(54) Title: 4,5-DIHYDRO-1H-PYRAZOLE DERIVATIVES HAVING CB1-ANTAGONISTIC ACTIVITY

(57) Abstract: The present invention relates to a group of novel 4,5-dihydro-1H-pyrazole derivatives having S configuration at the 4-position of their 4,5-dihydro pyrazole ring which are potent antagonists of the cannabis CB₁-receptor. The compounds have the general formula (I) wherein R₁ and R₂ are the same or different and represent 3-pyridyl or 4-pyridyl or phenyl which may be substituted with halogen or methoxy. R₃ and R₄ are the same or different and represent hydrogen, alkyl (1-3 C) or dimethylamino-R₄ represents phenyl which may be substituted with 1 or 2 substituents selected from the group halogen atoms, trifluoromethyl, methoxy and alkyl (1-3 C) and tautomers, prodrugs and salts thereof. These enantiomers are much more potent and selective antagonists of the cannabis CB₁-receptor, than the other enantiomer.
4,5-Dihydro-1H-pyrazole derivatives having CB$_1$-antagonistic activity

The present invention relates to a group of novel enantiomers of 4,5-dihydro-1H-pyrazole derivatives having S configuration at the 4-position of their 4,5-dihydopyrazole ring, to methods for the preparation of these compounds, and to pharmaceutical compositions containing one or more of these compounds as an active component.

The above mentioned (4S)-4,5-dihydro-1H-pyrazoles are potent Cannabis-1 (CB$_1$) receptor antagonists with utility for the treatment of psychiatric and neurological disorders.

Cannabinoids are present in the Indian hemp Cannabis Sativa L. and have been used as medicinal agents for centuries (Mechoulam, R.; Feigenbaum, J.J. Prog. Med. Chem. 1987, 24, 159). However, only within the past ten years the research in the cannabinoid area has revealed pivotal information on cannabinoid receptors and their (endogenous) agonists and antagonists. The discovery and the subsequent cloning of two different subtypes of Cannabinoid receptors (CB$_1$ and CB$_2$) stimulated the search for novel cannabinoid receptor antagonists (Munro, S.; Thomas, K.L.; Abu-Shaar, M. Nature 1993, 365, 61. Matsuda, L.A.; Bonner, T.I. Cannabinoid Receptors, Pertwee, R.G. Ed. 1995, 117, Academic Press, London).

In addition, pharmaceutical companies became interested in the development of cannabinoid drugs for the treatment of diseases connected with disorders of the cannabinoid system. The wide distribution of CB$_1$ receptors in the brain, in combination with the strictly peripheral localisation of the CB$_2$ receptor, makes the CB$_1$ receptor a very interesting molecular target for CNS-directed drug discovery in the areas of both psychiatric and neurological disorders (Conroe, P. Neurobiology of Disease 1998, 5, 534. Pop, E. Curr. Opin. In CPNS Investigational Drugs 1999, 1, 587. Greenberg, D.A. Drug News Perspect. 1999, 12, 458). Hitherto, three types of distinct CB$_1$ receptor antagonists are known.

Aminoalkylindoles have been disclosed as CB$_1$ receptor antagonists. A representative example is Iodopradalone (AM-630), which was introduced in

It has now surprisingly been found that the novel enantiomers of 4,5-dihydro-1H-pyrazole derivatives having S configuration at the 4-position of their 4,5-dihydro pyrazole ring of the formula (I), prodrugs thereof, tautomers thereof and salts thereof

![Structure diagram](l)

wherein
- R and R₁ are the same or different and represent 3-pyridyl or 4-pyridyl, or phenyl which may be substituted with halogen or methoxy,
- R₂ and R₃ are the same or different and represent hydrogen, alkyl (1-3 C) or dimethylamino
- R₄ represents phenyl which may be substituted with 1, 2 or 3 substituents selected from the group halogen, trifluoromethyl, methoxy and alkyl (1-3 C)
are much more potent and selective antagonists of the cannabis CB₁-receptor, than the correspondence R-enantiomer.

Due to the potent CB₁ antagonistic activity the compounds according to the invention are suitable for use in the treatment of psychiatric disorders such as psychosis, anxiety, depression, attention deficits, memory disorders and appetite disorders, obesity, neurological disorders such as dementia, distonia, Parkinson's disease, Alzheimer's disease, epilepsy, Huntington's disease, Tourette's syndrome, cerebral ischaemia, as well as for the treatment of pain disorders and other CNS-diseases involving cannabinoid neurotransmission, and in the treatment of gastrointestinal disorders and cardiovascular disorders.

The affinity of the compounds of the invention for cannabinoid CB₁ receptors was determined using membrane preparations of Chinese hamster ovary (CHO) cells in which the human cannabinoid CB₁ receptor is stably transfected in conjunction with [³H]CP-55,940 as radioligand. After incubation of a freshly prepared cell membrane preparation with the [³H]-ligand, with or without addition of compounds of the invention, separation of bound and free ligand was performed by filtration over glassfiber filters. Radioactivity on the filter was measured by liquid scintillation counting.

The cannabinoid CB₁ antagonistic activity of compounds of the invention was determined by functional studies using CHO cells in which human cannabinoid CB₁ receptors are stably expressed. Adenyl cyclase was stimulated using forskolin and measured by quantifying the amount of accumulated cyclic AMP. Concomitant activation of CB₁ receptors by CB₁ receptor agonists (e.g. CP-55,940 or (R)-WIN-55,212-2) can attenuate the forskolin-induced accumulation of cAMP in a concentration-dependent manner. This CB₁ receptor-mediated response can be antagonised by CB₁ receptor antagonists such as the compounds of the invention.

The invention relates both to the E isomer, Z isomer and E/Z mixtures of compounds having formula (I).

The compounds can be brought into forms suitable for administration by means of usual processes using auxiliary substances and/or liquid or solid carrier materials.
The compounds of the invention having formula (III) \textit{(vide infra)} can be obtained according to methods known, for example: a) EP 0021506; b) DE 2529689.

A suitable synthesis for the racemic compounds according to the present invention is the following:

Synthesis route A

Step 1 of route A

Reaction of a compound having formula (III)

\[
\begin{array}{c}
\text{R} \\
\text{N} \\
\text{H}
\end{array}
\begin{array}{c}
\text{R}_1
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\text{(III)}
\]

with a compound having formula (IV)

\[
\begin{array}{c}
\text{HN} \\
\text{S} \\
\text{R}_5
\end{array}
\begin{array}{c}
\text{R}_2 \\
\text{N} \\
\text{R}_3
\end{array}
\]

\text{(IV)}

wherein \(R_5\) represents a lower alkyl group, such as for example 2-methyl-2-thiopseudourea, or with a suitable salt form thereof in the presence of a base. This reaction gives a 4,5-dihydro-1H-pyrazole-1-carboxamidine derivative having formula (V)

\[
\begin{array}{c}
\text{R} \\
\text{H}
\end{array}
\begin{array}{c}
\text{R}_1
\end{array}
\begin{array}{c}
\text{H}
\end{array}
\begin{array}{c}
\text{R}_2 \\
\text{N} \\
\text{N} \\
\text{=NH}
\end{array}
\]

\text{(V)}

wherein the symbols have the meanings as mentioned above. Compounds having formula (V) wherein \(R, R_1, R_2\) and \(R_3\) have the meaning as described herein above for compound (I) are new.
Alternatively, a compound having formula (III) is reacted with a so-called guanylation agent. Examples of such guanylation agents are 1H-pyrazole-1-carboxamidine and its salts (for example the hydrochloride salt) and 3,5-dimethyl-1H-pyrazole-1-carboxamidine and its salts (for example the nitrate salt) and the like. This reaction gives a carboxamidine derivative having formula (V).

Alternatively, a compound having formula (III) is reacted with a so-called protected guanylation agent. Examples of such protected guanylation agents are N-(benzyloxycarbonyl)-1H-pyrazole-1-carboxamidine, N-(tert-butoxycarbonyl)-1H-pyrazole-1-carboxamidine and N,N'-bis-(tert-butoxycarbonyl)-1H-pyrazole-1-carboxamidine and the like. This reaction gives after deprotection a compound having formula (V).

Step 2 of route A
The compound having formula (V) is reacted with an optionally substituted compound of the formula $R_4\text{-SO}_2X$, wherein R_4 has the above mentioned meaning and X represents a halogen atom. This reaction is preferably carried out in the presence of a base, such as triethylamine in an aprotic solvent, such as acetonitrile.

Synthesis route A1

Step 1 of route A1
Reaction of a compound having formula (III)

\[
\begin{align*}
&\text{NCS} \\
&\text{SO}_2 \\
&\text{R}_4
\end{align*}
\]

(III)

with a thioisocyanate derivative having formula (VI).

This reaction is preferably carried out in an inert organic solvent, such as for example acetonitrile.
This reaction gives a thiocarboxamide derivative having formula (VII). Compounds having formula (VII) wherein R, R₁, and R₄ have the meaning as described herein above for compound (I) are new.

\[
\begin{array}{c}
\text{R} \\
\text{N} \\
\text{N} \\
\text{═S} \\
\text{H} \\
\text{N} \\
\text{SO₂} \\
\text{R₄}
\end{array}
\]

(VII)

Step 2 of route A1
Reaction of a compound having formula (VII) with an amine in the presence of a mercury(II) salt, such as for example HgCl₂, gives a compound having formula (I) This reaction is preferably carried out in a polar organic solvent, such as for example acetonitrile.

Synthesis route A2

Step 1 of route A2
Reaction of a compound having formula III

\[
\begin{array}{c}
\text{R} \\
\text{N} \\
\text{N} \\
\text{H} \\
\text{R₁}
\end{array}
\]

(III)

with a carbamate ester derivative having formula (VIII).
wherein \(R_6 \) represents a lower alkyl group, for example methyl.

This reaction is preferably carried out in an inert organic solvent, such as for example 1,4-dioxane.

This reaction gives a 4,5-dihydropyrazole-1-carboxamide derivative having formula (IX). Compounds having formula (IX) wherein \(R_1, R_4 \), and \(R_4 \) have the meaning as described herein above for compound (I) are new.

Step 2 of route A2

Reaction of a compound having formula (IX) with a halogenating agent, such as for example \(\text{PCl}_3 \), gives a 4,5-dihydropyrazole-1-carboximidoyl halogenide derivative having formula (X).
wherein R_i represents a halogen atom, such as for example chloro. This reaction is preferably carried out in an inert organic solvent, such as for example chlorobenzene.

Compounds having formula (X) wherein R, R_1, and R_4 have the meaning as described herein above for compound (I) and wherein R_7 represents a halogen atom are new.

Step 3 of route A2

Reaction of a compound having formula (X) with an amine gives a compound having formula (I).

This reaction is preferably carried out in an inert organic solvent, such as for example dichloromethane.

Synthesis route A3

Step 1 of route A3

Reaction of a compound having formula (III)

\[
\begin{array}{c}
\text{R} \\
\text{H} \\
\text{N} \\
\text{R_1}
\end{array}
\]

(III)

with a dithioimidocarbonic ester derivative having formula (XI).

\[
\begin{array}{c}
\text{R_8} \\
\text{S=SS} \\
\text{N} \\
\text{SO_2} \\
\text{R_4}
\end{array}
\]

(XI)

wherein R_8 represents a C$_{1-3}$ alkyl group.

This reaction is preferably carried out in a polar organic solvent, such as for example acetonitrile.
This reaction gives a carboximidothioic ester derivative having formula (XII).

Compounds having formula (XII) wherein R, R₁ and R₄ have the meaning as described herein above for compound (I) and wherein R₅ represents a C₃₋₅ alkyl group are new.

Step 2 of route A3

Reaction of a compound having formula (XII) with an amine gives a compound having formula (I).

This reaction is preferably carried out in a polar organic solvent, such as for example methanol.

Example 1

3-(4-Chlorophenyl)-4,5-dihydro-N-((4-fluorophenyl)sulfonyl)-4-phenyl-1H-pyrazole-1-carboxamidine

Part A: A stirred mixture of 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole (5.13 gram, 20.0 mmol), 2-methyl-2-thiopseudourea hydroiodide (5.00 gram, 23.0 mmol) and pyridine (10 ml) is heated at 110 °C for 1 hour. After one night standing at room temperature diethyl ether is added and the precipitate is collected by filtration. This precipitate is washed three times with diethyl ether portions to afford a solid (9 gram). Melting point: ~230 °C. This solid is dissolved in methanol (20 ml). To the resulting solution is successively added a 2N sodium hydroxide solution (12 ml) and water (200 ml). The formed precipitate is collected by filtration, washed two times with diethyl ether and successively with disopropyl ether. The resulting solid is dried in vacuo to yield 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine (5.1 gram, 88 % yield). Melting point: 187-189 °C.

Part B: To a stirred mixture of 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine (0.50 gram, 1.68 mmol) and 4-fluorophenylsulfonyl
chloride (0.34 gram, 1.75 mmol) in acetonitrile (10 ml) is added N,N-dimethyl-4-aminopyridine (0.020 gram, 0.175 mmol) and triethylamine (1 ml). The resulting solution is stirred at room temperature for 30 minutes. After addition of a 2N sodium hydroxide solution and extraction with ethylacetate (400 ml), the ethylacetate layer is concentrated in vacuo. The resulting crude residue is further purified by means of flash chromatography (petroleum ether/diethyl ether = 1/1 (v/v), followed by ethylacetate). Subsequent concentration in vacuo affords solid 3-(4-chlorophenyl)-4,5-dihydro-N-((4-fluorophenyl)sulfonyl)-4-phenyl-1H-pyrazole-1-carboxamidine (0.55 gram, 72 % yield). Melting point: 214-215 °C

In an analogous manner the compounds having formula (I) listed below have been prepared:

4,5-Dihydro-N-((4-fluorophenyl)sulfonyl)-3-(4-methoxyphenyl)-4-(4-methoxyphenyl)-1H-pyrazole-1-carboxamidine: Melting point: 155-156 °C

4,5-Dihydro-3-(4-methoxyphenyl)-4-(4-methoxyphenyl)-N-((4-methoxyphenyl)sulfonyl)-1H-pyrazole-1-carboxamidine: Melting point: 148-150 °C

3-(4-Chlorophenyl)-4,5-dihydro-4-phenyl-N-((2,4,6-trimethylphenyl)sulfonyl)-1H-pyrazole-1-carboxamidine: Melting point: 221-222 °C

Example II

N₁,N₁'-Dimethyl-N₂-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine

Part A: A stirred mixture of 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole (12.0 gram, 46.8 mmol), [((4-chlorophenyl)sulfonyl]dithioimidocarboxonic acid dimethyl ester (CAS: 13068-12-7) (9.20 gram, 31.1 mmol) and triethylamine (15 ml) in acetonitrile (200 ml) is heated at reflux temperature for 20 hours. An additional portion of 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole (12.0 gram, 46.8 mmol) is added and the resulting mixture is heated at reflux temperature for another 16 hours. After concentration in vacuo, dichloromethane is added and the resulting solution is washed twice with water and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo the residue is further purified by flash chromatography (diethyl ether/petroleum ether = 1/1 (v/v)) to give 3-(4-chlorophenyl)-N-((4-chlorophenyl)sulfonyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboximidothioic acid methyl ester (12.5 gram, 80% yield based on [(4-chlorophenyl)sulfonyl]dithioimidocarboxonic acid dimethyl ester) as an amorphous solid.
Part B: To a stirred mixture of 3-(4-chlorophenyl)-N-((4-chlorophenyl)sulfonyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboximidothioic acid methyl ester (4.20 gram, 8.30 mmol) in methanol (75 ml) is added dimethylamine (10 ml) and dichloromethane (75 ml) and the resulting solution is stirred at room temperature for 6 hours. Evaporation *in vacuo* and subsequent flash chromatographic purification (diethyl ether/petroleum ether = 1/1 v/v), followed by diethyl ether) gives a solid which is further purified by recrystallisation from diisopropyl ether to yield N'-dimethyl-N²-((4-chloro-phenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamide (2.63 gram, 63 % yield). Melting point: 182 °C.

In an analogous manner the compounds having formula (I) listed below have been prepared:

N-Methyl-N²-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-(3-pyridyl)-1H-pyrazole-1-carboxamide. Melting point: 101-105 °C.

N-Methyl-N²-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-(4-pyridyl)-1H-pyrazole-1-carboxamide. Melting point: 112-115 °C.

Example III

N-Methyl-N²-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamide

Part A: To a solution of N-((4-chlorophenyl)sulfonyl)carbamic acid methyl ester (CAS: 34543-04-9) (2.99 gram, 12.0 mmol) and pyridine (4 ml) in 1,4-dioxane (20 ml) is added 3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole (3.39 gram, 13.2 mmol) and the resulting mixture is stirred for 4 hours at 100 °C. After concentration *in vacuo* the residue is dissolved in dichloromethane, successively washed with water, 1N HCl and water, dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* to a volume of 20 ml. Methyl-tert-butyl ether (60 ml) is added and the resulting solution is concentrated to a volume of 20 ml. The formed crystals are collected by filtration and recrystallised from methyl-tert-butyl ether to give 3-(4-chlorophenyl)-N-((4-chlorophenyl)sulfonyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamide (4.75 gram, 76 % yield) Melting point: 211-214 °C.

Part B: A mixture of 3-(4-chlorophenyl)-N-((4-chlorophenyl)sulfonyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamide (3.67 gram, 7.75 mmol) and phosphorus pentachloride (1.69 gram, 8.14 mmol) in chlorobenzene (40 ml) is heated at reflux for 1 hour. After thorough concentration *in vacuo*, the formed N-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-
carboximidoyl chloride is suspended in dichloromethane and reacted with cold methylamine (1.5 ml). After stirring at room temperature for 1 hour, the mixture is concentrated in vacuo. The residue is crystallised from diethyl ether to give N-methyl-N'-(4-(chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine (2.29 gram, 61 % yield). Melting point: 96-98 °C (dec.).

In an analogous manner the compounds having formula (I) listed below have been prepared:

N-Methyl-N'-(3-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 156-160 °C.
N-Propyl-N'-(4-fluorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 129-138 °C.
N-(2-Propyl)-N'-(4-fluorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 110-112 °C.
N-(2-Propyl)-N'-(3-chlorophenyl)sulfonyl)-3-(4-pyridyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: Amorphous.
N'-Ethyl-N'-methyl-N'-(4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 184 °C.
N'-Ethyl-N'-methyl-N'-(4-fluorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 173-176 °C.
N',N'-Dimethyl-N'-(4-(trifluoromethyl)phenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 195-196 °C.
N',N'-Dimethyl-N'-(3-methylphenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 195-198 °C.
N',N'-Dimethyl-N'-(3-methoxyphenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 204-206 °C.
N-Ethyl-N'-(4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: Amorphous.
N-Dimethylamino-N'-(4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 155-159 °C.
N-Methyl-N'-(4-(trifluoromethyl)phenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: Amorphous.
N',N'-Dimethyl-N'-(2-methylphenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 148-151 °C.
N-Methyl-N'-(2,4-difluorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine. Melting point: 85 °C.
Example IV
(-)-(4S)-N-methyl-N’-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine

(-)-(4S)-N-Methyl-N’-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine (7.16 gram, 0.0147 mol) ([α]_D^25 = -150°, c = 0.01, MeOH) (melting point: 169-170 ºC) was obtained via chiral chromatographic separation of racemic N-methyl-N’-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine (18 gram, 0.037 mol) using a Chiralpak AD, 20 µm chiral stationary phase. The mobile phase consisted of a mixture of hexane/ethanol (80/20 (v/v)) and 0.1 % ammonium hydroxide (25 % aqueous solution).

In an analogous manner the optically pure compounds listed below have been prepared from the corresponding racemates:
(-)-(4S)-N-Ethyl-N’-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine: ([α]_D^25 = -126 °, c = 0.01, CHCl₃); Melting point: 172-175 ºC. Stationary phase: Chiralcel OD. Mobile phase: A mixture of heptane/2-propanol (85/15 (v/v)).

(-)-(4S)-N-Dimethylamino-N’-((4-chlorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine: ([α]_D^25 = -132 °, c = 0.01, CHCl₃); Melting point: 218-224 ºC. Stationary phase: Chiralcel OD. Mobile phase: A mixture of heptane/2-propanol (85/15 (v/v)).

(-)-(4S)-N-Methyl-N’-((4-trifluoromethyl)phenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine: ([α]_D^25 = -131 °, c = 0.01, CHCl₃); Melting point: 157-160 ºC. Stationary phase: Chiralcel OD. Mobile phase: A mixture of heptane/2-propanol (85/15 (v/v)).

(-)-(4S)-N,N’-Dimethyl-N,N’-dimethylphenylsulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine: ([α]_D^25 = -88 °, c = 0.01, MeOH); Melting point: Amorphous. Stationary phase: Chiralpak AD. Mobile phase: Ethanol.

(-)-(4S)-N-Methyl-N’-((2,4-difluorophenyl)sulfonyl)-3-(4-chlorophenyl)-4,5-dihydro-4-phenyl-1H-pyrazole-1-carboxamidine: ([α]_D^25 = -129 °, c = 0.01, MeOH); Melting point: Amorphous. Chiralpak AD. Mobile phase: Methanol.
Claims

1. The enantiomer having S configuration at the 4-position of their 4,5-dihydro pyrazole ring of a compound of formula (I)

![Chemical Structure](image)

wherein
- R and R₁ are the same or different and represent 3-pyridyl or 4-pyridyl, or phenyl which may be substituted with halogen or methoxy,
- R₂ and R₃ are the same or different and represent hydrogen, alkyl (1-3 C) or dimethylamino
- R₄ represents phenyl which may be substituted with 1, 2 or 3 substituents selected from the group halogen atoms, trifluoromethyl, methoxy and alkyl (1-3 C)

and tautomers, prodrugs and salts thereof.

2. A compound having formula (I) as claimed in claim 1, wherein R is the group 4-chlorophenyl, R₁ is phenyl, R₂ is hydrogen, R₃ is methyl and R₄ represents 4-chlorophenyl, and salts thereof.

3. A pharmaceutical composition containing at least one compound as claimed in claim 1 as an active component.

4. A method of preparing pharmaceutical compositions characterized in that a compound as claimed in claim 1 is brought in a form suitable for administration.

5. Process for the preparation of compounds having formula I, characterized in that the racemic mixture of a compound having formula I is separated into the levorotatory and the dextrorotatory enantiomers.
6. A method of treating psychiatric disorders such as psychosis, anxiety, depression, attention deficits, memory disorders and appetite disorders, obesity, neurological disorders such as Parkinson's disease, dementia, distonia, Alzheimer's disease, epilepsy, Huntington's disease, Tourette's syndrome, ischaemia, pain and other CNS-diseases involving cannabinoid neurotransmission, characterized in that a compound as claimed in claim 1 is used.

7. A method of treating gastrointestinal disorders involving cannabinoid neurotransmission, characterized in that a compound as claimed in claim 1 is used.

8. A method of treating cardiovascular disorders involving cannabinoid neurotransmission, characterized in that a compound as claimed in claim 1 is used.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C07D231/06 C07D401/04 A61K31/415 A61P25/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, BEILSTEIN Data, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 624 941 A (BARTH, F. ET AL.) 29 April 1997 (1997-04-29) Claim 1, formula (I); column 26, lines 27-65; column 28, lines 41-59.</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

18 June 2002

Date of actual completion of the international search

25/06/2002

Date of mailing of the international search report

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-370) 340-2040, Tx: 31 651 epo nl, Fax: (+31-370) 340-3016

Authorized officer

Weisbrod, T

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 173 323 A (BAYER AG) 5 March 1986 (1986-03-05) Abstract; claim 1; page 32, example 1.</td>
<td>1-5</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2713224 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2713225 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 149489 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4143893 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 1100409 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9302435 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2098944 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9301172 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69308395 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 576357 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0576357 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2101258 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 932891 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3023535 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 64526 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 10609 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3238801 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6073014 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9303664 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 932296 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 247961 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2119917 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 65493 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9304511 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 154012 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 685518 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7899994 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 1100984 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2136893 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1110968 A , B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9403016 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69403614 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69403614 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 656354 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2105575 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 945690 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 3024470 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1000599 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 71498 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 111719 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3137222 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 7309841 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001026541 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 944625 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 270025 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 306067 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2141479 C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 68570 A1</td>
</tr>
</tbody>
</table>

US 4070365 A 24-01-1978 NL 7409433 A 14-01-1976
AR 223449 A1 31-08-1981
AT 359775 B 25-11-1980
AT 508277 A 15-04-1980
AT 342585 B 10-04-1978
AT 529175 A 15-08-1977
AU 501280 B2 14-06-1979
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4070365 A</td>
<td></td>
<td>AU 8285075 A</td>
<td>13-01-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 831232 A1</td>
<td>12-01-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 7504413 A</td>
<td>06-07-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1075242 A1</td>
<td>08-04-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 624675 A5</td>
<td>14-08-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CS 188962 B2</td>
<td>30-03-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 122775 A5</td>
<td>05-11-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2529689 A1</td>
<td>29-01-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 310975 A ,B,</td>
<td>13-01-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EG 11880 A</td>
<td>30-09-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 439292 A1</td>
<td>16-02-1977</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2277827 A1</td>
<td>06-02-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1514285 A</td>
<td>14-06-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 178320 B</td>
<td>28-04-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 41836 B1</td>
<td>09-04-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 47676 A</td>
<td>31-01-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1044358 B</td>
<td>20-03-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1368569 C</td>
<td>11-03-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 51041358 A</td>
<td>07-04-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61023162 B</td>
<td>04-06-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OA 5057 A</td>
<td>31-12-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 193676 A1</td>
<td>17-07-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 419644 B</td>
<td>17-08-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7507868 A</td>
<td>13-01-1976</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4156007 A</td>
<td>22-05-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YU 176475 A1</td>
<td>30-06-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 7504203 A</td>
<td>23-02-1977</td>
</tr>
</tbody>
</table>

AU 4665285 A 06-03-1986
BR 8504157 A 24-06-1986
CA 1218366 A1 24-02-1987
DD 237782 A5 30-07-1986
DK 392985 A 01-03-1986
EP 0173323 A1 05-03-1986
ES 546559 D0 01-03-1986
ES 8604942 A1 01-08-1986
GR 852092 A1 30-12-1985
HU 41210 A2 28-04-1987
JP 61060684 A 28-03-1986
ZA 8506593 A 30-04-1986

Form PCT/ISA/210 (patent family annex) (July 1992)