
(12) STANDARD PATENT (11) Application No. AU 2009210699 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Managing component programs within a service application

(51) International Patent Classification(s)
G06F 9/06 (2006.01) G06F 13/14 (2006.01)
G06F 9/44 (2006.01) G06F 15/16 (2006.01)

(21) Application No: 2009210699 (22) Date of Filing: 2009.01.07

(87) WIPO No: WO09/099694

(30) Priority Data

(31) Number (32) Date (33) Country
12/022,756 2008.01.30 US

(43) Publication Date: 2009.08.13
(44) Accepted Journal Date: 2013.05.23

(71) Applicant(s)
Microsoft Corporation

(72) Inventor(s)
Khalidi, Yousef A.;Bernabeu-Auban, Jose

(74) Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

(56) Related Art
US 2003/0084155 A1
US 2007/0294364 A1
US 2006/0245354 A1
US 2007/0294405 A1
US 7 216 343 B1

(10) International Publication Number

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 August 2009 (13.08.2009) PCT WO 2009/099694 A3

(51) International Patent Classification:
G06F 9/44 (2006.01) G06F13/14 (2006.01)
G06F15/16 (2006.01) G06F 9/06 (2006.01)

(21) International Application Number:
PCT/US2009/030283

(22) International Filing Date:
7 January 2009 (07.01.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/022,756 30 January 2008 (30.01.2008) US

(71) Applicant for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: BERNEBEU-AUBAN, Jose; c/o Microsoft
Corporation, International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). KHALIDI,
Yousef A.; c/o Microsoft Corporation, International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted

a patent (Rule 4.17(H))

[Continued on next page]

(54) Title: MANAGING COMPONENT PROGRAMS WITHIN A SERVICE APPLICATION

W
O

 20
09

/0
99

69
4 A

3

(57) Abstract: Methods, systems, and computer-storage media having
computer- executable instructions embodied thereon that, when executed,
perform methods in accordance with embodiments hereof, for managing
component programs within a service application according to a service
model. Initially, configuration settings, which can be administered to the
component programs, are extracted from the service model. An instantia­
tion process is initiated to manage the service application in accordance
with the changes to a level of load on the service application and/or to
specifications within the service model. The instantiation process includes
deploying, or identifying as available, the component programs within the
data center, and automatically propagating formalized values derived from
the configuration settings throughout the deployed component programs.
These derived formalized values are installed into the component pro­
grams, thereby providing for functionality of the service application con­
sistent with the service model.

WO 2009/099694 A3 lll^
— as to the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
1 October 2009

WO 2009/099694 PCT/US2009/030283
1

MANAGING COMPONENT PROGRAMS WITHIN A SERVICE APPLICATION

BACKGROUND

[0001] Typically, software applications are written to allow for many degrees of

freedom in their configuration. When leveraging this characteristic, various users are able

to set up a particular software application to perform in a manner that is specific to each of

the users. Thus, these freedoms incorporated in a single software application enable the

software application to produce disparate results.

[0002] This type of software application is utilized by application-service

providers (ASPs) that allow users to remotely manipulate the application via the Internet.

Because the software application includes degrees of freedom, the user may provide

performance requirements to the ASPs to manually program into the application. Further,

most software applications include separate underlying elements that must be individually

identified and manually programmed so that the software application may express the

performance requirements. The process of manually programming the underlying

elements according to received performance requirements is labor-intensive and error-

prone. Accordingly, this ad hoc method for customizing a software application introduces

brittleness into the provision of the software application from the ASPs. These

shortcomings of manual programming are exaggerated when a multitude of users are

continually offering, and changing, their respective performance requirements.

SUMMARY

[0003] This Summary is provided to introduce concepts in a simplified form that

are further described below in the Detailed Description. This Summary is not intended to

identify key features or essential features of the claimed subject matter, nor is it intended

to be used as an aid in determining the scope of the claimed subject matter.

)IA»lbvlnicruo'cn\KRPonbf\DCC\Nl.f)\9oS56<i6_l doc-wwwm
20

09
21

06
99

09

 A
pr

 2
01

3 2

[0004] In at least some embodiments, the present invention provides ne or more

computer-storage media having computer-executable instructions embodied thereon that,

when executed, perform a method for managing one or more component programs within a

service application according to a service model, the method comprising: determining a

level of load on the service application, wherein the service application comprises the one

or more component programs that are executable on separate computing devices within a

data center; extracting from the service model configuration settings that can be

administered to the one or more component programs; initiating an instantiation process

for managing the service application in accordance with the level of the load, the

instantiation process comprising: deploying the one or more component programs within

the data center; determining a state of each of the one or more deployed component

programs; accessing a transformation map, wherein the transformation map includes logic

for expressing the configuration settings as formalized values that correspond to the state

of each of the one or more component programs; employing the logic of the transformation

map to derive the formalized values from the configuration settings according to the logic

of the transformation map; automatically propagating the derived formalized values

throughout the one or more deployed component programs; and at least temporarily

installing the formalized values into the one or more component programs, thereby

providing for functionality of the service application consistent with the service model

[0005[In another embodiment, the present invention provides a computer system

for performing a method of instantiating a service application by propagating configuration

settings to one or more component programs, thereby promoting functionality of the

service application, the computer system comprising: a first computing device to execute

the one or more component programs that support the operation of the service application:

and a second computing device to initiate an instantiation process for implementing the

service application according to a service model, the instantiation process comprising:

extracting configuration settings from specifications within the service model; identifying
the one or more component programs residing on the first computing device as being

available for instantiation; interrogating parameters within the one or more component
programs to establish whether some of the one or more component programs arc

compatible with the configuration settings; accessing a structure map from the one or more

compatible component programs, wherein the structure map includes logic for locating the

H \nIb\lnlcruovcn\NRPodbfkDCC\NLU\5l)JV4if._l doc-*MU/2»n
20

09
21

06
99

09

 A
pr

 2
01

3 2a

parameters within the one or more compatible component programs; automatically

propagating formalized values derived from the configuration settings throughout the one

or more compatible component programs; directing the formalized values derived from the

configuration settings to the parameters according to the logic of the structure map; and

configuring the parameters of the one or more compatible component programs according

to the formalized values.

[0005a] In a further embodiment, the present invention provides a computerized

method for configuring component programs of a service application, operating in a data

center, according to an instantiation scheme, the method comprising: determining

configuration settings by interrogating a service model; accessing the instantiation scheme,

wherein the instantiation scheme indicates which component programs to deploy in order

to satisfy the service model, and wherein the instantiation scheme provides a

transformation map; deploying the indicated component programs on a plurality of

computing devices within the data center; converting the configuration settings to

formalized values based, in part, on the transformation map, wherein the formalized values

include expected values that, upon matching a user-provided credential to a corresponding

expected value of the expected values, are configured to allow a user access to the service

application via one or more of the component programs; automatically distributing the

formalized values to the deployed component programs; and at least temporarily storing

the distributed formalized values in association with the deployed component programs.

WO 2009/099694 PCT/US2009/030283
3

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Embodiments of the present invention are described in detail below with

reference to the attached drawing figures, wherein:

[0007] FIG. 1 is a block diagram of an exemplary computing environment suitable

for use in implementing embodiments of the present invention;

[0008] FIG. 2 is a block diagram of an exemplary computing system suitable for

use in implementing embodiments of the present invention;

[0009] FIG. 3 is a flow diagram showing a method for managing components

within a service application according to a service model, in accordance with an

embodiment of the present invention;

[0010] FIGS. 4 and 5 are flow diagrams showing methods for installing the

formalized values into appropriate parameters of the component programs; and

[0011] FIG. 6 is a flow diagram a method for responding to a trigger event, in

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

[0012] The subject matter of embodiments of the present invention is described

with specificity herein to meet statutory requirements. However, the description itself is

not intended to limit the scope of this patent. Rather, the inventors have contemplated that

the claimed subject matter might also be embodied in other ways, to include different steps

or combinations of steps similar to the ones described in this document, in conjunction

with other present or future technologies. Moreover, although the terms “step” and/or

“block” may be used herein to connote different elements of methods employed, the terms

should not be interpreted as implying any particular order among or between various steps

herein disclosed unless and except when the order of individual steps is explicitly

described.

WO 2009/099694 PCT/US2009/030283
4

[0013] Embodiments of the present invention relate to methods, systems, and

computer storage media having computer-executable instructions embodied thereon that,

when executed, perform methods in accordance with embodiments hereof, for

automatically managing component programs within a service application according to a

service model. Initially, a trigger to instantiate the component programs within the service

application is detected. In embodiments, the trigger is based on an indication of a change

to a level of load on the service application (e.g., by monitoring traffic at a website hosting

the service application), or an indication of a change to the specifications within a service

model (e.g., by amending the service-description contract established between an

application-service provider and a client).

[0014] Incident to detecting the trigger, configuration settings are extracted from

the specifications of the service model, where the configuration settings (e.g., addresses of

component programs, algorithm identifiers, service locations, memory-resource addresses,

and the like) are utilized to configure parameters within the component programs. In one

instance, the component programs are deployed at various computing devices within a data

center that executes the service application. In another instance, previously established

component programs residing on various computing devices are identified as being

available for instantiation. These deployed and/or identified component programs are

configured according to an instantiation process that includes the following logical steps:

accessing maps (e.g., transformation map, structure map), deriving formalized values from

the configuration settings according to the transformation map, automatically propagating

formalized values throughout the component programs, locating parameters corresponding

to the formalized values according to the structure map, and installing the formalized

values at the appropriate parameters.

5

H:\nlb\hucn» otc»\NRPonbnDCONLB\5u5'W>i,_ I.doc-‘MU/2»n
20

09
21

06
99

09

 A
pr

 2
01

3

[0015] Accordingly, in one aspect, embodiments of the present invention relate to

one or more computer storage-media having computer-executable instructions embodied

thereon that, when executed, perform a method for managing one or more component

programs within a service application according to a service model. The method includes

determining a level of load on the service application, where the service application

includes the component programs that are executable on separate computing devices

within a data center, extracting from the service model configuration settings that can be

administered to the component programs, and initiating an instantiation process for

managing the service application in accordance with the level of the load. The instantiation

process includes deploying the component programs within the data center, determining a

state of each of the one or more deployed component programs, accessing a transformation

map, wherein the transformation map includes logic for expressing the configuration

settings as formalized values that correspond to the state of each of the one or more

component programs, employing the logic of the transformation map to derive the

formalized values from the configuration settings according to the logic of the

transformation map, and automatically propagating formalized values derived from the

configuration settings throughout the deployed component programs, and at least

temporarily installing the formalized values into the component programs, thereby

providing for functionality of the service application consistent with the service model. In

embodiments, the method additionally includes executing the service application according

to the installed formalized values.

[0016] In another aspect, embodiments of the present invention relate to a
computer system embodied on one or more computer storage media having computer-

executable instructions embodied thereon for performing a method for instantiating a

service application by propagating configuration settings to component programs, thereby

promoting functionality of the service application. The computer system includes a first

computing device and a second computing device. The first computing device executes the

component programs that support the operation of the service application. The second

computing device initiates an instantiation process for implementing the service
application according to a service model. The instantiation process includes extracting
configuration settings from specifications within the service model, identifying the

H \nlb\lruenvovcn\KRPonbhDCC\Nl.B\5u5.VH>f,_l doc-y/tM/2()lt
20

09
21

06
99

09

 A
pr

 2
01

3 6

component programs residing on the first computing device as being available for

instantiation, interrogating parameters within the component programs to establish whether

some of the component programs are compatible with the configuration settings, accessing

a structure map from the one or more compatible component programs, wherein the

structure map includes logic for locating the parameters within the one or more compatible

component programs, automatically propagating formalized values derived from the

configuration settings throughout the compatible component programs, directing the

formalized values derived from the configuration settings to the parameters according to

the logic of the structure map, and configuring the parameters of the compatible

component programs according to the formalized values.

[0017] In yet another aspect, embodiments of the present invention relate to a

computerized method for configuring component programs of a service application,

operating in a data center, according to an instantiation scheme. The computerized method

includes, at least, the following steps: determining configuration settings by interrogating a

service model; accessing the instantiation scheme, where the instantiation scheme indicates

which component programs to deploy in order to satisfy the service model, and where the

instantiation scheme provides a transformation map; deploying the indicated component

programs on a plurality of computing devices within the data center; converting the

configuration settings to formalized values based, in part, on the transformation map,

wherein the formalized values include expected values that, upon matching a user-

provided credential to a corresponding expected value of the expected values, are

configured to allow a user access to the service application via one or more of the

component programs; automatically distributing the formalized values to the deployed

component programs; and at least temporarily storing the distributed formalized values in

association with the deployed component programs.

[0018] Having briefly described an overview of embodiments of the present

invention, an exemplary operating environment suitable for implementing embodiments of
the present invention is described below.

(0019] Referring to the drawings in general, and initially to FIG. 1 in particular, an

exemplary operating environment for implementing embodiments of the present invention

is shown and designated generally as computing device 100. Computing device 100 is but

WO 2009/099694 PCT/US2009/030283
7

one example of a suitable computing environment and is not intended to suggest any

limitation as to the scope of use or functionality of embodiments of the present invention.

Neither should the computing environment 100 be interpreted as having any dependency

or requirement relating to any one or combination of components illustrated.

[0020] Embodiments of the present invention may be described in the general

context of computer code or machine-useable instructions, including computer-executable

instructions such as program components, being executed by a computer or other machine,

such as a personal data assistant or other handheld device. Generally, program

components including routines, programs, objects, components, data structures, and the

like refer to code that performs particular tasks, or implements particular abstract data

types. Embodiments of the present invention may be practiced in a variety of system

configurations, including hand held devices, consumer electronics, general-purpose

computers, specialty computing devices, etc. Embodiments of the invention may also be

practiced in distributed computing environments where tasks are performed by remote­

processing devices that are linked through a communications network.

[0021] With continued reference to FIG. 1, computing device 100 includes a bus

110 that directly or indirectly couples the following devices: memory 112, one or more

processors 114, one or more presentation components 116, input/output (I/O) ports 118,

I/O components 120, and an illustrative power supply 122. Bus 110 represents what may

be one or more busses (such as an address bus, data bus, or combination thereof).

Although the various blocks of FIG. 1 are shown with lines for the sake of clarity, in

reality, delineating various components is not so clear, and metaphorically, the lines would

more accurately be grey and fuzzy. For example, one may consider a presentation

component such as a display device to be an I/O component. Also, processors have

memory. The inventors hereof recognize that such is the nature of the art and reiterate that

WO 2009/099694 PCT/US2009/030283
8

the diagram of FIG. 1 is merely illustrative of an exemplary computing device that can be

used in connection with one or more embodiments of the present invention. Distinction is

not made between such categories as “workstation,” “server,” “laptop,” “hand held

device,” etc., as all are contemplated within the scope of FIG. 1 and reference to

“computer” or “computing device.”

[0022] Computing device 100 typically includes a variety of computer-readable

media. By way of example, and not limitation, computer-readable media may comprise

Random Access Memory (RAM); Read Only Memory (ROM); Electronically Erasable

Programmable Read Only Memory (EEPROM); flash memory or other memory

technologies; CDROM, digital versatile disks (DVDs) or other optical or holographic

media; magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage

devices, or any other medium that can be used to encode desired information and be

accessed by computing device 100.

[0023] Memory 112 includes computer storage media in the form of volatile and/or

nonvolatile memory. The memory may be removable, non-removable, or a combination

thereof. Exemplary hardware devices include solid-state memory, hard drives, optical-disc

drives, etc. Computing device 100 includes one or more processors that read data from

various entities such as memory 112 or I/O components 120. Presentation component(s)

116 present data indications to a user or other device. Exemplary presentation components

include a display device, speaker, printing component, vibrating component, etc. I/O ports

118 allow computing device 100 to be logically coupled to other devices including I/O

components 120, some of which may be built-in. Illustrative components include a

microphone, joystick, game pad, satellite dish, scanner, printer, wireless device, etc.

[0024] Turning now to FIG. 2, a block diagram is illustrated, in accordance with an

embodiment of the present invention, showing a computing system 200 configured to

WO 2009/099694 PCT/US2009/030283
9

manage component programs 201, 202, 203, and 204 within a service application 210

according to a service model. It will be understood and appreciated by those of ordinary

skill in the art that the computing system 200 shown in FIG. 2 is merely an example of one

suitable computing system environment and is not intended to suggest any limitation as to

the scope of use or functionality of embodiments of the present invention. Neither should

the computing system 200 be interpreted as having any dependency or requirement related

to any single component or combination of components illustrated therein. Further,

although the various blocks of FIG. 2 are shown with lines for the sake of clarity, in

reality, delineating various components is not so clear, and metaphorically, the lines would

more accurately be grey and fuzzy.

[0025] The computing system 200 includes a client computing device 215,

dependent service providers 220, and a data center 225, all in communication with one

another via a network (not shown). The network may include, without limitation, one or

more local area networks (LANs) and/or wide area networks (WANs). Such networking

environments are commonplace in offices, enterprise-wide computer networks, intranets,

and the Internet. Accordingly, the network is not further described herein.

[0026] Each of client computing device 215, dependent service providers 220, and

data center 225, shown in FIG. 2, can be any type of computing device, such as, for

example, computing device 100 described above with reference to FIG. 1. By way of

example only, and not limitation, each of client computing device 215, and dependent

service providers 220 can be a personal computer, a desktop computer, a laptop computer,

a handheld device, a mobile handset, consumer electronic device, and the like. In

embodiments, data center 225 can be a server, a collection of computing devices, or other

machines capable of executing the service application 210. Additionally, client

computing device 215 can further include a web-browser application 230 residing thereon

WO 2009/099694 PCT/US2009/030283
10

to access service application 210 via wired or wireless network paths to data center 225. It

should be noted, however, that embodiments of the present invention are not limited to

implementation on such computing devices, but may be implemented on any of a variety

of different types of computing devices within the scope of embodiments hereof.

[0027] As shown in FIG. 2, client computing device 215 is configured to execute

web-browser application 230 to access the service application 210. Service application

210 can be accessed in a generally direct manner, via communication path 235, or by way

of dependent service providers 220. In embodiments, access through dependent service

providers 220 includes conveying user-provided credentials 240 thereto. Typically, user-

provided credentials 240 are login data, passwords, or any other information provided by a

client to satisfy security protocol implemented at dependent service providers 220. In turn,

dependent service providers 220 exchange credentials 240, within messages 245, with one

or more of components 201, 202, 203, and 204.

[0028] In embodiments, dependent service providers 220 are located external to

data center 225 and managed by an entity separate from an application-service provider

that maintains service application 210. However, dependent service providers 220 are able

to coordinate activities with the component programs 201, 202, 203, and 204 by

exchanging messages 245 therebetween. Coordinating activities between dependent

service providers 220 and component programs 201, 202, 203, and 204 is facilitated by

resource locations that target dependent service providers 220. These resource locations

are typically established according to specifications within a service model.

[0029] Generally, the service model is an interface blueprint that provides

instructions for managing component programs 201, 202, 203, and 204 of service

application 210. Accordingly, the service model includes specifications that identify such

aspects of managing as which maps to employ during instantiation; which computing

WO 2009/099694 PCT/US2009/030283
11

devices to utilize during propagation of component programs 201, 202, 203, and 204;

where the communication paths 246 and 247 between component programs 201, 202, 203,

and 204 are located; and any other information that describes the particular way service

application 210 will be executed by data center 225. In one instance, the service model is

generated, in part, according to a service-description contract established between a client

and an application-service provider. As a result of the service-description contract, the

client is provided with access to the service application 210, and other software,

maintained by the application-service provider.

[0030] Further, the service model provides hooks within the specifications that

allow implicit and explicit configuration settings to be extracted therefrom. In

embodiments, implicit configuration settings provide structural information (e.g.,

component addresses, resource locations, and memory-resource addresses) to facilitate

interaction between each of component programs 201, 202, 203, and 204 and/or other

components (e.g., dependent services providers 220, memory resources 250).

Additionally, the implicit configuration settings provide application programming

interfaces (APIs) for consuming and translating messages between the above components,

thereby allow the components to communicate harmoniously. In embodiments, explicit

configuration settings provide instructions (e.g., algorithm identifiers and other

configuration values) to parameters within component programs 201, 202, 203, and 204

that influence the functionality thereof. By way of example only, specified credentials for

logging a client into service application 210 are memorialized in the service model. Hooks

in the service model provide these credentials to the explicit configuration settings, which

distribute the credentials to component 201 as expected values. These expected values are

compared against user-provided credentials 240 that are conveyed from dependent service

providers 220 in message 245. Upon receipt of message 245, component 201 compares

WO 2009/099694 PCT/US2009/030283
12

user-provided credentials 240 against the expected values. If the comparison results in a

match, the client is provided access to service application 210.

[0031] Data center 225 is provided for executing service application 210, among

other things. Service application 210 includes a set of component programs 201, 202, 203,

and 204 that can be scaled to usage (e.g., number of client hits per hour) or by

amendments to the service model. Typically, service application 210 is characterized by

being composed of many different components (e.g., component programs 201, 202, 203,

and 204), which are similar to traditional applications. In an exemplary embodiment,

service application 210 manages the different components such that these components

function together as a combined Internet service. By way of example, service application

210 is a blog service that allows a variety of clients to post comments at a particular

website. Because there could be potentially thousands of clients all accessing the blog

service, multiple components are deployed to which by the blog service to support its

continued operation. These components coordinate actions with each other to function as

a single application, thus, the deployment and dismissal of components is transparent to

the clients.

[0032] Although one instance of the service application 210 has been shown and

described, it should be understood and appreciated by those of ordinary skill in the art that

multiple service applications may be executed within the data center 225, and that

embodiments of the present invention are not limited to those the service application 210

shown and described. In the embodiments, having more than one service application, the

service application 210 and other service applications (not shown) may operate

independently and/or in cooperation with each other. In one instance, service applications

running concurrently on the data center 225 share the set of component programs 201,

202, 203, and 204. By way of example only, the set of component programs 201, 202,

WO 2009/099694 PCT/US2009/030283
13

203, and 204 can be consumed by a new service application (e.g., reprovisioned according

to usage requirements), or shared between service applications (e.g., a plurality of service

applications accessing a program component). Thus, the resources on the data center 225,

in embodiments, provide for the interoperability of many interdependent, or independent,

service applications.

[0033] In embodiments, data center 225 includes various machines, such as first

computing device 255 and second computing device 265, and memory resources 250.

Computing devices 255 and 265 may be any type of computing device, such as, for

example, computing device 100 (see FIG. 1), a personal computer, server, a collection of

computing devices, or other machines capable of executing service application 210.

Additionally, computing devices 255 and 265 are capable of storing and executing

component programs 201, 202, 203, and 204. Component programs 201, 202, 203, and

204 embody several components of an array of component programs that are managed by

service application 210. In embodiments, component programs 201, 202, 203, and 204 are

developed, or written, according to specifications within the service model. In one

instance, one or more of component programs 201, 202, 203, and 204 are developed

according to a set of rules within the service model that permits parameters 270 to

reconfigure automatically upon determining that an update to the configuration settings

has occurred. Although four component programs are depicted in FIG. 2 and described

herein, embodiments of the present invention contemplate utilizing any number of

component programs to support operation of service application 210. In an exemplary

embodiment, the number of component programs relates to a level of client load on service

application 210, where the higher the level of the load climbs, the more component

programs that are deployed.

WO 2009/099694 PCT/US2009/030283
14

[0034] Parameters 270 typically reside on component programs 201, 202, 203, and

204, or on elements 266 and 275 residing on components 201 and 204, respectively.

Generally, parameters fine tune the decisions that each of the components make internally,

thereby refining coordinated performance of the components. Parameters 270 are

exemplary in number and in nature. That is, although certain parameters are shown on

specific component programs or elements, embodiments of the present invention

contemplate zero to many parameters residing on any of the component programs or

elements.

[0035] Memory resources 250 typically reside on data center 225 and are

configured to store data. In embodiments, memory resources 250 is searchable for one or

more of the items stored in association therewith. It will be understood and appreciated by

those of ordinary skill in the art that the data stored in the data store 250 may be

configurable and may include any information relevant to execution of service application

210. The content and volume of such information are not intended to limit the scope of

embodiments of the present invention in any way. Further, though illustrated as a single,

independent component, memory resources 250 may, in fact, be a plurality of data stores,

for instance, a database cluster. In addition, the data stored at memory resources 250 is

accessible by component programs 201, 202, 203, and 204. In one embodiment, the

configuration settings are provided with memory-resource addresses that permit one or

more of component programs 201, 202, 203, and 204 to locate memory resources 250, or

another appropriate memory allocation, in order to access data therefrom.

[0036] In operation, service application 210 is configured to manage component

programs 201, 202, 203, and 204. One aspect of managing involves establishing and

configuring component programs 201, 202, 203, and 204 upon detecting a trigger event.

The trigger event alerts service application 210 to instantiate component programs 201,

WO 2009/099694 PCT/US2009/030283
15

202, 203, and 204 within service application 210 upon detecting the trigger event. In

embodiments, the trigger is based on an indication of a change to a level of load on service

application 210 (e.g., by monitoring traffic from one or more client computing device

215), or an indication of a change to the specifications within a service model (e.g., by

amending the service-description contract established between an application-service

provider and a client), as more fully discussed below with reference to FIG. 6.

[0037] Incident to detecting the trigger, configuration settings 280 are extracted

from the specifications and or hooks of the service model. Generally, configuration

settings 280 facilitate properly managing service application 210. In embodiments,

configuration settings 280 can be implicit or explicit configuration settings, as more fully

discussed above. In particular instances, configuration settings 280 include addresses of

component programs, algorithm identifiers, service locations, memory-resource addresses,

or any other data-string utilized to configure parameters within the component programs.

[0038] Incident to, or concurrently with, extracting configuration settings 280,

component programs 201, 202, 203, and 204 are established to meet the load, satisfy the

updated service model, or for any other reason that pertains to operation of service

application 210. In one instance, establishing component programs 201, 202, 203, and 204

includes deploying component programs 201, 202, 203, and 204 at various computing

devices 255 and 265 within data center 225. In another instance, establishing component

programs 201, 202, 203, and 204 includes identifying as being available for instantiation

previously-established component programs residing on various computing devices 255

and 256 and are identified. Although two different ways of establishing component

programs 201, 202, 203, and 204 have been shown, it should be understood and

appreciated by those of ordinary skill in the art that other methods for establishing

WO 2009/099694 PCT/US2009/030283
16

component programs 201, 202, 203, and 204 can be utilized, and that embodiments of the

present invention are not limited to those ways shown and described herein.

[0039] These deployed and/or identified component programs 201, 202, 203, and

204 are configured according to an instantiation process that includes the following logical

steps: accessing maps (e.g., transformation map, structure map), deriving formalized

values 290 from configuration settings 280 according to the transformation map,

automatically propagating formalized values 290 throughout component programs 201,

202, 203, and 204, locating parameters 270 corresponding to formalized values 290

according to the structure map, and installing formalized values 290 at the appropriate

parameters 270. In an exemplary embodiment, parameters 270 are interrogated by service

application 210 to determine whether each of components 201, 202, 203, and 204 are

compatible with configuration settings 280 prior to installing formalized values 290.

[0040] Turning now to FIG. 3, a flow diagram is illustrated that shows an overall

method 300 for managing components within a service application according to a service

model, in accordance with an embodiment of the present invention. Initially, as indicated

at block 305, an indication (e.g., trigger event) is received at a service application. Trigger

events are discussed more fully with reference to FIG. 6. Typically the indication alerts

the service application that more or fewer component programs should be established to

maintain uniform operation of the service application. In an exemplary embodiment, the

addition and subtraction of component programs is transparent to a client who is presently

accessing the service application. As indicted at block 310, configuration settings are

extracted from hooks upon interrogating specifications within a service model. As more

fully discussed above, various types of configuration settings can be extracted, such as

implicit and explicit configuration settings.

WO 2009/099694 PCT/US2009/030283
17

[0041] As indicated at block 315, an instantiation process for managing the service

application, in accordance with the trigger events, is initiated. In embodiments, the

instantiation process includes, at least, the following logical steps: establishing component

programs; deriving formalized values; automatically propagating the formalized values;

and installing the formalized values. In particular, as indicated at block 320, the

component programs are established by deploying (e.g., generating new component

programs), or identifying as available, existing component programs on machines within

the data center. In an exemplary embodiment of identifying available existing component

programs, parameters within the existing component programs are interrogated to

determine whether they are compatible with the configuration settings. Accordingly, these

“compatible” component programs receive formalized values during propagation.

[0042] In embodiments, these component programs are located at one or various

computing devices within a data center. This style of remote deployment is enabled by

instructions (e.g., component addresses) provided to the component devices by the

configuration settings. In addition, the configuration settings include instructions for

configuring an API at some of the component programs thereby allowing each component

program to coordinate with other types and instances of component programs, memory

resources, and remote dependent service providers (e.g., service maintained by

communication partners).

[0043] As indicated at block 325, formalized values are derived from the

configuration settings. In embodiments, the formalized values are derived according to a

transformation map, a determined state of each of the component programs, or a

combination thereof. These formalized values are automatically propagated to the

deployed component programs, the compatible component programs, or a combination

thereof, as indicated at block 330. These steps (e.g., blocks 320, 325, and 330) may be

WO 2009/099694 PCT/US2009/030283
18

taken in any order or concomitantly. As indicated at block 335, the formalized values are

installed at the parameters of the component programs. In other embodiments, the

formalized values are temporarily stored in association with a corresponding parameter.

Incident to installing the parameters, the service application is executed according to the

formalized values, as indicated at block 340.

[0044] Turning now to FIGS. 4 and 5, flow diagrams are illustrated showing

methods 400 and 500 for installing the formalized values into appropriate parameters of

the component programs, in accordance with an embodiment of the present invention.

With respect to FIG. 4, initially, a map structure is accessed by the service application, as

indicated at block 410. In other embodiments, the structure map is accessed by the

configuration settings or stored therein. As indicated at block 420, the parameters within

the component programs are located according to logic within the structure map.

Accordingly, the logic of the structure map assists in directing the formalized values to the

appropriate parameters, thereby promoting a proper installation of the formalized values,

as indicated at block 430.

[0045] With reference to FIG. 5, a state of each of the established component

programs is established, as indicated at block 510. In embodiments, the state generally

relates to an instance or type of component program, or the existing configuration of the

component program. As indicated at block 520, a transformation map is accessed. In an

exemplary embodiment, the transformation map includes logic that provides for

expressing the configuration settings as formalized values upon entering the determined

state of each of the component programs. Based on the logic, formalized values are

derived that correspond to each instance of a component program.

[0046] FIG. 6 is a flow diagram showing a method 600 for responding to a trigger

event, in accordance with an embodiment of the present invention. As indicated at block

WO 2009/099694 PCT/US2009/030283
19

610, an indication of amendments to a service-description contract are received. As

indicated at block 620, a determination of whether the amendments affect specifications

within the service model is made. If the determination indicates that no substantial affect

is generated, the present configuration of the component programs is maintained, as

indicated at block 630. As indicated at block 640, traffic at the service application is

monitored. As indicated at block 650, a determination of whether there is a change to a

level of a load is made. If the determination indicates that no change, or substantial

adjustment, to the level of the load is indicated, the present configuration of the component

programs is maintained, as indicated at block 630.

[0047] However, if the determinations of blocks 620 and 650 indicate that a trigger

event has occurred, (e.g., a substantial change to the level of the load occurred, or an

amendment to the specification has driven a substantial effect), the updated configuration

settings are updated according to the service model, as indicated at block 660. Utilization

of the service model to create updated configuration settings is discussed more fully above

with reference to FIG. 2. As indicated at block 670, the formalized values are derived

from the updated configuration settings. As indicated at block 680, the component

programs are reconfigured with the derived formalized values. In embodiments,

reconfiguration includes the steps listed in FIG. 3.

[0048] Embodiments of the present invention have been described in relation to

particular embodiments, which are intended in all respects to be illustrative rather than

restrictive. Alternative embodiments will become apparent to those of ordinary skill in the

art to which embodiments of the present invention pertain without departing from its

scope.

[0049] From the foregoing, it will be seen that this invention is one well adapted to

attain all the ends and objects set forth above, together with other advantages which are

WO 2009/099694 PCT/US2009/030283
20

obvious and inherent to the system and method. It will be understood that certain features

and sub-combinations are of utility and may be employed without reference to other

features and sub-combinations. This is contemplated by and is within the scope of the

claims.

HAnlb\liiicruo\ci»\NRPonb[\DCtANLB\3ii5W»i._l doc-MW/JOD
20

09
21

06
99

09

 A
pr

 2
01

3 21

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. One or more computer-storage media having computer-executable

instructions embodied thereon that, when executed, perform a method for managing one or

more component programs within a service application according to a service model, the

method comprising:

determining a level of load on the service application, wherein the service

application comprises the one or more component programs that are executable on separate

computing devices within a data center;

extracting from the service model configuration settings that can be administered to

the one or more component programs;

initiating an instantiation process for managing the service application in

accordance with the level of the load, the instantiation process comprising:

(1) deploying the one or more component programs within the data center;

(2) determining a state of each of the one or more deployed component

programs;

(3) accessing a transformation map, wherein the transformation map

includes logic for expressing the configuration settings as formalized values that

correspond to the state of each of the one or more component programs;

(4) employing the logic of the transformation map to derive the formalized

values from the configuration settings according to the logic of the transformation

map;

(5) automatically propagating the derived formalized values throughout the

one or more deployed component programs; and

at least temporarily installing the formalized values into the one or more

component programs, thereby providing for functionality of the service application

consistent with the service model.

2. The one or more computer- storage media of claim 1, wherein determining

a level of load comprises monitoring traffic at a website hosting the service application.

3. The one or more computer-storage media of claim 1, wherein the service

Η \nIb\lnien*ovcn\NRPonbl\DCCtNLBl'iiJ36H6_| doc-9/iU/2OB
20

09
21

06
99

09

 A
pr

 2
01

3 22

application comprises software residing on a data center maintained by an application-

service provider accessible to a client via a web-browser application.

4. The one or more computer- storage media of claim 3, wherein the service

model is generated, in part, according to a service-description contract established between

the application-service provider and the client.

5. The one or more computer storage media of claim 1, further comprising

executing the service application according to the installed formalized values.

6. A computer system for performing a method of instantiating a service

application by propagating configuration settings to one or more component programs,

thereby promoting functionality of the service application, the computer system

comprising:

a first computing device to execute the one or more component programs that

support the operation of the service application; and

a second computing device to initiate an instantiation process for implementing the

service application according to a service model, the instantiation process comprising:

(1) extracting configuration settings from specifications within the service

model;

(2) identifying the one or more component programs residing on the first

computing device as being available for instantiation;

(3) interrogating parameters within the one or more component programs to

establish whether some of the one or more component programs are compatible

with the configuration settings;

(4) accessing a structure map from the one or more compatible component

programs, wherein the structure map includes logic for locating the parameters

within the one or more compatible component programs;

(5) automatically propagating formalized values derived from the

configuration settings throughout the one or more compatible component programs;

(6) directing the formalized values derived from the configuration settings

to the parameters according to the logic of the structure map; and

H.\nlb\hilcfwovcn\NRPonbhOCC\NLB\5n51Mi6_l doc-9flU/20B
20

09
21

06
99

09

 A
pr

 2
01

3 23

(7) configuring the parameters of the one or more compatible component

programs according to the formalized values.

7. The computer system of claim 6, wherein the instantiation process further

comprises:

receiving an indication of an amendment to the specifications of the service

model; and

extracting updated configuration settings from the amended specifications.

8. The computer system of claim 7, wherein the one or more component

programs residing on the first computing device are developed according to a set of rules

that permits the parameters to reconfigure automatically upon receiving formalized values

from the updated configuration settings.

9. The computer system of claim 6, wherein the second computing device is

further configured to execute the one or more component programs that support the

operation of the service application.

10. The computer system of claim 9, wherein the configuration settings include

component addresses, the component addresses permitting the one or more component

programs residing on the first computing device to coordinate activities with the one or

more component programs residing on the second computing device.

11. The computer system of claim 6, wherein the configuration settings include

algorithm identifiers, the algorithm identifiers instructing the one or more component

programs to launch a particular algorithm, thereby affecting the execution of the service
application.

12. The computer system of claim 6, further comprising a set of dependent

services to support the operation of the service application, the service application being

managed by an application-service provider and the set of dependent services being

managed by at least one entity separate from the application-service provider.

H \iilb\lnicfuo'cn\NRPonb(\DCONLB\5o5 VUKi 1 doo*)rtM/20B

24

20
09

21
06

99

09
 A

pr
 2

01
3

13. The computer system of claim 12, wherein the configuration settings

include resource locations, the resource locations permitting the one or more component

programs to coordinate activities with the set of dependent services located externally of

the first computing device and the second computing device.

14. The computer system of claim 13, wherein coordinating activities comprise:

exchanging messages between the set of dependent services and the one or

more component programs; and

comparing the exchanged messages with the formalized values installed at

the parameters of the one or more compatible component programs.

15. The computer system of claim 6, wherein the first computing device and the

second computing device comprise a data center, wherein the data center includes memory

resources that store data, wherein the data at the memory resources are accessible by the

one or more component programs.

16. The computer system of claim 15, wherein the configuration settings

include memory-resource addresses, the memory-resource addresses permitting the one or

more component programs to locate the appropriate memory resources for accessing the

data.

17. A computerized method for configuring component programs of a service

application, operating in a data center, according to an instantiation scheme, the method
comprising:

determining configuration settings by interrogating a service model;

accessing the instantiation scheme, wherein the instantiation scheme indicates

which component programs to deploy in order to satisfy the service model, and wherein

the instantiation scheme provides a transformation map;

deploying the indicated component programs on a plurality of computing devices

within the data center;

converting the configuration settings to formalized values based, in part, on the

H:\nlb\lnicr\»ovcn\NRPonbr\DCCkNLB\5053606_l.doc-*MM/2<)B
20

09
21

06
99

09

 A
pr

 2
01

3 25

transformation map, wherein the formalized values include expected values that, upon

matching a user-provided credential to a corresponding expected value of the expected

values, are configured to allow a user access to the service application via one or more of

the component programs;

automatically distributing the formalized values to the deployed component

programs; and

at least temporarily storing the distributed formalized values in association with the
deployed component programs.

WO 2009/099694 PCT/US2009/030283

1/5

FIG. 1

WO 2009/099694 PCT/US2009/030283

2/5

FIG. 2.
200X

220\

DEPENDENT
SERVICE

PROVIDERS
¥

225 IΛ

WO 2009/099694 PCT/US2009/030283

300

3/5

FIG. 3.

WO 2009/099694 PCT/US2009/030283

400

500

4/5

FIG. 4.

FIG. 5.

DERIVE THE FORMALIZED
VALUES ACCORDING TO THE

LOGIC

WO 2009/099694 PCT/US2009/030283

5/5

FIG. 6

