

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0189546 A1 Bidwell, III et al.

Jul. 6, 2017 (43) **Pub. Date:**

(54) OCULAR COMPOSITIONS AND METHODS **THEREOF**

(71) Applicant: University of Mississippi Medical Center, Jackson, MS (US)

(72) Inventors: Gene L. Bidwell, III, Jackson, MS (US); Eric M. George, Jackson, MS (US)

(21) Appl. No.: 15/307,335

(22) PCT Filed: Apr. 29, 2015

(86) PCT No.: PCT/US15/28348

§ 371 (c)(1),

(2) Date: Oct. 27, 2016

Related U.S. Application Data

(60) Provisional application No. 61/985,808, filed on Apr. 29, 2014.

Publication Classification

(51) Int. Cl. A61K 47/48 (2006.01)A61K 9/06 (2006.01)A61K 38/17 (2006.01)A61K 9/00 (2006.01)A61K 38/45 (2006.01)

U.S. Cl. (52)

CPC A61K 47/48246 (2013.01); A61K 9/0048 (2013.01); A61K 9/06 (2013.01); A61K 38/45 (2013.01); C12Y 207/10001 (2013.01); A61K **38/1703** (2013.01)

(57)**ABSTRACT**

Methods and pharmaceutical compositions (or delivering a therapeutic agent, treating a neovascularization disorder, and treating an ocular infection include make use of a compound that includes an clastin-like polypeptide (ELP) coupled to a therapeutic agent, wherein the ELP comprises at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1), and where the composition is suitable for ocular administration.

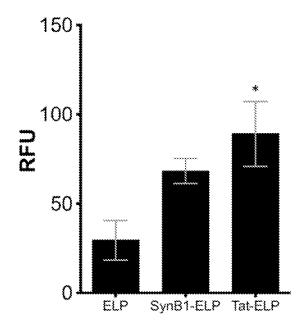


Figure 1

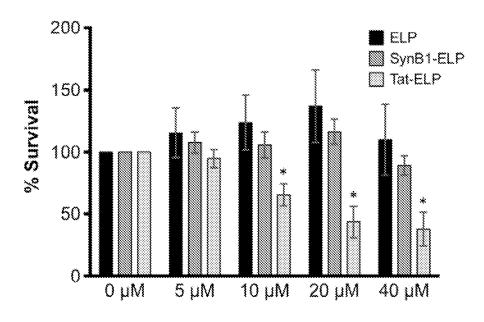


Figure 2

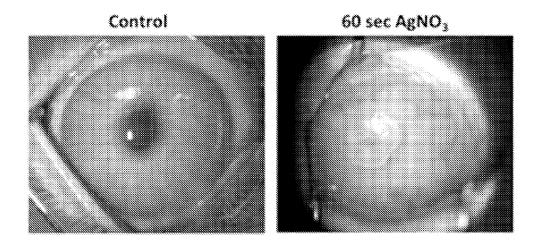


Figure 3

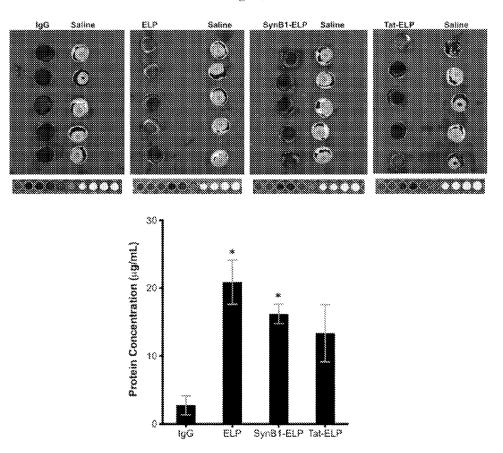


Figure 4



Figure 4 (Con't)

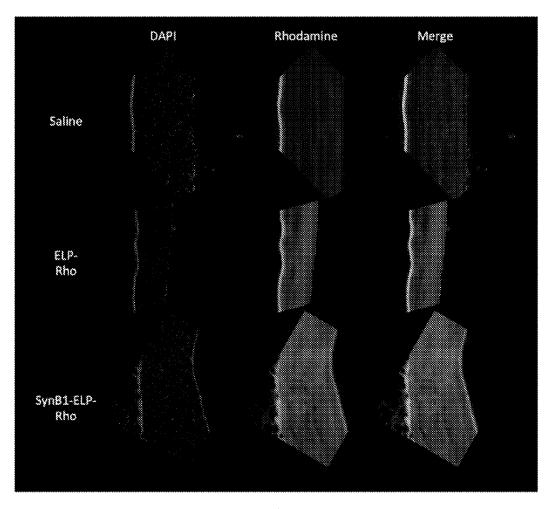


Figure 5

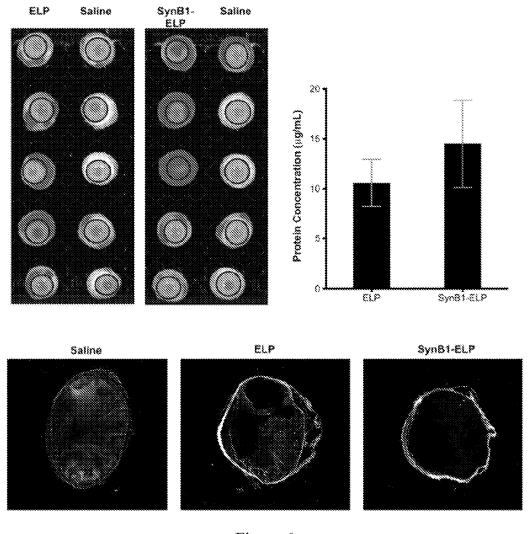


Figure 6

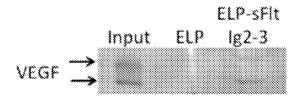


Figure 7

OCULAR COMPOSITIONS AND METHODS THEREOF

RELATED APPLICATIONS

[0001] This application claims priority from U.S. Provisional Application Ser. No. 61/985,808 filed Apr. 29, 2014, the entire disclosure of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

[0002] The presently-disclosed subject matter relates to compositions and methods for ocular delivery of therapeutic agents. In particular, the presently-disclosed subject matter relates to compounds comprising an elastic-like polypeptide (ELP) coupled to a therapeutic agent as well as compositions and methods thereof.

INTRODUCTION

[0003] Delivery of drugs to the eye via topical application is especially challenging. The corneal barrier consists of tight junction connected epithelial cells over a basement membrane layer that prevent the passage of large or hydrophilic molecules into the eye. Thus, treatment of numerous diseases and conditions that affect the eyes, including those for which therapeutic agents are available, can be difficult or impractical because there exists no simple and effective method for delivering therapeutic agents.

[0004] For instance, the cornea of the eye is normally an avascular environment, and maintenance of avascularity allows for optical clarity and acute vision. Both pro-angiogenic and anti-angiogenic proteins are expressed in the cornea, and maintenance of the avascular environment is dependent on a balance between them. A player in the maintenance of corneal avascularity is the expression of sFlt-1, a soluble isoform of the VEGF receptor which serves to naturally sequester VEGF. Inhibition of sFlt-1 expression is sufficient to abolish corneal avascularity in mice, but treatment is hampered by the lack of a system to deliver sFlt-1 to the eye.

[0005] On the other hand, corneal neovascularization (NV) is a pathological condition resulting from corneal injury or infection. Persistent pathological NV leads to development and accumulation of blood vessels that are immature and structurally weak, which can then lead to lipid exudation, inflammation, scarring, and ultimately, blindness. Current treatment strategies are limited to pharmacological interventions, such as steroids, NSAIDs, and anti-angiogenic growth factors, and surgical interventions, such as photodynamic therapy, laser ablation, cautery, and superficial keratectomy.

[0006] Similarly, bacterial keratitis can be a severe and sight threatening condition. Current therapy involves topical administration of antibiotics. However, this strategy is limited by poor penetration of many antibiotics into the cornea, rapid removal of the drugs by the natural formation of tears, and development of antibiotic resistance by the infecting bacteria.

[0007] Hence, there remains a need for compositions and treatment methods for administering therapeutic agents to the eye in simple, effective, and noninvasive manner.

SUMMARY

[0008] This summary describes several embodiments of the presently-disclosed subject matter, and in many cases, lists variations and permutations of these embodiments. This summary is merely exemplary of the numerous and varied embodiments. Mention of one or more representative features of a given embodiments is likewise exemplary. Such an embodiment can typically exist with or without the feature (s) mentioned; likewise, those features can be applied to other embodiments of the presently-disclosed subject matter, whether listed in this summary or not. To avoid excessive repetition, this summary does not list or suggest all possible combinations of such features.

[0009] The presently-disclosed subject matter relates to compositions and methods for ocular delivery of therapeutic agents. In particular, the presently-disclosed subject matter relates to compounds comprising an elastic-like polypeptide (ELP) coupled to a therapeutic agent as well as compositions and methods thereof.

[0010] In some embodiments of the presently-disclosed subject matter, a method of delivering a therapeutic agent to an eye is provided. In some embodiments, the method includes administering to the eye of a subject an effective amount of a compound that includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent. In some embodiments, the ELP including at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1). In some embodiments, non-limiting examples of administration methods includes topical administration, subconjunctival administration, intraocular injection. In some embodiments, the size of the ELP is configured to permit ocular penetration of the compound. In some embodiments, the ELP comprises about 5 to about 10 VPGXG sequences. In some embodiments, the ELP comprises about 10 to about 20 VPGXG sequences. In some embodiments, the ELP comprises about 20 to about 40 VPGXG sequences. In some embodiments, the ELP comprises about 40 to about 80 VPGXG sequences. In some embodiments, the X amino acid is hydrophilic which can permit stability of the compound in the ocular environment. In some embodiments, X includes Val, Ala, or Gly in a 1:8:7 ratio (e.g., SEQ ID NO:2). In some embodiments, X includes Val, Ala, or Gly in a 1:4:3 ratio (e.g., SEQ ID NO:3). In some embodiments, X includes Gly (e.g., SEQ ID NO:4). In some embodiments, X includes Ser (e.g., SEQ ID NO:5). In some embodiments, X includes His (e.g., SEQ ID NO:6). In some embodiments, X is hydrophobic to permit corneal penetration of the compound. In some embodiments, X includes Val (e.g., SEQ ID NO:7). In some embodiments, X includes Leu (e.g., SEQ ID NO:8). In some embodiments, X includes Ile (e.g., SEQ ID NO:9). In some embodiments, the therapeutic agent is linked to the ELP carrier with a cleavable linker to allow release of the therapeutic agent intraocularly.

[0011] In some embodiments of the presently disclosed subject matter, the compound further comprises a cell-penetrating peptide (CPP) coupled to the ELP. In some embodiments, the cell-penetrating peptide includes penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, and pVEC. In some embodiments, the compound further includes an attachment site configured to couple to a therapeutic agent. In some embodiments, the attachment site includes one or more Cys residues at a N-terminus, a C-terminus, or an interior of the compound. In some

embodiments, the attachment site includes one or more Lys residues at a N-terminus, a C-terminus, or an interior of the compound.

[0012] In some embodiments of the presently disclosed subject matter, the compound forms a hydrogel after topical application or intraocular injection. In some embodiments, the compound has a phase transition below the ocular temperature, wherein ocular injection or application induces phase transfer and hydrogel formation. In some embodiments, the hydrogel formation increases ocular residence time and bioavailability of the therapeutic.

[0013] In some embodiments, the presently disclosed subject matter provides a method of treating a neovascularization disorder in a subject. The method includes administering to the eye of the subject an effective amount of a compound that comprises an elastin-like polypeptide (ELP) coupled to a therapeutic agent. In some embodiments, the ELP comprises at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1). In some embodiments, the therapeutic agent is a VEGF antagonist. In some embodiments, the therapeutic agent is a member of the sFlt-1 family, a portion of the sFlt-1 protein (e.g., SEQ ID NO:10), or a combination thereof. In some embodiments, the therapeutic agent is sFlt-1 Ig-like domains 1, 2, and 3 (SEQ ID NO:11). In some embodiments, the therapeutic agent is sFlt-1 Ig-like domains 2 and 3 (SEQ ID NO:12). In some embodiments, the therapeutic agent comprises PEDF (SEQ ID NO:13). In some embodiments, the therapeutic agent comprises an anti-inflammatory drug, an anti-inflammatory peptide, or a combination thereof. In some embodiments, the method further comprises a cell-penetrating peptide. In some embodiments, non-limiting examples of the cell penetrating peptide are penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC.

[0014] Further provided in some embodiments of the presently disclosed subject matter, is a method of treating an ocular infection in a subject. The method includes administering to the eye of a subject an effective amount of a compound that includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent. In some embodiments, the ELP includes at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1). In some embodiments, the therapeutic agent includes a BLP-1 peptide (SEQ ID NO:14). In some embodiments, the therapeutic agent includes a parasin-1 peptide (SEQ ID NO:15). In some embodiments, the therapeutic agent includes a magainin-2 peptide (SEQ ID NO:16). In some embodiments, the therapeutic agent includes a ranalexin peptide (SEQ ID NO:17). In some embodiments, the method further includes a cellpenetrating peptide. In some embodiments, non-limiting examples of the cell-penetrating peptide includes penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC.

[0015] The presently disclosed subject matter, in some embodiments, further provides a composition. The composition includes a compound that includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent, wherein the ELP comprises at least about 5 repeats of the amino acid sequence VPGXG (SEQ ID NO: 1), and a pharmaceutically acceptable carrier for topical delivery to an eye. In some embodiments, the composition includes eye drops, an ointment, or a combination thereof. In some embodiments, the composition further includes thickening agents. In some embodiments, the thickening agents includes polyvinyl alco-

hol, polyethylene glycol, methyl cellulose, and/or carboxymethyl cellulose. In some embodiments, the composition further includes an agent modulating tonicity. In some embodiments, the tonicity modulating agent includes boric acid and/or sodium phosphate buffer. In some embodiments, the composition further includes a surfactant to increase corneal penetration. In some embodiments, the surfactant includes benzalkonium chloride, polysorbate 20, polysorbate 80, and/or dioctyl sodium sulpho succinate. In some embodiments, the composition further includes a buffering agent to adjust the pH of the solution. In some embodiments, the ELP comprises about 5 to about 80 VPGXG sequences. In some embodiments, the X amino acid is hydrophilic and/or hydrophobic. In some embodiments, X includes one or more of Val, Ala, and Gly in a 1:8:7 ratio (e.g., SEQ ID NO:2), Val, Ala, and Gly in a 1:4:3 ratio e.g., (SEQ ID NO:3), Gly (e.g., SEQ ID NO:4), Ser (e.g., SEQ ID NO:5), His (e.g., SEQ ID NO:6), Val (e.g., SEQ ID NO:7), Leu (e.g., SEQ ID NO:8), Ile (e.g., SEQ ID NO:9), or a combination thereof. In some embodiments, the compound further comprises a cell-penetrating peptide (CPP) coupled to the ELP. Non-limiting examples of the cell-penetrating peptide includes penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC. In some embodiments, the compound further comprises an attachment site configured to couple to a therapeutic agent. In some embodiments, the attachment site includes one or more Cys residues. In some embodiments, the attachment site includes one or more Lys residues. In some embodiments, the attachment site includes one or more Cys residues and one or more Lys residues. Non-limiting examples of the therapeutic agent include a VEGF antagonist, a member of the sFlt-1 family, a portion of the sFlt-1 protein (SEQ ID NO:10), sFlt-1 Ig-like domains 1, 2, and 3 (SEQ ID NO:11), PEDF (SEQ ID NO:13), an anti-inflammatory drug and/or peptide, a BLP-1 peptide (SEQ ID NO:14), a parasin-1 peptide (SEQ ID NO:15), a magainin-2 peptide (SEQ ID NO:16), and a ranalexin peptide (SEQ ID NO:17).

[0016] The presently disclosed subject matter, in some embodiments, provides a compound. In some embodiments, the compound includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent, wherein the ELP comprising at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1). In some embodiments, the ELP is about 16 to about 160 VPGXG (SEQ ID NO: 1) sequences. In some embodiments, the X amino acid is hydrophilic. In some embodiments, the X amino acid is hydrophobic. In some embodiments, the X amino acid is hydrophilic, hydrophobic, or a combination thereof. In some embodiments, X includes one or more of Val, Ala, and Gly in a 1:8:7 ratio (e.g., SEQ ID NO:2), Val, Ala, and Gly in a 1:4:3 ratio (e.g., SEQ ID NO:3), Gly (e.g., SEQ ID NO:4), Ser (e.g., SEQ ID NO:5), His (e.g., SEQ ID NO:6), Val (e.g., SEQ ID NO:7), Leu (e.g., SEQ ID NO:8), Ile (e.g., SEQ ID NO:9), or any combination thereof. In some embodiments, the compound further comprises a cell-penetrating peptide (CPP) coupled to the ELP. Non-limiting examples of the cell-penetrating peptide include penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC. In some embodiments, the compound further comprises an attachment site configured to couple to a therapeutic agent. In some embodiments, the attachment site is one or more Cys residues. In some embodiments, the attachment site is one or more Lys residues. In some embodiments, the attachment site is one or more Cys residues and one or more Lys residues. In some embodiments, the therapeutic agent includes one or more of a VEGF antagonist, a member of the sFlt-1 family, a portion of the sFlt-1 protein (SEQ ID NO:10), sFlt-1 Ig-like domain 1, 2, and 3 (SEQ ID NO:11), PEDF (SEQ ID NO:13), an anti-inflammatory drug and/or peptide, a BLP-1 peptide (SEQ ID NO:14), a parasin-1 peptide (SEQ ID NO:15), a magainin-2 peptide (SEQ ID NO:16), and a ranalexin peptide (SEQ ID NO:17).

BRIEF DESCRIPTION OF THE SEQUENCE, LISTING

[0017] SEQ ID NO:1 is an amino acid sequence, VPGXG, where X can be any amino acid except proline.

[0018] SEQ ID NO: 2 is a ELP, including a series of VPGXG (SEQ ID NO:1) units in which X is Val, Ala, and Gly in 1:8:7 ratio; SEQ ID NO: 2 can be repeated in a single ELP from 1 to about 10 times (n is 1 to about 10).

[0019] SEQ ID NO: 3 is a ELP, including a series of VPGXG (SEQ ID NO:1) units in which X is Val, Ala and Gly in 1:4:3 ratio; SEQ ID NO: 3 can be repeated in a single ELP from about 1 to about 20 times (n is 1 to about 20).

[0020] SEQ ID NO: 4 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGGG VPG)_n, where n is about 8 to about 160.

[0021] SEQ ID NO: 5 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGSG VPG)_n, where n is about 8 to about 160.

[0022] SEQ ID NO: 6 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGHG VPG)_n, where n is about 8 to about 160.

[0023] SEQ ID NO: 7 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGVG VPG),, where n is about 8 to about 160.

[0024] SEQ ID NO: 8 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGLG VPG)_n, where n is about 8 to about 160.

[0025] SEQ ID NO: 9 is a ELP sequence of about 8 to about 160 repeats of amino acid sequence (VG VPGIG VPG)_n, where n is about 8 to about 160.

[0026] SEQ ID NO: 10 is an amino acid sequence of sFlt-1 protein.

[0027] SEQ ID NO: 11 is an amino acid sequence of sFlt-1 Ig-like domains 1, 2 and 3.

[0028] SEQ ID NO: 12 is an amino acid sequence of sFlt-1 Ig-like domains 2 and 3.

[0029] SEQ ID NO: 13 is an amino acid sequence of PEDF

[0030] SEQ ID NO: 14 is an amino acid sequence of BLP-1 peptide.

[0031] SEQ ID NO: 15 is an amino acid sequence of parasin-1 peptide.

[0032] SEQ ID NO: 16 is an amino acid sequence of magainin-2 peptide.

[0033] SEQ ID NO: 17 is an amino acid sequence of a ranalexin peptide.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] FIG. 1 illustrates uptake of Proteins in Corneal Epithelial Cells. HCE cells were exposed to 10 μ M fluorescently labeled ELP, SynB1-ELP, or Tat-ELP. 24 h after exposure, protein levels were determined by flow cytometry. Bars, sem.

[0035] FIG. 2 shows proliferation of Corneal Epithelial Cells after exposure to ELPs. HCE cells were exposed to the indicated concentration of ELP, SynB1-ELP, or Tat-ELP for 72 h. Cell survival was assessed using the MTS cell viability assay. Bars, sem.

[0036] FIG. 3 illustrates establishing the Rabbit Corneal Neovascularization model. NZW rabbits were anesthetized with isoflurane and topical proparacaine, and a corneal lesion was induced using a 60 sec application of silver nitrate. Blood vessel formation 7 days after lesioning is shown.

[0037] FIG. 4 shows ocular delivery of ELPs relative to IgG. A 3% solution of fluorescently labeled ELP, SynB1-ELP, Tat-ELP, or a non-specific IgG was applied topically to rabbit eyes 3 times over 6 hours. 2 h after the final administration, the eyes were removed and examined by ex vivo quantitative fluorescence to determine polypeptide levels.

[0038] FIG. **5** shows corneal penetration of ELP or SynB1-ELP. Rabbit eyes were harvested and rapidly frozen after exposure to 3 topical applications of 3% solutions of labeled proteins of a period of 6 hours. Eyes were cut into sagittal sections using a cryomicrotome, and sections were stained with DAPI to mark cell nuclei.

[0039] FIG. 6 shows ocular delivery of ELPs Following Increased Application Frequency. A 3% solution of fluorescently labeled ELP or SynB1-ELP was applied topically to rabbit eyes every 15 minutes for one hour, then every 30 minutes for five additional hours. 1 h after the final administration, the eyes were removed and examined by ex vivo quantitative fluorescence to determine polypeptide levels.

[0040] FIG. 7 shows ELP-sFlt Ig2-3 binding to ELP and ELP-sFlt Ig2-3 measured by SDS-PAGE and Western blot.

DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0041] The details of one or more embodiments of the presently-disclosed subject matter are set forth in this document. Modifications to embodiments described in this document, and other embodiments, will be evident to those of ordinary skill in the art after a study of the information provided in this document. The information provided in this document, and particularly the specific details of the described exemplary embodiments, is provided primarily for clearness of understanding and no unnecessary limitations are to be understood therefrom. In case of conflict, the specification of this document, including definitions, will control.

[0042] The presently-disclosed subject matter includes compounds that can be utilized to administer a therapeutic agent to an eye of a subject. Embodiments of the compounds can cross the corneal barrier. Some embodiments can also penetrate and/or accumulate in the corneal stroma and other structures of the eye. In some embodiments the compounds comprise an elastin-like polypeptide (ELP) that is coupled to a therapeutic agent. Furthermore, in some embodiments the compound can further comprise a cell-penetrating peptide (CPP) coupled to the ELP. In some embodiments the present compounds can be utilized as a drug delivery vector that is capable of crossing the corneal barrier.

[0043] The terms "polypeptide", "protein", and "peptide", which are used interchangeably herein, refer to a polymer of the protein amino acids, or amino acid analogs, regardless of its size or function. Although "protein" is often used in reference to relatively large polypeptides, and "peptide" is

often used in reference to small polypeptides, usage of these terms in the art overlaps and varies. The term "polypeptide" as used herein refers to peptides, polypeptides, and proteins, unless otherwise noted. The terms "protein", "polypeptide", and "peptide" are used interchangeably herein when referring to a gene product. Thus, exemplary polypeptides include gene products, naturally occurring proteins, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. Furthermore, the term "fusion polypeptide" is used herein to generally refer to a polypeptide formed from two or more distinct polypeptides.

[0044] The term "therapeutic agent" and the like is used herein to refer to substances that can alter, inhibit, active, catalyze, or otherwise affect a biological or chemical event in a subject. In some embodiments a therapeutic agent has the effect of treating a disease, condition, or disorder in a subject, and possibly in the eye of a subject. Exemplary active agents include, but are not limited to, enzymes, organic catalysts, ribozymes, organometallics, proteins, glycoproteins, peptides, polyamino acids, antibodies, nucleic acids, steroidal molecules, antibiotics, antibacterial agents, anti-inflammatory agents, antivirals, antimycotics, anticancer agents, analgesic agents, antirejection agents, immunosuppressants, cytokines, carbohydrates, oleophobics, lipids, pharmaceuticals (i.e., drugs; including small molecules), chemotherapeutics, and combinations thereof.

[0045] In some instances the compound is for treating a neovascularization disorder, and the therapeutic agent includes one or more of VEGF antagonist, a member of the sFlt-1 family, a portion of the sFlt-1 protein (SEQ ID NO: 10), sFlt-1 Ig-like domain 1, 2, and 3 (SEQ ID NO:11), and PEDF (SEQ ID NO:13).

[0046] In this respect, the sFlt-1 protein is a splice variant of the VEGF receptor that consists of its soluble extracellar portion. sFlt is made up of 7 immunoglobulin-like (Ig) domains which are responsible for VEGF binding. The first three domains (sFlt Ig1-3) are capable of binding VEGF with an affinity 2-fold lower than the full length protein, and domains 2-3 (sFlt Ig2-3) can bind with 4.5-fold lower affinity than the full protein. Given the small size of the sFlt Ig1-3 and sFlt Ig2-3 domains, about 20 kDa and 30 kDa, respectively, and their high affinity for VEGF, compounds comprising therapeutic agents with such sFlt domains could be useful in topical applications for treatment of corneal neovascularization disorder.

[0047] Furthermore, the antibacterial agents can include antibacterial peptides, which are a class of naturally occurring short peptides that have bacteriocidal or bacteriostatic properties. They can be derived mostly from frogs and insects and the like, and some are found in cows and humans and the like. Antimicrobial peptides often have a positive charge and function by binding bacterial membranes and inducing pore formation or cell lysis. Antibacterial peptides are relatively less susceptible to induction of resistance in the target microorganisms. Exemplary antibacterial peptides include, but are not limited to, magainin-2, parasin-1, BLP-1, and ranalexin.

[0048] In some instances the compound is for treating a ocular infection, and the therapeutic agent includes one or more of BLP-1 peptide (SEQ ID NO:14), a parasin-1 peptide (SEQ ID NO:15), a magainin-2 peptide (SEQ ID NO:16), and a ranalexin peptide (SEQ ID NO:17).

[0049] In some embodiments, the compound includes reactive sites for attachment of therapeutic agents, with or without a cleavable linker. A non-limiting list of potential therapeutic agents that can be provided with the present compounds include those listed in the following tables.

TABLE 1

Partial list of pharmaceuticals that can be coupled to a ELP for delivery.

Ocular Pharmaceuticals

Octifal I fidalifiacetuledis										
Ketorolac Pemirolast Azithromycin Betaxon	Naphazoline Brimonidine Bepotastine Cosopt	Lidocaine Azelastine Besifloxacin Cysteamine								
Difluprednate	Aflibercept	Tasimelteon								
Ocriplasmin	Lotemax	Enoxaparin								
Gatifloxacin	Bimatoprost	Pegaptanib								
Ofloxacin	Dexamethasone	Levofloxacin								
Unoprostone	Cyclosporine	Travoprost								
Valganciclovir	Viroptic	Cidofovir								
Verteporfin	Vitrasert	Vitravene								
Zaditor	Tafluprost	Ganciclovir								
Dexamethasone	Fluocinolone	Loteprednol								
Difluprednate	Fluoromethalone	Prednisolone								
Medrysone	Triamcinolone	Rimexolone								

TABLE 2

Partial list of peptide, protein, and antibody therapeutic agents that can be coupled to a ELP for delivery.

Peptide Name	Protein of origin	Amino Acids
	THERAPEUTIC PEPTID	ES
PNC-2	Ras	96-110
PNC-7	Ras	35-47
PNC-25	SOS	994-1004
n.s.*	Raf	97-110
n.s.*	Raf	143-150
n.s.*	NF1-GAP	1121-1128
SP1068	EGFR	1063-1073
SY317	Shc	312-323
n.s.*	MEK1	1-13
n.s.*	GST-pi	34-50
JNKI1	ЛР1/ÎВ1	153-172
JNKI2	JIP2/IB2	134-151
I-JIP	JIP1/IB1	143-163
ТІ-ЛР	JIP1/IB1	153-163
NBD	ΙΚΚβ	735-745
CC2	NEMO	253-287
LZ	NEMO	294-336
SN50	NF-κB p50	360-369
pp21	ΙκΒα	21-41
p65-P1	NF-κB p65	271-282
p65-P6	NF-κB p65	525-537
C1	p53	369-383
Peptide 46	p53	361-382
CDB3	53BP2	490-498
TIP	p53	12-30
Super-TIP	(phage selected)	
PNC-27	p53	12-26
PNC-21	p53	12-20
PNC-28	p53	17-26
αHDM2	p53	16-27
Peptide 3	p14ARF	1-20
H1-S6A, F8A	c-Myc	368-381
n.s.*	p21	17-33
n.s.*	p21	63-77
Peptide 10	p21	141-160
W10	p21	139-164
Peptide 6	p16	84-103
Peptide 5a	p27	Modified from
r	F	30-34

Peptide Name

C4

n.s.*

n.s.*

Akt-in

Amino Acids

285-306

87-64 864-880

10-24

TABLE 2-continued

Partial list of peptide, protein, and antibody therapeutic	agents that
can be coupled to a ELP for delivery.	

Protein of origin

cyclin A

E2F

TCL1

Rb

AKt-III	ICLI	10-24
Peptide2	FKHRL1	16-24
n.s.*	Bak	72-87
TO4	Bax	52-72
n.s.*	Bax	53-86
n.s.*	Bad (mus musculis)	140-165
n.s.*	Bad	103-127
BH3 BAD	Bad	103-123
Bim	Bim	
		145-165
n.s.*	Bid	84-99
$SAHB_A$	Bid	80-101
Smac-7	Mature Smac	1-7
n.s.*	Mature Smac	1-4
dAVPI	Mature Smac	1-4
Nox2ds	NADPH oxidase 2	86-94
Nox2 C-terminal peptide		552-570
Nox2 C-terminal peptide		550-569
Nox2 C-terminal peptide	NADPH oxidase 2	491-504
(with mutation at residue		
500)		
p22 ^{phox} derived peptide 1	p22 ^{phox}	9-23
$p22^{phox}$ derived peptide 2	p22 ^{phox}	31-45
p22 derived peptide 2	22 <i>pho</i> r	
p22 ^{phox} derived peptide 3	p22*****	47-61
p22 ^{phox} derived peptide 4	p22 ^{phox}	85-99
p22phox derived peptide 5	p22 ^{phox}	113-127
p22 ^{phox} derived peptide 6	n22 ^{phox}	82-95
p22 ^{phox} derived peptide 7		175-194
p22 derived peptide /	17phor	
p47 ^{phox} derived peptide 1	p4 /p	323-332
p47 ^{phox} derived peptide 2	p47 ^{phox}	314-331
p47 ^{phox} derived peptide 3	p47 ^{phox}	315-328
p47 ^{phox} derived peptide 4	p47 ^{phox}	323-332
p47 ^{phox} derived peptide 5	nA7phox	334-347
Al	itibacterial Peptide Cla	sses
Defensins	Protegrins	Tachyplesins
Brevinins	Indolicidin	PR-39
Magainins	Cecropins	Ranalexin
Magainins Dermaseptin	Cecropins Bimbinin	Ranalexin Andropin
Magainins Dermaseptin Sarcotoxin	Cecropins Bimbinin Sapecin	Ranalexin Andropin Apidaecin
Magainins Dermaseptin	Cecropins Bimbinin	Ranalexin Andropin
Magainins Dermaseptin Sarcotoxin	Cecropins Bimbinin Sapecin	Ranalexin Andropin Apidaecin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins	Ranalexin Andropin Apidaecin Bee defensin Bactenecin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin	Cecropins Bimbinin Sapecin Hymenoptaecin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE	Ranalexin Andropin Apidaecin Bee defensin Bactenecin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH	Cecropins Bimbinin Sapecin Hymenoptaccin Attacins HERAPEUTIC PROTE	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE	Ranalexin Andropin Apidaecin Bee defensin Bactenecin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH	Cecropins Bimbinin Sapecin Hymenoptaccin Attacins HERAPEUTIC PROTE	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL11	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL.11 Erythropoietin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TF VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins EERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TE VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF	Cecropins Bimbinin Sapecin Hymenoptaccin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TF VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins EERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TE VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF	Cecropins Bimbinin Sapecin Hymenoptaccin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase
Magainins Dermaseptin Sarcotoxin Abaccin Mellitin TH VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF G-interferon Interferon-\alpha2a Interferon-\alpha2a Interferon-\alpha2b	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH
Magainins Dermaseptin Sarcotoxin Abaccin Mellitin TH VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF G-interferon Interferon-\alpha2a Interferon-\alpha2a Interferon-\alpha2b	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL.10 IL.11 IErythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Peg-Interferon-α2a Peg-Interferon-α2b	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon-α2a Interferon-α2b Interferon-α2b Interferon-α2b Interferon-α2b Interferon-αN3	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins HERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α2b Interferon-α13 Interferon-β1a	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α2b Interferon-αN3 Interferon-β1a Interferon-β1b	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α2b Interferon-α13 Interferon-β1a	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α2b Interferon-αN3 Interferon-β1a Interferon-β1b	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TE VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Interferon-α2b Interferon-α1a Interferon-β1a Interferon-β1b Interferon-γ1b IL.2	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH KGF PDGF	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B Collagenase DNAse I
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TE VEGF PIGF IL.10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Interferon-α2b Interferon-αN3 Interferon-αN3 Interferon-β1a Interferon-β1b Interferon-γ1b IL.2 ETAF	Cecropins Bimbinin Sapecin Hymenoptaccin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH KGF PDGF Trypsin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B Collagenase DNAse I Hyaluronidase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF PIGF IL10 IL.11 Erythropoietin Darbepoetin G-CSF G-CSF GM-CSF α-interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α1b Interferon-β1b Interferon-β1b Interferon-γ1b IL.2 ETAF Peg-Asparaginase	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH KGF PDGF Trypsin Bivalirudin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B Collagenase DNAse I Hyaluronidase Papain
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF IL10 IL.11 Erythropoietin Darbepoetin G-CSF Peg-G-CSF GM-CSF α-interferon Interferon-α2a Interferon-α2b Interferon-α2b Interferon-α1a Interferon-β1a Interferon-β1b Interferon-γ1b IL.2 ETAF Peg-Asparaginase Rasbuicase	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH KGF PDGF Trypsin Bivalirudin Streptokinase	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B Collagenase DNAse I Hyaluronidase
Magainins Dermaseptin Sarcotoxin Abaecin Mellitin TH VEGF PIGF PIGF IL10 IL.11 Erythropoietin Darbepoetin G-CSF G-CSF GM-CSF α-interferon-α2a Interferon-α2b Peg-Interferon-α2b Interferon-α1b Interferon-β1b Interferon-β1b Interferon-γ1b IL.2 ETAF Peg-Asparaginase	Cecropins Bimbinin Sapecin Hymenoptaecin Attacins IERAPEUTIC PROTE Insulin Growth hormone Mecasermin Factor VIII Factor IX Antithormbin III Protein C tPA Urokinase Factor VIIa Calcitonin Teriparatide Exenatide Octreotide rhBMP2 rhBMP7 GnRH KGF PDGF Trypsin Bivalirudin	Ranalexin Andropin Apidaecin Bee defensin Bactenecin INS β-Gluco-cerebrosidase Alglucosidase-α Laronidase Idursulphase Galsulphase Agalsidase-β α-1-Proteinase inhibitor Lipase Amylase Adenosine deaminase Albumin FSH HCG Lutropin Nesiritide Botulinum Toxin type A Botulinum Toxin type B Collagenase DNAse I Hyaluronidase Papain

TABLE 2-continued

Partial list of peptide, protein, and antibody therapeutic agents that can be coupled to a ELP for delivery.

Peptide Name	Protein of origin	Amino Acids									
	ANTIBODIES										
Bevacizumab	Abatacept	Basiliximab									
Cetuximab	Anakinra	Daclizumab									
Panitumumab	Adalimumab	Muromonab-CD3									
Alemtuzumab	Etanercept	Omalizumab									
Rituximab	Infliximab	Palivizimuab									
Trastuzumab	Alefacept	Enfuvirtide									
Ranibuzumab	Efalizumab	Abciximab									
Denileukin diftitox	Natalizumab	Pegvisomant									
Ibritumomab tiuxetan	Eculizumab	GHRH									
Gemtuzumab ozogamicin	DPPD	Secretin									
Tositumomab	Glucagon	TSH									
Capromab pendetide	Indium-111- ocreotide	Satumomab pendetide									
Arcitumomab	Nofetumomab	Apcitide									
Imciromab pentetate	Technetium fanolesomab	Ranibizumab									

^{*}n.s., name not specified

[0050] The ELP in some embodiments refers to a polypeptide comprised of at least one repeat of the amino acid sequence VPGXG, wherein X can be any amino acid except for proline (SEQ ID NO: 1). In other embodiments ELP can be of a size that permits ocular penetration of the compound, and in certain embodiments is small enough to permit ocular penetration. In some embodiments the ELP is hydrophilic so as to increase the residence time of the compound in the ocular environment, thereby increasing its stability in the ocular environment. In some embodiments the ELP and/or X is hydrophobic to permit corneal penetration of the compound. In some embodiments the ELP and/or X may have a combination of the properties described herein. For example, the ELP can comprise a hydrophobic portion and a hydrophobic portion.

[0051] Some embodiments of compounds include, but are not limited to, ELP that includes about 5, about 10, about 15, about 20, about 25, about 30, about 35, about 40, about 45, about 50, about 55, about 60, about 65, about 70, about 75, or about 80 VPGXG sequences. In some embodiments the ELP will include about 5 to about 10 VPGXG sequences, about 10 to about 20 VPGXG sequences, about 20 to about 40 VPGXG sequences, or about 40 to about 80 VPGXG sequences.

[0052] In yet other embodiments, the ELP of the present compounds are such that X includes Val, Ala, or Gly in a 1:8:7 ratio (SEQ ID NO:2) or such that X includes Val, Ala, or Gly in a 1:4:3 ratio (SEQ ID NO:3). In certain embodiments X includes Gly (SEQ ID NO:4). In certain embodiments X includes Ser (SEQ ID NO:5). In certain embodiments X includes His (SEQ ID NO:6). In certain embodiments X includes Val (SEQ ID NO:7). In certain embodiments X includes Leu (SEQ ID NO:8). In certain embodiments X includes Ile (SEQ ID NO:9).

[0053] In some embodiments, the ELP of the present compounds form transparent hydrogels on the surface of the eye or when injected into or around the eye in order to increase residence time and attain controlled release of therapeutics.

[0054] ELP is a macromolecular carrier that has several advantages. It can be an inert and biodegradable macromolecule, giving it a good pharmacokinetic profile and very low

immunogenicity. Also, as opposed to chemically synthesized polymers, ELP can be expressed in and easily purified from *E. coli*. The ELP sequence can be manipulated, thereby making it relatively simple to generate chimeras of ELP fused to therapeutic agents, such as peptides. The ELP fusion can also be protease resistant and non-immunogenic, providing protection for the fused cargo from degradation and immunogenicity in vivo.

[0055] Embodiments of the presently-disclosed compounds can possess advantages by virtue of comprising ELP. In some instances ELP increases the solubility the therapeutic agents. In some instances ELP can protect labile therapeutic agents from degradation in vivo. Peptides, for instance, can be prone to degradation in blood plasma and in tissues in vivo. ELP can protect certain therapeutic, agents from enzymatic degradation. In some instance ELP fusion can decrease the immunogenicity of therapeutic agents.

[0056] As described herein ELP can also be modified relatively easily to carry a therapeutic agent, such as a protein, and/or to incorporate attachment sites for coupling (i.e., binding) of therapeutic agents, such as small molecules. ELP can also be purified after recombinant expression in bacteria.

[0057] In some instances, the present compounds include an ELP that is targeted to desired tissues. For example, in some embodiments ELP and/or the compound can include a targeting agent that selectively binds and/or is attracted to a targeting substance. Target agents can include, but are not limited to, peptides, proteins, small molecules, and antibodies. In some instances the targeting agent is a CPP that can increase cell and tissue uptake, direct ELP to specific tissues, direct ELP to specific intracellular compartments, or a combination thereof.

[0058] As mentioned above, the presently-disclosed subject matter includes compounds that include an ELP coupled to a therapeutic agent, and that further comprise a cell-penetrating peptide (CPP). In some embodiments a fusion polypeptide is comprised of the ELP, the CPP, and, optionally, the therapeutic agent. Exemplary CPPs utilized in the present compounds include, but are not limited to penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, pVEC, and peptide for ocular delivery (POD).

[0059] Some embodiments of the present compounds further include an attachment site configured to couple (e.g., electrostatically and/or covalently bind) to a therapeutic agent. In some embodiments a compounds comprises a plurality of attachment sites for one or more types of therapeutic agents. In some embodiments the attachment site includes one or more Cys residues at a N-terminus, a C-terminus, or an interior of the compound. In some embodiments the attachment site includes one or more Lys residues at a N-terminus, a C-terminus, or an interior of the compound.

[0060] The presently-disclosed subject matter includes kits comprising a compound, as disclosed herein, packaged together with a therapeutic agent. The compound can include any of the compounds described herein. The therapeutic agent can also include any of the therapeutic agents described herein. In some embodiment the kit provides a compound that includes an ELP as well as a therapeutic agent. In some embodiments the kit provides a compound that includes an ELP and a CPP as well as a therapeutic agent. The compound and therapeutic agent provided in the kit can be bound by known means before administration to

a subject in need thereof. In some embodiments the kit includes two or more different therapeutic agents.

[0061] The presently-disclosed subject matter also includes compositions that comprise a compound that includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent, the ELP including at least about 5 repeats of the amino acid sequence VPGXG (SEQ ID NO: 1), and that further comprise a pharmaceutically acceptable carrier for topical delivery to an eye.

[0062] The term "pharmaceutically acceptable carrier" refers to sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, as well as sterile powders for reconstitution into sterile solutions or dispersions just prior to use. These compositions can also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms can be ensured by the inclusion of various antibacterial and antifungal agents such as paraben, chlorobutanol, phenol, sorbic acid and the like. It can also be desirable to include isotonic agents such as sugars, sodium chloride and the like. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. The formulations can be sterilized, for example, by filtration through a bacterialretaining filter or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable media just prior to use. As discussed herein, the pharmaceutically acceptable carriers can include drop solutions for topical administration to the eye of a subject.

[0063] The presently-disclosed subject matter further includes a method of using the compounds described herein. In some embodiments the method comprise delivering a therapeutic agent to an eye. In specific embodiments the method comprises administering to the eye of a subject an effective amount of a compound that includes an elastin-like polypeptide (ELP) coupled to a therapeutic agent, the ELP including at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1). In other method any of the compounds and/or compositions described herein can be administered to an eye.

[0064] In this regard, the term "administer" refers to any method of providing a compound or composition thereof to a subject. Such methods are well known to those skilled in the art and include, but are not limited to, topical administration, subconjunctival administration, intraocular injection, including intraocular injection into the aqueous or vitreous humor, and the like. In some embodiments administer refers to administration via the eye of a subject, which can include topical administration by depositing a compound or composition thereof on or near the eye. In some embodiments administration can refer to administration via topical eye drops, ointments, or other compositions. Administration can be continuous or intermittent. In various aspects, a preparation can be administered therapeutically; that is, administered to treat an existing disease or condition. In further various aspects, a preparation can be administered prophylactically; that is, administered for prevention of a disease or condition.

[0065] In this respect, one problem that can be encountered with antibody therapy in the eye after intraocular injection is that the antibodies can get out of the eye. This treatment is sometimes used for macular degeneration, for example, despite its shortcoming. The antibodies can escape

the eye because they can be substrates for binding to the neonatal Fc receptor (FcRn), an antibody-binding protein expressed at the retinal—blood barrier that is responsible for active antibody transport across that barrier. However, because certain embodiments of the presently-disclosed compounds do not comprise an Fc domain, these embodiments do not bind FcRn and show lower or no systemic uptake after intraocular injection.

[0066] In some embodiments the method for administering the present compounds and compositions further include treating a disease or condition in the subject. The terms "treatment" or "treating" refer to the medical management of a patient with the intent to cure, ameliorate, stabilize, or prevent a disease, pathological condition, or disorder. This term includes active treatment, that is, treatment directed specifically toward the improvement of a disease, pathological condition, or disorder, and also includes causal treatment, that is, treatment directed toward removal of the cause of the associated disease, pathological condition, or disorder. In addition, this term includes palliative treatment, that is, treatment designed for the relief of symptoms rather than the curing of the disease, pathological condition, or disorder; preventative treatment, that is, treatment directed to minimizing or partially or completely inhibiting the development of the associated disease, pathological condition, or disorder; and supportive treatment, that is, treatment employed to supplement another specific therapy directed toward the improvement of the associated disease, pathological condi-

[0067] Exemplary conditions and diseases that can be treated by certain methods include, but are not limited to, corneal diseases such as corneal neovascularization and keratitis, diseases of the soft tissue surrounding the eye, and diseases of the posterior eye such as macular degeneration, including wet macular degeneration. In other embodiments the disease or condition can include endophthalmitis, conjunctivitis, trachoma, periorbital cellulitis, contact-lens related infections, uveitis, *Streptococcus, Staphylococcus, Pseudomonas* infection, and the like. Other diseases and conditions include any that can be treated by a therapeutic agent that can be administered by the present compounds.

[0068] Furthermore, the term "subject" is inclusive of both human and animal subjects. Thus, veterinary uses are provided in accordance with the presently disclosed subject matter and the presently-disclosed subject matter provides methods for preventing oxidative damage in mammals such as humans, as well as those mammals of importance due to being endangered, such as Siberian tigers; of economic importance, such as animals raised on farms for consumption by humans; and/or animals of social importance to humans, such as animals kept as pets or in zoos. Examples of such animals include but are not limited to: carnivores such as cats and dogs; swine, including pigs, hogs, and wild boars; ruminants and/or ungulates such as cattle, oxen, sheep, giraffes, deer, goats, bison, and camels; and horses. Also provided is the treatment of birds, including the treatment of those kinds of birds that are endangered and/or kept in zoos, as well as fowl, and more particularly domesticated fowl, i.e., poultry, such as turkeys, chickens, ducks, geese, guinea fowl, and the like, as they are also of economic importance to humans. Thus, also provided is the treatment of livestock, including, but not limited to, domesticated swine, ruminants, ungulates, horses (including race horses), poultry, and the like.

[0069] In some embodiments the present compounds and compositions are administered by topical eye drops. In some embodiments the compounds can be detectable in other ocular structures, including the retina, after topical eye administration. The compounds can also accumulate in the corneal epithelium and penetrate to the stroma.

[0070] The presently-disclosed subject matter also includes methods for synthesizing the present compounds and compositions. In this respect, ELP is a thermally responsive polypeptide that can selectively form aggregates above a characteristic transition temperature (T_t) . In some embodiments this thermally responsive nature can be exploited for purification of ELP-fused compounds by repeated centrifugation steps above and below the T_t , a process known as inverse transition cycling. In some embodiments, the T_t can be tuned to induce hydrogel formation when administered topically to the eye or injected into or around the eye.

[0071] The presently-disclosed subject matter is further illustrated by the following specific but non-limiting examples. The following examples may include compilations of data that are representative of data gathered at various times during the course of development and experimentation related to the present invention.

EXAMPLES

Example 1

[0072] This Example characterizes the uptake of elastic-like polypeptides (ELPs) and cell-penetrating peptide ELP fusion polypeptides (CPP-ELPs) in human corneal epithelial cells (HCEs). To determine if CPPs could mediate the uptake of ELP in corneal cells, HCEs grown in culture were exposed to $10\,\mu\text{M}$ fluorescently-labeled ELP, SynB1-ELP, or Tat-ELP. After 24 h incubation with the labeled proteins, the cells were detached and analyzed by flow cytometry. The mean fluorescence intensity was determined for all cells, and the fluorescence value was corrected to account for differences in labeling efficiency among the proteins. As shown in FIG. 1, ELP was detectable over autofluorescence in HCE cells, and the cellular uptake was increased 2.8-fold and 3.9-fold with SynB1 and Tat CPPs, respectively.

[0073] In addition to uptake efficiency, toxicity of ELP or CPP-ELPs to HCE cells was examined. Cells were exposed to varying concentrations of ELP, SynB1-ELP, or Tat-ELP for 72 hours, and cell number was determined using the MTS cell proliferation assay. As shown in FIG. 2, ELP and SynB1-ELP had no detectable toxicity to HCE cells at concentrations up to 40 μM . In contrast, Tat-ELP did inhibit HCE cell proliferation with an IC50 between 10 and 20 μM . These data indicate that the ELP carrier, and some CPP-ELPs, are non-toxic to corneal epithelial cells and good candidates for corneal drug delivery. They also demonstrate that some CPPs have toxicity to corneal cells, and prediction of toxicity is not possible a priori. Therefore, each candidate drug delivery vector must be made and tested individually.

Example 2

[0074] This Example characterizes the development of a rabbit corneal neovascularization (CN) model. Rabbits were chosen for this model because the thickness of their corneal epithelial layer is similar to that of humans. New Zealand white rabbits were anesthetized with isoflurane, and a corneal burn was induced using a 60 second application of a

silver nitrate cautery stick. As shown in FIG. 3, 7 days after corneal injury, the rabbits developed a neovascular response in the injured eye.

Example 3

[0075] This Example characterizes penetration of the corneal barrier by ELP and CPP-ELPs, and compares ELP corneal accumulation to a model antibody, immunoglobulin. G (IgG). Fluorescently labeled ELP, SynB1-ELP, Tat-ELP, or IgG was applied topically via eye drops three times over 6 h in rabbits. The contralateral eye was administered saline control. 8 h after the first application, the animals were sacrificed and the eyes removed for ex vivo analysis. As shown in FIG. 4, ELP accumulated in the rabbit cornea at levels over seven-fold higher than IgG. SynB1-ELP and Tat-ELP also accumulated in the cornea much more efficiently than IgG, but the CPP-ELP corneal levels were not enhanced relative to ELP control.

[0076] After total fluorescence analysis, the eyes were frozen and cut using a cryomicrotome. Sagittal sections were used in order to visualize the cornea in cross-section. Sections were stained with DAPI to mark cell nuclei and imaged with an epifluorescence microscope. As shown in FIG. 5, the epithelial layer was brightly autofluorescent, but very little fluorescence was seen in the stroma in saline treated eyes. In contrast, both ELP and SynB1-ELP penetrated through the corneal epithelium and into the stroma. Without being bound by theory or mechanism, other CPPs may enhance the penetration of the polypeptides.

[0077] Thus, the ELP and CPP-ELP drug vectors can be effective for delivery of agents through the corneal barrier and into the stroma, the site of neovascular development.

[0078] The frequency of dosing was increased to further test the corneal uptake and penetration of ELP and SynB1-ELP. The proteins were applied topically every 15 minutes for one hour, then every 30 minutes for five additional hours. One hour after the last application, the eyes were removed for ex vivo fluorescence analysis. As shown in FIG. 6, both ELP and SynB1-ELP accumulated in the cornea at levels much higher than autofluorescence control. SynB1-ELP levels were slightly higher than ELP levels using this dosing regimen, but the differences were not statistically significant. Eyes were also cryosectioned to examine the distribution around the eye after topical administration. This analysis revealed that both ELP and SynB1-ELP distribute around the entire eye after topical administration, and they both penetrate the corneal barrier as well as the sclera and retina. This analysis highlights the potential for using ELP-based carriers for delivery of therapeutics to all parts of the eye for treatment of many ocular disorders.

Example 4

[0079] This Example ELP-fused sFlt Ig compounds binding to VEGF. ELP-sFlt fusion proteins were made by recombinant expression in *E. coli*. As a preliminary test to insure that the sFlt Ig domain could still bind VEGF when fused to the ELP carrier, in vitro pulldown assay was performed. ELP-sFlt Ig2-3 or an ELP control lacking the sFlt peptide were incubated with purified VEGF for 1 h at 37° C. in physiological saline. Thermal precipitation of ELP and centrifugation were used to pull down ELP or ELP-sFlt Ig2-3, and the thermal precipitation was carried out two times to remove any remaining unbound protein. The pre-

cipitated proteins were separated by SDS-PAGE, transferred to nitrocellulose membranes, and the membranes were probed for VEGF by Western blot. As shown in FIG. 7, ELP-sFlt Ig2-3 was able to pull down VEGF, but the control ELP lacking the sFlt peptide did not. These results show that the sFlt peptide can maintain its ability to bind VEGF when fused to ELP.

[0080] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently-disclosed subject matter belongs. Although any methods, devices, and materials similar or equivalent to those described herein can be used in the practice or testing of the presently-disclosed subject matter, representative methods, devices, and materials are now described.

[0081] Following long-standing patent law convention, the terms "a", "an", and "the" refer to "one or more" when used in this application, including the claims. Thus, for example, reference to "a cell" includes a plurality of such cells, and so forth.

[0082] Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about". Accordingly, unless indicated to the contrary, the numerical parameters set forth in this specification and claims are approximations that can vary depending upon the desired properties sought to be obtained by the presently-disclosed subject matter.

[0083] As used herein, the term "about," when referring to a value or to an amount of mass, weight, time, volume, concentration or percentage is meant to encompass variations of in some embodiments $\pm 20\%$, in some embodiments $\pm 10\%$, in some embodiments $\pm 5\%$, in some embodiments $\pm 1\%$, in some embodiments $\pm 0.1\%$ from the specified amount, as such variations are appropriate to perform the disclosed method.

[0084] As used herein, ranges can be expressed as from "about" one particular value, and/or to "about" another particular value. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as "about" that particular value in addition to the value itself. For example, if the value "10" is disclosed, then "about 10" is also disclosed. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

[0085] Throughout this document, various references are mentioned. All such references are incorporated herein by reference, including the references set forth in the following list:

REFERENCE

[0086] [1] J. H. Chang, E. E. Gabison, T. Kato, D. T. Azar, Corneal neovascularization, Curr Opin Ophthalmol. 12 (2001) 242-9.

[0087] [2] B. K. Ambati, E. Patterson, P. Jani, C. Jenkins, E. Higgins, N. Singh, et al., Soluble vascular endothelial growth factor receptor-1 contributes to the corneal antiangiogenic barrier, Br J Ophthalmol. 91 (2007) 505-8. doi:10.1136/bjo.2006.107417.

- [0088] [3] B. K. Ambati, M. Nozaki, N. Singh, A. Takeda, P. D. Jani, T. Suthar, et al., Corneal avascularity is due to soluble VEGF receptor-1, Nature. 443 (2006) 993-7. doi:10.1038/nature05249.
- [0089] [4] D. Gupta, C. Illingworth, Treatments for Corneal Neovascularization: A Review, Cornea. (2011). doi: 10.1097/01.ico.0000396158.53170.1f.
- [0090] [5] F. T. Wu, M. O. Stefanini, F. Mac Gabhann, C. D. Kontos, B. H. Annex, A. S. Popel, A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use, J Cell Mol Med. 14 (2010) 528-52. doi:10.1111/j.1582-4934.2009.00941.x.
- [0091] [6] C. Wiesmann, G. Fuh, H. W. Christinger, C. Eigenbrot, J. A. Wells, A. M. de Vos, Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor, Cell. 91 (1997) 695-704.
- [0092] [7] D. E. Meyer, A. Chilkoti, Purification of Recombinant Proteins by Fusion with Thermally Responsive Polypeptides, Nat. Biotechnol. 17 (1999) 1112-1115.
- [0093] [8] F. Edenhofer, Protein transduction revisited: novel insights into the mechanism underlying intracellular delivery of proteins, Curr Pharm Des. 14 (2008) 3628-36.
- [0094] [9] F. Madani, S. Lindberg, U. Langel, S. Futaki, A. Graslund, Mechanisms of cellular uptake of cell-penetrating peptides, J Biophys. 2011 (2011) 414729. doi:10. 1155/2011/414729.
- [0095] [10] R. Akkarawongsa, A. E. Cullinan, A. Zinkel, J. Clarin, C. R. Brandt, Corneal toxicity of cell-penetrating peptides that inhibit Herpes simplex virus entry, J Ocul Pharmacol Ther. 22 (2006) 279-89. doi:10.1089/jop. 2006.22.279.
- [0096] [11] M. J. Mannis, The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis, Trans. Am. Ophthalmol. Soc. 100 (2002) 243-271.
- [0097] [12] S. Moktan, C. Ryppa, F. Kratz, D. Raucher, A thermally responsive biopolymer conjugated to an acid-sensitive derivative of paclitaxel stabilizes microtubules, arrests cell cycle, and induces apoptosis, Invest New Drugs. (2010). doi:10.1007/s10637-010-9560-x.
- [0098] [13] G. L. Bidwell, Peptides for Cancer Therapy—A Drug Development Opportunity and a Drug Delivery Challenge, Ther. Deliv. in press (2012).
- [0099] [14] G. L. Bidwell, E. Perkins, J. Hughes, M. Khan, J. R. James, D. Raucher, Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model, PLoS One. 8 (2013) e55104. doi:10.1371/journal.pone.0055104.
- [0100] [15] D. W. Urry, T. M. Parker, M. C. Reid, D. C. Gowda, Biocompatibility of the bioelastic materials, poly (GVGVP) and its gamma-irradiation cross-linked matrix—summary of generic biological test results, Bioact Compat Polym. 6 (1991) 263-282.
- [0101] [16] G. L. Bidwell, Peptides for cancer therapy: a drug-development opportunity and a drug-delivery challenge, Ther. Deliv. 3 (2012) 609-621.
- [0102] [17] G. L. Bidwell, D. Raucher, Application of thermally responsive polypeptides directed against c-Myc transcriptional function for cancer therapy, Mol Cancer Ther. 4 (2005) 1076-85. doi:10.1158/1535-7163.MCT-04-0253.

- [0103] [18] G. L. Bidwell, D. Raucher, Cell penetrating elastin-like polypeptides for therapeutic peptide delivery, Adv Drug Deliv Rev. 62 (2010) 1486-96. doi:10.1016/j. addr.2010.05.003.
- [0104] [19] G. L. Bidwell, A. A. Whittom, E. Thomas, D. Lyons, M. D. Hebert, D. Raucher, A thermally targeted peptide inhibitor of symmetrical dimethylation inhibits cancer-cell proliferation, Peptides. 31 (2010) 834-41. doi: 10.1016/j.peptides.2010.02.007.
- [0105] [20] I. Massodi, G. L. Bidwell, D. Raucher, Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery, J Control Release. 108 (2005) 396-408. doi:10.1016/j.jconre1.2005.08.007.
- [0106] [21] I. Massodi, E. Thomas, D. Raucher, Application of thermally responsive elastin-like polypeptide fused to a lactoferrin-derived peptide for treatment of pancreatic cancer, Molecules. 14 (2009) 1999-2015.
- [0107] [22] S. Moktan, D. Raucher, Anticancer activity of proapoptotic peptides is highly improved by thermal targeting using elastin-like polypeptides, Int J Pept Res Ther. 18 (2012) 227-237. doi:10.1007/s10989-012-9295-y.
- [0108] [23] G. L. Bidwell, A. N. Davis, D. Raucher, Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides, J Control Release. 135 (2009) 2-10. doi:10.1016/j.jconre1. 2008.11.015.
- [0109] [24] C. H. Luan, T. M. Parker, D. C. Gowda, D. W. Urry, Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin, Biopolymers. 32 (1992) 1251-61. doi:10.1002/bip.360320914.
- [0110] [25] C. H. Luan, T. M. Parker, K. U. Prasad, D. W. Urry, Differential scanning calorimetry studies of NaCl effect on the inverse temperature transition of some elastin-based polytetra-, polypenta-, and polynonapeptides, Biopolymers. 31 (1991) 465-75. doi:10.1602/bip. 360310502.
- [0111] [26] D. W. Urry, M. M. Long, B. A. Cox, T. Ohnishi, L. W. Mitchell, M. Jacobs, The synthetic polypentapeptide of elastin coacervates and forms filamentous aggregates, Biochim Biophys Acta. 371 (1974) 597-602.
- [0112] [27] D. E. Meyer, G. A. Kong, M. W. Dewhirst, M. R. Zalutsky, A. Chilkoti, Targeting a Genetically Engineered Elastin-like Polypeptide to Solid Tumors by Local Hyperthermia, Cancer Res. 61 (2001) 1548-1554.
- [0113] [28] D. E. Meyer, B. C. Shin, G. A. Kong, M. W. Dewhirst, A. Chilkoti, Drug targeting using thermally responsive polymers and local hyperthermia, J Control Release. 74 (2001) 213-24.
- [0114] [29] M. R. Dreher, D. Raucher, N. Balu, O. Michael Colvin, S. M. Ludeman, A. Chilkoti, Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy, J Control Release. 91 (2003) 31-43.
- [0115] [30] G. L. Bidwell, E. Perkins, D. Raucher, A thermally targeted c-Myc inhibitory polypeptide inhibits breast tumor growth, Cancer Lett. 319 (2012) 136-43. doi:10.1016/j.canlet.2011.12.042.
- [0116] [31] D. Y. Furgeson, M. R. Dreher, A. Chilkoti, Structural optimization of a "smart" doxorubicin-polypeptide conjugate for thermally targeted delivery to solid tumors, J Control Release. 110 (2006) 362-9.

- [0117] [32] G. L. Bidwell, I. Fokt, W. Priebe, D. Raucher, Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin, Biochem Pharmacol. 73 (2007) 620-31.
- [0118] [33] G. L. Bidwell, A. N. Davis, I. Fokt, W. Priebe, D. Raucher, A thermally targeted elastin-like polypeptidedoxorubicin conjugate overcomes drug resistance, Invest New Drugs. 25 (2007) 313-26.
- [0119] [34] I. Massodi, G. L. Bidwell, A. Davis, A. Tausend, K. Credit, M. Flessner, et al., Inhibition of ovarian cancer cell metastasis by a fusion polypeptide Tat-ELP, Clin Exp Metastasis. 26 (2009) 251-60. doi:10. 1007/s10585-009-9237-z.
- [0120] [35] W. Liu, J. A. MacKay, M. R. Dreher, M. Chen, J. R. McDaniel, A. J. Simnick, et al., Injectable intratumoral depot of thermally responsive polypeptide-radionuclide conjugates delays tumor progression in a mouse model, J Control Release. 144 (2010) 2-9. doi:10.1016/j. jconrel.2010.01.032.
- [0121] [36] W. Liu, J. McDaniel, X. Li, D. Asai, F. G. Quiroz, J. Schaal, et al., Brachytherapy using injectable seeds that are self-assembled from genetically encoded polypeptides in situ, Cancer Res. 72 (2012) 5956-65. doi:10.1158/0008-5472.CAN-12-2127.
- [0122] [37] J. A. MacKay, M. Chen, J. R. McDaniel, W. Liu, A. J. Simnick, A. Chilkoti, Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection, Nat Mater. 8 (2009) 993-9. doi:10.1038/nmat2569.
- [0123] [38] A. J. Simnick, M. Amiram, W. Liu, G. Hanna, M. W. Dewhirst, C. D. Kontos, et al., In vivo tumor targeting by a NGR-decorated micelle of a recombinant diblock copolypeptide, J Control Release. 155 (2011) 144-51. doi:10.1016/j.jconre1.2011.06.044.
- [0124] [39] K. Na, S. A. Lee, S. H. Jung, J. Hyun, B. C. Shin, Elastin-like polypeptide modified liposomes for enhancing cellular uptake into tumor cells, Colloids Surf B Biointerfaces. 91 (2012)'130-6. doi:10.1016/j.colsurfb. 2011.10.051.
- [0125] [40] D. J. Callahan, W. Liu, X. Li, M. R. Dreher, W. Hassouneh, M. Kim, et al., Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution, Nano Lett. 12 (2012) 2165-70. doi:10.1021/n1300630c.
- [0126] [41] J. R. McDaniel, S. R. Macewan, M. Dewhirst, A. Chilkoti, Doxorubicin-conjugated chimeric polypeptide nanoparticles that respond to mild hyperthermia, J Control Release. 159 (2012) 362-7. doi:10.1016/j. jconrel.2012.02.030.
- [0127] [42] S. Moktan, E. Perkins, F. Kratz, D. Raucher, Thermal targeting of an acid-sensitive doxorubicin conjugate of elastin-like polypeptide enhances the therapeutic efficacy compared with the parent compound in vivo, Mol Cancer Ther. 11 (2012) 1547-56. doi:10.1158/1535-7163. MCT-11-0998.
- [0128] [43] L. Walker, E. Perkins, F. Kratz, D. Raucher, Cell penetrating peptides fused to a thermally targeted biopolymer drug carrier improve the delivery and antitumor efficacy of an acid-sensitive doxorubicin derivative, Int J Pharm. 436 (2012) 825-32. doi:10.1016/j.ijpharm. 2012.07.043.
- [0129] [44] H. Betre, L. A. Setton, D. E. Meyer, A. Chilkoti, Characterization of a genetically engineered

- elastin-like polypeptide for cartilaginous tissue repair, Biomacromolecules. 3 (2002) 910-6.
- [0130] [45] M. K. McHale, L. A. Setton, A. Chilkoti, Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair, Tissue Eng. 11 (2005) 1768-79. doi:10.1089/ten.2005.11.1768.
- [0131] [46] M. F. Shamji, J. Chen, A. H. Friedman, W. J. Richardson, A. Chilkoti, L. A. Setton, Synthesis and characterization of a thermally-responsive tumor necrosis factor antagonist, J Control Release. 129 (2008) 179-86. doi:10.1016/j.jconrel.2008.04.021.
- [0132] [47] M. F. Shamji, L. Jing, J. Chen, P. Hwang, O. Ghodsizadeh, A. H. Friedman, et al., Treatment of neuroinflammation by soluble tumor necrosis factor receptor Type II fused to a thermally responsive carrier, J Neurosurg Spine. 9 (2008) 221-8. doi:10.3171/SPI/2008/9/8/221.
- [0133] [48] I. L. Moss, L. Gordon, K. A. Woodhouse, C. M. Whyne, A. J. Yee, A novel thiol-modified hyaluronan and elastin-like polypeptide composite material for tissue engineering of the nucleus pulposus of the intervertebral disc, Spine Phila Pa 1976. 36 (2011) 1022-9. doi:10.1097/BRS.0b013e3181e7b705.
- [0134] [49] M. R. Dreher, M. Elas, K. Ichikawa, E. D. Barth, A. Chilkoti, G. M. Rosen, et al., Nitroxide conjugate of a thermally responsive elastin-like polypeptide for noninvasive thermometry, Med Phys. 31 (2004) 2755-62.
- [0135] [50] T. H. Chen, Y. Bae, D. Y. Furgeson, Intelligent biosynthetic nanobiomaterials (IBNs) for hyperthermic gene delivery, Pharm Res. 25 (2008) 683-91.
- [0136] [51] U. Conrad, I. Plagmann, S. Malchow, M. Sack, D. M. Floss, A. A. Kruglov, et al., ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock, Plant Biotechnol J. 9 (2011) 22-31. doi:10.1111/j.1467-7652.2010.00523.x.
- [0137] [52] K. Na, J. Jung, J. Lee, J. Hyun, Thermoresponsive pore structure of biopolymer microspheres for a smart drug carrier, Langmuir. 26 (2010) 11165-9. doi:10. 1021/1a1013285.
- [0138] [53] P. H. Blit, W. G. McClung, J. L. Brash, K. A. Woodhouse, J. P. Santerre, Platelet inhibition and endothelial cell adhesion on elastin-like polypeptide surface modified materials, Biomaterials. 32 (2011) 5790-800. doi:10.1016/j.biomaterials.2011.04.067.
- [0139] [54] S. M. Hearst, L. R. Walker, Q. Shao, M. Lopez, D. Raucher, P. J. Vig, The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration, Neuroscience. 197 (2011) 369-80. doi:10.1016/j.neuroscience.2011.09.025.
- [0140] [55] T. H. Chen, Y. Bae, D. Y. Furgeson, G. S. Kwon, Biodegradable hybrid recombinant block copolymers for non-viral gene transfection, Int J Pharm. 427 (2012) 105-12. doi:10.1016/j.ijpharm.2011.09.035.
- [0141] [56] S. S. Amruthwar, A. V. Janorkar, Preparation and characterization of elastin-like polypeptide scaffolds for local delivery of antibiotics and proteins, J Mater Sci Mater Med. 23 (2012) 2903-12. doi:10.1007/s10856-012-4749-5.
- [0142] [57] S. S. Amruthwar, A. V. Janorkar, In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering, Dent Mater. 29 (2013) 211-20. doi:10.1016/j.denta1.2012.10.003.

[0143] [58] K. M. Lee, G. S. Jung, J. K. Park, S. K. Choi, W. B. Jeon, Effects of Arg-Gly-Asp-modified elastin-like polypeptide on pseudoislet formation via up-regulation of cell adhesion molecules and extracellular matrix proteins, Acta Biomater. 9 (2013) 5600-8. doi:10.1016/j.actbio. 2012.10.036.

[0144] [59] M. Amiram, K. M. Luginbuhl, X. Li, M. N. Feinglos, A. Chilkoti, Injectable protease-operated depots of glucagon-like peptide-1 provide extended and tunable glucose control, Proc Natl Acad Sci U A. 110 (2013) 2792-7. doi:10.1073/pnas.1214518110.

[0145] [60] A. Iriyama, T. Usui, Y. Yanagi, S. Amano, M. Oba, K. Miyata, et al., Gene transfer using micellar nanovectors inhibits corneal neovascularization in vivo, Cornea. 30 (2011) 1423-1427. doi:10.1097/ICO. 0b013e318206c893.

[0146] [61] P. Gehlbach, A. M. Demetriades, S. Yamamoto, T. Deering, W. H. Xiao, E. J. Duh, et al., Periocular gene transfer of sFlt-1 suppresses ocular neovascularization and vascular endothelial growth factor-induced breakdown of the blood-retinal barrier, Hum. Gene Ther. 14 (2003) 129-41. doi:10.1089/104303403321070829.

[0147] [62] R. Rota, T. Riccioni, M. Zaccarini, S. Lamartina, A. D. Gallo, A. Fusco, et al., Marked inhibition of retinal neovascularization in rats following soluble-fit-1 gene transfer, J. Gene Med. 6 (2004) 992-1002. doi:10. 1002/jgm.586.

[0148] [63] M. H. Dastjerdi, Z. Sadrai, D. R. Saban, Q. Zhang, R. Dana, Corneal penetration of topical and sub-conjunctival bevacizumab, Invest Ophthalmol Vis Sci. 52 (2011) 8718-23. doi:10.1167/iovs.11-7871.

INCORPORATION BY REFERENCE

[0149] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

[0150] It will be understood that various details of the presently disclosed subject matter can be changed without departing from the scope of the subject matter disclosed herein. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.

SEQUENCE LISTING

SEQ ID NO: 1

VPGXG

wherein $\ensuremath{\mathbf{X}}$ comprises an amino acid and does not include proline

SEQ ID NO: 2

(VG VPGAG VP

wherein n is about 1 to about 10

SEQ ID NO: 3

(VG VPGAG VPGAG VPGAG VPGAG VPGAG VPGAG VPGAG VPGAG VPGAG VPG),

wherein n is about 1 to about 20

SEQ ID NO: 4

(VG VPGGG VPG),

wherein n is about 8 to about 160

-continued

SEQUENCE LISTING

SEQ ID NO: 5
(VG VPGSG VPG),
wherein n is about 8 to about 160

SEQ ID NO: 6
(VG VPGHG VPG),
wherein n is about 8 to about 160

SEQ ID NO: 7
(VG VPGVG VPG),
wherein n is about 8 to about 160

SEQ ID NO: 8
(VG VPGLG VPG),
wherein n is about 8 to about 160

SEQ ID NO: 8
(VG VPGLG VPG),
wherein n is about 8 to about 160

SEQ ID NO: 9
(VG VPGIG VPG),

wherein n is about 8 to about 160

SEO ID NO: 10

MVSYWDTGVLLCALLSCLLLTGSSSGSKLKDPELSLKGTQHIMQAGQTLH LOCRGEAAHKWSLPEMVSKESERLSITKSACGRNGKOFCSTLTLNTAOAN HTGEYSCKYLAVPTSKKKETESAIYIFISDTGRPFVEMYSEIPEIIHMTE GRELVIPCRVTSPNITVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYK EIGLLTCEATVNGHLYKTNYLTHROTNTIIDVOISTPRPVKLLRGHTLVL NCTATTPLNTRVQMTWSYPDEKNKRASVRRRIDQSNSHANIFYSVLTIDK MONKDKGLYTCRVRSGPSFKSVNTSVHIYDKAFITVKHRKOOVLETVAGK RSYRLSMKVKAFPSPEVVWLKDGLPATEKSARYLTRGYSLTIKDVTEEDA GNYTILLSIKOSNVFKNLTATLIVNVKPOIYEKAVSSFPDPALYPLGSRO TLTCTAYGIPOPTIKWEWHPCNHNHSEARCDECSNNEESSILDADSNMGN RIESITORMAIIEGKNKMASTLVVADSRISGIYICIASNKVGTVGRNISF YITDVPNGFHVNLEKMPTEGEDLKLSCTVNKFLYRDVTWILLRTVNNRTM HYSISKQKMAITKEHSITLNLTIMNVSLQDSGTYACRARNVYTGEEILQK KEITIRDOEAPYLLRNLSDHTVAISSSTTLDCHANGVPEPOITWFKNNHK IOOEPGIILGPGSSTLFIERVTEEDEGVYHCKATNOKGSVESSAYLTVOG TSDKSNLELITLTCTCVAATLFWLLLTLFIRKMKRSSSEIKTDYLSIIMD $\verb"PDEVPLDEQCERLPYDASKWEFARERLKLGKSLGRGAFGKVVQASAFGIK"$ KSPTCRTVAVKMLKEGATASEYKALMTELKILTHIGHHLNVVNLLGACTK OGGPLMVIVEYCKYGNLSNYLKSKRDLFFLNKDAALHMEPKKEKMEPGLE QGKKPRLDSVTSSESFASSGFQEDKSLSDVEEEEDSDGFYKEPITMEDLI SYSFOVARGMEFLSSRKCIHRDLAARNILLSENNVVKICDFGLARDIYKN PDYVRKGDTRLPLKWMAPESIFDKIYSTKSDVWSYGVLLWEIFSLGGSPY PGVQMDEDFCSRLREGMRMRAPEYSTPEIYQIMLDCWHRDPKERPRFAEL VEKLGDLLQANVQQDGKDYIPINAILTGNSGFTYSTPAFSEDFFKESISA PKFNSGSSDDVRYVNAFKFMSLERIKTFEELLPNATSMFDDYQGDSSTLL ASPMLKRFTWTDSKPKASLKIDLRVTSKSKESGLSDVSRPSFCHSSCGHV SEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI

SEQ ID NO: 11

PELSLKGTQHIMQAGQTLHLQCRGEAAHKWSLPEMVSKESERLSITKSAC GRNGKQFCSTLTLNTAQANHTGFYSCKYLAVPTSKKKETESAIYIFISDT GRPFVEMYSEIPEIIHMTEGRELVIPCRVTSPNITVTLKKPPLDTLIPDG KRIIWDSRKGFIISNATYKEIGLLTCEATVNGHLYKTNYLTHRQTNTIID VQISTPRPVKLLRGHTLVLNCTATTPLNTRVQMTWSYPDEKNKRASVRRR IDQSNSHANIFYSVLTIDKMQNKDKGLYTCRVRSGPSFKSVNTSVH

EQ ID NO: 12

GRELVIPCRVTSPNITVTLKKFPLDTLIPDGKRIIWDSRKGFIISNATYK EIGLLTCEATVNGHLYKTNYLTHRQTNTIIDVQISTPRPVKLLRGHTLVL NCTATTPLNTRVQMTWSYPDEKNKRASVRRRIDQSNSHANIFYSVLTIDK MQNKDKGLYTCRVRSGPSFKSVNTSVH

SEO ID NO: 13

NPASPPEEGSPDPDSTGALVEEEDPFFKVPVNKLAAAVSNFGYDLYRVRS
SMSPTTNVLLSPLSVATALSALSLGADERTESIIHRALYYDLISSPDIHG
TYKELLDTVTAPQKNLKSASRIVFEKKLRIKSSFVAPLEKSYGTRPRVLT
GNPRLDLQEINNWVQAQMKGKLARSTKEIPDEISILLLGVAHFKGGWVTK
FDSRKTSLEDFYLDEERTVRVPMMSDPKAVLRYGLDSDLSCKIAQLPLTG
SMSIIFFLPLKVTQNLTLIEESLTSEFIHDIDRELKTVQAVLTVPKLKLS
YEGEVTKSLQEMKLQSLFDSPDFSKITGKPIKLTQVEHRAGFEWNEDGAG
TTPSPGLQPAHLTFPLDYHLNQPFIFVLRDTDTGALLFIGKILDPRGP

-continued

SEQUENCE LISTING

SEQUENCE LISTING

SEQ ID NO: 14 GIGASILSAGKSALKGLAKGLAEHFAN SEQ ID NO: 16 GIGKFLHSAGKFGKAFVGEIMKS

<160> NUMBER OF SEQ ID NOS: 17

SEQ ID NO: 17

SEQ ID NO: 15 KGRGKQGGKVRAKAKTRSS

<210> SEQ ID NO 1 <211> LENGTH: 5

FFGGLIKIVPAMIPKIFCKITRKC

SEQUENCE LISTING

```
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (4)..(4)
<223> OTHER INFORMATION: xaa comprises an amino acid and does not
      include proline
<400> SEQUENCE: 1
Val Pro Gly Xaa Gly
<210> SEQ ID NO 2
<211> LENGTH: 80
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(80)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 1 to about 100
<400> SEOUENCE: 2
Val Gly Val Pro Gly Ala Gly Val Pro Gly Gly Gly Val Pro Gly Ala
Gly Val Pro Gly Gly Gly Val Pro Gly Ala Gly Val Pro Gly Gly Gly
Val Pro Gly Ala Gly Val Pro Gly Gly Val Pro Gly Ala Gly Val
Pro Gly Gly Gly Val Pro Gly Ala Gly Val Pro Gly Gly Gly Val Pro
Gly Ala Gly Val Pro Gly Gly Val Pro Gly Ala Gly Val Pro Gly
<210> SEQ ID NO 3
<211> LENGTH: 40
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(40)
<223> OTHER INFORMATION: n repeat of the below sequence, wherein n is
      about 1 to about 20
```

```
<400> SEQUENCE: 3
Val Gly Val Pro Gly Ala Gly Val Pro Gly Gly Val Pro Gly Ala
Gly Val Pro Gly Gly Gly Val Pro Gly Ala Gly Val Pro Gly Gly
                               25
Val Pro Gly Ala Gly Val Pro Gly
<210> SEQ ID NO 4
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 8 to about 160
<400> SEQUENCE: 4
Val Gly Val Pro Gly Gly Gly Val Pro Gly
              5
<210> SEQ ID NO 5
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 8 to about 160
<400> SEOUENCE: 5
Val Gly Val Pro Gly Ser Gly Val Pro Gly
1 5
<210> SEQ ID NO 6
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 8 to about 160
<400> SEQUENCE: 6
Val Gly Val Pro Gly His Gly Val Pro Gly
1 5
<210> SEQ ID NO 7
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
```

```
about 8 to about 160
<400> SEQUENCE: 7
Val Gly Val Pro Gly Val Gly Val Pro Gly
<210> SEQ ID NO 8
<211> LENGTH: 10
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 8 to about 160
<400> SEQUENCE: 8
Val Gly Val Pro Gly Leu Gly Val Pro Gly
<210> SEQ ID NO 9
<211> LENGTH: 10
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<222> LOCATION: (1)..(10)
<223> OTHER INFORMATION: n repeats of the below sequence, wherein n is
     about 8 to about 160
<400> SEQUENCE: 9
Val Gly Val Pro Gly Ile Gly Val Pro Gly
<210> SEQ ID NO 10
<211> LENGTH: 1338
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of sFlt-1 protein
Met Val Ser Tyr Trp Asp Thr Gly Val Leu Leu Cys Ala Leu Leu Ser
Cys Leu Leu Thr Gly Ser Ser Ser Gly Ser Lys Leu Lys Asp Pro
Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly Gln Thr
                         40
Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser Leu Pro
        55
Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser Ala
                   70
Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn Thr
              85
                                  90
Ala Gln Ala Asn His Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val
                     105
```

Pro	Thr	Ser	Lys	Lys	Lys	Glu	Thr	Glu	Ser	Ala	Ile	Tyr	Ile	Phe	Ile
		115	_	_	-		120					125			
Ser	130	Thr	Gly	Arg	Pro	Phe 135	Val	Glu	Met	Tyr	Ser 140	Glu	Ile	Pro	Glu
Ile 145	Ile	His	Met	Thr	Glu 150	Gly	Arg	Glu	Leu	Val 155	Ile	Pro	CAa	Arg	Val 160
Thr	Ser	Pro	Asn	Ile 165	Thr	Val	Thr	Leu	Lys 170	Lys	Phe	Pro	Leu	Asp 175	Thr
Leu	Ile	Pro	Asp 180	Gly	Lys	Arg	Ile	Ile 185	Trp	Asp	Ser	Arg	Lys 190	Gly	Phe
Ile	Ile	Ser 195	Asn	Ala	Thr	Tyr	Lys 200	Glu	Ile	Gly	Leu	Leu 205	Thr	Cys	Glu
Ala	Thr 210	Val	Asn	Gly	His	Leu 215	Tyr	Lys	Thr	Asn	Tyr 220	Leu	Thr	His	Arg
Gln 225	Thr	Asn	Thr	Ile	Ile 230	Asp	Val	Gln	Ile	Ser 235	Thr	Pro	Arg	Pro	Val 240
Lys	Leu	Leu	Arg	Gly 245	His	Thr	Leu	Val	Leu 250	Asn	Cys	Thr	Ala	Thr 255	Thr
Pro	Leu	Asn	Thr 260	Arg	Val	Gln	Met	Thr 265	Trp	Ser	Tyr	Pro	Asp 270	Glu	ГЛа
Asn	Lys	Arg 275	Ala	Ser	Val	Arg	Arg 280	Arg	Ile	Asp	Gln	Ser 285	Asn	Ser	His
Ala	Asn 290	Ile	Phe	Tyr	Ser	Val 295	Leu	Thr	Ile	Asp	100	Met	Gln	Asn	Lys
Asp 305	Lys	Gly	Leu	Tyr	Thr 310	Сув	Arg	Val	Arg	Ser 315	Gly	Pro	Ser	Phe	Lys 320
Ser	Val	Asn	Thr	Ser 325	Val	His	Ile	Tyr	Asp 330	Lys	Ala	Phe	Ile	Thr 335	Val
Lys	His	Arg	Lys 340	Gln	Gln	Val	Leu	Glu 345	Thr	Val	Ala	Gly	350	Arg	Ser
Tyr	Arg	Leu 355	Ser	Met	Lys	Val	J60 Lys	Ala	Phe	Pro	Ser	Pro 365	Glu	Val	Val
Trp	Leu 370	Lys	Asp	Gly	Leu	Pro 375	Ala	Thr	Glu	Lys	Ser 380	Ala	Arg	Tyr	Leu
Thr 385	Arg	Gly	Tyr	Ser	Leu 390	Ile	Ile	Lys	Asp	Val 395	Thr	Glu	Glu	Asp	Ala 400
Gly	Asn	Tyr	Thr	Ile 405	Leu	Leu	Ser	Ile	Lys 410	Gln	Ser	Asn	Val	Phe 415	Lys
Asn	Leu	Thr	Ala 420	Thr	Leu	Ile	Val	Asn 425	Val	Lys	Pro	Gln	Ile 430	Tyr	Glu
Lys	Ala	Val 435	Ser	Ser	Phe	Pro	Asp 440	Pro	Ala	Leu	Tyr	Pro 445	Leu	Gly	Ser
Arg	Gln 450	Ile	Leu	Thr	CAa	Thr 455	Ala	Tyr	Gly	Ile	Pro 460	Gln	Pro	Thr	Ile
Lys 465	Trp	Phe	Trp	His	Pro 470	Cys	Asn	His	Asn	His 475	Ser	Glu	Ala	Arg	Cys 480
Asp	Phe	Сув	Ser	Asn 485	Asn	Glu	Glu	Ser	Ser 490	Ile	Leu	Asp	Ala	Asp 495	Ser
Asn	Met	Gly	Asn 500	Arg	Ile	Glu	Ser	Ile 505	Thr	Gln	Arg	Met	Ala 510	Ile	Ile

_															
Glu	Gly	Lys 515	Asn	ГÀа	Met	Ala	Ser 520	Thr	Leu	Val	Val	Ala 525	Asp	Ser	Arg
Ile	Ser 530	Gly	Ile	Tyr	Ile	Сув 535	Ile	Ala	Ser	Asn	Lys 540	Val	Gly	Thr	Val
Gly 545	Arg	Asn	Ile	Ser	Phe 550	Tyr	Ile	Thr	Asp	Val 555	Pro	Asn	Gly	Phe	His 560
Val	Asn	Leu	Glu	Lув 565	Met	Pro	Thr	Glu	Gly 570	Glu	Asp	Leu	Lys	Leu 575	Ser
CAa	Thr	Val	Asn 580	Lys	Phe	Leu	Tyr	Arg 585	Asp	Val	Thr	Trp	Ile 590	Leu	Leu
Arg	Thr	Val 595	Asn	Asn	Arg	Thr	Met 600	His	Tyr	Ser	Ile	Ser 605	Lys	Gln	Lys
Met	Ala 610	Ile	Thr	ГÀа	Glu	His 615	Ser	Ile	Thr	Leu	Asn 620	Leu	Thr	Ile	Met
Asn 625	Val	Ser	Leu	Gln	Asp	Ser	Gly	Thr	Tyr	Ala 635	CAa	Arg	Ala	Arg	Asn 640
Val	Tyr	Thr	Gly	Glu 645	Glu	Ile	Leu	Gln	Lys 650	Lys	Glu	Ile	Thr	Ile 655	Arg
Asp	Gln	Glu	Ala 660	Pro	Tyr	Leu	Leu	Arg 665	Asn	Leu	Ser	Asp	His 670	Thr	Val
Ala	Ile	Ser 675	Ser	Ser	Thr	Thr	Leu 680	Asp	Сув	His	Ala	Asn 685	Gly	Val	Pro
Glu	Pro 690	Gln	Ile	Thr	Trp	Phe 695	ГÀв	Asn	Asn	His	Lys 700	Ile	Gln	Gln	Glu
Pro 705	Gly	Ile	Ile	Leu	Gly 710	Pro	Gly	Ser	Ser	Thr 715	Leu	Phe	Ile	Glu	Arg 720
Val	Thr	Glu	Glu	Asp 725	Glu	Gly	Val	Tyr	His 730	CAa	ГÀа	Ala	Thr	Asn 735	Gln
Lys	Gly	Ser	Val 740	Glu	Ser	Ser	Ala	Tyr 745	Leu	Thr	Val	Gln	Gly 750	Thr	Ser
Asp	Lys	Ser 755	Asn	Leu	Glu	Leu	Ile 760	Thr	Leu	Thr	Cys	Thr 765	Сув	Val	Ala
Ala	Thr 770	Leu	Phe	Trp	Leu	Leu 775	Leu	Thr	Leu	Phe	Ile 780	Arg	Lys	Met	Lys
Arg 785	Ser	Ser	Ser	Glu	Ile 790	Lys	Thr	Asp	Tyr	Leu 795	Ser	Ile	Ile	Met	Asp 800
Pro	Asp	Glu	Val	Pro 805	Leu	Asp	Glu	Gln	Cys 810	Glu	Arg	Leu	Pro	Tyr 815	Asp
Ala	Ser	Lys	Trp 820	Glu	Phe	Ala	Arg	Glu 825	Arg	Leu	ГÀа	Leu	Gly 830	Lys	Ser
Leu	Gly	Arg 835	Gly	Ala	Phe	Gly	Lys 840	Val	Val	Gln	Ala	Ser 845	Ala	Phe	Gly
Ile	Lys 850	Lys	Ser	Pro	Thr	Сув 855	Arg	Thr	Val	Ala	Val 860	ГÀа	Met	Leu	Lys
Glu 865	Gly	Ala	Thr	Ala	Ser 870	Glu	Tyr	Lys	Ala	Leu 875	Met	Thr	Glu	Leu	880 TÀa
Ile	Leu	Thr	His	Ile 885	Gly	His	His	Leu	Asn 890	Val	Val	Asn	Leu	Leu 895	Gly
Ala	Cys	Thr	Lys	Gln	Gly	Gly	Pro	Leu 905	Met	Val	Ile	Val	Glu 910	Tyr	Cys
ГÀа	Tyr	Gly	Asn	Leu	Ser	Asn	Tyr	Leu	Lys	Ser	ГХа	Arg	Asp	Leu	Phe

		915				9	20				925	5		
Phe	Leu 930	Asn	Lys	Asp	Ala	Ala L 935	eu H	is M	et G		ro Ly: 40	s Lys	s Glu	ı Lys
Met 945	Glu	Pro	Gly	Leu	Glu 950	Gln G	ly L	λε Γ		ro A: 55	rg Lei	ı Asl	Sei	960
Thr	Ser	Ser	Glu	Ser 965	Phe	Ala S	er S		ly P: 70	he G	ln Glı	ı Ası	975	
Leu	Ser	Asp	Val 980	Glu	Glu	Glu G		sp S	er A	sp G	ly Phe	990		3 Glu
Pro	Ile	Thr 995	Met	Glu	Asp		le 000	Ser '	Tyr	Ser 1		ln 7 005	/al /	Ala Arg
Gly	Met 1010		ı Phe	e Leu	. Ser	Ser 1015	_	TÀa	CÀa	Ile	His 1020	Arg	Asp	Leu
Ala	Ala 1025		g Asr	ı Ile	Leu	Leu 1030		Glu	Asn	Asn	Val 1035	Val	ГÀз	Ile
CÀa	Asp 1040		e Gly	Leu	. Ala	Arg 1045		Ile	Tyr	Lys	Asn 1050	Pro	Asp	Tyr
Val	Arg 1055		g Gly	/ Asp	Thr	Arg 1060		Pro	Leu	Lys	Trp 1065	Met	Ala	Pro
Glu	Ser 1070		e Phe	e Asp	Lys	Ile 1075		Ser	Thr	Lys	Ser 1080	Asp	Val	Trp
Ser	Tyr 1085		/ Val	. Leu	. Leu	Trp 1090		Ile	Phe	Ser	Leu 1095	Gly	Gly	Ser
Pro	Tyr 1100		Gly	/ Val	. Gln	Met 1105		Glu	Asp	Phe	Cys 1110	Ser	Arg	Leu
Arg	Glu 1115	_	/ Met	: Arg	Met	Arg 1120		Pro	Glu	Tyr	Ser 1125	Thr	Pro	Glu
Ile	Tyr 1130		ı Ile	e Met	Leu	. Asp 1135		Trp	His	Arg	Asp 1140	Pro	Lys	Glu
Arg	Pro 1145		g Phe	e Ala	Glu	. Leu 1150		Glu	Lys	Leu	Gly 1155	Asp	Leu	Leu
Gln	Ala 1160		n Val	. Glr	Gln	Asp 1165		Lys	Asp	Tyr	Ile 1170	Pro	Ile	Asn
Ala	Ile 1175		ı Thı	Gly	Asn	Ser 1180		Phe	Thr	Tyr	Ser 1185	Thr	Pro	Ala
Phe	Ser 1190		ı Asp) Phe	Phe	Lys 1195		Ser	Ile	Ser	Ala 1200	Pro	ГÀа	Phe
Asn	Ser 1205		/ Ser	: Ser	Asp	Asp 1210		Arg	Tyr	Val	Asn 1215	Ala	Phe	ГÀа
Phe	Met 1220		. Leu	ı Glu	Arg	Ile 1225		Thr	Phe	Glu	Glu 1230	Leu	Leu	Pro
Asn	Ala 1235		Ser	Met	Phe	Asp 1240	_	Tyr	Gln	Gly	Asp 1245	Ser	Ser	Thr
Leu	Leu 1250		a Sei	Pro	Met	Leu 1255		Arg	Phe	Thr	Trp 1260	Thr	Asp	Ser
ГÀа	Pro 1265	_	a Ala	. Ser	Leu	Lys 1270		Asp	Leu	Arg	Val 1275	Thr	Ser	Lys
Ser	Lys 1280		ı Ser	: Gly	Leu	Ser 1285		Val	Ser	Arg	Pro 1290	Ser	Phe	СЛа
His	Ser 1295		c Cys	g Gly	His	Val 1300		Glu	Gly	Lys	Arg 1305	Arg	Phe	Thr

Tyr Asp His Ala Glu Leu Glu Arg Lys Ile Ala Cys Cys Ser Pro 1315 Pro Pro Asp Tyr Asn Ser Val Val Leu Tyr Ser Thr Pro Pro Ile <210> SEQ ID NO 11 <211> LENGTH: 296 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223 > OTHER INFORMATION: synthesized <220> FEATURE: <221> NAME/KEY: MISC_FEATURE <223> OTHER INFORMATION: an amino acid sequence of sFlt-1 Ig-like domains 1, 2 and 3 <400> SEQUENCE: 11 Pro Glu Leu Ser Leu Lys Gly Thr Gln His Ile Met Gln Ala Gly Gln Thr Leu His Leu Gln Cys Arg Gly Glu Ala Ala His Lys Trp Ser Leu Pro Glu Met Val Ser Lys Glu Ser Glu Arg Leu Ser Ile Thr Lys Ser 40 Ala Cys Gly Arg Asn Gly Lys Gln Phe Cys Ser Thr Leu Thr Leu Asn 55 Thr Ala Gln Ala Asn His Thr Gly Phe Tyr Ser Cys Lys Tyr Leu Ala Val Pro Thr Ser Lys Lys Glu Thr Glu Ser Ala Ile Tyr Ile Phe Ile Ser Asp Thr Gly Arg Pro Phe Val Glu Met Tyr Ser Glu Ile Pro 105 Glu Ile Ile His Met Thr Glu Gly Arg Glu Leu Val Ile Pro Cys Arg 120 Val Thr Ser Pro Asn Ile Thr Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp Gly Lys Arg Ile Ile Trp Asp Ser Arg Lys Gly 155 Phe Ile Ile Ser Asn Ala Thr Tyr Lys Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg Gln Thr Asn Thr Ile Ile Asp Val Gln Ile Ser Thr Pro Arg Pro Val Lys Leu Leu Arg Gly His Thr Leu Val Leu Asn Cys Thr Ala Thr 215 Thr Pro Leu Asn Thr Arg Val Gln Met Thr Trp Ser Tyr Pro Asp Glu Lys Asn Lys Arg Ala Ser Val Arg Arg Ile Asp Gln Ser Asn Ser 250 His Ala Asn Ile Phe Tyr Ser Val Leu Thr Ile Asp Lys Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr Cys Arg Val Arg Ser Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val His

```
290
                       295
<210> SEQ ID NO 12
<211> LENGTH: 177
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of sFlt-1 Ig-like
     domains 2 and 3
<400> SEQUENCE: 12
Gly Arg Glu Leu Val Ile Pro Cys Arg Val Thr Ser Pro Asn Ile Thr
Val Thr Leu Lys Lys Phe Pro Leu Asp Thr Leu Ile Pro Asp Gly Lys
Arg Ile Ile Trp Asp Ser Arg Lys Gly Phe Ile Ile Ser Asn Ala Thr
                         40
Tyr Lys Glu Ile Gly Leu Leu Thr Cys Glu Ala Thr Val Asn Gly His
                     55
Leu Tyr Lys Thr Asn Tyr Leu Thr His Arg Gln Thr Asn Thr Ile Ile
Asp Val Gln Ile Ser Thr Pro Arg Pro Val Lys Leu Leu Arg Gly His
                        90
Thr Leu Val Leu Asn Cys Thr Ala Thr Thr Pro Leu Asn Thr Arg Val
          100
                              105
Gln Met Thr Trp Ser Tyr Pro Asp Glu Lys Asn Lys Arg Ala Ser Val
Arg Arg Arg Ile Asp Gln Ser Asn Ser His Ala Asn Ile Phe Tyr Ser
            135
Val Leu Thr Ile Asp Lys Met Gln Asn Lys Asp Lys Gly Leu Tyr Thr
                 150
Cys Arg Val Arg Ser Gly Pro Ser Phe Lys Ser Val Asn Thr Ser Val
               165
His
<210> SEQ ID NO 13
<211> LENGTH: 398
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of PEDF
<400> SEOUENCE: 13
Asn Pro Ala Ser Pro Pro Glu Glu Gly Ser Pro Asp Pro Asp Ser Thr
Gly Ala Leu Val Glu Glu Glu Asp Pro Phe Phe Lys Val Pro Val Asn
                             25
Lys Leu Ala Ala Ala Val Ser Asn Phe Gly Tyr Asp Leu Tyr Arg Val
               40
Arg Ser Ser Met Ser Pro Thr Thr Asn Val Leu Leu Ser Pro Leu Ser
                      55
```

<400> SEQUENCE: 14

-continued

Val Ala Thr Ala Leu Ser Ala Leu Ser Leu Gly Ala Asp Glu Arg Thr Glu Ser Ile Ile His Arg Ala Leu Tyr Tyr Asp Leu Ile Ser Ser Pro Asp Ile His Gly Thr Tyr Lys Glu Leu Leu Asp Thr Val Thr Ala Pro Gln Lys Asn Leu Lys Ser Ala Ser Arg Ile Val Phe Glu Lys Lys Leu Arg Ile Lys Ser Ser Phe Val Ala Pro Leu Glu Lys Ser Tyr Gly Thr Arg Pro Arg Val Leu Thr Gly Asn Pro Arg Leu Asp Leu Gln Glu Ile Asn Asn Trp Val Gln Ala Gln Met Lys Gly Lys Leu Ala Arg Ser Thr Lys Glu Ile Pro Asp Glu Ile Ser Ile Leu Leu Leu Gly Val Ala His 180 185 190 Phe Lys Gly Gln Trp Val Thr Lys Phe Asp Ser Arg Lys Thr Ser Leu 200 Glu Asp Phe Tyr Leu Asp Glu Glu Arg Thr Val Arg Val Pro Met Met 215 Ser Asp Pro Lys Ala Val Leu Arg Tyr Gly Leu Asp Ser Asp Leu Ser 230 Cys Lys Ile Ala Gln Leu Pro Leu Thr Gly Ser Met Ser Ile Ile Phe Phe Leu Pro Leu Lys Val Thr Gln Asn Leu Thr Leu Ile Glu Glu Ser 265 Leu Thr Ser Glu Phe Ile His Asp Ile Asp Arg Glu Leu Lys Thr Val 280 Gln Ala Val Leu Thr Val Pro Lys Leu Lys Leu Ser Tyr Glu Gly Glu 295 Val Thr Lys Ser Leu Gln Glu Met Lys Leu Gln Ser Leu Phe Asp Ser Pro Asp Phe Ser Lys Ile Thr Gly Lys Pro Ile Lys Leu Thr Gln Val 330 Glu His Arg Ala Gly Phe Glu Trp Asn Glu Asp Gly Ala Gly Thr Thr Pro Ser Pro Gly Leu Gln Pro Ala His Leu Thr Phe Pro Leu Asp Tyr His Leu Asn Gln Pro Phe Ile Phe Val Leu Arg Asp Thr Asp Thr Gly Ala Leu Leu Phe Ile Gly Lys Ile Leu Asp Pro Arg Gly Pro <210> SEQ ID NO 14 <211> LENGTH: 27 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthesized <220> FEATURE: <221> NAME/KEY: MISC FEATURE <223> OTHER INFORMATION: an amino acid sequence of BLP-1 peptide

```
Gly Ile Gly Ala Ser Ile Leu Ser Ala Gly Lys Ser Ala Leu Lys Gly
Leu Ala Lys Gly Leu Ala Glu His Phe Ala Asn
<210> SEQ ID NO 15
<211> LENGTH: 19
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of parasin-1 peptide
<400> SEQUENCE: 15
Lys Gly Arg Gly Lys Gln Gly Gly Lys Val Arg Ala Lys Ala Lys Thr
Arg Ser Ser
<210> SEQ ID NO 16
<211> LENGTH: 23
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of magainin-2 peptide
<400> SEQUENCE: 16
Gly Ile Gly Lys Phe Leu His Ser Ala Gly Lys Phe Gly Lys Ala Phe
Val Gly Glu Ile Met Lys Ser
            20
<210> SEQ ID NO 17
<211> LENGTH: 24
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: synthesized
<220> FEATURE:
<221> NAME/KEY: MISC_FEATURE
<223> OTHER INFORMATION: an amino acid sequence of a ranalexin peptide
<400> SEQUENCE: 17
Phe Phe Gly Gly Leu Ile Lys Ile Val Pro Ala Met Ile Pro Lys Ile
Phe Cys Lys Ile Thr Arg Lys Cys
           20
```

- 1. A method of delivering a therapeutic agent to an eye, comprising: administering to the eye of a subject an effective amount of a compound that comprises an elastin-like polypeptide (ELP) coupled to a therapeutic agent, wherein the ELP comprises at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1).
- 2. The method of claim 1, wherein administration comprises one or more of topical administration, subconjunctival administration, and intraocular injection.
- 3. The method of claim 1, wherein a size of the ELP is configured to permit ocular penetration of the compound.
- **4**. The method of claim **3**, wherein the ELP comprises about 5 to about 300 VPGXG sequences.
 - 5. (canceled)
 - 6. (canceled)
 - 7. (canceled)
- **8**. The method of claim **1**, wherein the X amino acid is hydrophilic to permit stability of the compound in the ocular environment.
- **9**. The method of claim **8**, wherein X is selected from a mixture of Val, Ala, and Gly in a 1:8:7 ratio (SEQ ID NO:2),

- a mixture of Val, Ala, and Gly in a 1:4:3 ratio (SEQ ID NO:3), Gly (SEQ ID NO: 4), Ser (SEQ ID NO: 5), or His (SEQ ID NO:6).
 - 10. (canceled)
 - 11. (canceled)
 - 12. (canceled)
 - 13. (canceled)
- **14**. The method of claim **1**, wherein X is hydrophobic to permit corneal penetration of the compound.
- **15**. The method of claim **14**, wherein X is selected from Val (SEQ ID NO:7), Leu (SEQ ID NO: 8), or Ile (SEQ ID NO:9).
 - 16. (canceled)
 - 17. (canceled)
- 18. The method of claim 1, wherein the compound further comprises a cell-penetrating peptide (CPP) coupled to the ELP.
- 19. The method of claim 18, wherein the cell-penetrating peptide is selected from penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, and pVEC.
- 20. The method of claim 1, wherein the compound further comprises an attachment site configured to couple to a therapeutic agent.
- 21. The method of claim 20, wherein the attachment site comprises one or more Cys or Lys residues at a N-terminus, a C-terminus, or an interior of the compound.
 - 22. (canceled)
- 23. The method of claim 1, wherein the compound forms a hydrogel after topical application or intraocular injection.
- 24. The method of claim 23, wherein the compound has a phase transition below the ocular temperature, and wherein ocular injection or application induces phase transfer and hydrogel formation.
- 25. The method of claim 23, wherein the hydrogel formation increases ocular residence time and bioavailability of the therapeutic.
- **26**. The method of claim 1, wherein the therapeutic agent is linked to the ELP carrier with a cleavable linker to allow release of the therapeutic agent intraocularly.
- 27. The method of claim 1, wherein the administering of the compound further comprises treating a disorder in the subject.
- **28**. The method of claim **27**, wherein the therapeutic agent is a VEGF antagonist.
- **29**. The method of claim **27**, wherein the therapeutic agent is a member of the sFlt-1 family, a portion of the sFlt-1 protein (SEQ ID NO:10), or a combination thereof.
- **30**. The method of claim **27**, herein the therapeutic agent is sFlt-1 Ig-like domains 1, 2, and 3 (SEQ ID NO:11).
- 31. The method of claim 27, wherein the therapeutic agent is sFlt-1 Ig-like domains 2 and 3 (SEQ ID NO:12).
- **32**. The method of claim **27**, wherein the therapeutic agent is PEDF (SEQ ID NO:13).
- 33. The method of claim 28, wherein the therapeutic agent is an anti-inflammatory drug, an anti-inflammatory peptide, or a combination thereof.
- **34**. The method of claim **27**, further comprising a cell-penetrating peptide.
- **35**. The method of claim **34**, wherein the cell penetrating peptide is selected from penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC.
- **36**. The method of claim **27**, wherein the disorder is selected from the group consisting of an ocular infection and a neovascularization disorder.

- 37. (canceled)
- 38. (canceled)
- 39. (canceled)
- 40. (canceled)
- 41. (canceled)
- 42. (canceled)
- 43. A composition, comprising:
- a compound that comprises an elastin-like polypeptide (ELP) coupled to a therapeutic agent, wherein the ELP comprises at least one repeat of the amino acid sequence VPGXG (SEQ ID NO: 1).
- **44**. The composition of claim **43**, wherein the composition is eye drops, an ointment, or a combination thereof.
- **45**. The composition of claim **43**, further comprising at least one thickening agent selected from a group consisting of polyvinyl alcohol, polyethylene glycol, methyl cellulose, and carboxymethyl cellulose.
- **46**. The composition of claim **43**, further comprising an agent modulating tonicity, wherein the agent is boric acid or sodium phosphate buffer.
- **47**. The composition of claim **43**, further comprising at least one surfactant to increase corneal penetration, wherein the at least one surfactant is selected from a group consisting of benzalkonium chloride, polysorbate 20, polysorbate 80, and dioctyl sodium sulpho succinate.
- **48**. The composition of claim **43**, further comprising a buffering agent to adjust the pH of the solution.
- **49**. The composition of claim **43**, wherein the ELP comprises about 5 to about 300 VPGXG sequences.
- 50. The composition of claim 43, wherein the X amino acid is hydrophilic, hydrophobic, or a combination thereof.
- **51**. The composition of claim **43**, wherein X is at least one selecting from Val, Ala, or Gly in a 1:8:7 ratio (SEQ ID NO:2), Val, Ala, or Gly in a 1:4:3 ratio (SEQ ID NO:3), Gly (SEQ ID NO:4), Ser (SEQ ID NO:5), His (SEQ ID NO:6), Val (SEQ ID NO:7), Leu (SEQ ID NO:8), Ile (SEQ ID NO:9), and a combination thereof.
- **52**. The composition of claim **43**, wherein the compound further comprises a cell-penetrating peptide (CPP) coupled to the ELP.
- **53**. The composition of claim **52**, herein the cell-penetrating peptide is selected from penetratin, Tat, SynB1, Bac, polyArg, MTS, Transportan, POD, and pVEC.
- **54**. The composition of claim **43**, wherein the compound further comprises an attachment site configured to couple to a therapeutic agent.
- **55.** The composition of claim **54**, wherein the attachment site comprises one or more Cys residues, one or more Lys residues, or a combination thereof.
- **56**. The composition of claim **43**, wherein the therapeutic agent is at least one selected from a group consisting of a VEGF antagonist, a member of the sFlt-1 family, a portion of the sFlt-1 protein (SEQ ID NO:10), sFlt-1 Ig-like domains 1, 2, 3 (SEQ ID NO:11), PEDF (SEQ ID NO:13), an anti-inflammatory drug and/or peptide, a BLP-1 peptide (SEQ ID NO:14), a parasin-1 peptide (SEQ ID NO:15), a magainin-2 peptide (SEQ ID NO:16), and a ranalexin peptide (SEQ ID NO:17).
- **57**. The composition of claim **43**, wherein the ELP comprises at least about 5 repeats of the amino acid sequence VPGXG (SEQ ID NO: 1).
 - 58. (canceled)
 - 59. (canceled)
 - 60. (canceled)

- 61. (canceled)62. (canceled)63. (canceled)64. (canceled)

- **66**. The composition of claim **43**, further comprising a pharmaceutically acceptable carrier for topical delivery to an eye.

* * * * *