moisturizing of skin but also improves the barrier function of skin.

[0081] Figure 3 illustrates that in bone cells the compound SOR-1 is about 3 times more potent than 1,25(OH)₂D₃ in increasing transcription of the 24-hydroxylase gene. This result, together with the cell differentiation activity of Figure 2, suggests that SOR-1 will be very effective in psoriasis because it has direct cellular activity in causing cell differentiation, gene transcription, and in suppressing cell growth. These data also indicate that SOR-1 may have significant activity as an anti-cancer agent, especially against leukemia, colon cancer, breast cancer, skin cancer and prostate cancer.

[0082] The relatively strong activity of SOR-1 on HL-60 differentiation suggests it will be active in suppressing growth of parathyroid glands and in the suppression of the preproparathyroid gene.

EXPERIMENTAL METHODS

[0083] Vitamin D Receptor Binding

[0084] Test Material

[0085] Protein Source

[0086] Full-length recombinant rat receptor was expressed in E. coli BL21 (DE3) Codon Plus RIL cells and purified to homogeneity using two different column chromatography systems. The first system was a nickel affinity resin that utilizes the C-terminal histidine tag on this protein. The protein that was eluted from this resin was further purified using ion exchange chromatography (S-Sepharose Fast Flow). Aliquots of the purified protein were quick frozen in liquid nitrogen and stored at -80°C until use. For use in binding assays, the protein was diluted in TEDK₅₀ (50 mM Tris, 1.5 mM EDTA, pH7.4, 5 mM DTT, 150 mM KCl) with 0.1% Chaps detergent. The receptor protein and ligand concentration were optimized such that no more than 20% of the added radiolabeled ligand was bound to the receptor.

[0087] Study Drugs

[0088] Unlabeled ligands were dissolved in ethanol and the concentrations determined using UV spectrophotometry (1,25(OH)₂D₃: molar extinction coefficient = 18,200 and λ_{max} = 265 nm; Analogs: molar extinction coefficient = 42,000 and λ_{max} = 252 nm). Radiolabeled ligand (³H-1,25(OH)₂D₃, ~159 Ci/mmole) was added in ethanol at a final concentration of 1 nM.

[0089] Assay Conditions

[0090] Radiolabeled and unlabeled ligands were added to 100 μ l of the diluted protein at a final ethanol concentration of \leq 10%, mixed and incubated overnight on ice to reach binding equilibrium. The following day, 100 μ l of hydroxylapatite slurry (50%) was added to each tube and mixed at 10-minute intervals for 30 minutes. The hydroxylapatite was collected by centrifugation and then washed three times with Tris-EDTA buffer (50 mM Tris, 1.5 mM EDTA, pH 7.4) containing 0.5% Triton X-100. After the final wash, the pellets were transferred to scintillation vials containing 4 ml of Biosafe II scintillation cocktail, mixed and placed in a scintillation counter. Total binding was determined from the tubes containing only radiolabeled ligand.

[0091] HL-60 Differentiation**[0092]** Test Material**[0093]** Study Drugs

[0094] The study drugs were dissolved in ethanol and the concentrations determined using UV spectrophotometry. Serial dilutions were prepared so that a range of drug concentrations could be tested without changing the final concentration of ethanol (\leq 0.2%) present in the cell cultures.

[0095] Cells

[0096] Human promyelocytic leukemia (HL60) cells were grown in RPMI-1640 medium containing 10% fetal bovine serum. The cells were incubated at 37°C in the presence of 5% CO₂.

[0097] Assay Conditions

[0098] HL60 cells were plated at 1.2×10^5 cells/ml. Eighteen hours after plating, cells in duplicate were treated with drug. Four days later, the cells were

harvested and a nitro blue tetrazolium reduction assay was performed (Collins et al., 1979; J. Exp. Med. 149:969-974). The percentage of differentiated cells was determined by counting a total of 200 cells and recording the number that contained intracellular black-blue formazan deposits. Verification of differentiation to monocytic cells was determined by measuring phagocytic activity (data not shown).

[0099] In vitro Transcription Assay

[00100] Transcription activity was measured in ROS 17/2.8 (bone) cells that were stably transfected with a 24-hydroxylase (24Ohase) gene promoter upstream of a luciferase reporter gene (Arbour et al., 1998). Cells were given a range of doses. Sixteen hours after dosing the cells were harvested and luciferase activities were measured using a luminometer.

[00101] RLU = relative luciferase units.

[00102] Intestinal Calcium Transport and Bone Calcium Mobilization

[00103] Male, weanling Sprague-Dawley rats were placed on Diet 11 (0.47% Ca) diet +AEK oil for one week followed by Diet 11 (0.02% Ca) +AEK oil for 3 weeks. The rats were then switched to a diet containing 0.47% Ca for one week followed by two weeks on a diet containing 0.02% Ca. Dose administration began during the last week on 0.02% calcium diet. Four consecutive ip doses were given approximately 24 hours apart. Twenty-four hours after the last dose, blood was collected from the severed neck and the concentration of serum calcium determined as a measure of bone calcium mobilization. The first 10 cm of the intestine was also collected for intestinal calcium transport analysis using the everted gut sac method.

INTERPRETATION OF DATA

[00104] Summary of Biological Findings. This compound SOR-1 binds the VDR with slightly less affinity than the native hormone, and can be considered to be slightly less potent than 1,25(OH)₂D₃ in this activity. SOR-1 also displays approximately 3 times more cell differentiation activity and about 3 times more *in vitro* gene transcription activity compared to 1,25(OH)₂D₃. While this compound is more potent compared to 1,25(OH)₂D₃ *in vitro*, it shows lower activity *in vivo* on bone calcium mobilization and in the intestine compared to the native hormone. This

compound shows no activity in the bone at dose levels about 3 times higher or more than the dose levels of 1,25(OH)₂D₃ that show activity. SOR-1 is a potentially valuable compound for therapeutic development as it has lower potency in mobilizing calcium from bone storage and in stimulating active calcium transport in the gut, but higher potency in cell differentiation potentially resulting in a compound with a bigger safety window than has previously been generated. Because this compound exhibits relatively significant cell differentiation and transcriptional activity, but very little calcemic activity on bone, it might be useful for treating patients with various autoimmune diseases, cancer, renal osteodystrophy, psoriasis or other skin diseases. SOR-1 might not only be useful in the treatment of the above listed diseases, but also in the prevention of the above listed diseases.

[00105] VDR binding, HL60 cell differentiation, and transcription activity. SOR-1 ($K_i=1\times 10^{-10}$ M) is only slightly less active than the natural hormone 1 α ,25-dihydroxyvitamin D₃ ($K_i=5\times 10^{-11}$ M) in its ability to compete with [³H]-1,25(OH)₂D₃ for binding to the full-length recombinant rat vitamin D receptor (Figure 1). SOR-1 displays about 3 times more activity ($EC_{50}=9\times 10^{-10}$ M) in its ability (efficacy or potency) to promote HL-60 cell differentiation as compared to 1 α ,25-dihydroxyvitamin D₃ ($EC_{50}=2\times 10^{-9}$ M) (See Figure 2). Also, compound SOR-1 ($EC_{50}=8\times 10^{-11}$ M) has about 3 times more transcriptional activity in bone cells than 1 α ,25-dihydroxyvitamin D₃ ($EC_{50}=2\times 10^{-10}$ M) (See Figure 3). These results suggest that SOR-1 will be very effective in psoriasis because it has direct cellular activity in causing cell differentiation, gene transcription, and in suppressing cell growth. These data also indicate that SOR-1 will have significant activity as an anti-cancer agent, especially against leukemia, colon cancer, breast cancer, skin cancer and prostate cancer, as well as against skin conditions such as dry skin (lack of dermal hydration), undue skin slackness (insufficient skin firmness), insufficient sebum secretion and wrinkles. It would also be expected to be very active in suppressing secondary hyperparathyroidism.

[00106] Calcium mobilization from bone and intestinal calcium absorption in vitamin D-deficient animals. Using vitamin D-deficient rats on a low calcium diet

(0.02%), the activities of SOR-1 and 1,25(OH)₂D₃ in intestine and bone were tested. As expected, the native hormone (1,25(OH)₂D₃) increased serum calcium levels at all dosages (Figure 4). The study reported in Figure 4 shows that SOR-1 has relatively low, or little, activity in mobilizing calcium from bone. Even the administration of 2,340 pmol/day of SOR-1 for 4 consecutive days did not result in any mobilization of bone calcium whereas the native hormone 1,25(OH)₂D₃ had significant activity at 780 pmol/day where a substantial effect was seen.

[00107] Intestinal calcium transport was evaluated in the same group of animals using the everted gut sac method (Figure 5). The study reported in Figure 5 shows SOR-1 has relatively low intestinal calcium transport activity. Administration of 780 pmol/day of SOR-1 for 4 consecutive days resulted in almost no activity as compared to 1,25(OH)₂D₃. It was not until 2,340 pmol/day of SOR-1 was administered that activity similar to 1,25(OH)₂D₃ was observed.

[00108] These results show that the compound SOR-1 promotes intestinal calcium transport in a dose dependent manner. Thus, it may be concluded that SOR-1 has lower intestinal calcium transport activity to that of 1,25(OH)₂D₃ at the recommended lower doses.

[00109] These results illustrate that SOR-1 is an excellent candidate for numerous human therapies as described herein, and that it may be particularly useful in a number of circumstances such as suppression of secondary hyperparathyroidism of renal osteodystrophy, autoimmune diseases, cancer, numerous types of skin conditions, and psoriasis. SOR-1 is an excellent candidate for treating psoriasis because: (1) it has significant VDR binding, transcription activity and cellular differentiation activity; (2) it has little hypercalcemic liability, unlike 1,25(OH)₂D₃; and (3) it is easily synthesized. Since SOR-1 has significant binding activity to the vitamin D receptor, but has little ability to raise blood serum calcium, it may also be particularly useful for the treatment of secondary hyperparathyroidism of renal osteodystrophy.

[00110] These data also indicate that the compound SOR-1 of the invention may be especially suited for treatment and prophylaxis of human disorders which are

characterized by an imbalance in the immune system, e.g. in autoimmune diseases, including multiple sclerosis, lupus, diabetes mellitus, host versus graft rejection, and rejection of organ transplants; and additionally for the treatment of inflammatory diseases, such as rheumatoid arthritis, asthma, and inflammatory bowel diseases such as celiac disease, ulcerative colitis and Crohn's disease. Acne, alopecia and hypertension are other conditions which may be treated with the compound SOR-1 of the invention.

[00111] The compounds of the invention of formula I, and particularly SOR-1 of formula Ia, are also useful in preventing or treating obesity, inhibiting adipocyte differentiation, inhibiting SCD-1 gene transcription, and/or reducing body fat in animal subjects. Therefore, in some embodiments, a method of preventing or treating obesity, inhibiting adipocyte differentiation, inhibiting SCD-1 gene transcription, and/or reducing body fat in an animal subject includes administering to the animal subject, an effective amount of one or more of the compounds or a pharmaceutical composition that includes one or more of the compounds of formula I. Administration of the compound or the pharmaceutical compositions to the subject inhibits adipocyte differentiation, inhibits gene transcription, and/or reduces body fat in the animal subject. The animal may be a human, a domestic animal such as a dog or a cat, or an agricultural animal, especially those that provide meat for human consumption, such as fowl like chickens, turkeys, pheasant or quail, as well as bovine, ovine, caprine, or porcine animals.

[00112] For prevention and/or treatment purposes, the compounds of this invention defined by formula I, particularly SOR-1, may be formulated for pharmaceutical applications as a solution in innocuous solvents, or as an emulsion, suspension or dispersion in suitable solvents or carriers, or as pills, tablets or capsules, together with solid carriers, according to conventional methods known in the art. Any such formulations may also contain other pharmaceutically-acceptable and non-toxic excipients such as stabilizers, anti-oxidants, binders, coloring agents or emulsifying or taste-modifying agents.

[00113] The compounds of formula I and particularly SOR-1, may be administered orally, topically, parenterally, rectally, nasally, sublingually or transdermally. The compound is advantageously administered by injection or by intravenous infusion or suitable sterile solutions, or in the form of liquid or solid doses via the alimentary canal, or in the form of creams, ointments, patches, or similar vehicles suitable for transdermal applications. A dose of from 0.01 μ g to 1000 μ g per day of the compounds I, particularly SOR-1, preferably from about 0.1 μ g to about 500 μ g per day, is appropriate for prevention and/or treatment purposes, such dose being adjusted according to the disease to be treated, its severity and the response of the subject as is well understood in the art. Since the compound exhibits specificity of action, each may be suitably administered alone, or together with graded doses of another active vitamin D compound -- e.g. 1 α -hydroxyvitamin D₂ or D₃, or 1 α ,25-dihydroxyvitamin D₃ -- in situations where different degrees of bone mineral mobilization and calcium transport stimulation is found to be advantageous.

[00114] Compositions for use in the above-mentioned treatments comprise an effective amount of the compounds I, particularly SOR-1, as defined by the above formula I and Ia as the active ingredient, and a suitable carrier. An effective amount of such compound for use in accordance with this invention is from about 0.01 μ g to about 1000 μ g per gm of composition, preferably from about 0.1 μ g to about 500 μ g per gram of composition, and may be administered topically, transdermally, orally, rectally, nasally, sublingually, or parenterally in dosages of from about 0.01 μ g/day to about 1000 μ g/day, and preferably from about 0.1 μ g/day to about 500 μ g/day.

[00115] The compounds I, particularly SOR-1, may be formulated as creams, lotions, ointments, topical patches, pills, capsules or tablets, suppositories, aerosols, or in liquid form as solutions, emulsions, dispersions, or suspensions in pharmaceutically innocuous and acceptable solvent or oils, and such preparations may contain in addition other pharmaceutically innocuous or beneficial components, such as stabilizers, antioxidants, emulsifiers, coloring agents, binders or taste-modifying agents.

[00116] The compounds I, particularly SOR-1, may be advantageously administered in amounts sufficient to effect the differentiation of promyelocytes to normal macrophages. Dosages as described above are suitable, it being understood that the amounts given are to be adjusted in accordance with the severity of the disease, and the condition and response of the subject as is well understood in the art.

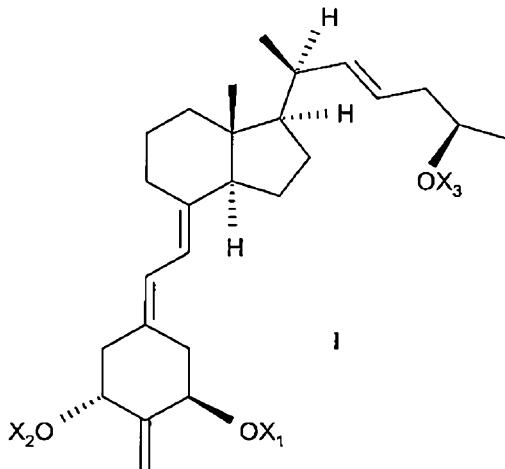
[00117] The formulations of the present invention comprise an active ingredient in association with a pharmaceutically acceptable carrier therefore and optionally other therapeutic ingredients. The carrier must be "acceptable" in the sense of being compatible with the other ingredients of the formulations and not deleterious to the recipient thereof.

[00118] Formulations of the present invention suitable for oral administration may be in the form of discrete units as capsules, sachets, tablets or lozenges, each containing a predetermined amount of the active ingredient; in the form of a powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid; or in the form of an oil-in-water emulsion or a water-in-oil emulsion.

[00119] Formulations for rectal administration may be in the form of a suppository incorporating the active ingredient and carrier such as cocoa butter, or in the form of an enema.

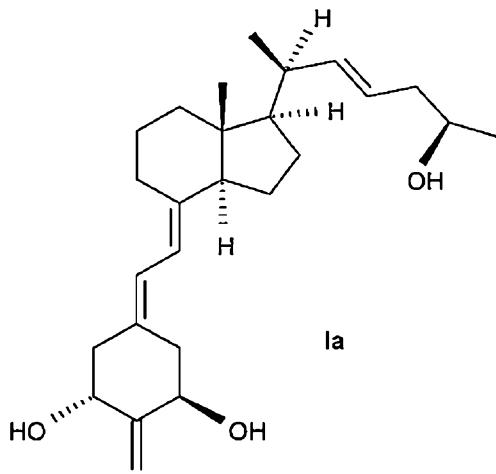
[00120] Formulations suitable for parenteral administration conveniently comprise a sterile oily or aqueous preparation of the active ingredient which is preferably isotonic with the blood of the recipient.

[00121] Formulations suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, applicants, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops; or as sprays.


[00122] For nasal administration, inhalation of powder, self-propelling or spray formulations, dispensed with a spray can, a nebulizer or an atomizer can be used. The formulations, when dispensed, preferably have a particle size in the range of 10 to 100 μ .

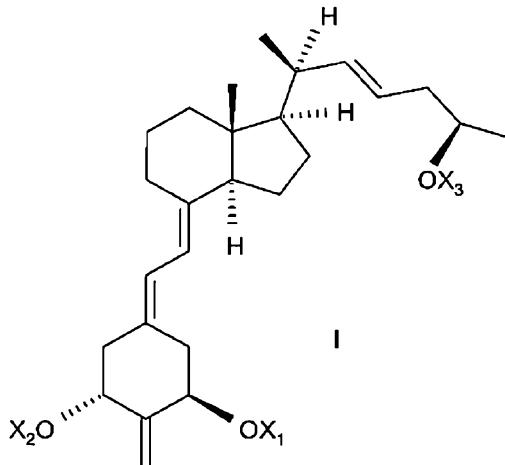
[00123] The formulations may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. By the term "dosage unit" is meant a unitary, i.e. a single dose which is capable of being administered to a patient as a physically and chemically stable unit dose comprising either the active ingredient as such or a mixture of it with solid or liquid pharmaceutical diluents or carriers.

CLAIMS

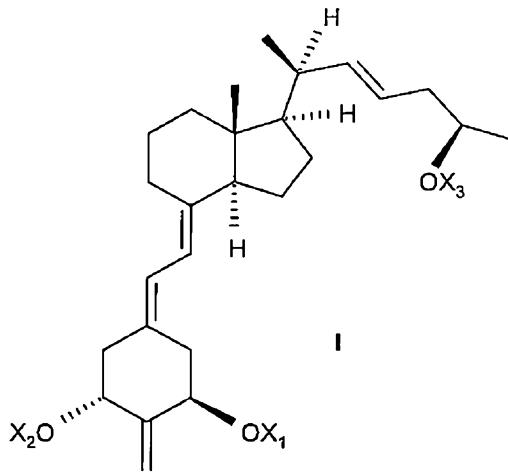

The CLAIMS defining the invention are as follows:

1. A compound having the formula:

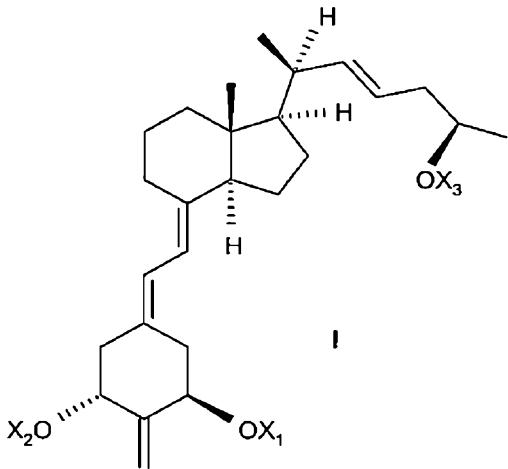
where X_1 , X_2 and X_3 , which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.


2. The compound of claim 1 wherein X_3 is hydrogen.
3. The compound of claim 1 wherein X_1 is hydrogen.
4. The compound of claim 1 wherein X_1 , X_2 and X_3 are all t-butyldimethylsilyl.
5. A compound according to claim 1 which is 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃ having the formula:

6. A pharmaceutical composition containing an effective amount of at least one compound as claimed in any one of claims 1 to 5 together with a pharmaceutically acceptable excipient.

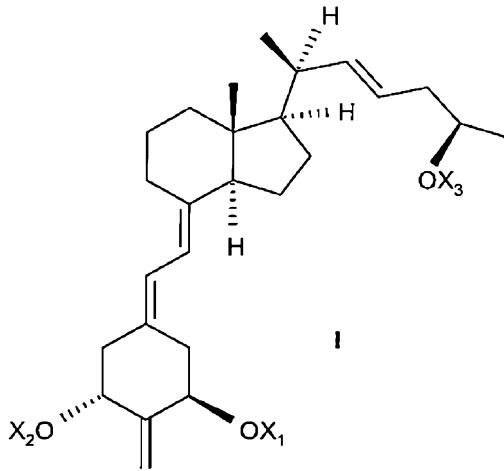

7. The pharmaceutical composition of claim 6 wherein said effective amount comprises from about 0.01 μ g to about 1000 μ g per gram of composition, and preferably from about 0.1 μ g to about 500 μ g per gram of composition.

8. A method of treating psoriasis comprising administering to a subject with psoriasis an effective amount of a compound having the formula:

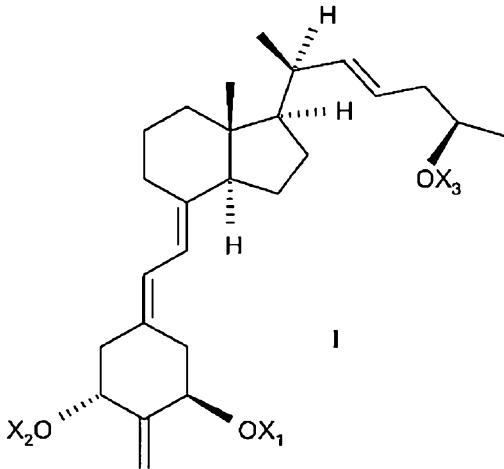

where X_1 , X_2 and X_3 which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.

9. A method of treating a disease selected from the group consisting of leukemia, colon cancer, breast cancer, skin cancer or prostate cancer comprising administering to a subject with said disease an effective amount of a compound having the formula:

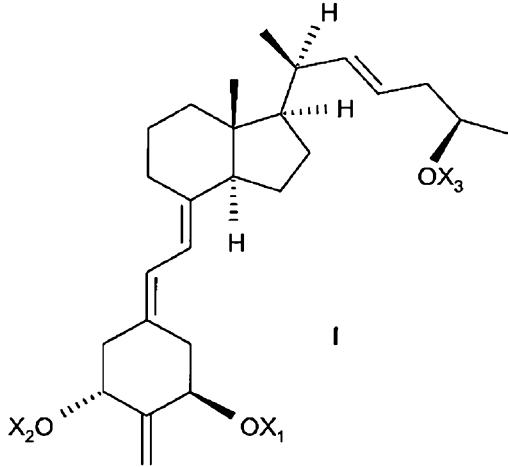
where X_1 , X_2 and X_3 which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.


10. A method of treating an autoimmune disease selected from the group consisting of multiple sclerosis, lupus, diabetes mellitus, host versus graft rejection, and rejection of organ transplants, comprising administering to a subject with said disease an effective amount of a compound having the formula:

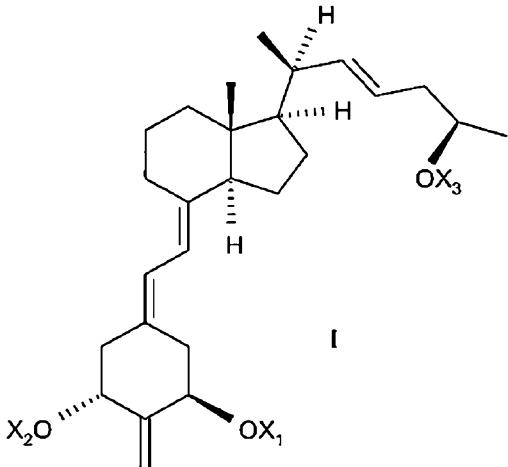
where X_1 , X_2 and X_3 which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.


11. A method of treating an inflammatory disease selected from the group consisting of rheumatoid arthritis, asthma, and inflammatory bowel diseases,

comprising administering to a subject with said disease an effective amount of a compound having the formula:


where X_1 , X_2 and X_3 , which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.

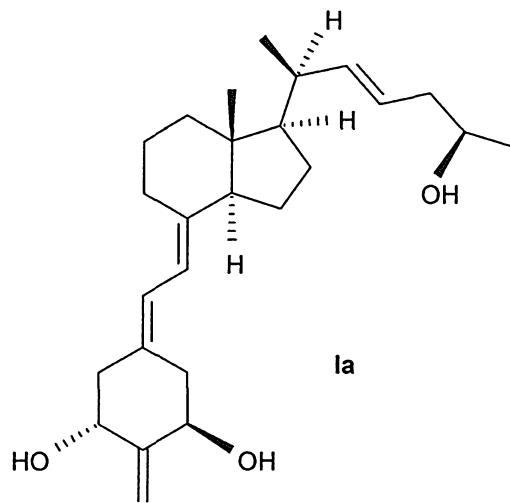
12. A method of treating a skin condition selected from the group consisting of wrinkles, lack of adequate skin firmness, lack of adequate dermal hydration and insufficient sebum secretion which comprises administering to a subject with said skin condition an effective amount of a compound having the formula:


where X_1 , X_2 and X_3 which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.

13. A method of treating renal osteodystrophy comprising administering to a subject with renal osteodystrophy an effective amount of a compound having the formula:

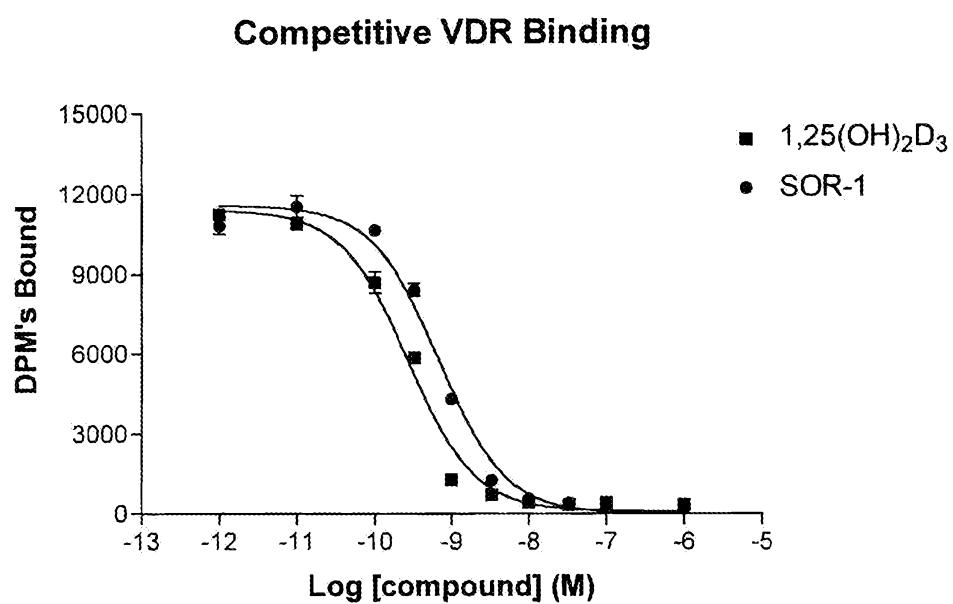
where X_1 , X_2 and X_3 , which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.

14. A method of treating or preventing obesity of an animal, inhibiting adipocyte differentiation, inhibiting SCD-1 gene transcription, and/or reducing body fat in an animal comprising administering to an animal in need thereof an effective amount of a compound having the formula:

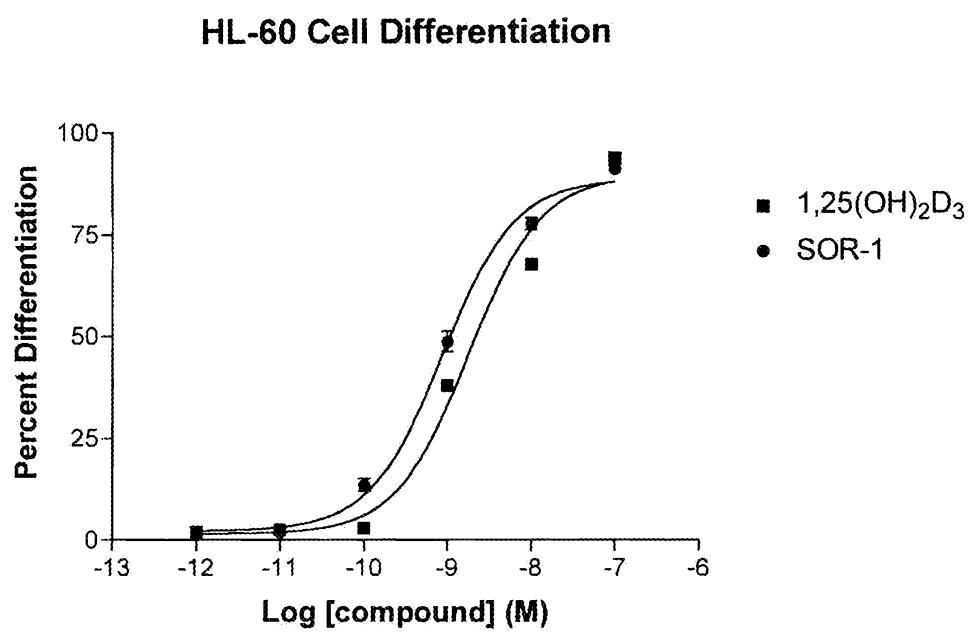

where X_1 , X_2 and X_3 , which may be the same or different, are each selected from hydrogen or a hydroxy-protecting group.

15. The method of any one of claims 8 to 14 wherein the compound is administered orally, parenterally, transdermally, rectally, nasally, or sublingually.

16. The method of claim 8 or claim 12 wherein the compound is administered topically.


17. The method of any one of claims 8 to 14 wherein the compound is to be administered in a dosage of from about 0.01 μ g/day to about 1000 μ g/day.

18. The method of any one of claims 8 to 14 wherein the compound 2-methylene-19,26-dinor-(20S,22E,25R)-1 α ,25-dihydroxyvitamin D₃ has the formula:


19. The method of claim 14 wherein the animal is a human, a domestic animal, or an agricultural animal.

20. A compound as claimed in any one of claims 1 to 5, substantially as hereinbefore described with reference to the examples.

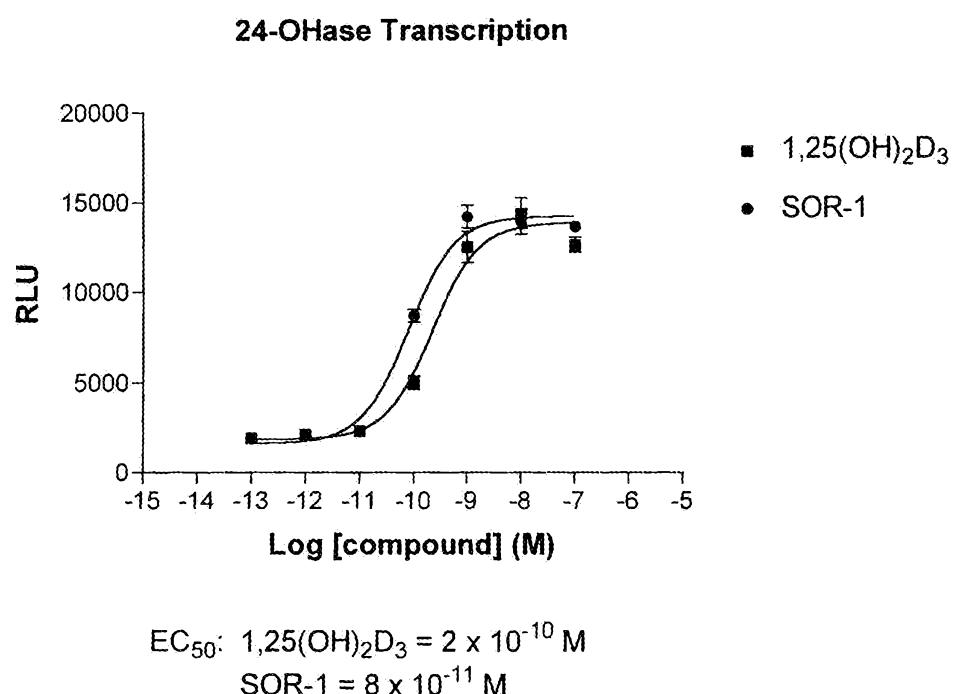
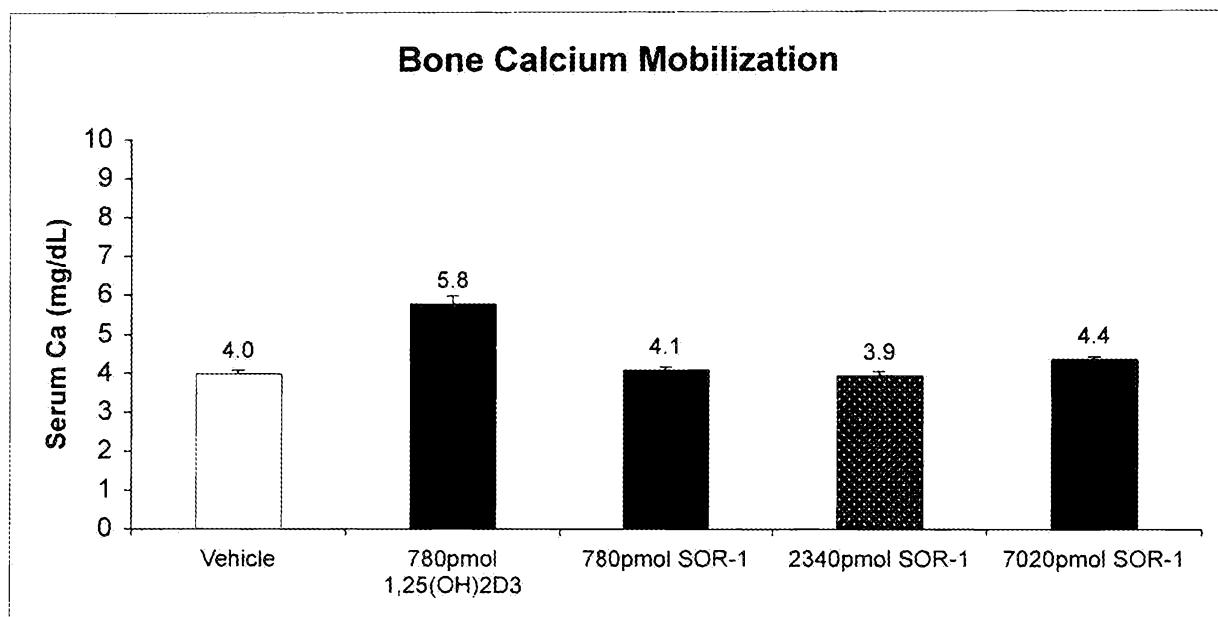

$$K_i: \quad 1,25(\text{OH})_2\text{D}_3 = 5 \times 10^{-11} \text{ M}$$
$$\text{SOR-1} = 1 \times 10^{-10} \text{ M}$$

Figure 1



EC₅₀: 1,25(OH)₂D₃ = 2 × 10⁻⁹ M
SOR-1 = 9 × 10⁻¹⁰ M

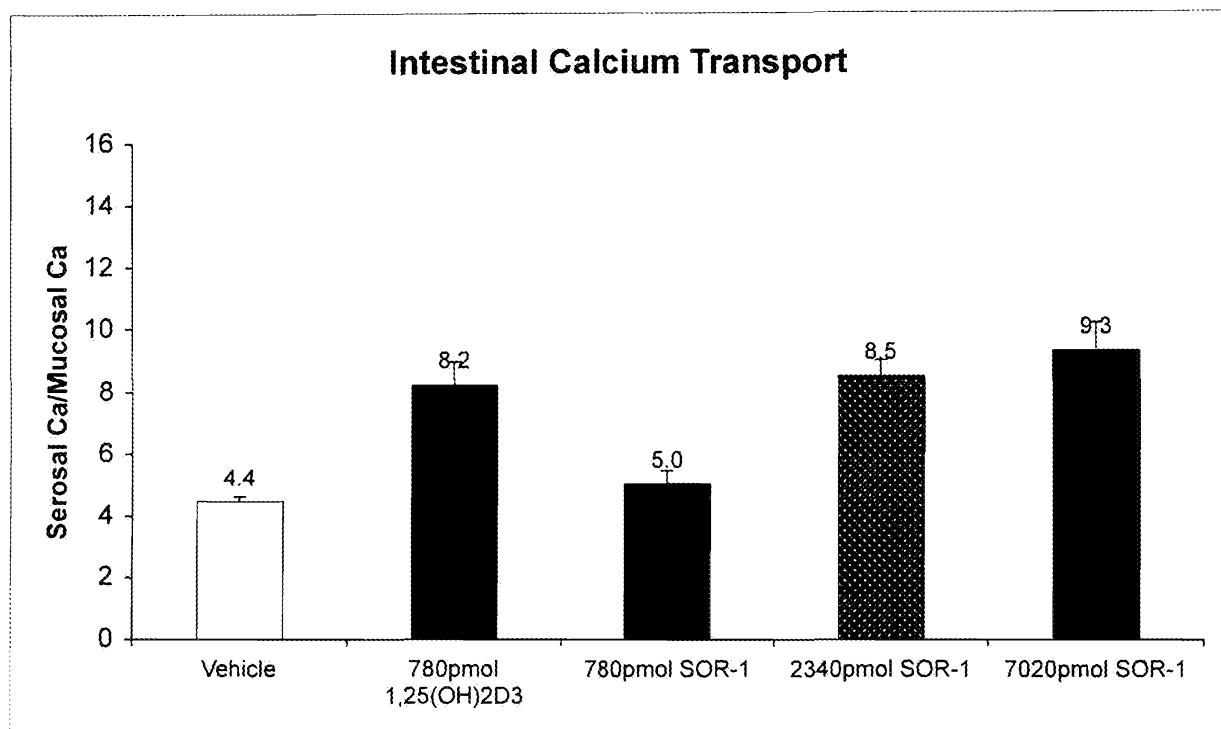

Figure 2

Figure 3

Figure 4

Figure 5