(54) 发明名称
一种抗 B 细胞生长刺激因子的纳米抗体及其用途

(57) 摘要
本发明公开了一种抗 B 细胞生长刺激因子的纳米抗体及其用途，属于生物技术领域。一种抗 B 细胞生长刺激因子的纳米抗体，其氨基酸序列为序列表 SEQ ID NO. 1 所示。本发明的优点是：本发明筛选多个活性高且具有潜在中和能力的纳米抗体，最终得到了抗 BAFF 的纳米抗体 52。该纳米抗体能特异性结合抗 BAFF 抗原，调节与 BAFF 抗原与其配体相关的生物学活性，有效抑制 BAFF 抗体与其受体结合以及产生相应的信号级联效应。抗 BAFF 纳米抗体可以阻断 BAFF 与其三种相关受体的结合，显著抑制 B 细胞增殖或存活，该纳米抗体可用于检测和/或治疗多种与 BAFF 表达异常相关疾病。
1. 一种抗 B 细胞生长刺激因子的纳米抗体，其特征在于：其氨基酸序列为序列表 SEQ ID NO. 1 所示。

2. 根据权利要求 1 所述的抗 B 细胞生长刺激因子的纳米抗体，其特征在于：其氨基酸序列与序列表 SEQ ID NO. 1 所示的氨基酸序列的同源性大于 80％，优选大于 90％，最优选大于 95％。

3. 编码权利要求 1 或 2 所述的抗 B 细胞生长刺激因子的纳米抗体的基因序列。

4. 根据权利要求 3 所述的编码抗 B 细胞生长刺激因子的纳米抗体的基因序列，其特征在于：所述基因序列为序列表 SEQ ID NO. 2 所示的核苷酸序列。

5. 包含权利要求 3 或 4 所述基因序列的表达载体和 / 或宿主细胞。

6. 通过权利要求 5 的宿主细胞制备权利要求 1 或 2 所述的抗 B 细胞生长刺激因子的纳米抗体的方法。

7. 药用组合物，其特征在于：其包含一种或多种权利要求 1 或 2 所述的抗 BAFF 纳米抗体分子作为活性成分，并包含可药用载体。

8. 根据权利要求 7 所述的药物组合物，其特征在于：所述药物载体选自细胞毒素、放射性同位素、免疫调节剂、抗血管生成剂、抗增殖剂、促凋亡剂、化学治疗剂或治疗性核酸的治疗剂。

9. 权利要求 1 或 2 所述的抗 B 细胞生长刺激因子的纳米抗体用于制备检测 BAFF 的试剂的用途。

10. 权利要求 1 或 2 所述的抗 B 细胞生长刺激因子的纳米抗体用于制备治疗 BAFF 表达异常相关疾病的药物的用途；所述 BAFF 表达异常相关疾病为 B 细胞非霍奇金氏淋巴瘤、B 细胞慢性淋巴细胞白血病、多发性骨髓瘤，涉及 B 细胞的自身免疫病或炎性疾病。
一种抗 B 细胞生长刺激因子的纳米抗体及其用途

技术领域
[0001] 本发明涉及一种抗 B 细胞生长刺激因子的纳米抗体及其用途，属于生物技术领域。

背景技术
[0002] 淋巴瘤属原发于淋巴结或淋巴组织的恶性肿瘤，有淋巴细胞和（或）组织细胞的大量增生，占我国常见恶性肿瘤的首位，且年轻化趋势明显，近年来发病率由 2-4/10 万升至 6.91/10 万，并以每年 5%的速度上升，每年新发患者约 5 万人，死亡人数超过 2 万。一般认为霍奇金淋巴瘤主要来源于 B 细胞，大多数的非霍奇金淋巴瘤也来源于 B 细胞，因此通过清除 B 细胞治疗淋巴瘤已成为一种新的治疗方案。
[0003] 临床研究发现，淋巴瘤等恶性 B 细胞可以合成和分泌一种名为 B 淋巴细胞刺激因子 (B cells-activating fact BAFF) 的蛋白，属肿瘤坏死因子家族成员，其可与表达在 B 细胞表面的受体结合，进而激活 NF-κB 途径，诱导抗细胞凋亡基因 Bcl-2、Bcl-xL 的表达，减少成熟 B 细胞的凋亡。不同亚型 B-细胞淋巴瘤患者血清可溶性 BAFF 含量较正常对照者是明显升高的，且 BAFF 血浆水平与基因变异及疾病的进展、严重程度及治疗敏感性呈正相关关系。
[0004] 纳米抗体是由羊驼血液中发现的缺失轻链的重链抗体，经比利时科学家应用分子生物学技术结合纳米粒子科学的方法，而研发出来的最新及分子量最小的抗体分子。其具有结构简单，穿透力强，易于纯化和表达，亲和力及稳定性高，无毒副反应等一系列优点。
[0005] 目前尚未有关于 BAFF 的纳米抗体的报道。

发明内容
[0006] 本发明要解决的技术问题是提供一种抗 BAFF 的纳米抗体及其编码基因序列。
[0007] 本发明要解决的另一个技术问题是提供抗 BAFF 的纳米抗体的用途。
[0008] 为实现上述目的，本发明采用以下技术方案：
[0009] 一种抗 B 细胞生长刺激因子的纳米抗体，其氨基酸序列为序列表 SEQ ID NO. 1 所示。该序列包括框架区和互补决定区；互补决定区为 CDR1—CDR3；框架区为分别为 FR1—FR4；互补决定区具有选自下组的氨基酸序列，具体为：
[0100] CDR1 的氨基酸序列：NYIMG
[0111] CDR2 的氨基酸序列：VAAINGRSRTKYADSVGK
[0122] CDR3 的氨基酸序列：AAGGPEFYRGLEDYA
[0133] 框架区的 FR1—FR4 的氨基酸序列为：
[0144] FR1 的氨基酸序列：QVQLVDSGGGLVQAGGLSLRSLCAASGRSFK
[0155] FR2 的氨基酸序列：WFRQAPGKEREF
[0166] FR3 的氨基酸序列：RFTISRDNAERTVRLMEMSLKPEDTAYYC
[0177] FR4 的氨基酸序列：YWPGTQVTYSS
[0018] 所述抗 B 细胞生长刺激因子的纳米抗体其氨基酸组成序列为 FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4。序列表 SEQ ID NO. 1 命名为抗 BAFF 纳米抗体 52。
[0019] 所述的抗 B 细胞生长刺激因子的纳米抗体，其氨基酸序列为与序列表 SEQ ID NO. 1 所示的氨基酸序列的同源性大于 80%，优选大于 90%，最优选大于 95%。
[0020] 一种多肽，选自上述纳米抗体，或称单域抗体片段，或称结构域抗体片段，或“dAb，VH，VHH”。
[0021] 编码上述抗 B 细胞生长刺激因子的纳米抗体的基因序列。
[0022] 所述基因序列为序列表 SEQ ID NO. 2 所示的核苷酸序列。
[0023] 根据本发明的抗 BAFF 纳米抗体可变区中特异性核苷酸或氨基酸序列，可在体外人工合成与此相同的抗体轻重链基因的核苷酸序列或编码相同氨基酸的核苷酸序列，从而获得相同的抗体基因或用于相关基因的改造，而获得抗 BAFF 纳米抗体或相关蛋白或多肽产物。
[0024] 包含所述基因序列的表达载体。载体可以为原核细胞表达载体、真核细胞表达载体或昆虫细胞表达载体。
[0025] 包含所述表达载体的宿主细胞。所述的宿主细胞可以为原核表达细胞、真核表达细胞或昆虫细胞，所述原核表达细胞优选大肠杆菌。
[0026] 通过所述宿主细胞制备抗 B 细胞生长刺激因子的纳米抗体的方法。
[0027] 药用组合物，其包含一种或多种所述的抗 BAFF 纳米抗体分子作为活性成分，并包含可药用赋形剂。
[0028] 所述药物赋形剂选自细胞毒素、放射性同位素、免疫调谐剂、血管生成剂、抗增殖剂、促肿瘤生长剂、化学治疗剂或治疗性核酸的治疗剂。
[0029] 所述药物组合物也可以采用包含包装的药物试剂盒的形式提供，所述包装包含在分开容器内的或在单一容器内的一种或多种赋形剂。
[0030] 所述的抗 B 细胞生长刺激因子的纳米抗体用于制备检测 BAFF 的试剂的用途。包括但不限于用于双抗体夹心酶标免疫检测 BAFF ELISA 试剂中的捕获抗原用纳米抗体包被 ELISA 板和检测抗原用的生物素标记纳米抗体。
[0031] 所述的抗 B 细胞生长刺激因子的纳米抗体用于制备治疗 BAFF 表达异常相关疾病的药物的用途；所述 BAFF 表达异常相关疾病为 B 细胞非霍奇金氏淋巴瘤（non-Hodgkins lymphoma），B 细胞慢性淋巴细胞白血病、多发性骨髓瘤、涉及 B 细胞的自身免疫病或炎性疾病。
[0032] 本发明构建了 BAFF 脂质体多肽重组基因克隆的 pET30a 表达载体，获得带有 His 标签的 BAFF 脂质体（BAFFECDO）高纯化蛋白，与能高亲和力结合带有 His 标签蛋白的 Ni⁺ 磁珠结合，展示多肽的正确空间结构，以此形式的抗原免疫羊驼，构建特异性的纳米抗体基因库（纳米抗体噬菌体展示基因库），筛选免疫纳米抗体基因库，而获得了 B 细胞刺激因子的特异性的纳米抗体（或称单域抗体片段，single domain antibody fragment），将此基因与表达载体连接重组，构建了能在大肠杆菌中高效表达的纳米抗体株 anti-BAFF52。在实验室进行摇瓶小规模生产，经 Ni⁺ 树脂凝胶亲和层析纯化，可得到 SDS-PAGE 电泳纯达 95%，约 100mg/L 细菌培养物的纳米抗体。
[0033] 本发明涉及了针对 BAFF 的不同形式纳米抗体（单体、双体或五聚体）、制备 B 细胞

本发明提供了使用 BAFF 抗体阻断或中和 BAFF 与 TAC1/或 BCMA 之间相互作用的方法。所述拮抗剂还可以阻断或中和 BAFF 与 TAC1/或 BCMA 的相互作用。抗 BAFF 受体抗体可与细胞毒素性或酶相连，或与放射性同位素、荧光化合物或化学发光化合物相连。

本发明的优点是：本发明筛选多个活性高且具有潜在中和能力和纳米抗体，最终得到了抗 BAFF 的纳米抗体 52。该纳米抗体能特异性结合 B 细胞抗原、调节与 BAFF 抗原与其配体相关的生物学活性，有效抑制 BAFF 抗原与其受体结合以及产生相应的信号级联效应。抗 BAFF 纳米抗体可以阻断 BAFF 与其三种相关受体的结合，显著抑制 B 细胞增殖或存活，该纳米抗体可用于检测和 / 或治疗多种与 BAFF 表达异常相关疾病。

以下结合附图和具体实施方式详细说明本发明，并不以此限定本发明的实施范围。

附图说明

图 1: BAFF 胞外段蛋白表达和纯化的电泳结果
图 2: Protein G 亲和层析法纯化重组抗体
图 3: 羊驼免疫血清效价
图 4: 第一轮次 PCR 普通重组抗体及单链抗体基因
图 5: 第二轮次 VH3 抗体目的片段
图 6: sfII/Pst 酶切 PHEN6 载体
图 7: sfII/Pst 酶切目的片段
图 8: 菌落 PCR 验证抗体插入率
图 9: 抗 BAFF 纳米抗体蛋白纯化结果
图 10: FPLC 方法纯化抗 BAFF 纳米抗体
图 11: 纳米抗体与 BAFF 抗原结合动力曲线
图 12: 纳米抗体对受体 BCMA 的竞争抑制作用
图 13: 纳米抗体对受体 TAC1 的竞争抑制作用
图 14: 抗 BAFF52 纳米抗体对在体外对 Raji 细胞的增殖抑制作用

具体实施方式

本发明的实施方案通过下列实施例举例说明。然而本发明的实施方案不限于这些实施例的特定细节，因为对于本领域的普通技术人员来说，其它的变化是已知的，或根据直接公开的内容和附属的权利要求是显而易见的。因此，凡基于本发明上述内容所实现的技术。
术均属于本发明的范围。

[0052] 下述实施例中所述实验方法，如无特殊说明，均为常规方法；所述试剂和生物材料，如无特殊说明，即可从商业途径获得。

[0053] 实施例1：BAFF胞外段蛋白的表达

[0054] 1. sBAFF基因的表达：从正常人静脉血，按照常规方法提取外周血单个核细胞（PBMC）。RNA的抽提按照Invitrogen公司的说明书进行。取3ug RNA逆转录制备cDNA模板，以其作为模板，扩增BAFF基因。

[0055] 引物序列为：

[0056] 5’ CCGGAATTCTCTTGGCCACCGCGTTGCGGCTCCAGAAG3’（SEQ ID No.3）

[0057] 5’ CCCAAGCTTTCACAGCGATTTCAATGC3’（SEQ ID No.4）

[0058] PCR反应条件：

<table>
<thead>
<tr>
<th>温度</th>
<th>时间</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>94℃</td>
<td>45 sec</td>
<td>热启动</td>
</tr>
<tr>
<td>57℃</td>
<td>30 sec</td>
<td>退火</td>
</tr>
<tr>
<td>72℃</td>
<td>1 min</td>
<td>延伸</td>
</tr>
</tbody>
</table>

35 cycles

[0060] 2. 表达载体的构建：PCR扩增产物用琼脂糖凝胶电泳分离、回收，用EcoRI（Biolab公司）和HindⅢ（Biolab公司）消化后，与相同酶处理的载体pET-30a（Sigma）按3:1的比例进行黏性末端连接。连接产物按CaCl2转化法感受态大肠杆菌JM109（Sigma），利用卡那霉素抗性筛选重组克隆。提取阳性克隆的质粒DNA，进行EcoRI和HindⅢ双酶切和琼脂糖凝胶电泳分析，并进行菌落PCR。将初步鉴定正确的阳性重组子，送交上海博雅生物技术有限公司、上海申能博彩生物技术有限公司进行DNA序列分析，并将测序结果与数据库中已知基因的序列进行比对。

[0061] 3. 目的基因的表达：以含有测序正确的BAFF基因的表达载体，按CaCl2转化法感受态大肠杆菌BL21（Sigma）；同时，用不含BAFF基因的空载体质粒转化感受态大肠杆菌BL21作为阴性对照。选取单个菌落，接种于含卡那霉素的LB培养基中，于37℃培养至对数期后，加入或不加入IPTG继续培养，诱导目的基因的表达。取少量诱导、未诱导细菌的培养液，离心、沉淀。去上清后，将菌体加入到SDS-PAGE缓冲液中煮沸，分析目的蛋白的表达。

[0062] 4. 目的蛋白的大量表达与纯化：从单个菌落接种于含卡那霉素的LB培养基中，于LB培养至对数期后，加入IPTG于30℃继续培养过夜。将菌体培养液于4℃以12000r/min离心15min。收集细菌用丙二醇脱脂后，以超声波破碎菌体。离心后，分别收集细菌上清液和包涵体沉淀。以镍螯合琼脂糖凝胶（北京中元正阳基因技术股份有限公司）为柱填充介质，对细菌上清的提取液进行亲和层析。目的蛋白的洗脱采用升高咪唑的浓度完成。收集不同浓度的咪唑洗脱峰样品，用SDS-PAGE分析目的蛋白。（图1）

[0063] BAFF胞外段蛋白的氨基酸序列如下表：| SEQUENCE | POSITION |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AVQGPEETVTQDCLQIADSEPTTTIQGSYTFVPWLLSFKRGSALEEEKLVKETGYFYIGQVLYTDKTYAMGHLIQRKKHVFGDLSVLFTFRC1QNPETLPNNSCYSAGIAKLEEGDLEQLAPRENAQISLDGDVTFFGALKLL</td>
<td>SEQ ID No.5</td>
</tr>
</tbody>
</table>

[0064] 实施例2：抗BAFF特异性纳米抗体库的构建
1. 免疫羊驼，酶免方法分析纳米抗体产生情况。

羊驼颈背部皮下多点注射抗原总计 1.5mg，并加入福氏佐剂，分 4 次免疫，跟踪观察注射包块吸收情况，以确认免疫正确。第一次免疫一个月后测定血清抗体效价 (图 2)；其后免疫，每次免疫间隔时间减半，并测定效价。用 Protein G 柱，亲和层析方法分离第 4 次免疫后一周的血清，ELISA 法检测重链抗体产生情况及抗体效价，在第 4 次免疫后，羊驼免疫血清效价可达到 1:10000。(图 3)。

2. 分离羊驼外周血淋巴细胞

分离羊驼外周血淋巴细胞，用 RNA 抽提试剂盒 (QIAGEN)，从得到的淋巴细胞中提取总 RNA。

3. 集式 PCR 方法获得骆驼重链抗体可变区 -VHH。

为提高扩增特异性，逆转录引物采用重链抗体的特异性引物，合成 cDNA 第一链，以此模板，分别用两套引物进行 PCR 扩增重链抗体 VHH 基因片段。采用巢式 PCR 方法，第一次 PCR 扩增中大于 800bp 的为普通重链基因片段，在 800 ～ 500bp 之间的为缺失轻链的重链抗体基因片段 (图 4)，切成回收缺失轻链重链抗体基因片段，以此为模板用 VHH 特异性引物经 PCR 扩增得到 VHH 目的基因 (500bp) (图 5)。

多样性引物的合成

Heavy Chain Fd5’ primers:

YTch-1: CGT CAT CAA GGT ACC AGT TGA (序列为 SEQ ID NO. 6)

YTch-2: GGG GTA CCT GTC ATC CAC GGA CCA GCT GA (序列为 SEQ ID NO. 7)

Heavy ChainFd3’ primers:

YT1BN: GCC CAG CCG GCC ATG CCC SMK GTR CAG CTG GAK TCTG GGA G (序列为 SEQ ID NO. 8)

YT2BN: GCC CAG CCG GCC ATG GCC CAG TAA GTG GAG GAG TCTGG GGA G (序列为 SEQ ID NO. 9)

4. VHH 片段和噬菌体展示载体的连接及电转化 TG1 感受态。

（1）Sfi 单酶切 VHH 片段：

PCR 片段	30μl
10×Buffer	5μl
Sfi （TAKARA）	2.5μl
ddH2O	12.5μl
总体积	50μl

混匀，置短离心，置 50℃ PCR 仪中酶切过夜，纯化酶切后的 PCR 产物。

（2）Sfi 单酶切载体质粒：

0084
pHEN6 15μl
10×Buffer 5μl
Sfi（TAKARA）2.5μl
ddH₂O 27.5μl
总体积 50μl

[0085] 混匀，暂短离心，置37℃ PCR 仪中酶切过夜，凝胶回收试剂盒(QIA)纯化。
[0086] (3) pStI 单酶切载体质粒：
[0087] Sfi 酶切割pHEN6 15μl
10×Buffer 5μl
pStI（FER）2.5μl
ddH₂O 27.5μl
总体积 50μl

[0088] 混匀，暂短离心置37℃水浴酶切1h 用 PCR 产物纯化试剂盒(QIA)纯化酶切后的质粒载体，1％琼脂糖凝胶电泳，鉴定质粒。
[0089] (4) 连接体系：
[0090] 酶切后目的片段 10μl
酶切后质粒 3μl

[0091] 10×Buffer 2μl
T₄DNA 连接酶（NEB） 1μl
ddH₂O 3μl
总体积 20μl

[0092] 混匀后暂短离心，置16℃ PCR 仪连接 28h。
[0093] 将 VHⅢ片段及 pHEN6 载体（Conrath, KEM other. Antimicrob Agents Chemother (Antimicrobial Chemotherapy) 2001, 45: (10) 2807-12.，中国专利 ZL20111028003.1）分别经 SfiI/PstI 酶切并连接（图 6-7），电转化至 TG1 感受态细胞中，涂布平板，经菌落 PCR 验证抗体插入率。重组基因克隆效率检测；取电转化菌液涂布 LB/Amp 平板上，32℃，过夜培养，次日用菌落 PCR 的方法验证抗体的连接效率，噬菌体抗体库的连接效率在 90%以上。（图 8）
[0094] 5. VHⅢ抗体基因库的构建及多样性的鉴定和保存
[0095] 根据转化后测定的滴度乘以转化的总量计算库容量。另外，随机选出生电转后筛选平板生长的 20～50 个阳性克隆，测序，如果没有重复序列发生，可以判断其多样性良好。将剩余菌液加入适当 2YT/Amp 培养基 2 小时培养后，加甘油分装，于 -80℃ 冻存，从而得到
BAFF 免疫的 VIH 型抗体基因库。

6. VIH 噬菌体抗体库的制备和初级功能鉴定

抗体库加入辅助噬菌体 M13K07 (Invitrogen) 进行拯救，将 1 μl M13K07 加入至含有 0.4% 2YT、0.4% 葡萄糖 + 0.4% 胰酪胨培养基中细胞中，37°C 静置 15min 后，将此 0.4% 胰酪胨培养基加入至含有 92% 2YT、92% 胰酪胨培养基中，静置 15min，37°C 250rpm，1h 后，加入 100 μl Kan (50mg/mL) 37°C 过夜。拯救后上清取 100 μl 用于抗体库的初级功能鉴定，剩余部分用 PEG8000 沉淀噬菌体，4°C 条件下，离心收集沉淀，保存并测定噬菌体抗体库滴度。

实施例 3：抗 BAFF 纳米抗体的获得

1. 抗 BAFF 特异性纳米抗体的筛选

用生物素化 BAFF 抗原，以链霉素亲和素磁珠方法从噬菌体库筛选抗体出抗 BAFF 的纳米抗体。将生物素标记的 BAFF 抗原与噬菌体抗体库按比例混合，4°C 过夜，将抗原 - 噬菌体抗体复合物加入含有链霉素和磁珠的 EP 管中，翻滚转动 0.5h，使磁珠与生物素标记的抗原 - 噬菌体抗体复合物充分结合。PBST (0.05%T20) 、PBS 各漂洗 10 次后，用 TEA 洗脱磁珠体，室温静置 10min，10% Tris-HCl 中合 TEA，冰上保存。将噬菌体感染率对数生长期 T61，取适量菌液稀释后涂布 AMP/LB 平板，32°C 培养，测定洗脱液滴度，其余菌液扩大培养后以 M13K07 超感染并振荡培养过夜，第 2 天收集上清，用 PEG 纯化，浓缩后即为用于下一轮筛选的次级噬菌体抗体库。经 3 轮筛选，测定每轮筛选后所获得的特异性噬菌体抗体的滴度，并计算每轮筛选噬菌体输入 / 产出比 (回收率) 作为特异性噬菌体抗体富集的指标。

表 1：亲和筛选对噬菌体抗体的富集效应

<table>
<thead>
<tr>
<th>Round</th>
<th>Titer of input phage</th>
<th>Titer of output phage</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.3×10^{12}</td>
<td>1.48×10^{6}</td>
<td>1.14×10^{6}</td>
</tr>
<tr>
<td>2</td>
<td>7.3×10^{11}</td>
<td>4.03×10^{7}</td>
<td>5.52×10^{5}</td>
</tr>
<tr>
<td>3</td>
<td>6.3×10^{11}</td>
<td>1.70×10^{7}</td>
<td>2.70×10^{5}</td>
</tr>
</tbody>
</table>

2. 噬菌体 ELISA 方法挑选阳性克隆

从第 3 轮筛选生长菌落的琼脂平板上随机挑取单个菌落，接种在含有 Amp 的 2YT 液体培养基的 96 孔培养板中培养，用辅助噬菌体超感染诱导表达噬菌体抗体。收获表达上清，以 BAFF 为抗原进行 ELISA 测定，挑选出 BAFF 阳性孔，经 DNA 序列鉴定抗 BAFF 纳米抗体克隆的基因序列。得到包括序列表 SEQ ID NO. 2 基因序列在内的滚一系列纳米抗体基因序列，用于进一步表达和筛选特异性、高活性的纳米抗体。

实施例 4：特异性纳米抗体表达质粒的构建

PCR 扩增实施例 3 所获得的特异性的纳米抗体基因，而获得带有限制性内切酶 BbsI 和 BamHI 位点 PCR 产物，用限制性内切酶 BbsI 和 BamHI 分别处理 PCR 产物和载体 (pSFJ2 载体) (Kim et al. Bionic Biochem. 2002, 66(5): 1148-51, 中国专利 ZL201110280031)，经 T4 连接酶连接重组，而获得能在大肠杆菌中高效表达的质粒 BAFF52pSFJ2，并进行基因
序列测定以确定其序列的正确性。

[0107] 1. 获得 VHH 目的基因的 PCR 扩增条件，50 μl PCR 体系的组成:

<table>
<thead>
<tr>
<th></th>
<th>25 μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIX</td>
<td></td>
</tr>
<tr>
<td>阳性菌落克隆</td>
<td>5 μl</td>
</tr>
<tr>
<td>正义链引物</td>
<td>1 μl (1mol/l)</td>
</tr>
<tr>
<td>反义链引物</td>
<td>1 μl (1mol/l)</td>
</tr>
<tr>
<td>DEPC 处理水</td>
<td>23 μl</td>
</tr>
<tr>
<td>总体积</td>
<td>50 μl</td>
</tr>
</tbody>
</table>

[0110] PCR 反应条件:

94°C 3 min
94°C 30sec
50°C 30sec
72°C 1 min

31 cycles

[0112] 正义链引物 —— TATGAAGACACCAGCCAGCTGAGTGMAGCTGGWGGAGTCT；(序列表 SEQ ID NO. 10)

[0113] 反义链引物 —— GAAGATCTCCGGATCTGAGGAGCCTGACCTGGGT；(序列表 SEQ ID NO. 11)

[0114] 2. 目的基因的酶切:

<table>
<thead>
<tr>
<th></th>
<th>30μl</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR 产物</td>
<td></td>
</tr>
<tr>
<td>10×Buffer</td>
<td>6μl</td>
</tr>
<tr>
<td>BamHI（fermentas）</td>
<td>1μl</td>
</tr>
<tr>
<td>bbsI（fermentas）</td>
<td>1μl</td>
</tr>
<tr>
<td>ddH2O</td>
<td>22μl</td>
</tr>
<tr>
<td>总体积</td>
<td>60μl</td>
</tr>
</tbody>
</table>

[0116] 3. 载体质粒的酶切:
载体质粒 20μl
10×Buffer 5μl
BamHI 1μl
bsl 1μl
ddH₂O 32μl
总体积 60μl

[0118] 说明，暂短离心，置 37℃水浴中酶切 1h，用胶回收试剂盒回收酶切后的目的片段及质粒载体。

[0119] 4. 连接目的基因与载体

[0120] 在 1.5ml Eppendorf 管中依次加入下列组分：

<table>
<thead>
<tr>
<th>名称</th>
<th>体积</th>
</tr>
</thead>
<tbody>
<tr>
<td>酶切后目的片段</td>
<td>4μl</td>
</tr>
<tr>
<td>酶切后 pSJF2 质粒</td>
<td>4.5μl</td>
</tr>
<tr>
<td>10×Buffer</td>
<td>1μl</td>
</tr>
<tr>
<td>T₄DNA 连接酶（NEB）</td>
<td>0.5μl</td>
</tr>
<tr>
<td>总体积</td>
<td>10μl</td>
</tr>
</tbody>
</table>

[0122] 混匀后暂短离心，16℃中连接 18h，得到特异性纳米抗体表达质粒 BAFF52 - pSJF2 的质粒。

[0123] 实施例 5：抗 BAFF 纳米抗体的表达与纯化

[0124] 1. 纳米抗体蛋白在大肠杆菌中表达、纯化：

[0125] （1）将实施例 4 所述的含有质粒 BAFF52 - pSJF2 的菌种接种于含氨基苄青霉素的 LB 培养板上，37℃过夜。

[0126] （2）挑选单个菌落接种于 2ml 的含氨基苄青霉素的 LB 培养液中，37℃，摇床培养过夜。

[0127] （3）转种于 1L 含氨基苄青霉素的 2 YT 培养液中，37℃摇床培养，240 转 / 分，培养到 OD 值达 0.6 ~ 1.0 时，加入 0.1 ~ 0.5M IPTG，继续培养过夜。

[0128] （4）离心，收菌。

[0129] （5）加融菌酶裂解细菌，离心，收上清中可溶性纳米抗体蛋白。

[0130] （6）经 Ni⁺ 离子亲和层析高压液相获得纯度达 95% 以上的蛋白。

[0131] 表达的抗 BAFF 纳米抗体蛋白，经 Ni⁺ 树脂凝胶亲和层析纯化，1~4 号为 250mM 咪唑洗脱出抗 BAFF 纳米抗体，M 为标准分子量蛋白 marker，纯化蛋白 SDS-PAGE 结果所示，纯化蛋白纯度可达 95% 以上。（图 9）

[0132] 2. 快速蛋白液相色谱：

[0133] （1）抗原及缓冲液准备准备：用 0.22μm 微孔滤膜过滤蛋白溶液及 PB 缓冲液。
层析柱准备：用 PB 缓冲液 (pH 7.2) 平衡 Superdex75TM 层析柱，流速为 0.5ml/min。
(2) 样品纯化：用注射器将 1ml 纳米抗体样品注入样品瓶中，流速为 0.5ml/min，以紫外检测器自动测定洗脱液的 A280nm 值，收集所需纯化的纳米抗体。
经分子筛葡聚糖凝胶 (superG75) 过滤高压液相分析实验所显示，抗 BAFF 纳米抗体的洗脱峰出现的时间比标准分子量蛋白 Marker 相比较，其峰值的分子量应为 15kd。图10
测序得到抗 BAFF 纳米抗体 52 的氨基酸序列为序列表 SEQ ID NO. 1 所示。
实验例 6:生物膜层干涉技术对抗 BAFF 纳米抗体亲和力测定实验
1. 生物膜化抗原准备：先将溶解在 PBS 中的 BAFF 抗原 (实施例 1 方法制备) 与生物素按 1:3 的摩尔比混合均匀，室温静置 0.5h，然后通过 10KD 超滤管超滤除去游离的生物素分子，得到生物素化的 BAFF 抗原，并测定生物素化抗原的浓度。
2. 抗体准备：Broford 法测定抗体浓度，用 PBST (0.005%T20) 稀释抗 BAFF 纳米抗体为 20μM, 10μM, 5μM, 2.5μM, 1.25μM 个不同浓度，设 20μM 抗 CD20 抗体 (R&D) 为无关对照。
3. 包被抗体：将生物素化的抗原用 PBST (0.005%T20) 缓冲液稀释至 20μg/ml，然后在 Octet Qk 系统上 (Fortebio, pull 公司)，将 6 根 SA 传感器置于抗体溶液中反应，使抗原偶联在 SA 传感器上。
4. 抗原与抗体结合动力学分析：在 Octet Qk 系统上，将包被了抗原的传感器分别置于 5 个不同浓度的 BAFF 纳米抗体及对照抗体溶液中，作用 300s，使抗体与传感器上的抗原结合，然后将传感器置于 PBST 溶液中，使结合在芯片表面的抗体解离，解离时间 1500s。这一过程中仪器会自动记录抗原与抗体结合，解离的实时信息。
5. 亲和力常数计算：所得数据用分析软件进行 L:Langmuir 结合模型拟合，计算抗原抗体结合的动力学常数。结合常数：kon (1/Ms) = 5.71E+03，解离常数：kdis (1/s) = 1.82E-02，亲和力：KD (μM) = 3.18E-06。
生物膜层干涉技术方法对纳米抗体的亲和力测定及动力学分析，分别用不同浓度 (20μM, 10μM, 5μM, 2.5μM, 1.25μM) 的纳米抗体与 BAFF 抗原结合，通过结合常数及解离常数，计算抗体的亲和力为 3.18E-06。图11
实施例 7：抗 BAFF 纳米抗体 52 与受体 BCMA/TCI 的 ELISA 竞争抑制实验
1. 0.05M NaHCO3 (pH9.5) 稀释 BAFF 抗原 (实施例 1 制备) 至 10μg/ml，100μl 抗原包被 2 块 96 孔板，4℃过夜。
2. 300μl 10.5%BSA-PBS 封闭 96 孔板，37℃ 2h。
3. 先在第 1 块 96 孔板的板孔中加入浓度为 50μg/ml 的 BCMA (B 细胞成熟抗原，Sigma) 50μl，再将抗 BAFF 纳米抗体以一定浓度比例稀释，按 50μl/孔加入，37℃ 1h。
4. 阴性对照 Anti-CD20 (R&D 公司)
表 2：纳米抗体对受体 BCMA 的竞争抑制作用
空白
对照组

阴性
对照组

实验组

[0152] 4. 依照第 3 步加样办法，取第 2 块 96 孔的板孔中加入浓度为 10 μg/ml 的 TACI（跨膜激活物与亲环素相互作用物，Sigma）50 μl，再将抗 BAFF 纳米抗体以一定浓度比例稀释，按 50 μl/孔加入，37℃，1h。

[0153] 表 3；纳米抗体对受体 TACI 的竞争抑制作用

[0154]

空白
对照组

阴性
对照组

实验组

[0155] 5. 将 HRP-GA3-H1g- 抗体（辣根过氧化物酶标记的山羊抗人二抗，Abbkine 公司）按 1:5000 倍稀释，每孔加入 100 μl，37℃ 1h 后，用 0.05%PBST 洗板三次。

[0156] 6. 加 TMB100 μl，避光室温静置 20min。

[0157] 7.1mo1/LHCl100 μl 终止反应。

[0158] 8. 用酶标仪测定 450nm 波长下的样品 OD 值。

[0159] 图 12 和图 13 显示，在纳米抗体及 BAFF 抗原的受体 TACI、BCMA 与 BAFF 抗原结合的竞争 ELISA 实验中，发现纳米抗体对 TACI 有一定的抑制作用，（抑制率为 29%）且作用特异（无关对照抗 CD20 纳米抗体结果呈阳性）。

[0160] 实施例 8：抗 BAFF 纳米抗体对 BAFF 刺激 Raji 细胞增殖的抑制作用

[0161] 1. 细胞培养；Raji 细胞（人 B 淋巴细胞瘤，购于 ATCC）于 10%FBS 的 1640 培养基（Gibico 公司）于 37℃,5%CO2 条件下常规培养。

[0162] 2. 细胞计数；计数培养细胞，将细胞配制成 10^6/ml 的细胞悬液后，以每孔 100 μl 加入至 96 孔细胞培养板中，每孔约 10^5 个细胞。

[0163] 3. BAFF 刺激 Raji 细胞增殖：将 BAFF 抗原（实施例 1 制备）按终浓度 0ng/ml、125ng/ml、250ng/ml、500ng/ml、750ng/ml、1μg/ml 对照组为 100 μl 无血清改良型 RPMI-1640 培养基，每组设 3 个重复孔，分别培养 24h、48h、72h 后，加入 10 μl 的 CCK-8（Dojindo Laboratories），于 37℃,5%CO2 条件下继续常规培养 5h。在 450nm 波长下，检测各孔的吸光度值，观察 BAFF 刺激 Raji 细胞增殖作用。

[0164] 表 4；BAFF 刺激 Raji 细胞增殖
空白
对照组
阴性
[0165] 对照组
实验组
BAFF 750 ng/ml

<table>
<thead>
<tr>
<th>Anti-BAFF</th>
<th>0μg/ml</th>
<th>25μg/ml</th>
<th>50μg/ml</th>
<th>75μg/ml</th>
<th>100μg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0166] 4. 纳米抗体对细胞的增殖抑制：在BAFF抗原刺激Raji细胞增殖第24h及48h后，加入抗BAFF纳米抗体52使其终浓度为0μg/ml、25μg/ml、50μg/ml、75μg/ml、100μg/ml，每组3个复孔，再分别继续培养细胞48h、24h，使BAFF抗原刺激Raji细胞增殖达72h。

[0167] 图14显示，750ng/ml的BAFF抗原对刺激Raji细胞72h，细胞可见明显见增殖。在BAFF抗原刺激48h后加入纳米抗体，对细胞增殖的抑制作用更加明显。
<110> 天津胜发生物技术有限公司
<120> 一种抗 B 细胞生长刺激因子的纳米抗体及其用途
<130>
<160> 11
<170> PatentIn version 3.5

<210> 1
<211> 124
<212> PRT
<213> 骆驼

<400> 1

Gln Val Gln Leu Val Asp Ser Gly Gly Gly Leu Val Gln Ala Gly Gly
1 5 10 15
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Arg Ser Phe Lys Asn Tyr
20 25 30
His Met Gly Trp Phe Arg Gln Ala Pro Gly Lys Glu Arg Glu Phe Val
35 40 45
Ala Ala Ile Asn Gly Arg Gly Ser Arg Thr Lys Tyr Ala Asp Ser Val
50 55 60
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Glu Arg Thr Val Arg
65 70 75 80
Leu Glu Met Asn Ser Leu Lys Pro Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Ala Ala Gly Gly Pro Glu Phe Tyr Arg Gly Arg Leu Glu Asp Tyr Ala
100 105 110
Tyr Trp Gly Pro Gly Thr Gin Val Thr Val Ser Ser
115 120
<210> 2
<211> DNA
<212> 骆驼
<400> 2

caggtgca gc tgggggagga ttgggtcagg ctggggtctc tctgagactc
60
tctgtgcag cctctggacgc ttccttcaaa aacatcatca tgggcggttt cgcggcaggct
120
caggggaagg agcgtgagtgt tgtagcagct attaacggggc gaggtagtag gacaaaaatat
180
gcagactccg tgaaggcccg gtcaccatc tccagagaca acggccgagag aacggtgcgt
240
c tggaatgtga atagccttga aaacctggac acggccgttt attactgtgc agcaggaggt
300
c ccgaatttt atggtgttag acctgaggat tattgtact ggggccggg gacccaggtc
360
accgctctcct ca
372

<210> 3
<211> DNA
<212> 人工合成引物序列
<400> 3

cgggaattcc tggggtccag cggtgcctgc agggttccaga ag
42

<210> 4
<211> DNA
<212> 人工合成引物序列
<400> 4

[0003]
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Gln</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Val</td>
<td>Glu</td>
<td>Glu</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Gln</td>
<td>Asp</td>
<td>Cys</td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Asp</td>
<td>Ser</td>
</tr>
<tr>
<td>Thr</td>
<td>Pro</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Phe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>35</th>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Trp</td>
<td>Leu</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Phe</td>
<td>Lys</td>
</tr>
<tr>
<td>Arg</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Glu</td>
<td>Lys</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>Asn</td>
<td>Lys</td>
<td>Ile</td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Tyr</td>
<td>Phe</td>
</tr>
<tr>
<td>Phe</td>
<td>Ile</td>
<td>Tyr</td>
<td>Gly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gln</td>
<td>Val</td>
<td>Leu</td>
<td>Tyr</td>
<td>Thr</td>
</tr>
<tr>
<td>Asp</td>
<td>Lys</td>
<td>Thr</td>
<td>Tyr</td>
<td>Ala</td>
</tr>
<tr>
<td>Met</td>
<td>Gly</td>
<td>His</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>Gln</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>85</th>
<th>90</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>Lys</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Glu</td>
<td>Leu</td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Val</td>
<td>Thr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>105</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Arg</td>
<td>Cys</td>
<td>Ile</td>
</tr>
<tr>
<td>Gln</td>
<td>Asn</td>
<td>Met</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
<td>Asn</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td>Cys</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>115</th>
<th>120</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr</td>
<td>Ser</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
</tr>
<tr>
<td>Leu</td>
<td>Gln</td>
<td>Leu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>130</th>
<th>135</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td>Asn</td>
<td>Ala</td>
<td>Gln</td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>145</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>Leu</td>
<td>Leu</td>
<td></td>
</tr>
</tbody>
</table>
<210> 6
<211> 21
<212> DNA
<213> 人工合成引物序列

<400> 6
 cgccatcaag gtaccagttg a 21

<210> 7
<211> 29
<212> DNA
<213> 人工合成引物序列

<400> 7
 ggggtacctg tcatccacgg accagctga 29

<210> 8
<211> 46
<212> DNA
<213> 人工合成引物序列

<400> 8
 gcccagccgg ccatggccsm kgtrcagctg gtggaktctg ggggag 46

<210> 9

[0005]
<211> 46
<212> DNA
<213> 人工合成引物序列

<400> 9
gccagccgg ccatggccca ggtaaagctg gaggagtctg ggggag 46

<210> 10
<211> 38
<212> DNA
<213> 人工合成引物序列

<400> 10
tatgaagaca ccaggcccg augmactgg wggagitct 38

<210> 11
<211> 37
<212> DNA
<213> 人工合成引物序列

<400> 11
gaagaatcctc ggatcctgag gagacggtga cctgggt 37
图 5

图 6

图 7