(12) STANDARD PATENT (11) Application No. AU 2009210699 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(74)

(56)

Title
Managing component programs within a service application

International Patent Classification(s)

GOG6F 9/06 (2006.01) GOG6F 13/14 (2006.01)
GOG6F 9/44 (2006.01) GOG6F 15/16 (2006.01)
Application No: 2009210699 (22) Date of Filing: 2009.01.07

WIPO No: WO09/099694

Priority Data

Number (32) Date (33) Country
12/022,756 2008.01.30 us
Publication Date: 2009.08.13

Accepted Journal Date: 2013.05.23

Applicant(s)
Microsoft Corporation

Inventor(s)
Khalidi, Yousef A.;Bernabeu-Auban, Jose

Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art

US 2003/0084155 A1
US 2007/0294364 A1
US 2006/0245354 A1
US 2007/0294405 A1
US 7 216 343 B1

w0 2009/099694 A3 111NN 000 00 0 O 10 OO0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
13 August 2009 (13.08.2009)

(10) International Publication Number

WO 2009/099694 A3

(51

21

(22)

(25)
(26)
(30)

(1)

(72)

International Patent Classification:
GO6F 9/44 (2006.01) GOG6F 13/14 (2006.01)
GOG6F 15/16 (2006.01) GO6F 9/06 (2006.01)

International Application Number:
PCT/US2009/030283

International Filing Date:

7 January 2009 (07.01.2009)
Filing Language: English
Publication Language: English
Priority Data:
12/022,756 30 January 2008 (30.01.2008) us

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: BERNEBEU-AUBAN, Jose; c/o Microsoft
Corporation, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). KHALIDI,
Yousef A.; c/o Microsoft Corporation, International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

81

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: MANAGING COMPONENT PROGRAMS WITHIN A SERVICE APPLICATION

(57) Abstract: Methods, systems, and computer-storage media having

DATA CENTER

FIG. 2. 215
200
AN KWEB-BROWSER -
APPLICATION |
230D |
220 |
240 -- |
DEPENDENT |
SERVICE - -—- |
PROVIDERS |
24 | I
_ D, J CLIENT COMPUTING }
| I
| |
| 225+ v
|
|

255 265
SERVICE

APPLICATION SECOND

COM PUTING DEVICE

T
COMPUTING DEVICE
/ >

290 210

|
LN / @Eﬁ_ﬁ

270

COMPONENT
PROGRAM

|j / 202
270 - i
ET/ 250 - \h 0
MEMORY
COMPONENT COMPONENT
PROGRAM RESOURCESJ 6 PROGRAM

270

ELEMENT
275

270
COMPONENT

ELEMENT
266 PROGRAM

203

2 i . X

computer- executable instructions embodied thereon that, when executed,
perform methods in accordance with embodiments hereof, for managing
component programs within a service application according to a service
model. Initially, configuration settings, which can be administered to the
component programs, are extracted from the service model. An instantia-
tion process is initiated to manage the service application in accordance
with the changes to a level of load on the service application and/or to
specifications within the service model. The instantiation process includes
deploying, or identifying as available, the component programs within the
data center, and automatically propagating formalized values derived from
the configuration settings throughout the deployed component programs.
These derived formalized values are installed into the component pro-
grams, thereby providing for functionality of the service application con-
sistent with the service model.

WO 2009/099694 A3 I 1000000800000 00 O

— as to the applicant's entitlement to claim the priority of — before the expiration of the time limit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

- S . 5 (88) Date of publication of the international search report:
with international search report (Art. 21(3)) 1 October 2009

WO 2009/099694 PCT/US2009/030283

MANAGING COMPONENT PROGRAMS WITHIN A SERVICE APPLICATION
BACKGROUND

[0001] Typically, software applications are written to allow for many degrees of
frcedom in their configuration. When lcveraging this characteristic, various uscrs are able
to set up a particular software application to perform in a manner that is specific to each of
the users. Thus, these freedoms incorporated in a single software application enable the
software application to produce disparate results.

[0002] This type of software application is utilized by application-service
providers (ASPs) that allow users to remotely manipulate the application via the Internet.
Because the software application includes degrees of freedom, the user may provide
performance requirements to the ASPs to manually program into the application. Further,
most software applications include separate undcrlying clements that must be individually
identified and manually programmed so that the software application may express the
performance requirements. The process of manually programming the underlying
elements according to received performance requirements is labor-intensive and error-
prone. Accordingly, this ad hoc method for customizing a software application introduces
brittleness into the provision of the software application from the ASPs. These
shortcomings of manual programming are exaggerated when a multitude of users are

continually offering, and changing, their respective performance requirements.

SUMMARY

[0003] This Summary is provided to introduce concepts in a simplified form that
are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended

to be uscd as an aid in determining the scopc of the claimed subject mattcer.

2009210699 09 Apr 2013

H.nlb\lierwor en\NRPonbADCOWNLINSUSIGG_ 1 doc-9AN2013

[0004) In at least some embodiments, the present invention provides nc or more
computer-storage media having computer-executable instructions embodied thercon that.
when executed, perform a method for managing one or more component programs within a
service application according to a service model, the method comprising: dclcnﬁining a
level of load on the service application, wherein the service application compriscs the onc
or more component programs that are executable on separate computing dcvices within a
data center; extracting from the service model configuration settings that can be
administcred to the one or more component programs; initiating an instantiation proccss
for managing the service application in accordance with the level of the load, the
instantiation process comprising: deploying the one or more component programs within
the data center; determining a state of each of the one or more deployed component
programs; accessing a transformation map, wherein the transformation map includes logic
for expressing the configuration settings as formalized valucs that correspond to the statc
of each of the one or more component programs; employing the logic of the transformation
map to derive the formalized values from the configuration settings according to the logic
of the transformation map; automatically propagating the derived formalized values
throughout the one or more deployed component programs; and at lcast temporarily
installing the formalized values into the one or more component programs, thercby
providing for functionality of the service application consistent with the service model
[0005] In another embodiment, the present invention provides a computer systcm
for performing a method of instantiating a service application by propagating configuration
settings to one or more component programs, thereby promoting functionality of the
service application, the computer system comprising: a first computing dcvice to cxecute
the one or more component programs that support the operation of the scrvice application:
and a second computing device to initiate an instantiation process for implementing the
service application according to a service model, the instantiation process comprising:
extracting configuration settings from specifications within the service model; identifying
the one or more component programs residing on the first computing device as being
available for instantiation; interrogating parameters within the one or more component
programs to establish whether some of the one or morc component programs arc
compatible with the configuration settings; accessing a structure map from the onc or morc

compatible component programs, wherein the structure map includes logic for locating the

2009210699 09 Apr 2013

HalbMneroveaANR PonbADCCOWNLBASHS ¥6uxs_I doc-9nK4/2013

2a

parameters within the one or more compatible component programs; automatically
propagating formalized values derived from the configuration scttings throughout the one
or more compatible component programs; directing the formalized values derived from the
configuration settings to the parameters according to the logic of the structure map; and
configuring the parameters of the one or more compatible component programs according
to the formalized values.

[0005a] In a further embodiment, the present invention provides a computerized
method for configuring component programs of a service application, operating in a dala
center, according to an instantiation scheme, the method comprising: determining
configuration settings by interrogating a service model; accessing the instantiation scheme,
wherein the instantiation scheme indicates which component programs to deploy in order
to satisfy the service model, and wherein the instantiation scheme provides a
transformation map; deploying the indicated component programs on a plurality of
computing devices within the data center, converting the configuration settings to
formalized values based, in part, on the transformation map, wherein the formalized valucs
include expected values that, upon matching a user-provided credential to a corresponding
expected value of the expected values, are configured to allow a user access o the service
application via one or more of the component programs; automatically distributing the
formalized values to the deployed component programs; and at lcast temporarily storing

the distributcd formalized values in association with the deployed component programs.

WO 2009/099694 PCT/US2009/030283

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of the present invention are described in detail below with
reference to the attached drawing figures, wherein:

[0007] FIG. 1 is a block diagram of an exemplary computing environment suitable
for use in implementing embodiments of the present invention;

[0008] FIG. 2 is a block diagram of an exemplary computing system suitable for
use in implementing embodiments of the present invention;

[0009] FIG. 3 is a flow diagram showing a method for managing components
within a service application according to a service model, in accordance with an
embodiment of the present invention;

[0010] FIGS. 4 and 5 are flow diagrams showing methods for installing the
formalized values into appropriate parameters of the component programs; and

[0011] FIG. 6 is a flow diagram a method for responding to a trigger event, in

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

[0012] The subject matter of embodiments of the present invention is described
with specificity herein to meet statutory requirements. However, the description itself is
not intended to limit the scope of this patent. Rather, the inventors have contemplated that
the claimed subject matter might also be embodied in other ways, to include different steps
or combinations of steps similar to the ones described in this document, in conjunction
with other present or future technologies. Moreover, although the terms “step” and/or
“block” may be used herein to connote different elements of methods employed, the terms
should not be interpreted as implying any particular order among or between various steps
herein disclosed unless and except when the order of individual steps is explicitly

described.

WO 2009/099694 PCT/US2009/030283

[0013] Embodiments of the present invention relate to methods, systems, and
computer storage media having computer-executable instructions embodied thereon that,
when executed, perform methods in accordance with embodiments hereof, for
automatically managing component programs within a service application according to a
service model. Initially, a trigger to instantiate the component programs within the service
application is detected. In embodiments, the trigger is based on an indication of a change
to a level of load on the service application (e.g., by monitoring traffic at a website hosting
the service application), or an indication of a change to the specifications within a service
model (e.g., by amending the service-description contract established between an
application-service provider and a client).

[0014] Incident to detecting the trigger, configuration settings are extracted from
the specifications of the service model, where the configuration settings (e.g., addresses of
component programs, algorithm identifiers, service locations, memory-resource addresses,
and the like) are utilized to configure parameters within the component programs. In one
instance, the component programs are deployed at various computing devices within a data
center that executes the service application. In another instance, previously established
component programs residing on various computing devices are identified as being
available for instantiation. These deployed and/or identified component programs are
configured according to an instantiation process that includes the following logical steps:
accessing maps (e.g., transformation map, structure map), deriving formalized values from
the configuration settings according to the transformation map, automatically propagating
formalized values throughout the component programs, locating parameters corresponding
to the formalized values according to the structure map, and installing the formalized

values at the appropriate parameters.

2009210699 09 Apr 2013

H:Anlb\ e ov ec\NRPONBNDCCOINLBASDA 606G _ | doc-9/4/201Y

[0015] Accordingly, in one aspect, embodiments of the present invention relate to
onc or more computer storage-media having computer-executable instructions embodied
thereon that, when executed, perform a mcthod for managing one or more component
programs within a service application according to a service model. The method includes
determining a level of load on the service application, where the service application
includes the component programs that are executable on separatc computing devices
within a data center, extracting from the scrvice model configuration settings that can be
administered to the component programs, and initiating an instantiation process for
managing the service application in accordance with the level of the load. The instantiation
process includes deploying the component programs within the data center, detcrmining a
state of each of the one or more deployed component programs, accessing a transformation
map, wherein the transformation map includes logic for expressing the configuration
settings as formalized values that correspond to the state of each of the onc or more
component programs, employing the logic of the transformation map to derive the
formalized values from the configuration settings according to the logic of the
transformation map, and automatically propagating formalized values dcrived from the
configuration settings throughout the deployed component programs, and at Icast
temporarily installing the formalized values into the component programs, thereby
providing for functionality of the service application consistent with the service model. In
embodiments, the method additionally includes executing the service application according
to the installed formalized values.

[0016] In another aspect, embodiments of the present invention relate o a
computer system embodied on onc or more computer storage media having computer-
executable instructions embodied thereon for performing a method for instantiating a
service application by propagating configuration settings to component programs, thereby
promoting functionality of the service application. The computer system includes a first
computing device and a second computing device. The first computing devicc executes the
component programs that support the operation of the service application. The second
computing device initiates an instantiation process for implementing the service
application according to a service model. The instantiation process includes extracting

configuration settings from specifications within the service model, identifying the

2009210699 09 Apr 2013

H \nib\imeny ovenNR PonbNDCOINL BSOS IGN _ | doc-9/4K/2013

component programs residing on the first computing device as being available for
instantiation, interrogating parameters within the component programs to cstablish whether
some of the component programs are compatible with the configuration settings, accessing
a structure map from the one or more compatible component programs, wherein the
structure map includes logic for locating the parameters within the one or more compatible
component programs, automatically propagating formalized values derived from the
configuration settings throughout the compatible component programs, directing the
formalized values derived from the configuration settings to the parameters according to
the logic of the structure map, and configuring the parameters of the compatible
component programs according to the formalized values.

[0017] In yet another aspect, embodiments of the present invention relate to a
computerized method for configuring component programs of a servicc application,
opcrating in a data center, according to an instantiation scheme. The computerized method
includes, at least, the following steps: determining configuration settings by interrogating a
service model; accessing the instantiation scheme, where the instantiation scheme indicates
which component programs to deploy in order to satisfy the service model, and where the
instantiation scheme provides a transformation map; deploying the indicated component
programs on a plurality of computing devices within the data center; converting the
configuration settings to formalized values based, in part, on the transformation map,
wherein the formalized values include expected values that, upon matching a user-
provided credential to a corresponding expected value of the expected values, arc
configured to allow a user access to the scrvice application via one or more of the
component programs; automatically distributing the formalized valucs to the deploycd
component programs; and at least temporarily storing the distributed formalized values in
association with the deployed component programs.

[0018] Having briefly described an overview of embodiments of the present

invention, an exemplary operating environment suitable for implementing embodiments of’

the present invention is described below.
{0019) Referring to the drawings in general, and initially to FIG. 1 in particular, an
exemplary operating environment for implementing embodiments of the present invention

is shown and designated generally as computing device 100. Computing device 100 is but

WO 2009/099694 PCT/US2009/030283

one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of embodiments of the present invention.
Neither should the computing environment 100 be interpreted as having any dependency
or requirement relating to any one or combination of components illustrated.

[0020] Embodiments of the present invention may be described in the general
context of computer code or machine-useable instructions, including computer-executable
instructions such as program components, being executed by a computer or other machine,
such as a personal data assistant or other handheld device. Generally, program
components including routines, programs, objects, components, data structures, and the
like refer to code that performs particular tasks, or implements particular abstract data
types. Embodiments of the present invention may be practiced in a variety of system
configurations, including hand held devices, consumer electronics, general-purpose
computers, specialty computing devices, etc. Embodiments of the invention may also be
practiced in distributed computing environments where tasks are performed by remote-
processing devices that are linked through a communications network.

[0021] With continued reference to FIG. 1, computing device 100 includes a bus
110 that directly or indirectly couples the following devices: memory 112, one or more
processors 114, one or more presentation components 116, input/output (I/O) ports 118,
I/O components 120, and an illustrative power supply 122. Bus 110 represents what may
be one or more busses (such as an address bus, data bus, or combination thereof).
Although the various blocks of FIG. 1 are shown with lines for the sake of clarity, in
reality, delineating various components is not so clear, and metaphorically, the lines would
more accurately be grey and fuzzy. For example, one may consider a presentation
component such as a display device to be an I/O component. Also, processors have

memory. The inventors hereof recognize that such is the nature of the art and reiterate that

WO 2009/099694 PCT/US2009/030283

the diagram of FIG. 1 is merely illustrative of an exemplary computing device that can be
used in connection with one or more embodiments of the present invention. Distinction is

b INT

not made between such categories as ‘“workstation,” “server,” “laptop,” ‘“hand held
device,” etc., as all are contemplated within the scope of FIG. 1 and reference to
“computer” or “computing device.”

[0022] Computing device 100 typically includes a variety of computer-readable
media. By way of example, and not limitation, computer-readable media may comprise
Random Access Memory (RAM); Read Only Memory (ROM); Electronically Erasable
Programmable Read Only Memory (EEPROM); flash memory or other memory
technologies; CDROM, digital versatile disks (DVDs) or other optical or holographic
media; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to encode desired information and be
accessed by computing device 100.

[0023] Memory 112 includes computer storage media in the form of volatile and/or
nonvolatile memory. The memory may be removable, non-removable, or a combination
thereof. Exemplary hardware devices include solid-state memory, hard drives, optical-disc
drives, etc. Computing device 100 includes one or more processors that read data from
various entities such as memory 112 or I/O components 120. Presentation component(s)
116 present data indications to a user or other device. Exemplary presentation components
include a display device, speaker, printing component, vibrating component, etc. 1/0 ports
118 allow computing device 100 to be logically coupled to other devices including 1/0
components 120, some of which may be built-in. Illustrative components include a
microphone, joystick, game pad, satellite dish, scanner, printer, wireless device, etc.

[0024] Turning now to FIG. 2, a block diagram is illustrated, in accordance with an

embodiment of the present invention, showing a computing system 200 configured to

WO 2009/099694 PCT/US2009/030283

manage component programs 201, 202, 203, and 204 within a service application 210
according to a service model. It will be understood and appreciated by those of ordinary
skill in the art that the computing system 200 shown in FIG. 2 is merely an example of one
suitable computing system environment and is not intended to suggest any limitation as to
the scope of use or functionality of embodiments of the present invention. Neither should
the computing system 200 be interpreted as having any dependency or requirement related
to any single component or combination of components illustrated therein. Further,
although the various blocks of FIG. 2 are shown with lines for the sake of clarity, in
reality, delineating various components is not so clear, and metaphorically, the lines would
more accurately be grey and fuzzy.

[0025] The computing system 200 includes a client computing device 215,
dependent service providers 220, and a data center 225, all in communication with one
another via a network (not shown). The network may include, without limitation, one or
more local area networks (LANs) and/or wide area networks (WANSs). Such networking
environments are commonplace in offices, enterprise-wide computer networks, intranets,
and the Internet. Accordingly, the network is not further described herein.

[0026] Each of client computing device 215, dependent service providers 220, and
data center 225, shown in FIG. 2, can be any type of computing device, such as, for
example, computing device 100 described above with reference to FIG. 1. By way of
example only, and not limitation, each of client computing device 215, and dependent
service providers 220 can be a personal computer, a desktop computer, a laptop computer,
a handheld device, a mobile handset, consumer electronic device, and the like. In
embodiments, data center 225 can be a server, a collection of computing devices, or other
machines capable of executing the service application 210. Additionally, client

computing device 215 can further include a web-browser application 230 residing thereon

WO 2009/099694 PCT/US2009/030283
10

to access service application 210 via wired or wireless network paths to data center 225. It
should be noted, however, that embodiments of the present invention are not limited to
implementation on such computing devices, but may be implemented on any of a variety
of different types of computing devices within the scope of embodiments hereof.

[0027] As shown in FIG. 2, client computing device 215 is configured to execute
web-browser application 230 to access the service application 210. Service application
210 can be accessed in a generally direct manner, via communication path 235, or by way
of dependent service providers 220. In embodiments, access through dependent service
providers 220 includes conveying user-provided credentials 240 thereto. Typically, user-
provided credentials 240 are login data, passwords, or any other information provided by a
client to satisfy security protocol implemented at dependent service providers 220. In turn,
dependent service providers 220 exchange credentials 240, within messages 245, with one
or more of components 201, 202, 203, and 204.

[0028] In embodiments, dependent service providers 220 are located external to
data center 225 and managed by an entity separate from an application-service provider
that maintains service application 210. However, dependent service providers 220 are able
to coordinate activities with the component programs 201, 202, 203, and 204 by
exchanging messages 245 therebetween. Coordinating activities between dependent
service providers 220 and component programs 201, 202, 203, and 204 is facilitated by
resource locations that target dependent service providers 220. These resource locations
are typically established according to specifications within a service model.

[0029] Generally, the service model is an interface blueprint that provides
instructions for managing component programs 201, 202, 203, and 204 of service
application 210. Accordingly, the service model includes specifications that identify such

aspects of managing as which maps to employ during instantiation; which computing

WO 2009/099694 PCT/US2009/030283
11

devices to utilize during propagation of component programs 201, 202, 203, and 204;
where the communication paths 246 and 247 between component programs 201, 202, 203,
and 204 are located; and any other information that describes the particular way service
application 210 will be executed by data center 225. In one instance, the service model is
generated, in part, according to a service-description contract established between a client
and an application-service provider. As a result of the service-description contract, the
client is provided with access to the service application 210, and other software,
maintained by the application-service provider.

[0030] Further, the service model provides hooks within the specifications that
allow implicit and explicit configuration settings to be extracted therefrom. In
embodiments, implicit configuration settings provide structural information (e.g.,
component addresses, resource locations, and memory-resource addresses) to facilitate
interaction between each of component programs 201, 202, 203, and 204 and/or other
components (e.g., dependent services providers 220, memory resources 250).
Additionally, the implicit configuration settings provide application programming
interfaces (APIs) for consuming and translating messages between the above components,
thereby allow the components to communicate harmoniously. In embodiments, explicit
configuration settings provide instructions (e.g., algorithm identifiers and other
configuration values) to parameters within component programs 201, 202, 203, and 204
that influence the functionality thereof. By way of example only, specified credentials for
logging a client into service application 210 are memorialized in the service model. Hooks
in the service model provide these credentials to the explicit configuration settings, which
distribute the credentials to component 201 as expected values. These expected values are
compared against user-provided credentials 240 that are conveyed from dependent service

providers 220 in message 245. Upon receipt of message 245, component 201 compares

WO 2009/099694 PCT/US2009/030283
12

user-provided credentials 240 against the expected values. If the comparison results in a
match, the client is provided access to service application 210.

[0031] Data center 225 is provided for executing service application 210, among
other things. Service application 210 includes a set of component programs 201, 202, 203,
and 204 that can be scaled to usage (e.g., number of client hits per hour) or by
amendments to the service model. Typically, service application 210 is characterized by
being composed of many different components (e.g., component programs 201, 202, 203,
and 204), which are similar to traditional applications. In an exemplary embodiment,
service application 210 manages the different components such that these components
function together as a combined Internet service. By way of example, service application
210 is a blog service that allows a variety of clients to post comments at a particular
website. Because there could be potentially thousands of clients all accessing the blog
service, multiple components are deployed to which by the blog service to support its
continued operation. These components coordinate actions with each other to function as
a single application, thus, the deployment and dismissal of components is transparent to
the clients.

[0032] Although one instance of the service application 210 has been shown and
described, it should be understood and appreciated by those of ordinary skill in the art that
multiple service applications may be executed within the data center 225, and that
embodiments of the present invention are not limited to those the service application 210
shown and described. In the embodiments, having more than one service application, the
service application 210 and other service applications (not shown) may operate
independently and/or in cooperation with each other. In one instance, service applications
running concurrently on the data center 225 share the set of component programs 201,

202, 203, and 204. By way of example only, the set of component programs 201, 202,

WO 2009/099694 PCT/US2009/030283
13

203, and 204 can be consumed by a new service application (e.g., reprovisioned according
to usage requirements), or shared between service applications (e.g., a plurality of service
applications accessing a program component). Thus, the resources on the data center 225,
in embodiments, provide for the interoperability of many interdependent, or independent,
service applications.

[0033] In embodiments, data center 225 includes various machines, such as first
computing device 255 and second computing device 265, and memory resources 250.
Computing devices 255 and 265 may be any type of computing device, such as, for
example, computing device 100 (see FIG. 1), a personal computer, server, a collection of
computing devices, or other machines capable of executing service application 210.
Additionally, computing devices 255 and 265 are capable of storing and executing
component programs 201, 202, 203, and 204. Component programs 201, 202, 203, and
204 embody several components of an array of component programs that are managed by
service application 210. In embodiments, component programs 201, 202, 203, and 204 are
developed, or written, according to specifications within the service model. In one
instance, one or more of component programs 201, 202, 203, and 204 are developed
according to a set of rules within the service model that permits parameters 270 to
reconfigure automatically upon determining that an update to the configuration settings
has occurred. Although four component programs are depicted in FIG. 2 and described
herein, embodiments of the present invention contemplate utilizing any number of
component programs to support operation of service application 210. In an exemplary
embodiment, the number of component programs relates to a level of client load on service
application 210, where the higher the level of the load climbs, the more component

programs that are deployed.

WO 2009/099694 PCT/US2009/030283
14

[0034] Parameters 270 typically reside on component programs 201, 202, 203, and
204, or on elements 266 and 275 residing on components 201 and 204, respectively.
Generally, parameters fine tune the decisions that each of the components make internally,
thereby refining coordinated performance of the components. Parameters 270 are
exemplary in number and in nature. That is, although certain parameters are shown on
specific component programs or eclements, embodiments of the present invention
contemplate zero to many parameters residing on any of the component programs or
elements.

[0035] Memory resources 250 typically reside on data center 225 and are
configured to store data. In embodiments, memory resources 250 is searchable for one or
more of the items stored in association therewith. It will be understood and appreciated by
those of ordinary skill in the art that the data stored in the data store 250 may be
configurable and may include any information relevant to execution of service application
210. The content and volume of such information are not intended to limit the scope of
embodiments of the present invention in any way. Further, though illustrated as a single,
independent component, memory resources 250 may, in fact, be a plurality of data stores,
for instance, a database cluster. In addition, the data stored at memory resources 250 is
accessible by component programs 201, 202, 203, and 204. In one embodiment, the
configuration settings are provided with memory-resource addresses that permit one or
more of component programs 201, 202, 203, and 204 to locate memory resources 250, or
another appropriate memory allocation, in order to access data therefrom.

[0036] In operation, service application 210 is configured to manage component
programs 201, 202, 203, and 204. One aspect of managing involves establishing and
configuring component programs 201, 202, 203, and 204 upon detecting a trigger event.

The trigger event alerts service application 210 to instantiate component programs 201,

WO 2009/099694 PCT/US2009/030283
15

202, 203, and 204 within service application 210 upon detecting the trigger event. In
embodiments, the trigger is based on an indication of a change to a level of load on service
application 210 (e.g., by monitoring traffic from one or more client computing device
215), or an indication of a change to the specifications within a service model (e.g., by
amending the service-description contract established between an application-service
provider and a client), as more fully discussed below with reference to FIG. 6.

[0037] Incident to detecting the trigger, configuration settings 280 are extracted
from the specifications and or hooks of the service model. Generally, configuration
settings 280 facilitate properly managing service application 210. In embodiments,
configuration settings 280 can be implicit or explicit configuration settings, as more fully
discussed above. In particular instances, configuration settings 280 include addresses of
component programs, algorithm identifiers, service locations, memory-resource addresses,
or any other data-string utilized to configure parameters within the component programs.
[0038] Incident to, or concurrently with, extracting configuration settings 280,
component programs 201, 202, 203, and 204 are established to meet the load, satisfy the
updated service model, or for any other reason that pertains to operation of service
application 210. In one instance, establishing component programs 201, 202, 203, and 204
includes deploying component programs 201, 202, 203, and 204 at various computing
devices 255 and 265 within data center 225. In another instance, establishing component
programs 201, 202, 203, and 204 includes identifying as being available for instantiation
previously-established component programs residing on various computing devices 255
and 256 and are identified. Although two different ways of establishing component
programs 201, 202, 203, and 204 have been shown, it should be understood and

appreciated by those of ordinary skill in the art that other methods for establishing

WO 2009/099694 PCT/US2009/030283
16

component programs 201, 202, 203, and 204 can be utilized, and that embodiments of the
present invention are not limited to those ways shown and described herein.

[0039] These deployed and/or identified component programs 201, 202, 203, and
204 are configured according to an instantiation process that includes the following logical
steps: accessing maps (e.g., transformation map, structure map), deriving formalized
values 290 from configuration settings 280 according to the transformation map,
automatically propagating formalized values 290 throughout component programs 201,
202, 203, and 204, locating parameters 270 corresponding to formalized values 290
according to the structure map, and installing formalized values 290 at the appropriate
parameters 270. In an exemplary embodiment, parameters 270 are interrogated by service
application 210 to determine whether each of components 201, 202, 203, and 204 are
compatible with configuration settings 280 prior to installing formalized values 290.
[0040] Turning now to FIG. 3, a flow diagram is illustrated that shows an overall
method 300 for managing components within a service application according to a service
model, in accordance with an embodiment of the present invention. Initially, as indicated
at block 305, an indication (e.g., trigger event) is received at a service application. Trigger
events are discussed more fully with reference to FIG. 6. Typically the indication alerts
the service application that more or fewer component programs should be established to
maintain uniform operation of the service application. In an exemplary embodiment, the
addition and subtraction of component programs is transparent to a client who is presently
accessing the service application. As indicted at block 310, configuration settings are
extracted from hooks upon interrogating specifications within a service model. As more
fully discussed above, various types of configuration settings can be extracted, such as

implicit and explicit configuration settings.

WO 2009/099694 PCT/US2009/030283
17

[0041] As indicated at block 315, an instantiation process for managing the service
application, in accordance with the trigger events, is initiated. In embodiments, the
instantiation process includes, at least, the following logical steps: establishing component
programs; deriving formalized values; automatically propagating the formalized values;
and installing the formalized values. In particular, as indicated at block 320, the
component programs are established by deploying (e.g., generating new component
programs), or identifying as available, existing component programs on machines within
the data center. In an exemplary embodiment of identifying available existing component
programs, parameters within the existing component programs are interrogated to
determine whether they are compatible with the configuration settings. Accordingly, these
“compatible” component programs receive formalized values during propagation.

[0042] In embodiments, these component programs are located at one or various
computing devices within a data center. This style of remote deployment is enabled by
instructions (e.g., component addresses) provided to the component devices by the
configuration settings. In addition, the configuration settings include instructions for
configuring an API at some of the component programs thereby allowing each component
program to coordinate with other types and instances of component programs, memory
resources, and remote dependent service providers (e.g., service maintained by
communication partners).

[0043] As indicated at block 325, formalized values are derived from the
configuration settings. In embodiments, the formalized values are derived according to a
transformation map, a determined state of each of the component programs, or a
combination therecof. These formalized values are automatically propagated to the
deployed component programs, the compatible component programs, or a combination

thereof, as indicated at block 330. These steps (e.g., blocks 320, 325, and 330) may be

WO 2009/099694 PCT/US2009/030283
18

taken in any order or concomitantly. As indicated at block 335, the formalized values are
installed at the parameters of the component programs. In other embodiments, the
formalized values are temporarily stored in association with a corresponding parameter.
Incident to installing the parameters, the service application is executed according to the
formalized values, as indicated at block 340.

[0044] Turning now to FIGS. 4 and 5, flow diagrams are illustrated showing
methods 400 and 500 for installing the formalized values into appropriate parameters of
the component programs, in accordance with an embodiment of the present invention.
With respect to FIG. 4, initially, a map structure is accessed by the service application, as
indicated at block 410. In other embodiments, the structure map is accessed by the
configuration settings or stored therein. As indicated at block 420, the parameters within
the component programs are located according to logic within the structure map.
Accordingly, the logic of the structure map assists in directing the formalized values to the
appropriate parameters, thereby promoting a proper installation of the formalized values,
as indicated at block 430.

[0045] With reference to FIG. 5, a state of each of the established component
programs is established, as indicated at block 510. In embodiments, the state generally
relates to an instance or type of component program, or the existing configuration of the
component program. As indicated at block 520, a transformation map is accessed. In an
exemplary embodiment, the transformation map includes logic that provides for
expressing the configuration settings as formalized values upon entering the determined
state of each of the component programs. Based on the logic, formalized values are
derived that correspond to each instance of a component program.

[0046] FIG. 6 is a flow diagram showing a method 600 for responding to a trigger

event, in accordance with an embodiment of the present invention. As indicated at block

WO 2009/099694 PCT/US2009/030283
19

610, an indication of amendments to a service-description contract are received. As
indicated at block 620, a determination of whether the amendments affect specifications
within the service model is made. If the determination indicates that no substantial affect
1s generated, the present configuration of the component programs is maintained, as
indicated at block 630. As indicated at block 640, traffic at the service application is
monitored. As indicated at block 650, a determination of whether there is a change to a
level of a load is made. If the determination indicates that no change, or substantial
adjustment, to the level of the load is indicated, the present configuration of the component
programs is maintained, as indicated at block 630.

[0047] However, if the determinations of blocks 620 and 650 indicate that a trigger
event has occurred, (e.g., a substantial change to the level of the load occurred, or an
amendment to the specification has driven a substantial effect), the updated configuration
settings are updated according to the service model, as indicated at block 660. Utilization
of the service model to create updated configuration settings is discussed more fully above
with reference to FIG. 2. As indicated at block 670, the formalized values are derived
from the updated configuration settings. As indicated at block 680, the component
programs are reconfigured with the derived formalized values. In embodiments,
reconfiguration includes the steps listed in FIG. 3.

[0048] Embodiments of the present invention have been described in relation to
particular embodiments, which are intended in all respects to be illustrative rather than
restrictive. Alternative embodiments will become apparent to those of ordinary skill in the
art to which embodiments of the present invention pertain without departing from its
scope.

[0049] From the foregoing, it will be seen that this invention is one well adapted to

attain all the ends and objects set forth above, together with other advantages which are

WO 2009/099694 PCT/US2009/030283
20

obvious and inherent to the system and method. It will be understood that certain features
and sub-combinations are of utility and may be employed without reference to other

features and sub-combinations. This is contemplated by and is within the scope of the

claims.

2009210699 09 Apr 2013

HnIbM e mor ¢ANRPonhADCOINLBASUS M| doc-2AK/20 (1

21

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. One or more computer-storage media having computer-exccutable
instructions embodied thereon that, when executed, perform a method for managing onc or
more component programs within a service application according to a service model, the
method comprising:

determining a level of load on the service application, wherein the service
application comprises the one or more component programs that are exccutable on scparate
computing devices within a data center;

extracting from the service model configuration settings that can bc administercd to
the one or more component programs;

initiating an instantiation process for managing the service application in
accordance with the level of the load, the instantiation process comprising;:

(1) deploying the one or more component programs within the data ccnter;

(2) determining a state of cach of the one or more deployed component
programs;

(3) accessing a transformation map, wherein thc transformation map
includes logic for expressing the configuration settings as formalized valucs that
correspond to the state of each of the one or more component programs;

(4) employing the logic of the transformation map to derive the formalized
values from the configuration settings according to the logic of the transformation
map;

(5) automatically propagating the derived formalized values throughout the
one or more deployed component programs; and
at least temporarily installing the formalized values into the one or more

component programs, thereby providing for functionality of the service application

consistent with the service model.

2. The one or more computer- storage media of claim 1, wherein determining

a level of load comprises monitoring traffic at a website hosting the service application.

3. The one or more computer-storage media of claim 1, wherein the scrvice

2009210699 09 Apr 2013

H:ndbVinic s ove MNR PonbADCOUNL B\SHS 360G _) doc-9AM/2013

22

application comprises software residing on a data center maintained by an application-

service provider accessible to a client via a web-browser application.

4. The one or more computer- storage media of claim 3, wherein the scrvice
model is generated, in part, according to a service-description contract established between

the application-service provider and the client.

S. The one or more computer storage media of claim 1, further comprising

executing the service application according to the installed formalized values.

6. A computer system for performing a method of instantiating a service
application by propagating configuration settings to one or more componcnt programs,
thereby promoting functionality of the service application, the computer system
comprising:

a first computing device to execute the one or more component programs that
support the operation of the service application; and

a second computing device to initiate an instantiation process for implementing the
service application according to a service model, the instantiation process comprising:

(1) extracting configuration settings from specifications within the scrvice
model;

(2) identifying the one or more component programs residing on the first
computing device as being available for instantiation;

(3) interrogating parameters within the one or more component programs (0
establish whether some of the one or more component programs are compatible
with the configuration settings;

(4) accessing a structure map from the one or more compatible component
programs, wherein the structure map includes logic for locating the paramcters
within the one or more compatible component programs;

(5) automatically propagating formalized values derived from the
configuration settings throughout the one or more compatible component programs;

(6) directing the formalized values derived from the configuration settings

to the parameters according to the logic of the structure map; and

2009210699 09 Apr 2013

Hnib\menoveMNRPonbADCCOINLBASHS X606 | doc-9A1/201)

23

(7) configuring the parameters of the one or more compatible component

programs according to the formalized values.

7. The computer system of claim 6, wherein the instantiation process further
comprises:
receiving an indication of an amendment to the specifications of the scrvice
model; and

extracting updated configuration settings from the amended specifications.

8. The computer system of claim 7, wherein the onc or morc component
programs residing on the first computing device are developed according to a sct of rules
that permits the parameters to reconfigure automatically upon receiving formalized values

from the updated configuration settings.

9. The computer system of claim 6, wherein the second computing device is
further configured to execute the onc or more component programs that support the

opcration of the service application.

10. The computer system of claim 9, wherein the configuration scttings include
component addresses, the component addresses permitting the one or more componcnt
programs residing on the first computing device to coordinate activities with thc one or

more component programs residing on the second computing device.

11. The computer system of claim 6, wherein the configuration settings include
algorithm identifiers, the algorithm identifiers instructing the one or more component
programs to launch a particular algorithm, thereby affecting the cxecution of the service

application.

12. The computer system of claim 6, further comprising a set of dependent
services to support the operation of the service application, the service application being
managed by an application-service provider and the set of dependent services being

managed by at least one entity separate from the application-service provider.

2009210699 09 Apr 2013

H \nibMmen 0 cANRPonbADCONLBSOS V66 _ 1 doc-9M/2013

24

13. The computer system of claim 12, wherein the configuration settings
include resource locations, the resource locations permitting the one or more componcnt
programs to coordinate activities with the sct of dependent services located externally of

the first computing device and the second computing device.

14. The computer system of claim 13, wherein coordinating activities comprise:
exchanging messages between the set of dependent services and the onc or

more component programs; and
comparing the exchanged messages with the formalized values installed at

the parameters of the one or more compatible component programs.

15. The computer system of claim 6, wherein the first computing device and the
second computing devicc comprise a data center, wherein the data center includes memory
resources that store data, wherein the data at the memory resources arc accessible by the

onc or more component programs.

16. The computer system of claim 15, wherein the configuration settings
include memory-resource addresses, the memory-resource addresses permitting the one or
more component programs to locate the appropriate memory resources for accessing the

data.

17. A computerized method for configuring component programs of a scrvice
application, operating in a data center, according to an instantiation scheme, the method
comprising:

determining configuration settings by interrogating a service model;

accessing the instantiation scheme, wherein the instantiation scheme indicates
which component programs to deploy in order to satisfy the service model, and wherein
the instantiation scheme provides a transformation map;

deploying the indicated component programs on a plurality of computing devices
within the data center;

converting the configuration settings to formalized values based, in part, on the

2009210699 09 Apr 2013

H:nib\nicrw oven\NR PonbNDCCWNL BASUS Y6 _).doc-9A42013

25

transformation map, wherein the formalized values include expected values that, upon
matching a user-provided credential to a corresponding expected valuc of the expected
values, are configured to allow a user access to the service application via one or morc of
the component programs;

automatically distributing the formalized values to the deployed component
programs; and

at least temporarily storing the distributed formalized values in association with the

deployed component programs.

WO 2009/099694

MEMORY

PROCESSOR(S)

PCT/US2009/030283

1/5

114J

PRESENTATION
COMPONENT(S)

/O PORT(S)

I8

116\/

100J

110

I/lO COMPONENTS

\/1 20

POWER SUPPLY

\/‘I 22

FIG. 1.

WO 2009/099694 PCT/US2009/030283

2/5
FIG. 2. 215~
200
AN _
|
2307\ |
— 240~ |
DEPENDENT |
SERVICE — 7 - - |
PROVIDERS
o — |
245~ | / [l | \\ :
—_ 4 L1 CLIENT COMPUTING |
DEVICE |
225~ v
DATA CENTER

|
|
|
|
: 255~ TN 265~
|
|
|
|

SERVICE
FIRST APPLICATION SECOND
COMPUTING DEVICE COMPUTING DEVICE
290 / 210/ T \ 290
280~ 280~
l /D/E/ L] LI D\D\
A \h\h\‘m
N J
— \%‘\ﬁ/
270 ;70~ 270
ELEMENT COMPONENT COMPONENT ELEMENT
266 PROGRAM PROGRAM 275
270 L [/ 250 \\] } 270
COMPONENT Ré/ISEOMUOR@I(ES COMPONENT
PROGRAM 5 PROGRAM
201 e Nl 204

WO 2009/099694

3/5

PCT/US2009/030283

FIG. 3.

300 ’\

/305

RECEIVE AN INDICATION TO
CONFIGURE A SERVICE
APPLICATION

L 310

EXTRACT CONFIGURATION
SETTINGS FROM A SERVICE
MODEL

L 315

INITIATE AN INSTANTIATION
PROCESS

L 340

EXECUTE THE SERVICE
APPLICATION ACCORDING TO
THE INSTALLED FORMALIZED

VALUES

/320

DEPLOY, AND/OR IDENTIFY AS
AVAILABLE, COMPONENT
PROGRAMS AT VARIOUS

COMPUTING DEVICES WITHIN

A DATA CENTER

¢ 325

DERIVE FORMALIZED VALUES
FROM THE CONFIGURATION
SETTINGS

L /330

AUTOMATICALLY PROPAGATE
THE FORMALIZED VALUES TO
THE COMPONENT PROGRAMS

i /335

INSTALL THE FORMALIZED
VALUES INTO PARAMETERS
OF THE COMPONENT

PROGRAMS

WO 2009/099694

400

4/5

FIG. 4.

410\

ACCESS A STRUCTURE MAP

420~ ¢

LOCATE PARAMETERS WITHIN

THE COMPONENT PROGRAMS

ACCORDING TO LOGIC OF THE
STRUCTURE MAP

430~ L

DIRECT THE FORMALIZED
VALUES TO THE
APPROPRIATE PARAMETERS

DETERMINE A STATE OF THE
COMPONENT PROGRAMS

520~ i

ACCESS A TRANSFORMATION
MAP THAT INCLUDES LOGIC
FOR EXPRESSING THE
CONFIGURATION SETTINGS
AS FORMALIZED VALUES
BASED ON THE STATE OF THE
COMPONENT PROGRAMS

530~\ i

DERIVE THE FORMALIZED
VALUES ACCORDING TO THE
LOGIC

PCT/US2009/030283

WO 2009/099694

5/5

PCT/US2009/030283

WITHIN THE SERVICE

MODEL
?

620

~610
RECEIVE AN INDICATION 64047
OF AMENDMENTS TO A |o > MONT'L%'?SEE'\A‘/T&C AT
SERVICE-DESCRIPTION
CONTRACT APPLICATION
MAINTAIN
PRESENT
CONFIGURATIO
N OF THE
COMPONENT
PROGRAMS |~630
DO THE IS
AMENDMENTS NO T NO THERE
AFFECT SPECIFICATIONS A CHANGE TO

EXTRACT UPDATED
CONFIGURATIONS
SETTING ACCORDING
TO THE SERVICE
MODEL

A LEVEL OF

LOAD
?

~660

v

600’\

DERIVE THE
FORMALIZED VALUES
FROM THE UPDATED

CONFIGURATION
SETTINGS

670~

Y

RECONFIGURE THE
COMPONENT
PROGRAMS WITH THE
DERIVED FORMALIZED
VALUES

680 1

FIG. 6.

