A 000 N O

03/044686 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 May 2003 (30.05.2003)

PCT

(10) International Publication Number

WO 03/044686 Al

(51) International Patent Classification”: GO6F 15/173

(21) International Application Number: PCT/US02/37120
(22) International Filing Date:
20 November 2002 (20.11.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/989,479 20 November 2001 (20.11.2001) US
(71) Applicant: AEREOUS, LLC [US/US]; 323 North First,

Ann Arbor, MI 48103 (US).

(72) Inventors: GRAHAM, Todd, D.; 833 East University #2,
Ann Arbor, MI (US). HUDSON, Jonathan, C.; 38 Lake-
crest Lane, Grosse Pointe Farms, MI 48236 (US).

(74) Agent: MELLO, David, M.; McDermott, Will & Emery,
28 State Street, Boston, MA 02109 (US).

(81) Designated States (national): AE, AL, AM, AT, AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN,
YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DYNAMIC FILE ACCESS CONTROL AND MANAGEMENT

- Server Enforcement Domain J
Content
Repository 210 :

Aereous
Content Server 220
Content [} Account || Mgmt.
Services | | Services | | Services
222 224 226

200

Client Enforcement
: Domain 150

Aereous Content

Client 230

Access
Services
234

Network
140

Account
Services
232

(57) Abstract: A dynamic file access control and management system and method in accordance with the present invention may be
a proxy file management system (10) that includes one or more file system proxy servers that provide selective access and usage man-
agement to files available from one or more file systems or sources (210, 220). The present invention may embody a secure transport
protocol that tunnels distributed file systems, application independent usage controls connected to files on end-user computers (150),
dynamically merging secondary content to a requested file, and applying bandwidth management to any of the foregoing. Embodied
in the various implementations of the present invention is enhanced file security. Preferably, the proxy file management system is
transparent to an end-user. A dynamic content management system may also be included that selectively adds content to requested

files.

10

15

20

25

30

WO 03/044686 PCT/US02/37120

DYNAMIC FILE ACCESS CONTROL AND MANAGEMENT

Field of the Invention

The present invention generally relates to computers and computer systems configured to

access files or file storage or management systems.

Background of the Invention

The Internet was originally conceived as a distribution network, and in the past six years,
has become widely available to businesses and consumers. The more recent availability of
inexpensive broadband access has ushered in a new wave of data sharing. This data sharing has
created significant issues that arise due to the digital nature of Internet data - the ones and zeros
that represent text, music and video on the Internet are much easier to access and modify than
their physical counterparts. Two problems this causes are that privacy can be compromised, and
content can be illegally duplicated (or “pirated”).

Prior art has attempted to eliminate privacy and piracy issues, with limited success. The
most basic means by which to protect data has been encryption - the sender modifies data in such
a way that it is unintelligible to all but the intended recipient. This has meant reliance on
relatively slow algorithms for processing the data to be encrypted and unencrypted. Recent prior
art has dramatically reduced the computing power required to encrypt data. However, while
encryption is necessafy to maintain data security, it is useless if the data’s security can be
compromised once it has been unencrypted.

Other prior art has been developed to augment the security offered by encryption systems.

Digital Rights Management (DRM) systems use various forms of encryption to allow rights
holders, such as content owners, a way to persistently protect data. Prior art DRM systems offer
unique means of deployment - for example, a DRM system can modify a file so that it can only
be accessed once without an encrypted key. If an individual attempts to access the file again, the
DRM system will disallow access until the individual has the correct key. This is just one
example of how DRM can be deployed. Although prior art DRM solutions have been
commercially available for some time, they have received limited acceptance because of the
usability barriers they introduce. From a content-owner’s perspective, these systems call for the
time-consuming and costly process of modifying all of his or her data to comply with the
system’s rules. The content-owner faces this process every time he or she wishes to add more
data to be protected. Consumers face even greater barriers - because of the rules introduced by

DRM systems, a user may have to change his or her usage habits. For example, an MP3 listener

10

15

20

25

30

WO 03/044686 PCT/US02/37120
may be required to switch his or her preferred playback program.

The deployment issues facing those using the Internet to share information are not
exclusively inherent in Digital Rights Management systems. Companies may want to modify
data in any number of ways attaching liner notes to digital music, linking a patient’s record to a
medical database, including version information on a book passed between an author and his
editor - these are all examples of processes that add extra time and cost to file delivery on the
back-end, and compatibility issues on the front end. As more entities connect more devices to
the Internet at higher data transmission rates, cost and compatibility problems will only increase.
The benefits gained from increased Internet connectivity will ultimately offset the losses.
However, the increase in data flowing across both wired and wireless networks introduce further
1ssues regarding speed, prioritization, and Quality of Service (QoS).

More now in wireless networks than in their wired counterparts, bandwidth is a precious
commodity. Prior art has developed systems such as, but not limited to, Wideband Code
Division Multiple Access and Global Packet Radio Service, that will fill wireless radio
frequencies with circuit-switched and packet data in the most optimal way possible for the given
spectrum. However, the bandwidth that will be available in Third Generation cellular networks
will still not match that in wired networks. Additionally, applications developers face the
challenge of not knowing the available bandwidth of their end-users, as it changes based on
location, speed and several other variables. Both the wired and wireless world will face
increased traffic and network congestion, as more applications are developed to push the limits of
available bandwidth.

Beyond Internet applications, many enterprises also face issues with securing files
available on or via their enterprise network. As a result, most enterprises) today have deployed
sophisticated network security products to protect their information from external threats.
Technologies such as firewalls, intrusion detection and user authentication have gained an almost
universal acceptance in the marketplace. At the same time, enterprises are also adopting a strong
centralized file storage strategies that are built upon network storage devices.

While prior art perimeter and access technologies like firewalls and user authentication
do an excellent job of keeping malicious users out of networks, they do little to address other
threats. Another threat exists within users who have authorized access to the network. Through
network storage devices, authorized users have direct access to sensitive enterprise information.

Even with the majority of enterprise information currently being stored on network
storage devices, security has not been a driving force in their design. As a result, these devices

have largely implemented simple and inadequate permissions such as read-only and read/write.

2

L5

25

30

WO 03/044686 PCT/US02/37120
This simplistic approach has lead to accidental and malicious exposure of enterprise sensitive

data to unauthorized parties.

Summary of the Invention

A dynamic file access control and management system and method in accordance with
the present invention may be a proxy file management system that includes one or more file
system proxy servers that provide selective access and usage management to files available from
one or more file systems or sources. The present invention may embody a secure transport
protocol that tunnels distributed file systems, application-independent usage controls connected
to files on end-user computers, dynamically merging secondary content to a requested file, and
applying bandwidth management to any of the foregoing. Embodied in the various
implementations of the present invention is enhanced file security. Preferably, the proxy file
management system is transparent to an end-user.

A proxy file management system in accordance with the present invention extends
accepted network storage systems with a security infrastructure appropriate for large and rapidly
changing network environments. The present invention includes an end-to-end approach to
network file security, a robust and scaleable centralized proxy server, client policy enforcement
services, and a secure protocol to manage network transmission. These services allow enterprise
data to be easily managed and protected through the enforcement of a comprehensive and
coherent file protection policy.

A proxy file management system in accordance with the present invention is preferably
configured to achieve the following goals:

a. End-to-End Solution — The proxy file management system is a solution that is
easily dropped into a network, offering total file sharing security on both an access and usage
level, and on a transport level. Enterprises that deploy the proxy file management system never
have to worry about also deploying a'third—party package to gain full functionality and security.

b. Security - The security with which content is managed and distributed is of
paramount importance to the proxy file management system. This includes the security of the
interfaces and protocols of the client and server, as well as the deterministic and correct
enforcement of policy.

c. Stability — Successfully usage of the proxy file management system in any
environment is largely reliant on its ability to consistently and seamlessly deliver content to
authorized users.

d. Flexibility - The proxy file management system includes the ability to flexibly

3

L5

25

30

WO 03/044686 PCT/US02/37120
represent the content management needs of the enterprise through policy. Thus, flexible and

straightforward interfaces to content management systems is provided.

e. Compatibility - Administrators do not wish to introduce new services into their
networks. For this reason, it is important to provide an infrastructure that can be integrated into
their network with minimal cost. Therefore, the software modules of the proxy file management
system are not only compatible with existing infrastructure (e.g., authentication services), but
also implement accepted models (e.g., file system semantics).

f Low Maintenance - The proxy file management system software operates with as
little user or administrator involvement as possible.

The proxy file management system is an end-to-end client-server solution to protect
information on a content source (e.g., a network storage device or system) from unauthorized
access and usage. A proxy system (including a set of proxy servers) is disposed between one or
more client devices and at least one content source. The proxy system offers a high level of
flexibility in file access policy, wherein the policy can be evaluated at runtime, based on real-
time environmental variables such as network status or time of day. The client (or end-user)
device includes a client module (or program) that functions with the client device operating
system (OS) to deliver application independent file usage controls and auditing. User
authentication is performed by an authentication system and policy management is accomplished
by a policy system.

The proxy system acts as a file server that mimics the structure and presentation of the
content source, for which the proxy system is acting as a proxy. When a file is requested by an
end-user of client device the proxy system appears (to the end-user) as a file server. To transfer
the file from the content source, the proxy system appears to be a network file sharing client (to
the content source). These representations occur simultaneously. When an end-user client
device requests a file from the network file storage device, the request is received by the proxy
system, which selectively provides the requested file as a function of information the proxy
system obtains from authentication system and policy system.

Prior to requesting a file, the user preferably authenticates with authentication system.
After authentication, when an end-user requests a file, the proxy system obtains verification of
the authentication of the user from the authentication system and in cooperation with the policy
system, the proxy system determines if the requesting user has the right to access the file. If
access to the file is granted, the proxy system provides the file, in a secure and encrypted manner,
with additional information (e.g., usage rights and encryption/decryption keys) to the end-user

client device.

L0

L5

25

30

WO 03/044686 PCT/US02/37120
Communication between the client device and proxy system are treated according to a

secure protocol configured to enable the secure transport of files and file related information
across a network. The network may include any of a variety of types of networks, such as a local
area network (LAN), wide area network (WAN), virtual private network (VPN), World Wide
Web ("Web"), Internet, extranet, intranet, telephone network (including cellular telephone
network), or some combination thereof. Any of the foregoing networks may include a variety of
wired or wireless communication means. The files sought to be accessed may be any type of
computer files, including any type of typical desktop application files, Web or Internet files, e-
commerce files, music, audio, or video files, and so on. Such files may be provided by any of a
variety of static or dynamic sources or devices, collectively represented as a content source.

In addition to, or as an alternative to, the proxy file management system, a dynamic file
access and control and management system in accordance with the present invention may include
a dynamic content management system (DCMS), which enables the real time modification and
enhancement of computer files as they traverse a server over a network, such as the Internet. For
example, the DCMS may be utilized to secure an MP3, attach tracking information to a patient’s
medical file, or ensure the privacy of an email between an attorney and his or her client. The
DCMS also delineates protocols for the attachment of additional data relevant to the file being
modified. The DCMS additionally provides a protocol for real-time bandwidth moderation and
allocation through a client-server communication.

The DCMS modifies the operating system of a computer to detect and “hook™ different
types of files based on their header information, physical and binary structure, and other
information, and determines which modifications, if any, to make on the file.

If modifications are necessary, the DCMS determines how to make them, and the
information source or sources from which to draw supplemental information. This process
occurs in the present invention in “real-time,” so that data moving across the computer on which
the DCMS resides is subject to little-to-no processing delay. The DCMS provides provisions for
modifying the header information of a computer file, as well as appending additional information
throughout the file. The DCMS additionally allows files to be “wrapped” (protected) with
encryption and Digital Rights Management (DRM) packaging, or usage rights.

The DCMS allows a file to be “embedded” with information relevant to the file’s
destination. For example, a virtual “mall” may be embedded in an artist’s song so that end-users
can purchase tickets for that artist’s upcoming concert.

The DCMS makes a modification to client devices which allows them to interpret files

modified by the DCMS. This client-side modification changes system-level code to “hook™ files

5

L5

25

30

WO 03/044686 PCT/US02/37120
that are opened on these devices. The hook then detects whether modifications made by the

DCMS are present, and if so, goes through the steps necessary to interpret these modifications.

In any of the embodiments of the present invention, a protocol for dynamically allocating
bandwidth may be included. It initiates communication between a server and a client, both
which have software components of the present invention installed. By determining the data
requirements of the end-user, and the capacity of the carrief, the present invention will
dynamically allocate the maximum amount of bandwidth required to suite the constraints of both.

Through the same protocol, the present invention can also, in real-time, set a different data
delivery priority than the one currently used. For example, an individual attempting to download
an e-book to a portable device using General Packet Radio Service (GPRS) may have his
delivery delayed if all of the Circuit-switched data (CSD) in the available spectrum is being used
for voice calls.

A system in accordance with the present invention includes a standard computer server
across which data moves, a modification to the operating system of the server, a software
application to interact with and control the server, and a modification to the operating system of a
client device.

A system in accordance with the present invention consists of server software running as
an application on a standard hardware configuration and client software either hooking into or

running as a process on top of the operating system on a standard hardware configuration.

Brief Description of the Drawings

The foregoing and other objects of this invention, the various features thereof, as well as
the invention itself, may be more fully understood from the following description, when read
together with the accompanying drawings, described:

FIG. 1 is top level block diagram of a proxy file management system in accordance with
the present invention;

FIG. 2 is a block diagram of software architecture that may be implemented by the proxy
file management system of FIG. 1,

FIG. 3 is a block diagram of the proxy server-side subsystem of FIG. 2;

FIG. 4 is a block diagram of the client-side software of FIG. 2;

FIG. 5 is a diagram of database relationships of the proxy file management system of
FIG. 1;

FIG. 6A and FIG. 6B are diagrams of a content transform and its fields contents, in

accordance with the present invention;

10

15

20

25

30

WO 03/044686 PCT/US02/37120
FIG. 7 FIG. 8, FIG. 9 and FIG. 10 are diagrams of file key payload formats and block

formats in accordance of the present invention;
FIG. 11 illustrates a flow of data in a conventional client-server environment;

FIG. 12 illustrates a flow of data in a client-server environment in accordance with the
invention;

FIG. 13 is a system-level diagram showing the objects of the DCMS Server in accordance
with an embodiment of the invention;

FIG. 14 is a diagram of an overall architecture of the system of the invention’, in
accordance with an embodiment of the invention;

FIG. 15 shows the steps in which information stored in the DCMS server database is
converted to header information, in accordance with an aspect of the invention;

FIG. 16 is a block diagram of the DCMS server core plug-in architecture, in accordance
with an embodiment of the invention;

FIG. 17 is an interaction diagram that illustrates the scenario when a file server attempts
to read a static DCMS virtual file, in accordance with an aspect of the invention;

FIG. 18 shows the use of client-side plug-ins that are used to read DCMS -enhanced file,
in accordance with an aspect of the invention;

FIG. 19 shows various embedded elements that are provided to a user along with a
requested file, by way of the LiveEmbed™ component, in accordance with an aspect of the
invention;

FIG. 20 shows data obtained from two packets using the variable data pipeline
component, in accordance with an aspect of the invention;

FIG. 21 shows the packet and header structure of a DCMS file, in accordance with an
aspect of the invention;

FIG. 22 shows the flow of information among a client, a DCMS Server and a Content
Server, in accordance with the invention;

FIG. 23 shows one example of a table that holds data utilized by the DCMS Server to
access information from Content Servers, in accordance with the invention;

FIG. 24 shows various components of the DCMS server that are used to wrap a file; and

FIG. 25 shows the DCMS client application stored in a host operating system’s memory
partition of a client computer, in accordance with an aspect of the invention.

For the most part, and as will be apparent when referring to the figures, when an item is
used unchanged in more than one figure, it is identified by the same alphanumeric reference

indicator in all figures.

10

15

20

25

30

WO 03/044686 PCT/US02/37120
Detailed Description of the Preferred Embodiment

A dynamic file access control and management system and method in accordance with
the present invention may be a proxy file management system that includes one or more file
system proxy servers that provide selective access and usage management to files available from
one or more file systems or content sources. The present invention may embody a secure
transport protocol that tunnels distributed file systems, application independent usage controls
connected to files on end-user computers, dynamically merging secondary content to a requested
file, and applying bandwidth management to any of the foregoing. Embodied in the various
implementations of the present invention is enhanced file security. Preferably, the proxy file

management system is transparent to an end-user.

1. SYSTEM OVERVIEW

A proxy file management system in accordance with the present invention extends
accepted network storage systems (and other content sources) with a security infrastructure
appropriate for large and rapidly changing enterprise environments. The preferred embodiment
of the present invention includes an end-to-end approach to network file security, a robust and
scaleable centralized proxy server, client policy enforcement services, and a secure protocol to
manage network transmission. These services allow enterprise data to be easily managed and
protected through the enforcement of a comprehensive and coherent file protection policy.

A proxy file management system in accordance with the present invention is preferably
configured to achieve the following goals:

a. End-to-End Solution — The proxy file management system is a solution that is
easily dropped into a network, offering total file sharing security on both an access and usage
level, and on a transport level. Enterprises that deploy the proxy file management system never
have to worry about also deploying a third-party package to gain full functionality and security.

b. Security - The security with which content is managed and distributed is of
paramount importance to the proxy file management system. This includes the security of the
interfaces and protocols of the client and server, as well as the deterministic and correct
enforcement of policy.

c. Stability — Successfully usage of the proxy file management system in any
environment is largely reliant on its ability to consistently and seamlessly deliver content to
authorized usets.

d. Flexibility - The proxy file management system includes the ability to flexibly

represent the content management needs of the enterprise through policy. Thus, flexible and

8

30

WO 03/044686 PCT/US02/37120
straightforward interfaces to content management systems is provided.

e. Compatibility - Administrators do not wish to introduce new services into their
networks. For this reason, it is important to provide an infrastructure that can be integrated into
their network with minimal cost. Therefore, the software modules of the proxy file management
system are not only compatible with existing infrastructure (e.g., authentication services), but
also implement accepted models (e.g., file system semantics).

f. Low Maintenance - The proxy file management system software operates with as
little user or administrator involvement as possible.

FIG. 1 shows the preferred embodiment of a proxy file management system 100 in

‘accordance with the present invention, which is an end-to-end client-server solution to protect

information on a content source 160 (e.g., network storage device) from unauthorized access and
usage. In this embodiment, a proxy system 110 (including a set of proxy servers) is disposed
between one or more client devices 150 and at least one content source 160. The proxy system
110 offers a high level of flexibility in file access policy, wherein the policy is evaluated at
runtime based on real-time variables. The client (or end-user) device 150 includes a client
module (or program) that functions with the client device 150 operating system (OS) to deliver
application independent file usage controls and auditing. In the embodiment of F1G. 1, user
authentication is performed by an authentication system 130 and policy management is
accomplished by a policy system 120.

In the preferred form, the proxy system 110 acts as a file server that mimics the structure
and presentation of the content source 160, for which the proxy system 110 is acting as a proxy.
When a file is requested by an end-user of client device 150 the proxy system 110 appears (to the
end-user) as a file server. To transfer the file from the content source 160, the proxy system 110
appears to be a network file sharing client (to the content source 160). These representations
occur simultaneously. When an end-user client device 150 requests a file from the content
source 160, the request is received by the proxy system 110, which selectively provides the
requested file as a function of information the proxy system obtains from authentication system
130 and policy system 120.

Prior to requesting a file, the user preferably authenticates with authentication system
130. After authentication, when an end-user requests a file, the proxy system 110 obtains
verification of the authentication of the user from the authentication system 130 and in
cooperation with the policy system 120, the proxy system 110 determines if the requesting user
has the right to access the file. If access to the file is granted, the proxy system 110 provides the

file, in a secure and encrypted manner, with additional information (e.g., usage rights and

9

L0

15

20

25

30

WO 03/044686 PCT/US02/37120
encryption/decryption keys) to the end-user client device 150.

Communication between the client device 150 and proxy system 110 are treated
according to a secure protocol configured to enable the secure transport of files and file related
information across a network 140. In the preferred form, network 140 may include any of a
variety of types of networks, such as a local area network (LAN), wide area network (WAN),
virtual private network (VPN), World Wide Web ("Web"), Internet, extranet, intranet, telephone
network (including cellular telephone network), or some combination thereof. Any of the
foregoing networks may include a variety of wired or wireless communication means. The files
sought to be accessed may be any type of computer files, including any type of typical desktop
application files, Web or Internet files, e-commerce files, music, audio, or video files, and so on.

Such files may be provided by any of a variety of static or dynamic sources or devices,

collectively represented as v 160 (and file repository 210, see FIG. 2).

2. PROXY SYSTEM 110

A proxy system 110 in accordance with the present invention includes a set of servers
running server-side proxy file management functionality that applies flexible authorization and
access control policies over managed content, such as files stored in a content source 160. The
server-side proxy file management functionality may take the forrh of a content subsystem or
program, described in more detail with respect to FIG. 2 and FIG. 3. Unlike current security
services, policies in accordance with the present invention not only allow administrators to map
users to allowable access, but to base access on run-time environmental conditions. Users can be
flexibly organized within the system, wherein the policies associated with a user may vary from
file to file. The policy infrastructure interfaces with widely deployed network services, SO
provides for easy integration into existing networked file systems.

The proxy system 110 acts as a secure proxy device or server to current content sources
160 (e.g., distributed file systems (DFS)). The proxy system 110 interfaces with and maintains
authentication, access and usage control and security across computer network utilization of
content sources160. The proxy system 110 is preferably logically oriented between content
source 160 and clients 150, or in such a way that direct access from the proxy server 110 to the
content source is accomplished, preferably without direct access to content source 160 by client
150. The content source 160 being “proxied” may also be contained within the same physical
space as the proxy subsystem software; in such a case the proxy process may be integrated with
another operating system.

As mentioned, the proxy system 110 comprises is a suite of server-side software modules

10

LO

15

20

25

30

WO 03/044686 PCT/US02/37120

(e.g., the content subsystem 220 of FIG. 2) executing on one or more proxy Servers, i.e., one or
more computers other than the client device or system 150. The proxy system may be configured
for any known for of operating system (e.g., the Berkeley Software Distribution (BSD) family of
operating systems, Microsoft Windows™ and Sun Solaris™). Preferably, the suite of server-side
software modules is hardware independent.

Preferably, the proxy server suite of server-side software modules uses many of the
standard functionality of commercial operating systems to accomplish its normal operations.
These standard functions include hardware interfacing and standard data input/output. Certain
functionality can be optimized to serve specific, specialized purposes. These modifications can
include specialized netwoFking functionality (e.g., based on the BSD sockets), customized

process and thread libraries, and optimized device drivers for networking.

3. CLIENT 150

A client 150 includes a client device and a client module. A client devices in accordance
with the present invention may be any of a variety of types of devices, including personal
computer, workstation, server, personal digital assistant (PDA), telephone (including, cellular
telephone), pagers, ‘Web enabled appliances, or other network enabled devices. The client
module 230 (see FIG. 2) acts on behalf of the user in obtaining credentials and managing
security-related material from proxy system 110. This information is used over the course of a
session to gain access protected content from content source 160, and to protect the content from
exposure to adversaries on the network. In addition to protecting data from unauthorized users,
the client module hosted on client 150 enforces use policies. Use policies limit the kinds of
operations allowed on protected content. For example, a particular user may not be permitted to
print an accessed file. Use policies are communicated to the client 150 at access time, and

enforced over the lifetime of the user's session.

4. AUTHENTICATION SYSTEM 130

The authentication system 130 integrates with currently existing and implemented third-
party authentication services (or servers). These include, but are not limited to, solutions from
Entrust, Microsoft, Intel, RSA, Novell, and Computer Associates. Integration with these third-
party solutions is managed through a plug-in layer within the authentication system 130. This
allows for the easy and rapid integration of current and future authentication mechanisms. These
authentication services can be executed in application form (or process/thread form) on the same

physical computer system as the proxy system 110, or a remote system. In the case of remote

11

10

15

20

25

30

WO 03/044686 PCT/US02/37120
system communications, information is transmitted over a computer network utilizing, in the
preferred embodiment, either UDP or TCP. Security protocols such as Diffie-Hellmen and
Secure Socket Layer (SSL) are also supported to facilitate the secure transfer of sensitive
information such as shared session secrets.

In situations where there is not a third-party authentication service deployed, the proxy
system's authentication subsystem can be implemented to provide the required authentication.
The preferred embodiment of the proxy system's 110 authentication subsystem understands the
potential directions that future authentication systems might take. As such, the proxy system's
110 authentication subsystem (discussed with respect to FIG. 3) is able to work with a variety of
additional authentication methods such as bio-metric and smart-card based solutions that may not

explicitly use a client-server architecture.

5. CONTENT SOURCE 160

The proxy system 110 utilizes a database or content source 160 for the storage of a
variety of different forms of information (or files). This information includes policy, rule and
user-related information, as well as auditing information. In the preferred embodiment, the
storage system is a SQL-compliant database, such as PostgresSQL or Oracle. The contents of the
content source 160, including the database, is protected so that it is only accessible to a subset of
the proxy system 110 components that have been explicitly granted permission to access and
manipulate the database. In the preferred embodiment, a username and a password are used to
limit the access of the database to the authorized proxy system 110 components. In deployment-
specific situations, the contents of the entire network content source 160 can be encrypted to
further increase security. The content in the content source 160 is username and password
protected to prevent unauthorized access to, or manipulation of, information within the database.
In deployment-specific situations, the contents of the entire content source 160 can be encrypted
to increase security.

The content source 160 includes a database application and the actual content (or
database files). The database application and files can be executed and/or stored in a number of
different locations. In the preferred embodiment, the database application is executed on the
same physical device as the proxy system 110 and the database file is stored on the content
source 160 for which the proxy is provided. Additional embodiments include, but are not limited
to, database application and files stored on remote servers or the database file stored on the
servers of the proxy system 110. In case of access to the database over a network, the

communication between the authorized components of the proxy system 110 and the content

12

10

15

20

25

30

WO 03/044686 PCT/US02/37120

source 160 is secured using commonly available solutions, such as SSL.

6. ARCHITECTURE

FIG. 2 shows an embodiment of a software architecture 200 that may be included in a
proxy file management system, in accordance with the present invention. Within architecture
200 there exists a number of subsystems that work in concert to accomplish the goals of the
preferred embodiment. Software architecture 200 in the preferred form is comprised of three
distinct entities: a content repository 210, a content subsystem 220, and a client module 230. As
is shown, content repository 210 is hosted on content source 160. Proxy system 110 hosts a
content subsystem 220 and client device 150 hosts client module 230, which interact across any
of a number of networks 140, as previously discussed.

Content repository 210 acts as a persistent store for protected content (e.g., content in
content source 160). The content source 160 may be comprised of commercial-off-the-shelf
(COTYS) storage devices, and all communication with storagé uses standardized interfaces (e.g.,
Network File System (NFS)). The content repository 210 is directly accessible only by content
module 220 of proxy system 110.

A. CONTENT SUBSYSTEM 220

The content subsystem 220 regulates access to files in the content repository 210 through
the evaluation and enforcement of authentication and access control policies. The content
module 220 executes on one or more dedicated hosts (e.g., servers), which together form the
proxy system 110 of FIG. 1. The content module 220 can be characterized as providing or
including the following services:

1) Content Services 222 - Access to protected content is governed by content
services. These services enforce authorization and access control policies defined by system
administrators and security personnel.

2) Account Services 224 - Based on provided credentials, account services 224
authorize each client requesting access to content. The assignment and distribution of perishable
credentials (used later as proof of access rights) is managed by this service.

3) Content Management Services 226 - The definition of what and how content is
protected is defined by system administrators and security personnel through the content
management services 226. Content management services provide interfaces for the definition,

modification, and auditing of these configurations.

13

10

15

20

25

30

WO 03/044686 PCT/US02/37120
Content Service 222

The content subsystem 220 must be able to "speak" the computer protocols of the other
devices and systems with which it interfaces, and to which it acts as a proxy, since the proxy
system 110 is designed for use as a proxy to content source 160. In the case of content source
160, these protocols currently include, as examples, the NFS and Common Internet File System
(CIFS). The files may be statically stored, dynamically created, files provided by a third party
source, files containing real-time (or near-real time) information, or some combination thereof.
The invention also contemplates, and is intended to operate with, other current and future file
system derivatives and developments. The content subsystem 220 also contemplates future
additions through a generic interface architecture.

The content subsystem 220 is responsible for all connection and state management. This
is accomplished through a system of thread and socket pools that are designed to minimize the
need for "on-the-file" resource allocation. State is maintained based upon the needs of the
individual protocols and users being serviced. Connection recovery, keep-alive status, and
error/flow control is also part of this management. Additionally, since the proxy file
management system supports both read and write file operations (at a very basic level), file
locking and write management of the respective file system is mimicked.

Information is stored on the content source 160 and may be either encrypted (i.e.,
protected) or unencrypted (i.e., plain-text). To the proxy subsystems, it is not important whether
or not the files at content source 160 are encrypted or unencrypted. However, in cases where
physical security is an issue, it is believed that all files will be stored on the content source in an
encrypted form. Therefore, if a malicious party were to physically tamper with the content
source they would be unable to gain access to the information stored thereon.

Encryption of the files as they are delivered from the proxy system 110 to the end-user
client device 150 is also implemented within the content subsystem 220. Encryption 1s
preferably implemented through a generic interface, which allows for the simple migration
between encryption algorithms. The preferred embodiment, the content subsystem 220 utilizes
the Advanced Encryption Standard, known in the art, as the default encryption algorithm, but
different encryption algorithms may be used.

The network file storage system 160 is also utilized, in the preferred embodiment, for
high-speed caching of frequently used content that the proxy system 110 accesses on a regular
basis. The proxy system 110 also uses the content source to store METAFILES. The
METAFILES are implemented on a one-to-one relationship with ali the directories (or folders)

on the content source 160. The METAFILES (discussed below with respect to Table 3) are

14

10

15

20

25

30

WO 03/044686 PCT/US02/37120
plain-text files that contain information pertaining to all the files stored within the related
directory. This information includes a long-term encryption key cache for the files stored within

the directory. Policy information is also stored within the metafile.

Account Services 224

The account services module 224 of the proxy system 110 content subsystem 220
includes an authentication subsystem 320, shown in FIG. 3, including an authorization interface
322 and authentication service 324. The authentication subsystem 320 is implemented to
manage all security aspects of the proxy system 110. The authentication subsystem 320 is
designed to create a trusted environment within a (potentially) hostile environment through the
utilization of currently implemented generic authentication and/or authorization information.
The two major sections within the authentication subsystem 320 are lgey management and
authentication management.

The content subsystem 220, in the preferred embodiment, requires a form of
authentication to understand who users are when files are requested. The most common way to
currently gain this information is through a pre-existing “login” authentication mechanism. Most
enterprises today have some form of login system in place from a major third-party provider,
such as authentication system 130. Current scenarios require that a user enter a username and
password (i.e., credentials) when the user turns on their computer, or begins to use the computer
after a pre-specified amount of idle time has lapsed.

When an end user enters its username and password, this information is transmitted to a
central server computer (as part of authentication system 130) that determines if the user has
presented the correct credentials. If the correct credentials have been presented, the user is
allowed to access the computer or network, as the case may be. The authentication process
between client 150 and authentication system 130 generates what is herein referred to as a
“shared secret.” A shared secret is an artifact of the authentication process that only the
enterprise authentication service 130 and the client 150 know. When these credentials are
presented, the proxy system 110 does not intercede with the authentication process. However,
once the authentication process has been completed (as determined by the client), the proxy
system 110 communicates directly with the enterprise authentication service 310 of FIG. 3 to
gain a contextual understanding of identity of the user.

Included in this process is the transmission of the client/authentication service shared
session secret to the proxy system 110, for use by the authentication service 324 of the account

services module 224; FIG. 3 provides greater detail. User credentials are also passed from the

15

10

15

20

25

30

WO 03/044686 PCT/US02/37120
authentication service to the proxy system 110 authentication subsystem. The shared session
secret and user credentials are stored in separate caches and are assigned a globally unique entity
identification number (EID). The EID is assigned directly to the credential management cache,
with a reference to the shared secret cache. This EID serves as the interface through which users
are further identified and with which they are interacted.

User shared session secrets and credentials are stored in temporary caches. This
eliminates the requirement for input/output intensive database operations. Since the shared
session secrets and credentials are only valid for short periods of time, and are also available (in
an acceptable form) from the enterprise authentication service, there is no need for a long-term

storage strategy for the shared session secret or the credentials.

Content Management Service 226

The final major subsystem of the content subsystem 220, in the preferred embodiment, is
the management services module 226. The management services module 226 implements the
interface for specifying system settings, specifying policy, editing users and groups, and
retrieving auditing information.

The management services module 226 maintains the status and configuration of the
content subsystem 220. This includes all the information supplied by system administrators
during the “First Run Configuration” set-up, as well as all information regarding the
configuration and operating of the proxy system 110 in future uses. This information includes
usernames and passwords for administrative users of the proxy system 110, network addressing
information for the content source 160 and the proxy system 110, and statistical/log output
information. Also included in configuration editor of the proxy system 110 are interfaces to
control the usage preferences for all other proxy system 110 subsystems such as authentication
server/ services information and user store data. Included in the system configuration system is
the ability to push information to remote servers. This information may be designed to alert
administrators of the system that there are software and informational updates available to them,
for example.

The management services module 226 is directly involved in the implementation and
application of policies. When a file is requested by an end-user, it is routed through the content
service module 222. The content service module 222, in turn, contacts the management services
module 226 to determine if the user has access privileges on-the-file. The management services
module 226 evaluates the user/file specific policy from the METAFILES and database, and

returns either a “yes” or a “no” to the content subsystem 220. If the answer regarding access is a

16

10

15

20

25

30

WO 03/044686 PCT/US02/37120
“yes,” then usage policy is also delivered to the content service module 222 from the
management services module 226.

FIG. 3 shows a detailed view of modules that may comprise the content system 220, as
well as some of the services, modules and entities with which it interfaces. As discussed
previously, the content system 220 implements management functions, performs user and
administrator authorization, and delivers content to client devices 150. The content system 220
may be executed on one or more hosts providing or accessing the following services:

1) Enterprise Authentication Service 310 - As previously discussed, target enterprises may
use a wide variety of authentication systems 130 or infrastructures. Hence, it is necessary to
integrate the dynamic file access control and management solution with existing authentication
services. Where available and desirable, existing enterprise authentication services 310, hosted
on authentication system 130, are directly accessed by account service module 224 to obtain
identity-proving credentials. Note that there may be multiple authentication services from which
identity information may be mapped.

2) Authorization Interface 322 - Included as part of the account services module 224, this
interface includes, as one example, a GSSAPI generic authorization interface, and implements
the basic primitives used to distribute credentials used for content access. The proxy server-side
implementation of this interface preferably allows simultaneous authentication protocol
instances.

3) Authentication Service 324 - Included as part of the account services module 224, the
authentication service 324 creates (via the authorization interface distributes) credentials used to
gain access to the protected content. The form of credentials and guarantees provided by this
service is a reflection of the security requirements of the target enterprises.

4) Repository Acéess Service (or Interface) 350 - Inaccessible by hosts/processes external to
the proxy system 110, the access service 350 provides access to the raw content stored in the
content repository 210. Access optimization (e.g., caching strategies) and content transforms are
implemented by this service. The natively supported NFS protocol is used to access and modify
the NAS file-system.

5) Access Service (or Server) 332 - Included as part of the content services module 222, all
content acquisition is achieved through the access service 332. Clients communicate content
requests with associated authentication information. Access policies are acquired (and
potentially cached) by the access service 332. As is consistent with defined policies, content is
returned to the client 150. The content is delivered under an appropriate (and possibly policy

defined) set of security guarantees (e.g., confidentiality, integrity, etc.).

17

10

15

20

25

30

WO 03/044686 PCT/US02/37120
6) Content Gateway 334 - Included as part of the content services module 222, content
updates are managed by the content gateway 334. Using a protocol similar to the access service
332, updated content is pushed to the content repository 210 through the repository access
interface 350. Policy determines the conditions under which an update should be accepted. Note
that care must be taken to ensure synchronization between the access service 332 and content
gateway 334.
7) Transport Services 336 - Included as part of the content services module 222, content and
state information (e.g., file-specific keying material, usage policy) is communicated to and from
the client 150 through the transport service 336. This service provides a set of security and
delivery guarantees. An overview of this service is presented below (in Security).
8) Account Manager 342 - Included as part of the management services module 226, the
identification and authentication requirements of client 150 and administrator entities are
maintained through the account manager 342. This service maintains the tables and
synchronization of entity information, and potentially maps the enterprise authentication service
credentials to universally unique identifiers.
9) Policy Editor 344 - Included as part of the management services module 226, all content
access policies are maintained via the policy editor 344. This service performs internal policy
consistency validation, rights revocation, and synchronized policy updates. The definition of this
service is determined largely by the definition of the supported policies identified below (in
Policy).
10) Audit Manager 346 - Included as part of the management services module 226, the audit
manager 346 specifies and enforces all policies relating to the auditing of content access.
Auditing information is efficiently recorded to an ASCII file. Stored auditing information is
exported off-line to a database format, and viewing using several auditing tools supported by the
auditing management interfaces.
11) Management Interface 348 - Included as part of the management services module 226,
administrators specify all entity, policy, and auditing configuration through the management
interface 348. Simplicity of this user interface is a key consideration.
12) Entity Database 360 - Entity information used by authentication services is stored in the
entity database 360. The definition of the fields and tables of this database is the result of the
analysis of the support forms of authentication.
13) Policy Database 362 - Access and usage policies are retained in the policy database 342.
Policies included in this database describe the access and usage restrictions to be placed on

entities. Note that this does not map policy to content, only specifying the specifics of policies to

18

10

15

20

25

30

WO 03/044686 PCT/US02/37120
be applied. These policies are similar to reusable policies defined in the IETF Policy Working
Group's Policy Common Information Model, known in the art. The format of both the entity and

policy is presented below (in Policy).

B. CLIENT MODULE 230

In the preferred embodiment, the client module 230 evaluates the usage policy inside the
kernel of the client's OS. These usage rights can include all aspects of a user’s interaction with a
file, including, but not limited to: copy/cut/paste, printing, screen capture, launch application
control and auditing. Since policy is enforced within the kernel of the OS, malicious users are
prevented from compromising the usage policy at runtime because direct access to the kernel is
not possible without crashing the system.

The usage rights are enforced through the trapping of kernel-level OS calls that are tied to
a process list. This trapping is accomplished through an understanding of the APIs and other
system-level calls that are supplied by an operating system to an application. These APIs and
system calls allow for an application to run correctly under an operating system and to take
advantage of the functionality that the operating system has to offer. The client module 230 is
between the application and operating system, which allows the client module 230 to understand
what the application requests from the OS, and modify to these requests an needed to control
how information is used.

When a call is made to the client's OS that has been identified as potential source of data
movement, the client module 230 intercepts the call between the application and the OS. As the
interception occurs, a list of tagged processes (open files, visible windows, executing
applications) is checked to see if the system call will result in protected information being acted
upon. If it is determined that the request’s source was not acting on a process relating to the
applicable usage policies, then the call is allowed to proceed without any further action by the
client module 230. However, if it is determined that the call will result in a protected file being
acted on, then the usage rights of that particular file are evaluated from within the kernel. If the
call is within the allowed functionality set forth in the usage policy, then it is allowed. If the call
is not allowed, then the call is blocked and the user is notified.

When an application is launched and a protected file is opened, the file’s usage policy is
evaluated, decrypted and securely presented to the application’s process thread. The user is not
presented with anything new within the application. However, if they attempt to engage in an
action that is not permitted by the usage policy, they are prevented from doing so, and the

administrator of the system has the ability to, for example, make a dialogue box appear informing

19

10

15

20

25

30

WO 03/044686 PCT/US02/37120

the user of the violation, and provides the necessary contact information to have the policy
changed, if so desired.

Additionally, the client module 230 can provide a very granular level of file access and
usage auditing. This feature is very valuable to organizations that must spend capital to conduct
repetitive security audits. It also allows for a strong chain of accountability in the event that
information is compromised from within an organization. Certain events in an audit log can also
provide a real-time alarm to system administrators and managers. The auditing capabilities are
defined by the enterprise deploying the proxy file management system 100, but they can extend
from limited access logging all the way to inter-application action (e.g. menu selections)
auditing. \

The client module 230 is designed to be the final line of defense against unauthorized use
of enterprise information. Its focus is on the enforcement of usage policy applied by the proxy
system 110, and the highly specific auditing functionality. The client module 230 OS kernel-
level control of files gives enterprises unparalleled power in their ability to avoid costly
application compatibility rewrites and upgrades, as well as a level of security not currently found
in traditional file systems.

In the preferred embodiment, client module 230 enforces authorization and access control
policies by redirecting OS primitives, as previously described. Hence, on each client device 150
a set of proxy file management system 100 libraries is installed. The client module 230 can be
characterized as providing the following services:

1) Account Service 232 - Accounting services module 232 communicate identity-
proving credentials to the proxy system 110. Inresponse, the proxy system 110 provides
perishable credentials used to later gain access to protected content.

2) Content Services 234 - Content services module 234 provides access to protected
content from content source 160. Access policy is enforced at the client 150 through a set of

enforcement services.

FIG. 4 illustrates the modules of client device 150, including client module 230. Client
module 230 enforces usage policies at each user host. All enforcement occurs within the kernel
440 of the host operating system. Client module 230 provides the following services:

1) Authentication Interface 410 - Possibly through an existing authorization interface (e.g.,
Windows login), this authentication interface 410 obtains the identity or rights proving
credentials used to infer access rights. As convenient and desirable, additional authorization

interfaces (e.g., smart-cards, proximity devices, etc.) may be accommodated.

20

10

15

20

25

30

WO 03/044686 PCT/US02/37120
2) Authentication Service 422 - As part of the account service module 232, authentication
service module 422 obtains the time-sensitive identity-proving credentials. Authentication
service module 422 communicates with the enterprise authorization service (through
authentication interface 410) to obtain credentials. Credentials are cached in a protected and
possibly encrypted memory or storage device.
3) Authorization Interface 424 - As part of the account service module 232, the GSSAPI
generic authorization interface 424 implements the basic primitives used to obtain credentials
used for content access. This interface provides an API for client authorization.
4) Applications 450 - Applications accessing protected content are not modified in any way
in the preferred embodiment. However, the ability to access, modify, or manipulate content will
be governed by associated policies., with the context of the application.
5) Enforcement Mechanisms 442 - As part of the content service module 234, usage policies
are enforced by the redirection of operating system calls to proxy file management system
defined enforcement software. Redirected system calls will be performed where access is
consistent with received usage policies.
6) Access Server 444 - As part of the content service module 234, access server 444
performs all cryptographic and protocol operations necessary to gain access to protected content
at content source 160. The access server 444 provides the proxy system 110 with an access
request. Credentials obtained by the authorization service 422 (or some byproduct of the
credentials) are provided as necessary to the proxy system 110.
7) Content Gateway 446 - As part of the content service module 234, content updates are
communicated to the proxy system 110 through content gateway 446. The operations performed
by this service are largely similar to the access server 444, save that the modified content is
delivered to the server for further processing.
8) Transport Services 448 - Content and state information (e.g., file-specific keying
material, usage policy) is communicated to and from the proxy system 110 through the transport
service 448. The content is securely transmitted to the client. Once obtained, a plain-text version
of the content is presented to the enforcement mechanisms 442. The set of security and delivery
guarantees implemented by this service is described below (in Security).
9) OS Primitives 430 - These are the OS basic primitives, known in the art, upon which
applications are built. System calls are redirected to the enforcement mechanisms 442 and
applied as is necessary to content in accordance with applicable policies.

In the preferred form, client module 230 is an OS software plug-in that provides two key

features of the overall proxy file management system 100. The first feature is the enforcement of

21

10

15

WO 03/044686 PCT/US02/37120
usage policy, the second is detailed auditing. The client module 230 is also responsible for the
client-side communications through the proxy file management system 100 secure protocol,
described in further detail below.

An exemplary focus of client module 230 is with Windows 32 platforms, such as the
Windows NT/2000/XP platform, due to a high level of adoption in corporate networking
environments as a client system 150. The client module 230 can be deployed via downloadable
installer, compact disc, or as part of a network install/image push system. Once the client
module 230 is installed, the end-user is not required to interact with it, nor do they even need to
know that it is there; it can be completely transparent. As previously discussed, the
authentication information required by the proxy file management system 100 are derived from
assets that are already in place on network user systems (such as computer user login).

This client-side security perimeter is implemented such that it is independent and
transparent to all application programs executing on the end-user’s computer 150. Thus, in the
preferred embodiment, there is no requirement that application developers to integrate the client
module 230 within their software. The client module 230 executes correctly, enforcing all proxy
file management system client-side requirements, with ambivalence for all other processes and
applications executing under an end-user’s operating system.

Users normally access files on content source through the Microsoft Network
Neighborhood window or content management software, with the present invention the file
browsing process is not changed in anyway from the user's perspective, i.e., users continue to use
Network Neighborhood or content management software, and other standard applications to
access remote storage drives and directories. Once the proxy file management system is
deployed, there is either a new storage device or a new storage device is available that is proxy
file management system enabled or a current storage device becomes proxy file management
system enabled. Access to the proxy file management system enabled content source 160
requires that the end-user machine 150 have the client module 230 installed. This measure is a
first defense against external individuals who penetrate the network and internal users with no
reason to use the proxy file management system.

The distributed file system functionality is accomplished through a file system driver.
The file system driver manages all communications with the client 150 and proxy system 110. In
the preferred form, the file system driver is a filter-type driver; it does not implement a new type
of file system semantic, rather it interfaces with existing file systems (such as FAT and NTFS)
and adds additional functionality beyond that offered by the existing file system. In the case of

the client module 230 filter driver, rights and encryption management and the proxy file

22

10

WO 03/044686 PCT/US02/37120
management system secure transport protocol is implemented. All distributed file system

communications are resolved through the filter driver, and thus, through the proxy file
management system secure transport protocol.

This filter driver allows the client module 230 to intercept and modify file requests to and
from file servers as required. This filter driver is responsible for encrypted file access and
management. All aspects of management such as key storage is handled within encrypted
memory spaces where the key is only known to the kernel-mode client module 230. If required,
the client module 230 file system driver delivers the files to the underlying file system (such as
FAT or NTFS) in an encrypted format. This is to prevent individuals from simply saving a file
from a server secured by proxy management file system 100 to an unsecured desktop system, and
circumventing the usage rights. The client module 230 file system driver also makes provisions
for virtual memory management and non-static memory storage.

When a user with the client module 230 seeks to access a content source 160 protected by
the proxy management file system 100, they are automatically “logged in” to the proxy system
110. Network users never have direct access to the content source 160, as the proxy system 110
is logically between the two. This login process is accomplished without any interaction from
the user, as it is automatically accomplished when the user logs in to their client device 150.

This login and authentication lets the proxy system 110 know who the user is and what files they
are allowed to access and under what circumstances (as defined in the policy for the user and
file). Additionally, all communication between the end-user’s client device 110 and the proxy
system 110 is accomplished using the proxy file management system secure transport protocol,
so the security across the network 140 is guaranteed.

‘When the user requests a file, the access policy is evaluated by the proxy system 110. If
access is granted, then usage rights are applied to the file and it is securely sent across network
140 where the user can open it in their usual application (typically, on client device 150). Unlike
traditional digital rights solutions, the application being used to interact with the secure file does
not need to be rewritten, thanks to OS level integration of client module 230.

The usage rights are supplied from the proxy system 110 through the proxy file
management system secure transport protocol. This particular packet is received from the proxy
system 110 by, and managed from within, the client module 230 file system driver component.
The usage rights for a particular file are transferred from the client module 230 file system driver
to a physical location in memory that is encrypted and shared by the client module 230
components. The client module 230 connects between the application and OS. This connection

allows the client module 230 to understand what the application requests from the OS, and apply

23

10

15

20

WO 03/044686 PCT/US02/37120
modifications to these requests an needed to control how information is used.

In other embodiments, client 150 (and client module 230) need not obtain usage rights
information from the proxy system 110, so need not have a direct link to the proxy system. The
content (i.e., one or more files) may be provide via any of a variety of means, after being
prepared by a proxy system 110. And, the rights associated with the file may also be provided
via any of a variety of means, and need not be provided by the same means as the file itself. For
example, the file may be provided via a smart card, floppy disk, or CD ROM, and the usage
rights may be e-mailed via a path that does not include proxy system 110. Files and rights may

be e-mailed among clients, without the proxy system 110 intervening.

7. FIRST RUN CONFIGURATION & MAINTENANCE

The proxy file management system 100 is designed to be granted an initial set-up from a
system administrator (“sysadmin”) individual. The proxy file management system 100 first run
configuration is designed to gather all the necessary information for the proper function of the
system as a whole. The proxy file management system 100 configuration and maintenance is
assisted through automatic scripts that are able to gain information about a network and its
resources with limited input from an administrator. Ongoing maintenance of the proxy file
management system 100 is preformed after the first run configuration has been completed.

A graphical user interface (GUI) is provided to the administrator for configuration and
maintenance. The user interface supports and implements standard visual interface objects.
These include, but are not limited to, buttons, labels, fields, dialog/message boxes, graphical
representations and a variety of information presentation techniques such as scroll bars and
drag/drop. The user interface gains its functionality through a set of APIs delivered through the
management subsystem 226 component of the content subsystem 230 of the proxy system 110.
This API allows for the interface to gain the information required to display the relevant
information, in real-time, in addition to allowing the interface to deliver the user’s input back to
the unexposed code.

In the preferred embodiment, the interface is implemented in an Internet-based
environment, currently delivered over a Web connection and browser. Preferably, the browser
supports Macromedia Flash. However, the user interface is such (both with regard to the
graphical nature and API set) that it could be easily implemented in (or “ported” to) a variety of
different delivery mediums and languages, including, but not limited to, Win32 executable,

Mac™ QS application, Java-based application, and so on.

24

10

15

20

25

30

WO 03/044686 PCT/US02/37120
8. SECURITY

While the security model of the proxy file management system 100 is largely defined by
Policy (see Policy), there are three areas which require an explicit statement of security goals:
authentication, content distribution, and management. The authentication process obtains
identity-proving credentials from an existing or proxy system 110 authentication service. The
content distribution service distributes file oriented content to clients. The management services
provide interfaces that are used to define proxy file management system entities and policy
specifications.

A clear definition of the types of security relevant to the proxy file management system
100 is a prerequisite to the specification of a security model. The following gives a brief
definition of the different guarantees supported by the proxy file management system and
component protocols. Content can take any digital form in the following definitions (e.g.,
message, file content, etc.).

1) Confidentiality - ensures that no entity except the intended recipient can gain access to
content. The strength and lifetime of provided confidentiality is a byproduct of the selection of
cryptographic algorithms and the design of key management services.

2) Integrity - ensures that any modification of content can be detected by the receiver. It is
expected that any modification will be discarded by the receiver, and such occurrences should be
recorded by the system auditing services.

3) Authentication - guarantees that the sender/creator of the content can be unambiguously
identified. The mechanisms provided by existing file-system services (e.g., owner identification)
may be insufficient to meet the needs of proxy file management system environment.

4) Non-repudiation - guarantee stating that a sender should not be able to falsely deny
content assertion. Typically a byproduct of authentication, non-repudiation is frequently used to
provide proof of malfeasance. Note that this guarantee not only applies the creation/modification
of content, but also as a means of tracking access to sensitive data.

5) Timeliness - guarantee stating that content was created/distributed at a known time. Note
that the granularity of this (possible drift in identified time bounds) is a byproduct of the system
timing source and system configuration.

An important aspect of the security model is a definition of the adversary. An adversary
is an entity attempting to circamvent the security provided by the proxy file management system
100 services. Note that an adversary need not be malicious; clients may diverge from the system
specification by omission or unintentional misuse. Specifically, we assume that an adversary

may observe all communication passing between the client 150 and the proxy system 110,

25

10

15

WO 03/044686 PCT/US02/37120
arbitrarily modify messages passing on the network 140, or arbitrarily delay or reorder messages

passing between the client 150 and proxy system 110. Moreover, we assume that an adversary
has a large (but not infinite) computing power at his disposal. Further, we assume that the
adversary cannot observe or modify communication between the content service 222 and
repository 210, nor modify the policy 370 database or entity 360 (see FIG. 3) database directly,
except through management interfaces 348. We assume that the basic cryptographic algorithms
(e.g., AES) are fundamentally sound (e.g., cannot easily be broken by an adversary).

Authentication Security

The security of the authentication process may be largely defined by existing
authentication services as previously mentioned. However, where existing services fail to meet
defined security goals, it is necessary for the proxy file management system 100 to provide
additional authentication infrastructure. Additional infrastructure may take the form of COTS
services. However, any solution must provide interfaces to GSSAP], in the preferred
embodiment.

Any authentication service should provide mutual authentication; that is, both the server
and client should be able to unaﬁlbiguously identify the entity with whom they are
communicating. Moreover, both end-points must be able to ensure that there is not a man-in-the-
middle (e.g., that all communication is available only to end-points). Both client 150 and proxy
system 110 server should ensure live-ness, i.e., the current session is occurring in real-time.
Such guarantees will prevent an adversary from mounting replay attacks.

An artifact of the authentication protocol is a shared secret (e.g., key) known only to the
client 150 and authentication service. This secret (or some byproduct of it) must be
communicated to the content distribution service. Note that policy should determine the length
of time the secret is considered valid. Authentication artifacts should be refreshed (i.e., replaced)
once the validity lifetime expires. However, one may mitigate authentication costs by taking
advantage of previously established session state.

Authentication (and the secret itself) can be classified as either weak or strong. Weak
authentication is derived from knowledge known by the client 150 and one or more external
parties (e.g., password). Hence, weak authentication provides limited guarantees of client
identity. For example, since the authentication system 130 server knows the client 150
password; it may arbitrarily and capriciously act on behalf of the client 150. Strong
authentication is built upon knowledge known only by the client (e.g., a private key). The kinds

of security required for a particular file protected by the proxy file management system is

26

L0

15

30

WO 03/044686 PCT/US02/37120
defined by policy. The cost of providing strong authentication may be significantly higher than
weak authentication. Hence, users may selectively apply strong authentication policies for only

content that strictly requires it.

Content Distribution Security

As one would expect, content distribution security is of paramount importance.
However, note that the kinds of security appropriate for each enterprise (or each distribution)
may differ. Therefore, some means of communicating context sensitive security requirements is
necessary. The attacks previously identified are all relevant to the content distribution. Counter-
measures combating man-in-the-middle, replay, and message reordering attacks must be
provided by the proxy system 110. Note that the use of each counter-measure impacts the
throughput and latency characteristics of the system. Hence, through policy, it is necessary to
allow the specification of the strength of security appropriate for each file.

An increasingly important limitation of existing information services is their inability to
combat denial-of-service (DOS) attacks. These attacks flood information services with bogus or
nonsensical requests. As a result, the service is overwhelmed by processing bad requests. The
proxy file distribution system are preferably used within a controlled network. DOS attack tend
do be a lesser concern than those identified previously. DOS attacks are not addressed in detail
herein.

The proxy system 110 server enforces access policies. These policies map credentials or
entities onto a set of access rights. In the preferred embodiment, access rights are defined to be
semantically identical to the POSIX read, write, and execute bits. Note that the credentials and
entities will be network agnostic; i.e., to support heterogeneous networks, a universal entity
name-space is used. Access policies further define the conditions under which access is allowed.
These conditions state under what environmental conditions access is allowed. An in depth
statement of the policies and model used for authorization is defined below (in Policy).

Use policies are distributed to and enforced by the client module 230 enforcement
mechanisms. Client module 230 restricts kinds of operation that may be performed on the

content by proxying operating system calls, as defined above.

Management Interface Security
The management interfaces of the proxy system 110 provide administrators with the
ability to define and alter the behavior of the proxy file management system 100. For ease of

implementation, this is performed through a simple HTML based user interface, described above.

27

10

15

20

25

30

WO 03/044686 PCT/US02/37120
Depending on the embodiment, the management interfaces may provide a single point of failure
for the proxy file management system. In such a case, any entity with access to these interfaces
would be able to arbitrarily alter system behavior. Hence, careful design of interface security is
necessary.

The central security issue with the management interfaces is the definition of the entities
which have access. This is typically implemented by defining administrator credentials to be
given to special entities within the network. As HTML is used as the common interface, it is
likely that the existing Web security tools be used for this purpose. For example, the use of
X.509 certificates is highly desirable; most browsers and Web servers support the Secure Socket
Layer (SSL) protocol. Hence, the certificates will be used with COTS security services
implemented in existing tools. Note that the SSL (and Transport Layer Security (TLS)) are
highly flexible. The protocol implemented should be the strongest security policy supported
(e.g., mutual authentication, strong keys, sound cryptographic transforms).

Access to the management interfaces must also be defined with respect to read and write
rights. Moreover, access to each management interface (e.g., entity, policy, and auditing) should
be mapped to potentially different credentials. Access to one interface should not imply access to
all. A master administrator should be granted read and write access all interfaces. Some
consideration should bg given to the means by which the master administrator should be allowed

access (e.g., only from the local terminal).

9. POLICY

Policies, in the proxy file management system, define to whom and under what conditions
access to protected content is granted. The policy 550 further refines access by stating
constraints placed upon the use of received content. Policy maps the relationships between the
central system objects; entities, policies, and content. FIG. 5 describes the entity relationship
between these policy objects. Note that the content information is stored on the file-system itself,
rather than in the database.

An entity 510 is an object to which access rights and restrictions are assigned. Entities
can be users or groups (or specializations thereof). Users are entities that are authenticated by the
authentication framework. Groups are collections of entities. Each group can contain one or
more users and groups. Hence, the organization of entities in entity database 360 can reflect the
enterprise in which the proxy file management system 100 infrastructure is used (e.g., the
definition of users and groups can model the hierarchy of users, departments, offices, etc.). A

brief description of the entity database is presented in Table 1, which defines the characteristics

28

5

WO 03/044686

PCT/US02/37120

of all entities participating in the proxy file management system 100 infrastructure. All external

references (in other databases) to entities use the entity identifier (eid).

Field

Description

eid

Globally unique identifier 512- a byte string uniquely identifies this
entity. The identifier is used as a reference handle throughout the

system.

entityType

Entity Type 518 - this enumerated type defines the kind of entity
defined in the record. The entities types are: server, user, administrator,
group, and nobody. The administrator entity is a special user with the
ability to modify policies. The "nobody" type defines a special group to

which all users and groups in the system implicitly belong.

name

Common entity name 514- the name of the entity. For example, a
common user may be named "Bill Smith". Groups will be assigned a
name representing the defined community (e.g., Engineering,

Marketing, etc.)

revoked

Revocation flag 516 - this flag indicates that the rights associated with
this user or groups have been revoked. Any access associated with this

entity will be rejected when this flag is set to TRUE.

authType

Authentication type 520 - this enumerated type identifies the kind of
authentication appropriate for this entity. This policy states that a user
must be authenticated by the identified service before they are allowed
to assume the entity. Not that this implies that the same physical user or
group will be represented by a distinct entity for each acceptable

authentication type (e.g., Engineering/Kerberos, Engineering/RSA).

gid

Group membership identifiers (multi-valued) 522 - this list of
identifiers (where each id refers to a entity record) identifies the groups.
to which this entity belongs. Note that membership is restricted to only

group entities.

Table 1 - Entity Database

Policies 550 state the conditions under which access to content is granted. These

conditions identify system predicates that must be satisfied for access to be allowed. For

29

WO 03/044686 PCT/US02/37120
example, administrators may wish to limit the number of simultaneous viewers, or restrict access
to business hours. Policies 550 also state the restrictions to be placed on content if access is
granted. Enforced by the client module 230, access restrictions further define the operations
permitted by the user on received content. For example, administrators may wish to prevent
printing of a document. Access condition and restrictions are designed to be extensible; the
introduction of new (condition and restriction) types will not require any modification of the
database. However, new management interfaces and enforcement mechanisms must be created.
A brief description of the policy database is presented in Table 2, which defines the policies to be
enforced by the proxy file management system infrastructure. External references (in other

databases) to policies use the policy identifier (pid).

Field Description

pid Policy Identifier 562 - a word (e.g., four byte) uniquely identifying the

policy. The identifier is used as a reference handle throughout the system.

name Policy Name - a unique plain-text identifier used to reference the policy
in user interfaces and auditing information. This name is assigned by the

administrator during policy creation.

accConds Access Conditions (multi-valued) 564 - the access conditions state the
conditions under which access will be allowed. Each condition consists
of:

a) condType 572 - this (enumerated) condition type defines the kind of
condition being measured. For example the time-of-day type defines a
condition that evaluates the period (as measured by wall clock time)
during which access should be permitted.

b) param1, param2, ... 574 - the parameters of the condition. The
interpretation of condition parameters is dictated by condType. In the
above example, the parameters may be assigned as follows: paraml =

8am, param?2 = 5pm. Hence, the condition dictates that access should

only be allowed between 8:00am and 5:00pm.

30

10

15

20

WO 03/044686 PCT/US02/37120

accRestr Access Restrictions (multi-valued) 566 - the access restrictions state how
the client module 230 should further restrict the use of content after
access is allowed. Each such restriction consists of:

a) restType 576 - this (enumerate) restriction type defines the kind of
restriction to be enforced. For example the printable type defines a
restriction that state to whom this document may be mailed.

b) paraml, param2, ... 578 - the parameters of the restriction. The
interpretation of parameters is dictated by restType. For example, in the

above example, the first parameter may be assigned to TRUE. Hence

condition dictates that printing of the content should be allowed.

Table 2 - Policy Database

Protected content is stored in the files and directories of the protected file-system (i.e.,
network attached storage system 160). Note that each proxy system 110 server follows the
naming conventions of the exported distributed file-system interface (e.g., AFS, NFS). Hence,
content is identified by the fully resolved DFS path-name. For example, (assuming an NFS
interface) the file /usr/local/proxysystem.text on the server hotbox.proxysystem.com is uniquely
identified by the name:

hotbox.proxysystem.com:/usr/local/proxysystem.tex

This name is used throughout the proxy file management system 100. A content identifier is a
hash of this name (using a collision resistant hash function, e.g., MD5). All references to this
content in the content policy database 370 use the content identifier.

Content is further organized by the hierarchical structure of the file-system, where the
traditional parent/child relationships are used in the evaluation of policy. Specific to each
directory and described below, the METAFILE defines the relationships between proxy file
management system objects. It is this information which defines the how policies are enforced

over content.

Policy Enforcement
As noted in the architectural overview, there are two distinct domains of enforcement in
the proxy file management system infrastructure. The proxy system 110 content subsystem 220

enforces access policy, and the client module 230 enforces use policy. Access policies are only

31

10

15

20

25

30

WO 03/044686 PCT/US02/37120
accessible through the management interfaces 348 (see FIG. 3). Hence, the security (e.g.,
confidentiality and authenticity) of access policy is determined by the facilities provided by the
management interfaces 348. Use policies are communicated to the client 150 at the point at
which access is given. Hence, the means by which use policies are communicated to clients must
guarantee authenticity. Moreover, the delivery must be confidential to avoid exposure of
potentially sensitive enterprise policy.

Access policies state the conditions under which access to content is allowed. Denial is
always assumed; failure to specify a policy indicates that the entity does not have access to
content. Hence, proxy file management system policies represent a closed world. This design
requires all content access be explicitly stated. The advantage of this position is that errors of
omission are not possible. Given the amount of information that must be managed, this
conservative approach is generally preferred.

Access policies are enforced as follows. Initially, the request information (entity, content,
and access types) is mapped to a set of content policies. If no such content policy exists, the
request is denied. If such a content policy does exist, then the associated policy conditions are
evaluated, and access allowed if all such conditions are satisfied. As dictated by configuration,
information relating to the access attempt is passed to the auditing service. The enforcement
mechanism performs the evaluation algorithm defined in the preceding paragraph for every group
in which the entity is a member (and recursively for every group that the group is a member).

Note that there may be several content policies matching a single request. For example,
where a user named Bob may be denied access, his membership in the Engineering group may
allow it. Therefore, modulo acceptance, all relevant policies must be evaluated. The usage
policy given to the client will be the union of those defined in all accepting policies. It is
expected that protected content share a small number of policies (exhibits reference locality).
Hence, the use of result caching can significantly reduce evaluation costs.

Various types of file-system semantics may be enforced or supported (e.g., Unix, CIFS, or
AFS-like semantics). In accordance with such file system semantics, the read access policy is
evaluated for the parent directory, and execute access policies for all parent directories from the
file to the root. While this may negatively affect policy evaluation performance, it is necessary to
maintain similarity with existing file-systems. Note that usage policies are not relevant to this
evaluation. Hence, only one satisfying policy need be found (rather than all accepting policies).

Use policies enforced by the client module 230 define which operations may be
performed by the client 150 on received content. The access restrictions in the access accepting

policy (policy that allows access to the content) are communicated to the client at the point at

32

10

15

20

25

30

WO 03/044686 PCT/US02/37120

which the content itself is transferred.

Policy Semantics

The following attempts to capture the semantic of proxy policy management system
policy in algorithmic form. This section uses the foAllowing notation throughout. The set of all
user entities defined in the entity database is denoted E (where ¢; is a single user). The set of
groups defined in the entity database is denoted G (where g; identifies a single group in G). The
membership of any group g;is a subset of the Gand E(gic GUE,E G =). The set of
content protected by the proxy system 110 is denoted C (where ¢; is a single protected file or
directory). An access request a; is a combination of one or more read, write and execute rights
encoded in binary form. The set of all policies is denoted P (where p; is one policy in the policy
database). The set of access conditions (restrictions) of p; are denoted p,-d (p/). The set of content
policies CP (where cp; identifies one such policy) maps the tuple (c;, e;, ax) onto one policy in P
(i.e., (ci, e, ar pn). Note that for any tuple (c; e;, ax), there may exist zero of more content
policies. The semantics of the policy is described through the following evaluation algorithm.
Given: An access request (c;, ej, ax), where ¢; is the content.
Algorithm: The conditions 1 and 2 (described below) are tested for (¢;, €;, ax) and (g, €;, ax),
where gy is all groups in the transitive closure of e from ¢; in G). If access is granted by some
non-empty set of policies, the conditions are tested (7;, ¢j, read) where r; is the parent directory of
ci, and (75, e, execute) for every directory r; on the ¢; 's path to the root. Access is granted only if
all requests such are satisfied.
1. Condition 1: (non-revocation)
The user e; has not been revoked (as indicated by the revocation flag in the entity database). No
further processing is attempted where the requesting user's rights have been revoked (no
exceptions consulted).
2. Condition 2: (policy)
There exists some content policy cpi=c;, €, am px such that all p,,d € pn are satisfied and am A
ar (bitwise and - request rights are a subset of policy rights).
The usage policy is created as follows: given all satisfying policies P’ for c;, ax (where u; for p)),

the usage policy u given to the client is:

k=1
UW“;

The resulting usage policy is encoded and delivered to the client as dictated by the evaluation,

33

10

15

20

25

30

WO 03/044686 PCT/US02/37120

and denial otherwise.

10. CONTENT STORAGE AND COMMUNICATION PROTOCOLS

This section describes the format and operation of the protocols used to distribute content
within the proxy file management system 100. The security of the protocols described in this
section are predicated on the following assumptions. Violation of any of these assumptions may
expose the proxy system 110 server to a number of attacks.
1) A known key (signified throughout as the session key) only to the authorized client 150
and proxy system 110 is established through the authorization interface 322 (see FIG. 3). This
key is not exposed by either party.
2) Both the client 150 and proxy system 110 have a common source of timing information.
The timing source should be sufficiently synchronized. Thus, the global time reported at any
instant to each entity should not differ by more than an timing tolerance delta (§). This implies
that the clock drift must not differ significantly.
3) All cryptographic algorithms should be sound. Hence, it must be intractable to obtain
plain-text from cipher-text without the encryption key, invert the collision resistant hash
functions, etc..
4) An adversary may only acquire information from messages sent between the client 150
and proxy system 110. This implies that neither the client 150 or proxy system 110 can be
compromised, i.e., the back-door assumption. Note that the compromised client 150 must never

be to able increase the access rights given to a compromised user.

NAS Storage Format

Files stored on the NAS storage system 160 are stored in the NAS-native file-system
format in plain-text. However, encryption costs are mitigated by storing the encrypted images of
recently accessed files in a proxy file management system 100 directory tree mounted off the root
directory of the NAS file-system 160. This prevents the loss of data following a catastrophic
failure and allows existing backup .software to operate normally. Moreover, this limits the

possible data loss caused by bugs in the content subsystem 220 or client module 230.

Name Length Description

record-length 16 bits total record length
filename-hash 16/20 bytes hash of filename - not pathname
ownerid 32 bits entity identifier of file owner

34

10

15

WO 03/044686 PCT/US02/37120

flags 16 bits first two bits are encrypted bit and valid bit; others
unused for now and reserved for future use

encryption-algorithm | 16 bits (enumerated) identifies both the algorithm and the key
length

key-data 256 bits only higher order bits contain the key; rest ignored

key-lifetime 32 bits time-stamp at which the long term should be discarded

initialization-vector 256 bits seed initialization vector used by the encryption

algorithm. Multiple IVs are used to allow random

access to the file.

unused 20 bytes (for any future needs)
number-of-policies 16 bits number of policy definitions to follow (designated as
| in the following field
policy tuples bits 32 bits of gid and 32 bits of pid (values from entity
and policy databases).

Table 3 - METAFILE Format

Each directory on the NAS maintains a single file (e.g., METAFILE) describing the
information associated with the files of that directory. The METAFILE is stored in the plain-text
directories and includes a single record for each file. The METAFILE record format described in
Table 3 above, wherein each field describes the policy and recent keying information for stored
protected content. Note that associations between policies and files are recorded in the policy
tuple fields.

Files are (re)encrypted at the block level at the NAS with a new key when they are first
accessed or following a change in policy or access rights. The (encrypted) blocks are transmitted
without any subsequent encryption to the client. The key used to encrypt the file is ’distributed to
the client as defined by the file payload, as discussed below. To simplify,

1) Each file is encrypted by a long term key that is invalidated following a change in policy
or when the long term key lifetime is reached (stored in the METAFILE).

2) Invalid keys are replaced and the file re-encrypted on access.

3) The long term encryption key delivered to clients under the session key at access time
through the file key payload. ‘

For reasonable-size directories, the length of the METAFILE is expected to be no more
than one or two blocks. Hence, updating the policy for all files in a directory should be very fast

35

10

15

25

WO 03/044686 PCT/US02/37120

(<20-30 ms or so at current disk speeds). Doing a recursive update for the entire file system
will take longer, depending on the depth of the recursion. However, this cost should be within a
reasonable factor of doing recursive chmod. A record for each sub-directories is maintained in
the parent directory METAFILE (or in itself for the root directory). The only important
information about a directory is the access policy information (i.e., usage policies are not
meaningful).

On a file creation, the METAFILE will automatically inherit the policies of the parent
directory. The {gid, pid} tuples will be copied into the new record for the file. The encryption
key is invalidated on any change of policy on a file by clearing the valid bit). The file is re-
encrypted by the proxy system 110 and a new key installed in the record for the file on
subsequent access (rather than immediately). The records are need not be sorted as memory
operations are fast and the METAFILE is expected to be 1 or 2 blocks. Disk access time
dominates any memory operations.

The cipher modes (e.g., CBC) used in encryption require that all bytes prior to requested
plain-text be decrypted. Hence, operations such as fseek() may require that the entire file be
decrypted to recover the plain-text. This is stark contrast to the performance needs of clients.
The following construction is used to mitigate these costs by encrypting each proxy system 110
block independently;

1) Each file is separated into blocks of size b (where byis a configured block size stored
with the file. So, a file f'that contains blocks f, f1, ..., f», where 7 is [A/bs.

2) The initialization vector 7vrassigned at key creation time. The initialization vector for
each block is calculated by XORing v with the block number. Hence the ivs for the blocks of f
are Iy @ 0, ivr® 1, ivy® n). Because ivris constant, and the block number is unique for each

block, each block will have a unique initialization vector.

Message Transform

Any of a variety of secure transforms known in the art may be used with the proxy file
management system, such as IPSEC and SSL, as examples. Alternatively, the following
"lightweight" transform may be used, which allows for greater bandwidth management than
those known in the art.

Shown in FIG. 6A, the proxy file management system 100 content transform 600
provides sufficient context to determine the freshness, integrity and ordering of a client or server
message. All communication between the client 150 and proxy system 110 use the content

transform 600. This transforms encapsulates the security and contextual information needed for

36

10

15

20

25

30

WO 03/044686 PCT/US02/37120
communication between proxy file management system entities. The purpose of the single
transform is to simplify processing; each new message is processed by the single transform
processor. FIG. 6B describes the fields of the message content transform.

Note that the file-system data is encapsulated in the message payload field. This field is
treated as opaque data throughout this section. The following section describes the format and
processing of the different payloads. A further advantage of this approach is that the authenticity
and integrity of a message can be assessed with knowledge of the semantics (payload type). This
increases the speed with which proxy file management system software can discard invalid
messages. The following describes the input and output processing of the message content
transform.

The delivery guarantees provided by IP (e.g., UDP, TCP) are not secure. Hence, the
transport layer must provide both ordering and reliability guarantees. This is accomplished
through a sliding acknowledgment window protocol supported by the sequencing fields of the
content transform (i.e., SeqNo, AckNo).

Message Output Processing
1) The payload, flags, SeqNo, AckNo, source, destination, and time-stamp are filled into the

message.
2) The time-stamp is acquired from the local timing source and placed in the time-stamp
field.

3) The payload data is acquired from the appropriate source. Further processing of the
payload is performed as dictated by the flags. Where multiple flags are set, they are perform in
the order stated below.

a) Signature Flag - indicates the payload has been signed by the source.

b) Encryption Flag - where encryption is enabled, the payload is encrypted as follows: the
initialization vector is calculated by truncating a hash of the concatenated time-stamp and source
identifier (the hash algorithm used is identifier in the hash algorithm id field). For example, IV =
h(sid, ts). The entire payload is encrypted under the calculated IV and the session key shared by
the source and destination.

The result of the applied transforms is placed in the payload field. Where no transform is
applied, the plain-text is placed in the payload field.

4) The hash algorithm id is placed in the appropriate field.

A 5) An keyed hash is calculated using the 'construction defined in RFC 2104. This

construction calculates the HMAC using session key shared by the source and destination and

37

10

15

20

25

30

WO 03/044686 PCT/US02/37120
hash algorithm identified in the algorithm field. All bytes preceding the HMAC length field are
used as input to the HMAC generation. The length and HMAC value are placed in the
appropriate fields.

6) The completed message is transmitted to the destination.

Message Input Processing
1) The payload ID, flags, length, SeqNo, AckNo, source and destination IDs, hash algorithm
and HMAC length fields are extracted from the message and validation. If any field contain an
invalid value, the message is ignored.
2) The time-stamp is extracted from the message (denoted m;). A message is ignored if the
following relation is true (where § is a message reordering tolerance, e is a clock skew tolerance,
and c is the current time reported by local timing source);

a) ls-ms>§

b) |ms-c|>e
These tests validate that no previously message is accepted beyond the configured clock
tolerances.
3) An HMAC is calculated over all fields through the last byte of the hash algorithm ID.
The result is compared to the transmitted value, and the message is rejected where the values are
not identical.
4) The payload is extracted and the reverse payload transforms are performed. If properly
formed and processed (e.g., decrypted correctly, signature validated), the resulting payload data is
then passed to the payload processing software.
5) If the payload is properly processed, the received timestamp is recorded in the last

received timestamp state variable.

Payload Formats

Payload data encapsulates the file-system communication between the client 150 and
proxy system 110. Note that payload data is obtained only from the successful completion of the
transform input processing defined in the previous section. Payload data is driven by the
(authentic) payload designator of the transform. This information is passed to the payload
processing software, and further processing of the payload types is defined in the following
subsections.

1) File Key Payload Format (AERE_FILE KEY)

The file key payload communicates the file and policy information associated with an accessed

38

10

15

20

25

30

WO 03/044686 PCT/US02/37120

file. Sent following a file open() call, this transform gives sufficient information for a client to
recover the file plain-text from encrypted file blocks. Note that this transforms requires that the
encryption flag in the message transform be set. Failure to set this bit would result in the
exposure of the key data, and indirectly expose the protected content. FIG. 7 and FIG. 8 depict
the transform contents.

2) Block Format (AERE BLK XFER)
The block transform is used to transfer file blocks between the client and server. Each block is
delivered to the transport layer in encrypted format. Hence, it is not necessary to encrypt the data
for transfer. The integrity and authenticity of each block is guaranteed by the encapsulating
content transform. The fields of the block transform are detailed in FIG. 9.

3) Status Transform (AERE _STATUS)
Status transforms are used to communicate state changes and debugging information between
clients 150 and proxy system 110. Status messages are used as a signaling protocol between
clients 150 and proxy system 110 server (i.e., to communicate proxy file management system
infrastructure events). Hence, these transforms are used independently of the distributed file-
system protocols, each of which contains is own signaling mechanisms. The fields of the status

transform are detailed in FIG. 10.

11. ALTERNATIVE EMBODIMENT

In addition to, or as an alternative to, the proxy file management system described above,
a dynamic file access control and management system in accordance with the present invention
may be configured to provide a mechanism for modifying computer files in real-time as the files
traverse a server in a network, such as the Internet. In such a case, the present invention may act
as an intermediary between traditional web servers and an digital content. This allows businesses
to easily upgrade to different types of content delivery, while continuing to utilize their current
content delivery infrastructures, without converting proven systems to new technologies.

In this embodiment of the present invention, called a dynamic content management
system (DCMS) includes software that runs on a server computer (or “cluster” of server
computers) and operates between HTML or WAP or FTP server software (or additional, required
software and protocols), and content, digital rights warehouse, and database software. This
allows the DCMS to interface with existing systems, with minimal interruption.

The present invention modifies files sent across networks in real-time. When a client
machine requests a file from an HTTP server (such as Apache or IIS), the request is routed to an

dynamic content management server, whereby the file is retrieved, encrypted (optionally), rules

39

10

15

20

25

30

WO 03/044686 PCT/US02/37120
are applied, and then the requested file, along with the “other” information wrapped with the file,
is sent to the requesting client. For example, if a musician wants to sell his/her music online, that
person can choose the file format they prefer (e.g., MP3, WMA, ePAC, etc.) and simply instruct
the dynamic content management server to securely distribute the file under a specified set of
rules. This removes the trial and error associated with encryption and encoding in conventional
systems.

The delivery of digital files is a multi-layered process, and does not occur in a vacuum.
Recognizing this, the DCMS is flexible, interfacing with existing enterprise software. The
dynamic content management server offers gateways such as: content, digital rights management
(DRM) warehouse, e-commerce, database, LiveEmbed™ module (a trademark of Aereous, LLC
of Ann Arbor, MI) and client tracking/customer relations management (CRM) software (see FIG.
18, for example). The content gateway allows the dynamic content management server to accept
and modify content from a variety of different sources, over a number of standard protocols,
including but not limited to: HTTP, FTP, and networked sources. The DRM warehouse gateway
interacts with current service provider’s warehouse solutions. The e-commerce gateway allows
for secure purchases to be made over the Internet, and for content owners to be compensated for
those purchases. The database gateway provides connectivity to SQL and ODBC databases, and
the client tracking/CRM software gateway provides for the tracking and collection of information
related to purchases made by a client, as well as recommendations for future purchases.

When an end-user receives a file which has been "wrapped" by the DCMS, the user can
open it with an application that is compatible with the end-user’s native operating system,
provided that the dynamic content management client software has been installed on the end-
user's device. The end-user can only use the file in a manner defined by the rules that have been
sent by the file’s creator (or administrator). These rules can specify a variety of different
variables, such as the number of playbacks (or openings of the file), whether the file can be
transferred to portable devices, and whether the file will ever “expire” (e.g., file cannot be
accessed after a particular day and/or time of day). These rules are stored on (or accessed by) the
dynamic content management server or servers, and are attached to the file (“wrapped”) at the
time of download, as part of the dynamic content management server process. Thus, the DCMS
lends itself to all areas of secure media distribution where privacy, copyright, bandwidth
management, additional revenue streams and/or financial protection are required.

The DCMS is installed between existing clients and servers, essentially creating a “pass-
through” server that adds a step in the process of requesting and receiving data over the Internet.

A first component of the DCMS exists on the server side. In particular, on the server

40

10

15

WO 03/044686 PCT/US02/37120
side, the DCMS works with an existing data (or content) server to intercept and interpret requests
for data without the explicit knowledge of either the client or the data server. When a request is
made and the original data server attempts to read the requested file from disk, a transparent
operating system modification on the original data server detects that read attempt and forwards
the request for data to the dynamic content management server. The dynamic content
management server then retrieves the data from a content server and sends back to the data server
the original data embellished with additional content in a known format and structure. The added
content may be context-sensitive and may vary from request to request, depending upon
information known about the requesting client, time of day, request number, or any number of
other possible factors. Upon receipt of the original data embellished with the additional content,
the original data server will reply to the client with the modified data file as provided to it by the
dynamic content management server.

A second component of the DCMS exists on the client side, since the originally-requested
data file now has additional content that could not be understood by the requestor. Therefore, the
DCMS on the client side is a component on the client’s computer, which intercepts and interprets
the dynamic content management specific data and removes it from the data stream, thereby
feeding “clean” data to the client and using/displaying the additional, context-sensitive data in its
own manner. In the present invention, there is provided a direct channel of communication
between the dynamic content management server and the dynamic content management client
component, so that when a client requests data, the dynamic content management server will be
made, aware of whether or not the client is capable of receiving and interpreting the additional
data.

Another component of the DCMS are interpreters for the additional dynamic content
management supplied data. In some cases, the standard operating system extensions and
common programs may be used as the display vehicle (for example, most systems have a default
application for displaying bitmap BMP files). In others, a custom display and/or playback
module may be employed. This module would be installed at the client’s computer along with
the dynamic content management client software when the client detects that it is required.

An example of the use of the DCMS to obtain an audio ﬁle will be provided herein. An
Internet user enters a music site and browses a catalo g of available music samples. The user
finds a selection that he/she would like to hear, and starts to download the selection. The user’s
client program (the browser) requests the MP3 file (or other type of file) from a content server.
The content server in turn attempts to deliver the file to the requesting client.

At this point, a DCMS patch to the content server-side operating system detects and

41

10

15

20

25

30

WO 03/044686 PCT/US02/37120
intercepts the attempt to open the file by the content server. This patch, which is an extension to
the server-side operating system, communicates the request to a DCMS server for processing,.
The DCMS server then attempts to contact the client directly to ensure that the client has the
appropriate DCMS software at its end (e.g., to determine if there is a DCMS patch to the client-
side operating system). If the client is not capable of interpreting DCMS information, one of two
things may happen: either the DCMS server could process the request and send the MP3 file to
the client anyway with no additional information, or it may refuse the request and instead send
back a HTML page (or other such mark-up language or communications implement) that
explains why the request was denied (and how to obtain the necessary DCMS client patch from
the Internet). The choice of which to do is up to the owner of the content, and is stored at the
DCMS server’s database for each content server that can be accessed by the DCMS server to
provide content to a client.

Assuming that the DCMS client patch is installed, the DCMS server reads the actual data
file from the content server’s storage, and holds it in a temporary location or in memory. Then,
the DCMS server calculates what additional content, if any, is to be included with the file, and
merges the two or more data streams appropriately. For example, the DCMS server may
determine the location of the client (or requestor), search a database of music stores in the area
currently running specials on the selected band’s CD, and if one or more are found, append visual
ads or coupons as BMPs to the MP3 sample file requested by the client. That way, when the
client receives the MP3 sample file that he/she requested, the DCMS software at the client’s
computer parses the additional dynamic content management -added information to display the
“coupons and specials” information to the client on the client’s monitor, when the MP3 file is
played. In addition, one or more hyperlinks to related web sites may be provided so as to be
displayed when the MP3 sample file is played by the client’s computer. The DCMS server
replies to the operating system patch on the client’s side, by providing the client with a modified
data file, which is sent to the client to fulfill the client’s request.

At this point, the client system receives and saves the DCMS -modified file to disk as
though it were a valid MP3 file, when in fact the format has been modified by the DCMS. Then,
when the client attempts to open the file to play it, an OS patch on the client side detects the
“attempt to open” action and passes the request along to the DCMS client program (stored at the
client’s computer) for processing. The DCMS client program reads and interprets the modified
MP3 file, and displays the included BMPs (and/or hyperlinks) if present. At the same time, the
DCMS client program strips the DCMS data from the MP3 file, and decrypts it (if it had been
encrypted by the DCMS server), and passes “clean” MP3 back to the client program (e.g.. Quick

42

10

15

20

25

30

WO 03/044686 PCT/US02/37120
Time™ or Real Player™) which attempted to open the file.

In one example of how this can be done, at the client side, the Microsoft OS kernel called
kernel32.dll is modified and code is added which detects when particular types of files are being
opened at the client’s computer. This detection triggers a DCMS dynamic linked library (DLL)
on the client computer to read the file being opened and to process it in order to determine what
to do to that file. The modification to the kernel and the incorporation of the dynamic content
management application program at the client’s computer is done when the client adds the
DCMS capability to his/her computer, such as by downloading software from a particular Web
site in order to be able to open DCMS -enhanced files.

The DCMS has many advantages. One advantage is its seamless implementation. Once
installed, the DCMS operates “seamlessly”’, and does not require the user to run a specific
program or keep an application open for it to work. The DCMS behaves as an extension to the
operating system itself. Another advantage is that no server-side data file changes are needed.
Given the nature of the DCMS, an existing data server does not need to “encrypt” any of their
data files prior to use. In fact, merely installing and configuring the DCMS software gives the
server the appearance of holding nothing but encrypted files without actually modifying a single
data file. This enables files such as e-mails, which are not stored on a server until they are
created, to be modified automatically.

Yet another advantage is that the client-side data is always wrapped. Once a data file is
protected by the DCMS and is sent to the client, it exists on the client’s PC as a protected or
DCMS -formatted file. Access to the file can be limited (as defined in each individual file
instance, by the data owner) to a DCMS -capable system at the client side. Still another
advantage is the capability of context-sensitive information, LiveEmbed™ module. File requests
can have additional information attached to them (by the DCMS server) so that the information is
displayed whenever the user accesses the requested file. This information can be different for
every download of the file (e.g., time-of-day or time-of-year dependent).

The DCMS utilizes an OS-level modification at both the client and at the content server
side, so that certain actions at both the client and the server side are captured and thereby require
actions to be performed by the dynamic content management server.

FIG. 11 shows the flow of data in a standard client-server environment, where
information is sent from a server 1150 to an application 1152 that requested information from the
server 1150. The information is transferred using a server native protocol. FIG. 12 shows the
flow of data in a client-server environment that utilizes the DCMS. In FIG. 12, the information

requested by the application 1152 is sent by the server 1150 to the DCMS server (or LiveWrap™

43

10

15

20

25

30

WO 03/044686 PCT/US02/37120

server, also a trademark of Aereous, LLC) 1100, which sends the requested information, along
with other information wrapped with it, to a DCMS client 1110 (i.e., LiveWrap™ enabled),
where the requested information is provided to the application 1150, and where the other
information is provided to a LiveWrap™ Extra Content element 1120 to be displayed on a
display by way of LiveWrap™ Extra Content Display Program 1130, and where that other
information may provide rules by which the requested information can be used by the application
1152. FIG. 12 also shows that the apblication 1152 communicates with the client 1110 using a
server native protocol, and whereby the dynamic content management server 1100 communicates
with the content server 1150 using the server native protocol. However, between the client 1110
and the dynamic content management server 1100, a different, non-server native protocol is used,
for enhanced security reasons.

FIG. 13 shows a system-level diagram of the objects that are utilized in the preferred
embodiment of the DCMS.

FIG. 14 is a diagram of a representative overall architecture of the DCMS, showing the
end-user machine (i.e., client) 110, the DCMS - enabled file server (content server) 1150, and the
DCMS server 1100.

The elements of FIG. 14 are described in detail below.

1) DCMS Server 1100 - A dynamic content management server that hosts both an off
the shelf file server and the server core 1102 (also called “application core™).

2) DCMS Enabled File Server 1150 - A DCMS enabled file server that hosts an off
the shelf file server that connects remotely to the server core 1102.

3) DCMS Server Core 1102 - A TCP server that helps the DCMSServerHook.DLL
build files from virtual file paths.

4) External Database or Internet Resource 1104 - Used by DCMS Server Core plug-
ins to generate dynamic virtual files.

5) DCMS Database (1106) - Stores usage statistics, which files are marked for
DCMS encoding, push content information, and file usage restrictions.

10) Server side raw files 11084, 1108B - The raw (i.e., not DCMS -encrypted) files.
In the present invention, the file server stores raw files since this enables a server administrator to
switch to and from dynamic content management technology without having to maintain separate
sets of files.

11) DCMSConfig 1112 - ASP application that configures database 1106.

12) DCMSServerHook.DLL 11144, 1114B - Server side Win32 file hooks. These

hooks convert virtual files to complete dynamic content management files that get sent to the

44

10

15

20

25

30

WO 03/044686 PCT/US02/37120

client. The file data can be obtained from corresponding raw files on the server or they can be
obtained completely through the DCMS server core 1102. The second case will be used for files
that are completely dynamically generated.

13) DCMSClientHook.DLL 1116 - Client-side Win32 file hooks. These hooks deliver
push content, enforce usage restrictions, and supply end user applications with the raw data from
a DCMS file. Typically, these hooks are invoked when a standard end-user viewing application
opens a DCMS file.

14) OS - This refers to the standard Win32 API functions (alternatively, other types of
operating systems may be used with the present invention, including but not limited to Linux or
Unix).

15) Standard FTIP/HTTP Server 11184, 1118B - A standard off the shelf FTP/HTTP
server. This server does not know about dynamic content management server and does not
require any DCMS extensions to work properly.

16) End User HITP/FTP Client 1122 - A standard FTP/HTTP client that does not
need any DCMS specific extensions to get DCMS files.

17) End User Machine 1124 - A client machine of the DCMS for downloading
DCMS files.

18) Viewer Application 1126 - A standard viewing application such as WinAmp (for
MP3s) or Adobe Acrobat (for PDF files).

19) Client-side DCMS files 1128 - The DCMS files that the end user downloads.

The DCMS file format provides the following functionality:

1) Streaming Support - DCMS files are broken up into separately encrypted blocks
of data. This supports streaming when using cértain encryption/compression algorithms that
require an entire block before being able to reproduce the original data.

2) Expiration Dates - Push content supports expiration dates for items that are only
relevant for a finite time. An entire file may also have an expiration date associated with it.

3) Flexible Content - The dynamic content management client delivers content to the
user when a license has expired or as push content. In the preferred embodiment, only one
content type is defined: a basic URL. Note, however, that additional content types may be used,
including types that use customized content delivery applications and customized web browsers.

4) Transparent - For certain file formats, the DCMS encoding is transparent to
clients that do not have the DCMS software installed. The file is encoded, in such a way that a

standard file viewer would see special fake data instead of the encoded data. This special data

45

WO 03/044686

PCT/US02/37120

would notify the user that the DCMS software is not installed. This transparency will only work

for a limited number of formats but any format can still be encoded.

This format is not modified once it is written. The only time the DCMS file is modified

is to decrement usage counts.

Because of the requirement to provide functional data to client systems that do not have

DCMS software installed, the DCMS header is not necessarily located at the beginning of the

encoded file.

All multi-byte fields are represented in big endian (MSB) byte order.

Description Size (bvtes) Contents

DCMS Signature 11 ‘DCMS’ + 001301976

DCMS File Version 1 Currently Ox1

File ID 8 File’s DCMS ID.

Usage Count 2 Number of usages remaining. Set to
OxFFFF for infinite usages.

Expiration Date 4 A GMT ANSIRTL style time date
stamp that indicates when this file
expires.

Usage Denied Content | Varying Once a read attempt fails due to a 0
usage count, this content is displayed to
the user. The format is described below
under “Content Format”

Number Of Push 2 Number of items that are pushed to the -

Content Items user when the file is opened.

Push Content Items Varying Array of push content items. The format
is described below as “Push Content
Item Format”.

Header CRC 4 A CRC value for the preceding header
bytes.

Content Size 8 The size of the unencrypted data

Encryption Type 1 0 = Unencrypted;

1 = 2Fish;
2-255 =undefined

46

10

WO 03/044686

PCT/US02/37120

Encrypted Data Offset | 8

A file offset to the beginning of the

encrypted data. The encrypted data uses

the format described in “Encrypted Data

Block™.

Table 4 - Multi-byte Fields

Content Format

Description Size (bytes) Contents

Content Type 1 0 - Error;
1-URL;

2-255 — Undefined

URL (for URL Types) Varying, 2 byte count prefixed string
containing the URL.

Table 5 - Content Format

Push Content Item Format

Description Size (bytes) Contents

Repetition Count 2 Number of times that this
content will be sprung before
expiring. OXFFFF means that
this will never expire due to
use.

Expiration Date 4 A GMT ANSIRTL style time
date stamp that indicates when
this content item expires. Set
to 0 for no date expiration.

Content Varying Indicates the content to be

pushed to the user. The format
is described in “Content

Format™.

Table 6 - Push Content Item Format

47

10

15

20

25

WO 03/044686 PCT/US02/37120

Encrypted Data Block

Description Size (bytes) Contents

Encryption Block Size | 4 Bytes of encrypted data under the current encryption
block. Each block can be decrypted independently of
other blocks. Data within a block can’t necessarily
be decrypted without preceding inter-block data.

Pure Content Varying An encrypted block of the original file’s pure
content.

Table 7 - Encrypted Data Block

The DCMS has its own system of referencing files separate from the system used on
individual file servers. This is the case because:

1) Many file servers can be connected to one server core. Each file server might
store its files intended for DCMS distribution at different local locations.

2) Some of the content to be distributed over DCMS does not come from a static file
but is dynamically generated from a database or other source. In this case there will be a virtual
DCMS file path without a corresponding file server file.

Local file server paths are converted to and from DCMS virtual paths by the
DCMSServerHook.DLL 114A/B file hooks. This is done using mapping information stored in
the Windows™ registry.

In the preferred embodiment, the DCMS server core 1102 is a TCP server that determines
if and how a DCMS file should be built given a virtual path name. Regular static files are
encrypted straight from the corresponding raw file on the file server and combined with header
information obtained from the DCMS server core 1102. Dynamic files are completely acquired
from the DCMS server core 1102, which will do the encryption in addition to building the header
data.

Classes
1) CoreListener
2) CoreServer Thread - There will only be a small number of these (possibly even only one)

that service a list of sessions. This is to better handle high volume conditions where a thread for
each session would invoke too much overhead.

3) CoreSession - The foundation of the state machine. There will be one instance of this for

48

10

15

20

25

30

WO 03/044686 PCT/US02/37120
every connected server hook. This will contain many functions with many states. All TCP
receiving and sending are done through states.

The DCMS server core 1102 builds the header information for all files. This includes a
file ID, push content information, licensing restrictions, and encryption method. Instead of
having this information stored for each file in the database, a more flexible rule engine is to be
used.

FIG. 15 shows the steps in which information stored in the DCMS database 1106 is
converted to header information to be provided in a DCMS -wrapped file.

1) Input Facts 1510 - Static information stored in the database. The facts that are
supported can be adjusted depending on the kind of dynamics needed.

2) Rule Engine 1520 - In the preferred embodiment, this is implemented as static
C++ code linked into the DCMS server core 1102 code. If additional flexibility is needed, a
determination can be made of the kind of additional rules that are necessary and an interpreted
mini-language can be built to support them.

3) Output Facts 1530 - The output of the rule engine. These facts are converted to
header information.

4) Header Information 1540 - The DCMS file information that DCMS server core
1102 - sends back to the DCMSServerHook.DLL.

The DCMS server hook 1114A/B to server core protocol is now explained. In the
preferred implementation, all transactions begin with a 2-byte command identifier. All multi-
byte fields are stored in big endian (MSB)
byte order.

GET DCMS_GENERATION _TYPE
Get the information for building a DCMS file from a virtual path name.

Request

Description Size (bytes) Contents

Command ID 2 0x1

File Name 2 2-byte count prefixed string containing
the virtual file path name.

Table 8 - Request Fields

49

10

15

WO 03/044686 PCT/US02/37120

Response
Description Size (bytes) Contents
Generation Type |1 0 - Not an dynamic content management virtual file.

1 - Static DCMS File.

Build the DCMS file from a corresponding raw file on
the file server. Header information will be needed.

2 - Dynamic DCMS File. The entire file will need to be

acquired through Server Core (which will acquire the

raw data through a plugin).

Table 9 - Response Fields

BUILD DCMS HEADER

Build the DCMS file header containing proper usage count, expiration date, and push
content settings for a given DCMS virtual file path. This is not supported for dynamic files since
they should be acquired with GET DCMS DYNAMIC FILE.

Request

Description Size (bytes) Contents

Command ID 2 Ox2

File Name | Varying 2-byte count prefixed string
containing the virtual file path.

Table 10 - Request Fields

Response

Description Size (bytes) Contents

DCMS Header Size 2 The size of the following
DCMS file header.

DCMS Header Varying The actual file header.

Table 11 - Response Fields

GET_DCMS _DYNAMIC FILE
50

10

15

20

25

WO 03/044686 PCT/US02/37120
Gets the entire DCMS file from a given virtual file path. This command does not work

with static files.

Request

Description Size files) Contents

Command ID 2 Ox2

File Name Varying 2-byte count prefixed string

contain in the virtual path

name of the dynamic file.

Table 12 - Request Fields

Response

Description Size (bytes) Contents

DCMS File Size 2 The size of the following
DCMS file.

DCMS File Varying The file contents.

Table 13 - Response Fields

The DCMS Server Core Plug-in Architecture is shown in FIG. 16. The elements of FIG.
16 are described in detail below.

1) DCMSServerHook.DLL 1144 - The Win32 File hooks that respond to a file open
command from the DCMS File Server.

2) DCMS Server Core 1102 - The DCMS server core determines which plug-in to
use based on information about the requested file from the DCMS database.

3) TCP 1602 - TCP networking services. In the diagram, the TCP occurs over a
local connection but the design allows for a remote plug-in if that was needed.

4) Database Plug-in 1604 - A plug-in written to generate dynamic file data from an
external database.

5) Internet Plug-in 1606 - A plug-in that builds dynamic data from external FTP or
web sites.

6) External Server 1610 - A machine that isn’t necessarily part of the DCMS that
holds information necessary to building dynamic data.

51

10

15

20

25

30

WO 03/044686 PCT/US02/37120

In the preferred embodiment, plug-ins are implemented as TCP servers. This allows
plug-ins to reside either locally or remotely with optimal performance and not rely heavily on OS
dependant technologies such as COM, shared libraries, or pipes. The DCMS server core 1102
sends the virtual path name of the requested file to the plug-in and receive raw data.

Also, DCMS plug-ins that generate data from a remote database may be utilized, and a
plug-in that generates data from a remote FTP or HTTP server may be utilized in the DCMS
server core 1102.

In the preferred embodiment, the DCMS database is implemented using an ODBC
compliant SQL Server database. At least the following types of data are included in the preferred
implementation:

Usage Statistics -
File Information:
a) Virtual Path location - The file’s position in the virtual file system.
b) Type -- Is this a static file or a dynamically generated file?
c) “Facts” -- Facts can be stored about files. These facts are used by the rule
engine of the DCMS Server Core to determine how to encode the given file.

DCMSConfig is an ASP application that configures the DCMS Database. ASP and
Visual Basic code provide the HTML interface.

The DCMSServerHook.DLL contains a set of hook functions that get installed in place of
standard Win.32 API functions in KERNEL32.DLL. These hooks intercept file open and read
commands from the standard file server and return DCMS file data.

The interaction diagram shown in FIG. 17 illustrates the scenario where the file server
attempts to read a file that corresponds to a static DCMS virtual file.

DCMSServerHook needs certain configuration data to function properly. This data is
stored in the Win32 registry. For performance reasons, DCMSServerHook does not recheck the
registry for each and every file operation. In the preferred embodiment, checks are performed no
more frequently than every thirty seconds.

For both performance and safety reasons, DCMSServerHook.DLL only takes action on
files that reside within designated DCMS Paths. The system directory is excluded from these
paths since that would cause DCMS hooks to take action, involving TCP communication, at

sensitive times such as system boot up.

Registry Entries -
HKEY LOCAL_MACHINE\Software\ DCMS \ManagerAddress

52

10

15

20

25

30

WO 03/044686 PCT/US02/37120
An TP address in string format that indicates where DCMS Server is located.

HKEY LOCAL_MACHINE\Software\ DCMS \Disable
A boolean flag that signals DCMSServerHook.DLL to pass all Win32 API calls directly
through. This allows DCMS to be temporarily turned off on a server without requiring a reboot.

Under normal operation, this flag won’t be present.

HKEY LOCAL_MACHINE\Software\ DCMS\NumPaths
An integer value indicating the number of DCMS Paths present.

HKEY LOCAL_MACHINE\Software\DCMS\LocalPath[n]

Contains a local Win32 file path that targeted raw files may exist under.

HKEY LOCAL_MACHINE\Software\DCMS\VirtualPath[n]
Maps the corresponding local path to a DCMS virtual path.

Pseudo-code for specific Win32 API overrides -
CreateFile
If disabled pass through.
Is path in a relevant branch? If not pass through.
Query Server. If not present or some kind of error, return error.
If requesting write access return access denied error.
If static file, acquire header. Open real file. Build linked list record.
Store handle to real file and encoded header. Return real handle.
If dynamic file, acquire entire file and then return handle. Return a file handle opened to a

dummy file.

ReadFile
If there is no session structure for the given file handle pass through. Convert from
DCMS file position to real file position Build encrypted data and output. Update DCMS file

position

SetFilePointer
If there is no session structure for the given file handle pass through. Get the final

53

10

15

20

25

30

WO 03/044686 PCT/US02/37120
encoded length. This requires that the encryption block size is known beforehand. This is
necessary for bounds checking and set relative to the file end calls. Update internal pointer and

return. The underlying Win32 file pointer is not adjusted.

CloseHandle
If there is no session structure for the given file handle pass through. Dispose session

structure.

The DCMS ClientHook.DLL hooks deliver push content, enforce usage restrictions, and
supply end user applications with the raw data from a DCMS file. Typically, these hooks are
invoked when a standard end-user viewing application opens a DCMS file.

To prevent a simple file copy from producing a raw version of a DCMS file, once an
application begins to read a DCMS encoded file, all subsequent file’s opened for writing are
written using DCMS encoding.

To reduce the number of times a DCMS file’s open conditions are triggered
inappropriately, these hooks wait for an actual file read rather than triggering immediately upon
file open. This distinction is made since many software programs test for the presence of a file

by opening and then immediately closing a file.

Pseudo-code for specific Win32 API overrides -
CreateFile
Call underlying Win32 function.

If failed return.

ReadFile
If there is no session structure for the given file handle pass through.
Build raw data from the DCMS file data.
Update the file offset.

WriteFile
If there is no session structure for the given file handle pass through.
If this is not a DCMS file, dispose of the session structure and pass through.
Convert the given raw data to DCMS encoded data.
Update the file pointer.

54

10

15

20

25

30

WO 03/044686 PCT/US02/37120

SetFilePointer

If there is no session structure for the given file handle pass through.

CloseHandle
If there is no session structure for the given file handle pass through. Dispose session

structure.

As explained in detail above, the DCMS server acts as an interface between front-end
web servers (e.g., Apache, IIS, Solaris, Phone.Com’s WAP server, etc.) and back-end
applications (e.g., Oracle, SQL, eCash, CyberCash, Reciprocal, Intertrust, etc.). The DCMS
server acts as a wrapping agent, securing in real time files that pass through it.

The Core of the DCMS server is where the files are protected against unauthorized
access, and where the rules and other information is included With the requested file, as a
wrapped file to be eventually sent to the requesting client. The method of preventing
unauthorized access is preferably accomplished with a security plug-in, such as one from
Intertrust, RSA, or nTRU.

Various components of the DCMS server will be described in detail below with reference
to FIG. 24. The Database Component 2330 of the DCMS Server allows the DCMS server to
access database programs. For example, the Database Component will allow for
communications between ‘the DCMS Server and standard ODBC databases, thereby allowing
communication with a variety of off-the-shelf database programs from different vendors, such as
MS SQL, Oracle, MySQL, etc.

The Rule Component 2340 of the DCMS server processes and supplies access privileges
to the Wrap Component 2310 of the DCMS server. The rules, or privileges, déﬁne under what
conditions that wrapped file can be accessed or utilized.

The Rule Component accesses rules form a variety of DRM companies, as well as its own
rule set stored in the DCMS server. The rules may be: how many times a document can be
opened, transferred (if at all), printed (if at all), etc.

The Rule Component is called by the Wrap Component that sends the FILE ID to the
Rule Component. At that time, the Rule Component searches a logical location table, and
delivers the appropriate rules and other information for that file to the Wrap Component. In
situations where additional servers have to be accessed, the connection to those additional servers

is secured and authenticated, and the rules are translated to a DCMS -processed format, and then

55

10

15

20

25

30

WO 03/044686 PCT/US02/37120
passed to the Wrap Component to be included with the raw file data to be eventually sent to the

requesting client as a wrapped file.

The source or rules can include a variety of different formats and locations, including
XML files, remote servers, CGI-scripts, SQL databases, text files, and remote warehouse
solution providers/software. The DCMS server application has an appropriate translator installed
through the plug-in component, in order to receive and interpret information received in any of
these different formats.

Rules are not required to specify any type of file protection. In fact, they can specify
absolutely nothing, if the circumstances warrant. Also, rules can simply require that the file
usage be tracked and/or monitored. In many cases, however, the rules specify basic restrictions
on number of openings, whether or not the requested file can be transferred to another computer,
and/or a time limit for which the file may be opened by the user.

The E-commerce Compohent 2350 of the DCMS server allows businesses to be
compensated when consumers access copyrighted works on-line. The E-Commerce Component
allows for businesses to select the billing/payment method they choose. Credit card, checking,
custom debit, gift certificates, are some of the possible billing/payment methods that can be
utilized with the E-Commerce Component.

Content authors or merchants simply select the method of billing/payment, and relay that
information to the E-commerce Component.

The Tracking Component 2360 of the DCMS server allows the content distributed to
track the end-user’s file usage. This is applicable in a number of situations, from using a
protection system that requires a persistent connection to the host and in a system where the
“key” files are transferred under special circumstances, to “super-distribution” scenarios where
the file is tracked as it is transferred between users.

The Tracking Component can also be utilized in streaming environments where royalties
are paid on a per-stream basis. In cases like this, the files are sent through the- DCMS server
application and then routed through the appropriate streaming server such as Real Player™ or
Quick Time™. '

By interfacing the Tracking Component to many customer recommendation systems,
retail actions can be tracked and compiled. This allows businesses to make intelligent
recommendations based upon the user’s previous choices and experiences.

The information collected by the Tracking Component is dependent on the destination
applications and the amount of information that the content provider has specified to be

collected. The DCMS server application does not utilize this information for its own purposes,

56

10

15

20

25

30

WO 03/044686 PCT/US02/37120
and all information is stored in secure locations, so that this information is not misused or easily
stolen. |

Businesses can also use the Tracking Component to offer users in media tracking “in
media tracking," When used in harmony with the LiveEmbed™ events in the files, the Tracking
Component can deliver user feedback even when the media file has been deployed. Additional
information can also be sent back to the DCMS server after the file has been deployed, such as
file usage statistics, as defined by the content distributor.

The Plug-In Component (not shown) of the DCMS server allows authorized third-party
developers to write add-ons, that harness and extend the power of the DCMS server application.
The Plug-In Component allows the developers to make a limited number of system-level calls,
and opens most of the Application services calls to developer manipulation. Special attention is
given to prevent any access to the low level of the Wrap Component, thus preventing
unauthorized access and/or manipulation of the security features of the DCMS system.

The Plug-In Component may be provided in a manner similar to that of the Adobe, Inc.
Plug-In concept. At the time that the DCMS server application is booted, a specified file path is
checked. If there are Plug-Ins available, then the DCMS server application loads these plug-ins,
and continues booting. The API calls for interaction with the DCMS server application are not
platform-specific. However, if a developer utilizes any calls in their Plug-in, then platform-
specific compiled plug-ins will be required.

The Scripting Component (not shown) of the DCMS server interfaces with a wide variety
of different server technologies. The Scripting Component is preferably compatible, but other
scripting languages may be utilized, such as Java/Java Script or ASP, for example.

The LiveEmbed™ Component 2370 of the DCMS server allows special events to be
embedded in media files when the file passes through the DCMS server application. This allows
companies to attach value-added information to a special track in the file. When the consumer
accesses the file, they have the option to view and interact with the embedded events. FIG. 19
shows various embedded events that a user may select when he/she has downloaded a Chris Isaac
music track using the DCMS. The user can click on the phone shown on the display in order to
go to a web site to purchase cell phones; the user can click on the person’s face on the display to
go to a web site that provides information on health matters; and the user can click on the
person’s hair on the display to go to a web site that sells hair products, for example.

Referring again to FIG. 24, the LiveEmbed™ data 1372 used by the LiveEmbed™
Component is preferably based on a custom subset of the XML data standard, allowing many

programs to create these events, and remove any potential learning curve just to add the

57

10

L5

WO 03/044686 PCT/US02/37120
LiveEmbed™ events to a file.

The LiveEmbed™ data is added to the file by the DCMS server application on-the-fly.
This allows for end-user-specific information to be added to the file, creating an individual and
unique user experience.

When the end-user accesses the file, he/she can right click or option-click to access the
retail information events. The XML data is stripped from the file and interpreted by the DCMS
client application located on the end-user’s machine. When the information is accessed, the
appropriate Internet servers arc, accessed and the associated events are performed. The deep
system embedding of the plug-in and the right-click/option-click features allow the end-user a
quality, unintimidating experience.

The XML data can be either event-based on time-based. The event-based data is best
suited for text and other static data, and the time-based data is best suited for audio, video and
presentations.

The XML data can be authored in a normal text/htm] editor and applied at the time the
file is wrapped by the DCMS Server Core. Alternatively, the author can utilize one of the
integrated production environments that natively support the LiveEmbed™ Component. This
choice gives the content authors the utmost control over the presentation of, and interaction with,
their product.

All of the above-described components of the DCMS server are implemented in software,
in the preferred embodiment.

The configuration features of the DCMS server application is two-pronged. The first
prong is the configuration of the individual content files, with their rule data. The second prong
is the configuration of the actual server application.

With respect to the configuration of the actual server application, in the preferred
embodiment, there are five levels of access that can be granted to the DCMS server application:
master administrator, connection administrator, content administrator, end-user access, end-user
viewing. These five levels allow for differing specializing with regard to access to the DCMS
server application. The master administrator assigns user privileges based on an access/rights-
based system. For example, an individual may be granted access to a Content Admin. account to
upload, and set rules for, files.

The Variable Data Pipeline (VDP) Component of the DCMS server is provided to
seamlessly improve the end-user’s media delivery experience using the DCMS. The VDP
Component continually and automatically detects the connection speed of an end-user’s device,

and delivers a suitably compressed file for the available amount of bandwidth.

58

10

15

20

25

30

WO 03/044686 PCT/US02/37120

While Apple, Microsoft and Real Networks implement a feature in their media playback
programs, the user must pre-define their connection speed and it cannot be manipulated in real-
time. The VDP Component of the DCMS server allows the delivery characteristics of the actual
media file to be changed on-the-fly.

The VDP Component uses a ping command that issues IP packets (each of these values
can be set by the user). FIG. 20 shows information that is obtained from two packets that are
used to determine channel characteristics between the client and the DCMS server. The returned
data latency times are examined by the VDP Component, in order to establish an average latency
time. The average data request rate and through-put are analyzed in conjunction with the latency
times. The end result is a data pipeline size rellting. This classifies the quality and sustainable
throughput of the connection. If a range of files, designed for different bandwidths, have been
created and specified, then the DCMS server application maintain the delivery of the optimum
file. Should the connection rate increase or decrease, then the file delivered will change, on-the-
fly.

The Variable Data Pipeline features of the invention will now be described in greater
detail. Once a change in the available end-user bandwidth is detected, the corresponding files are
manipulated. This means that should different files be available for different bandwidths, they
have to be readied, then seamlessly delivered to the end-user. In the case of audio and video, the
user may not be able to detect the change (no “hiccup *). In cases where other types of data are
delivered (such as application service providing), there is error correction in place to prevent-any
errors from being introduced. The seamless switch between one file to another is accomplished
by two algorithms that coordinate and sync-up the two files.

The file that is currently being delivered (currently-delivered file) is stopped in
synchronization with the beginning of the delivery of the replacement file. This is accomplished
on the file that is currently being delivered by calculating the position in the file where the two
can be seamlessly switched. To determine that point in the currently being delivered file, a
forward looking algorithm determines the closest available IP frame, based upon the currently
delivery speed and latency. This point in the file is factored with any exogenous file factors such
as frame rate (in the case of video files) or sampling rate (in the case of audio files). The resulting
file location is passed on to the second algorithm that is determining the switch-over location in
the replacement file.

The replacement file, which is the file to replace the file currently being delivered, is
specified in an administrator-defined preference file. The location where the -file is to pick-up is

determined by the location passed to the algorithm by the currently delivered file, then file

59

10

15

20

25

30

WO 03/044686 PCT/US02/37120
specific factors are calculated such as frame rate (in the case of video files)or sampling rate (in
the case of audio files). The resulting information determines where in the file the switch will
occur.

When the two key locations in the two files are determined, they are both buffered, and
the switch occurs, with the aid of tight error correction. To the end-user, little has changed. In
the cases of audio and video, there might be a change in compression, and thus quality. The
shift, however, takes place without any appreciable loss of continuity.

Another feature of the Variable Data Pipeline is the scalable architecture that allows it to
serve as a powerful bandwidth allocator and moderator. This feature set utilizes advanced router
mapping/tracing and real-time interfacing with bandwidth commodity sellers and exchanges.

In the course of determining the latency and bandwidth information, certain network
characteristics are also gathered. These data points can be used to determine the most
economical ways to transport data around the world. By connecting with bandwidth resellers, the
DCMS Server Application can make intelligent data 1/0 decisions based upon administrator-
enabled rules. Depending on the time need nature of the data, it can even be cached and
managed by the DCMS Server Application and then sent when there are Iulls and/or off-peek rate
times over international backbones. This can save the transmitter of the data a considerable
amount of money, while still providing of exceptional quality of service.

This technology is especially attractive to companies who utilize content delivery
acceleration technologies and services. These solutions include caching and distributed servers.
By defining the delivery rules of content that has been wrapped, companies can use caching and
distributed servers and still have the protection of the DCMS Server Application.

The DCMS Server Application is capable of creating and distributing the files, to caching
and content systems around the world, through the best or most economical paths. This
eliminates one of the major networking concerns with real-time applications: latencgf.

The DCMS Server Application can also use the Variable Data Pipeline features to
communicate and accent technologies like those from Akamai. Multiple DCMS Servers can be
positioned in key, strategic world-wide positions, creating an intelligent distributed network of
DCMS Servers that further reduce transmission costs and latency.

FIG. 21 shows the header structure of a DCMS file, in accordance with an aspect of the
invention. The header structure is provided in a header, with the accompanying data to be
provided thereafter in a data packet.

FIG. 22 shows the flow of information among a client, a DCMS Server and a Content

Server, in accordance with the invention. An end-user (or client) requests a file. An HTTP

60

10

15

20

WO 03/044686 PCT/US02/37120
server receives that request, and requests the file from the Content Server. The Content Server
hook (an application extension at the Content Server) sends file information to the DCMS
Server, based on the request being received at the Content Server, where that request is
determined to be for data to be wrapped. The requested file is wrapped by the DCMS Server,
and the wrapped file is transparently returned to the Content Server. The wrapped file is then
sent by the Content Server to the HTTP Server, and the end-user receives the requested file, in
wrapped form, from the HTTP Server.

FIG. 23 shows one example of a Virtual File table that holds data utilized by the DCMS
Server to access information from various Content Servers, in accordance with the invention.

FIG. 25 shows the DCMS client application being stored in the host Operating System’s
memory partition in the client computer. The DCMS client software 2100 is stored in the system
block 2110, separate from where other applications (Application #1 2120, Application #2 2130,
Application #3 2140) are stored. This, in effect, creates an OS extension-like program.

Positioning the DCMS client application in the System heap at the client computer allows
it to operate without interfering with the end-user’s normal activities. The ability to “hack” the
DCMS client application also becomes very difficult due to the storage of the DCMS client
application in the System heap, since there is no convenient way for a hacker to tell where in the
computer (or embedded device) memory the DCMS client application is stored.

While the present invention has been described above with respect to the preferred
embodiments, other modifications may be made, while keeping within the spirit and scope of the
invention as defined in the following claims. For example, while the client application has been
described as operating mainly upon reception of a file at the client computer, there may be
instances in which the client application engages in a brief communication with the DCMS
server, before the file is transferred. Such an instance would be a permission-based request for a
user’s demographic information, which would -occur inside a web browser, but would be routed
to the DCMS server. Such information provided to the DCMS server would then be used by the
LiveEmbed™ component, for example, for wrapping links to potentially interesting web sites
and BMPs with the requested file, based on the user’s supplied information.

The invention may be embodied in other specific forms without departing from the spirit
or central characteristics thereof. The present embodiments are therefore to be considered in all
respects as illustrative and not restrictive, the scope of the invention being indicated by
appending claims rather than by the foregoing description, and all changes that come within the

meaning and range of equivalency of the claims are therefore intended to be embraced therein.

61

10

11

12

i3

14

WO 03/044686 PCT/US02/37120
CLAIMS

1. A dynamic file access control and management system configured to access one or more
content sources including a set of files, said system comprising:

A a proxy system linked to said one or more content sources, said proxy system
comprising an access control module configured to selectively obtain a file from
said content sources as a function of an authorization of a user requesting said file
and a set of access policies;

B. a rights management module configured to generate a set of usage rights
associated with said file as a function of a set of predefined usage policies
associated with said file for said user;

C. at least one client device having a client module configured to interface to a client
operating system, said client module configured to selectively inhibit operating
system functions with respect to said file as a function of said usage rights; and

D. one or more communication means, via which said file and said usage rights are

provided to said client device.

2. The system according to claim 1, wherein said file and said usage rights are provided to

said client device via different communication means.

3. The system according to claim 1, wherein said files are static files.
4, The system according to claim 1, wherein said files are dynamic files.
5. The system according to claim 1, wherein said communication means includes a secure

transform configured to encrypt and encapsulate said file into a message as a function of a

session ID and said client is configured to extract said file from said message.
6. The system according to claim 1, wherein said proxy system further includes a user

interface, configured to facilitate creation and editing of said access policies and said usage

policies and association of said access policies and said usage policies with said files.

62

[

10

11

12

L3

7.

8.

WO 03/044686 PCT/US02/37120
The system as in claim 1, wherein said client device is a device from a group comprising:

1) a personal computer;

2) a workstation;

3) a personal digital assistant;
4) an e-mail device;

5) a cellular telephone;

6) a Web enabled appliance; and

7) a server.

The system of claim 1, wherein said proxy system and at least one of said content sources

are hosted on the same computing device.

9.

10.

A method of dynamic file access control and management comprising:

A. to each of a set of files accessible from a set of content sources by a proxy system,
correlating one or more user and/or client device identifications and defining a set
of usage policies, wherein for a given file usage policies relate to selectively
enabling or disabling operations associated with said file;

B. by said proxy system, generating a set of usage rights associated with a target file
as a function of a set of usage policies associated with said target file and a user or
client device identification;

C. communicating said target file and said usage rights to a client device associated
with said identification; and

D. using a client module at said client device and configured to interface to a client
operating system, selectively inhibiting operating system functions with respect to

said target file as a function of said usage rights.

The method of claim 9, wherein in step C, said communicating is accomplished by

communicating said target file and said usage rights to said client device via different

communication means.

11.

12.

The method of claim 9, wherein said set of files include static files.

The method of claim 9, wherein said set of files include dynamic files.

63

WO 03/044686 PCT/US02/37120

13. The method of claim 9, wherein said communicating is accomplished using a
communication means that includes a secure transform, including encrypting and encapsulating
said target file into a message as a function of a session ID and said client device is configured to

extract said target file from said message.

14. The method of claim 9, wherein said proxy system further includes a user interface and
step A include creating and/or editing said access policies and said usage policies and associating

said access policies and said usage policies with said set of files using said user interface.

15. The method of claim 9, wherein said client device is a device from a group comprising:
1) a personal computer;
2) a workstation;
3) a personal digital assistant;
4) an e-mail device;
5) a cellular telephone;

6) a Web enabled appliance; and

7 a server.

16. The method of claim 9, further comprising hosting said proxy system and at least one

content source on the same computing device.

64

PCT/US02/37120

WO 03/044686

1/23

Aaijod
shoaley
0cl
SO\
32 [suuey) 8indeg 6
JuslD shoaley/m o1 Jonieg
wasAs snoalay
lasn pug .
0st N 1011

A 4

V%

0¢l

waojsAs
uonespusyIny

abeloyg
JHoMmieN

O
—

l Old

PCT/US02/37120
2123

WO 03/044686

..
.

ST44 {744 paad
seoIAIRg | | seoinieg | | seoines

Qb || Junoooy | | Jusiuo)d

(234 zec
sooIneg | | seoIneg

$S900Y | | JUNOOOY
o[%4

ovl
3NI0M}ON

jualD — JOA19G JUdUOD
juljuOo) snoaldy 0c shoaJay
051 urewoq
juawaniojug JualD ; :
oLl : %4 Kioynsoday
: juslU0n
\ urewoQ JUSW9dI0UT JOAIDS

002 ek o

PCT/US02/37120

3/23

WO 03/044686

0ce aolIAleg Modsuel)
022 N : 7EE 43 : mw mv _ H_
: >m>>0«&0 NETN TS
S : : juajuon SS90y .
: ejau| : : A A :
: juswabeuep ;) C Vel
8Ye —1— | :
: 1abeuep . IN.NI I O T mo_EwwEmEoO : =
1 [Bupgpny |: —> het
OpE ~——+— H ” — .”| @91A195 uoEORUBYINY
: onp3 : 04€
T B e “
e 11) ; d : (443
. :] . .
: [obeven | — ; mumlﬁ.w.g:_ :o_amn_ho.,_a.:< ;
: | junosoy [09¢ Yo By
ul\\ L @seqeleq i
: : Anu A 4
- 991A19G Judwabeuepy —
|, 29es JuswiaDeue e N .
2deualU| CRITNETS
SS90y uonespuayIny
Alojisoday asudiajug

PCT/US02/37120

WO 03/044686

4123

...

Sy seoiAleg Modsued)

— Z43
oy 444 aoeLIB)U|
Aemajen) FETNETS uoneziioyny
0% juau09n 8990y ==
saAnewWld p— 291D
SO (444 :oamo.s:wwp:
- swisiueyosy juswadiojuy | - y—— nny :
991AI9S JUBYUOD 02 winy:
\.m.lkw.x.. . 0 .I.O.l-.‘.mu ...
& A4 & Y
uoneondd uonesydd uonesydd 0l
jedijday jedljady jeoljaay eoBpoyU]
uopeosnuayny
aoeds 1asn > oSy

PCT/US02/37120

WO 03/044686

5/23

— T T~
{ \wgmumrcmh ed Anw\.m
\ UONOLIISaY

996

\m:o_uo_bwmm/

adA}
uonoLysay

spjeld
penjeAniy

£o1j04 us1u09

\ /wwmoo/w\ _
, RN P — -
;“s1ejewieied suonipuon \ 08¢
\ uoppuoy /T/\ sseooy Aoljod
~ o — ~ —
adAl Iajuap)
uoppuoD follod

v/ 145"

2JG co¢

G Old

016
Au3z

Jaunpusp|
usjuon

\\III

7 sioyuep
/aEm_mQEWS_\

~

Y/wmm

wisiueyosiy
uofjeonusyiny

02s

8LS

be|4

uolBeooNDY oLS

145°]

Jojijusp|

Anu3g
r4ne

PCT/US02/37120

WO 03/044686

6/23

wben V9 'Ol

OVINH al (yrBusy 1en)
(yBusy Jen) wanoBiy peojhed dwejseauwil | al
OVINH .._wmI ONMOY qp °°inos sbBei4 (i
oNbeg | uoneunseq | ybus peojAed
92+ ¥Z+% 2THA ¢ 8L V¥iL 0L 8 9 14 4 0

19siO eikg

WO 03/044686 PCT/US02/37120
7/23

Field Length | Description

Payload ID | 2 bytes | Enumerated type describing the payload type of the message: Further
processing of the message is directed by this field. The currently
payload identifiers include:

Type Value Description
AERE_INVALID 0 Invalid type
AERE FILE KEY 1 File key payload
AERE BLK XFER 2 Block transfer
AERE STATUS 3 Aereous status

Flags 2 bytes | Flags indicating payload processing requirements. The currently

defined flags include:
Flag Bit Description
Encrypted 0 Payload encrypted
Signed 1 Payload signed (not implemented)
Reserved 2-15 wunused

Length 2 bytes | Length of message, in bytes. This length measures the field through the
last byte of the payload.

Source ID | 2 bytes | Source identifier — uses user or server entity identifier defined in the
entity database.

Destination | 2 bytes | Recipient identifier — uses user or server entity identifier defined in the

1D entity database. '

Timestamp | 4 bytes | Timestamp (obtained from local or trusted timing source) of message
creation. Used to ensure freshness (e.g., mitigate replay attacks). The
time is represented by the standard POSIX 32 bit second identifier
(seconds since epoch).

SegNo 2 bytes | Sequence number used to ensure the ordering of messages.

AckNo 2 bytes | Acknowledgement of all messages up to including Ackno.

Payload variable | This is the variable length data to be interpreted by payload processing.
The format of the payload is detailed in Section 7.3. Based on message
flags, this data require additional process (e.g., encryption, sign).

Hash Algo. | 2 bytes | Enumerate type defining the hash algorithm used in the calculation of

Identifier the keyed hash. The following hash algorithms are supported by the
Aereous system;

Algorithm Value
AERE MDs5 0
AERE SHAI 1

HMAC 2 bytes | The length of the HMAC value. Note that some crypgraphic algorithms

Length output more ciphertext than the original plaintext. (Question: Is this
really needed, or can we always calculate this from the key/hash
algorithm info?)

HMAC variable | This is the keyed hash of the message. This value is calculated over all

bytes prior to the beginning of the hash length field.

FIG. 6B

PCT/US02/37120

WO 03/044686

8/23

L Ol

oz1S

(yibus) Jen) eyeq olg

sweuuled ggooq ~ AOM 1009\ wiyyoBy
osn uonezijeniu| ko

.......

.......

.......

d+vy 144 9¢

4 0

JosyO a)g

WO 03/044686

PCT/US02/37120
9/23

Name Length | Description

KeyAlgorithmID | 16 bits (enumerated) identifies both the algorithm and the key length

BlockSize 16 bits block size for the accessed file

v 256 bits | Initialization vector used to seed the encryption of file blocks.
Further details are defined in Section 7.1.

KeyData 256 bits | The key used to encrypt the file. Where the key size is less than
256 bits, the most significant bits are used and unused bits are
padded with zero.

UsePolicies 64 bits Flags indicating the enabled usage of access content (where a bit
1 = allowed, 0 = denied). The supported bits include:

Flag Bit Description

Print 0 Print the file

Copy 1 Copy file to local disk

Send 2 Transmit the file to external device

Reserved 3-63 unused
NOTE: The set of usage types are identified in the Aereous Client
Design Document, and will be reflected in future version of this
document as needed.

Pathname (variable) | full pathname of file being accessed

FIG. 8
Name Length Description
Cid 16 bits hashed pathname identifier (see Section 6)
Block/Number 16 bits block number of transmitted data
Length 16 bits length of data, typically equal to the block size supported by the
filesystem
Data (variable) | the file data

FIG. 9

WO 03/044686 PCT/US02/37120
10/23
Name Length | Description
Sid 16 bits (enumerated) Type identifying the message semantics.
Details of the status are further specified in the info and text
fields.
Enum Numeric Origin Description
usageExec 0 client Usage right executed
aereousError 1 both Aereous error
encountered
dfsError 2 both Filesystem error
infoStatus 3 both informational (e.g.,
debugging)
clientShutdown 4 client client shutdown signal
serverShutdown 5 server server shutdown
signal
unused 6-2-- N/A unused
Infolength 16 bits length of info field
Info (variable) | Additional status information. The interpretation of this field
is directed by the Sid field as follows:
Enum Subfields
usageExec content ID (cid), usage mask
aereousError Aereous error code
dfsError standard UNIX ermo
infoStatus information enum
clientShutdown none
serverShutdown none
unused unused
TextLength 16 bits length of Text field
Text (variable) | C-string description of information. Used in auditing or as

user notification.

FIG. 10

WO 03/044686 PCT/US02/37120

11/23
Before Atfter
1152 1152 1130
- o LiveWrap
(Any Application) (Any Application) Extra Content
Display Program
- —— Py
Q
Q
O
o
o
]
=
©
Z
2
g &
© e
o 1110 1120
o . . : > LiveWrapped
% LiveWrap Client Extra Content
=z
!5 =
: E
) 2 :
o
a
Q.
©
=
(U]
=
—d
v
110
- LiveWrap Server
1150
= S
(Any Server) S
Q
O
S
o
[}
=
©
Z
)
c
0]
n
v
1150

(Any Server)

WO 03/044686

PCT/US02/37120
12/23
Database FTP Locally Remotely
Server Server Mounted File Mounted File
Database FTP . .
Server Server Native Qperatmg System
Interface Interface File Interface

iz

i

ir

File Statistics

Virtual File Interface with Streaming Support Tracker

st

1100 Rule Virtual
— g . irtua icati
. Authentication
Preferences @Eéﬁ;\iﬂ:n Wrap LiveEmbed File @ Manager
<::>(DRM) System

1L if

Wrapped File Interface with Streaming Support

it dt 3t 3T

1L

1L
iz

HTTP and Aereous
SDK- FTP and Aereous
HTTP/H‘TML Based HTTPS FTPS Enabled Ba§ed
Admin Custom based Server Client File
Interface Protocol | [VYebServer | Emulators| |interface | | Server
Emulators Interface

it 3¢ 3¢ 3¢ IF

TCP/IP Interface with Bandwidth Management

1

Aereous-
Based

Aereous-
Enabled

FIG. 13

PCT/US02/37120

WO 03/044686

13/23

g801L1L~

8CLL
s9|l4 snoasdy apIsjudly | S
T1A)00HUslOSNodIsY ocll
o_\:‘l\ SO \
(Jeqoioy 8qopy Jo dwyUIAA vl
> se yons) uonedyddy Jamsip _
el dLd/d1tH 8sn pu3
éclh - , SUIySep 189S pu3g
Janeg d 1 1LH/d1d plepuels JeAIeg d LIH/d 14 PIEPUE]S
1o aseqgeje(|euoxy
T1Q MooHIenIagSnoaley roLL—" T11Q°Yo0H18AI8GShosI8Y
2100 19NIBG shoalay —
arilh—" g0 T —son || W SO

s8I} MeJ apIs JoAIeS

\Lmzmm 8|l4 pajgeus snoalay

aseqejeq snosisy

Byuonsnoslay IW

SO|l} Mel BpIS JOAISS

L V8oL —" 18I9S Snoaley

ogi—"

00LL

-

MBIMIBAQ 8IN}OB)YDIY

vl "Old

WO 03/044686

PCT/US02/37120
14/23
1510
1106 Input Rule 1520
Aereous Facts Engine
Database
1530
Output
Facts
Header 1540
Information
AereousServer Core Plug-in Architecture
AereousServer 1100
AereousServerHook.DLL 1114A
1102
AereousServer Core
TCP 1602
. 1606
Database Plug-in 1604 Internet Plug-in —
External Server 1610
Database FTP/WWW Site

FIG. 16

WO 03/044686 PCT/US02/37120

15/23

File Server Example Interaction Diagram

1124 1118A 1114A 1102
End User HTTP/FTP | |AereousServerHook.DLL| | Aereous Server
File Server File Hooks Core
File
Request File Open and
> Read Get Aereous file
> Type
| Static File |
Build
Aereous
Combining the Header
received header R
with the raw file
contents,the file Header
Retumn read function Contents
A returns Aereous
ereous
File encoded data n

~

FIG. 17

PCT/US02/37120

WO 03/044686

16/23

- I\\l-l:‘,
aiemully e o/

0
[}

Ot

PUBYIAIT UM

oolneq djgepod U @

8l Ol

1anIeg SSIIBIIN HAH 10 dYA

J19AISS TN LH [euonipel|

psjjejsul Bnid3aIg
yim Jasn Jeindwon

RN

desmzaA é

esegejeq

21EMYOS Moel |

swelifoid sosewwo)-g

80Jn0g 9|ny/asnoysaiepy/INEg

oo:\

821Nn0g JudjJu0nH

PCT/US02/37120

WO 03/044686

17/23

Iy

17€:20:00)

A
EpEAY Yy A

.9S82]d, E.S| SUYD - 03PIA

6l Old

PCT/US02/37120

WO 03/044686

18/23

Nd 80:6¥:1 L
Wd 2067 L1

0Z Ol

00/0€/L 9LL GSi
00/0e/L 9LL 9Ll

dwejsawi] xep Bay

$09QW 00G AlaAg

e Nd 80:6¥:11
9/LL/SGL/VEL = Xew/Baesuiw

00/0¢/. pajejdwio) Buid e
(sw) swny duj punoy

0°0/0/2/C = ss0| Y/pEQ/UIANO S}oxoRd

1412)74 1212
9L oy oLl

UIN HLONTT (Sw)gwil

$5899NS rA
$8920NS L
L1NsS3y #1Md

Wwod" ‘MMM 10}

001°GLZ°091°¥2 Wwoy ONId
Wd L06%:LL 00/0¢/L Mels

PCT/US02/37120

WO 03/044686
19/23

Description Size (bytes) Contents

Aereous Signature 11 ‘AEREOUS’ + 0x01301976

Aereous File Version | 1 Currently 0x1

File ID 8 File’s Aereous ID.

Usage Count 2 Number of usages remaining. Set to
OXFFFF for infinite usages.

Expiration Date 4 A GMT ANSI RTL style time date stamp
that indicates when this file expires.

Usage Denied Content | Varying Once a read attempt fails due to a 0 usage
count, this content is displayed to the user.
The format is described below under
“Content Format.”

Number of Push 2 Number of items that are pushed to the use

Content Items when the file is opened.

Push Content Items Varying Array of push content items. The format is
described below as “Push Content Item
Format.”

Header CRC 4 A CRC value for the preceding header
bytes.

Content Size 8 The size of the unencrypted data

Encryption Type 1 0 = Unencrypted
1 =2Fish
2-255 = undefined

Encrypted Data Offset | 8 A file offset to the beginning of the

encrypted data. The encrypted data uses
the format described in “Encrypted Data
Block.”

FIG. 21

WO 03/044686 PCT/US02/37120

20/23

Aereous

Content
4 < > Server

Server

[|

HTTP
Server

Client

FIG. 22

WO 03/044686

VirtualFile

PCT/US02/37120

213 FIG. 23

The VirtualFile table lists all files in the system. Each file is associated with a Plug-In
and a bundle of facts that are understandable by that Plug-In.

Column

Type

Description

Sample

*VirtualFile ID

Int

System assigned ID

314

Name

Text

Name of the virtual file. This is the
base name, with no parent directory
names and no directory separator
characters. The name is not case
sensitive in the server core, but is
allowed to be in the database engine.

SalesReport
.doc

IsDefault

Bool

Flag indicating whether Name is
actually a wildcard pattern match. Use
of this flag allows directories to be
setup and facts associated with them
without having to database each of the
files that could reside within that
virtual directory.

False

VirtualDirectoryID
(optional)

Int

1D of the VirtualDirectory that the file
resides within. Use NULL for files
that reside at the root level.

4242

PlugInName

Text

Identifies which plug-in will generate
the actual file contents.

FTP

IsStatic

Bool

Flag indicating whether the file is an
actual static file on the server disk of a
true virtual file.

True

FactBundleID
(optional)

Int

Facts for this file. These facts are
considered to be “owned” by this file
and will be deleted if this file entry is
deleted.

4243

SharedFactBundlelD
(optional)

Int

Facts for this file. These facts are not
“owned” by this file, instead existing
as shared facts to assist with
centralized administration.

12000

ShouldLogUsageEvents

Int

Flag indicating whether any access to
this file should result in an access log.
* 1 indicates there should be a
log generated
e 0 means no log should be
generated
¢ Null or —1 means that the value
of this setting should be
inherited from the parent
directory or the
DefaultShouldLogUsageEvents
configurable parameter

PCT/US02/37120

WO 03/044686

22123

0s€eec

®
O
o)
3
3
®
o
()
o
o
3
B
o}
=1
(1
=

v¢ Old

mme://

Intertelligence Data

0LL0L0LOLL
0010101000
0L0LOLOLLL
010110000}
1010101010

SHE

OLLOLOLOLL
0010104000
0LOLOLOLLL
010110000}
10L0LOLOLO

ojuj ‘'se|ny

Jusuodwo?) depp

oju|‘ss|ny

NNMN!//

ejeq POqUITONT

Jusuodwon paquigaal

0.€¢
0cee

0LL0LOLOLL
0010104000
0L0L0LOLLE
010110000
1010101010

9id

0LL0L0LOLL
0010101000
0L0LOLOLLL
0L0LL0000L
L010L0LOLO

jusuodwo?) Jusjuon

WO 03/044686 PCT/US02/37120

23/23

Free Memory

N
——
N
(=]

Application 3

N
—
(@8]
o

Application 2

N
-
N
[=)

|

Application 1

—
(=]

System Block 21
2100

LiveWrap Client

Client Memory Space

FIG. 25

INTERNATIONAL SEARCH REPORT International application No.

PCT/US02/37120

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 15/173
USCL :709/223

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

US. © 709/928, 217, 219, 203

Minimum documentation searched (classification system followed by classification symbols)

seaggbig

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

WEST

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Search Terms : access control, access right, proxy or gateway, policies, session ID

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,999,978 A (ANGAL et al) 07 December 1999, see Abstract| 1-16
and Figs. 1-3, and Col. 3, Line 61 - Col. 5, Line 35.

Y,P US 6,408,336 B1 (SCHNEIDER et al) 18 June 2002, see Abstract,| 1-16
Figs. 1-5 , and Col. 8, Line 35 - Col. 10, Line 65.

A US 5,941,947 A (BROWN et al) 24 August 1999, see the whole| 1-16
reference.

A US 5,815,665 A (TEPER et al) 29 September 1998, see the whole| 1-16
reference.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents:

A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is

cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means
"p* document published prior to the international filing date but later

than the priority date claimed

T later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

e document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

27 JANUARY 2003

Date of mailing of the iéternational search report

S FEB 2003

Name and mailing address of the ISA/US
Commissioner of %atents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 805-3230

Authorized oﬁicew .
AYAZ R. SHEIW ﬁ Wfﬁéﬁ&@

Telephone No. (708) 805-9648

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

