T 0 0O

66 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 January 2001 (25.01.2001)

PCT

A 0 00 0 O

(10) International Publication Number

WO 01/06366 Al

GOGF 11/14

(51) International Patent Classification’:

(21) International Application Number: PCT/US00/18990
(22) International Filing Date: 12 July 2000 (12.07.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

09/356,383 16 July 1999 (16.07.1999) US
(71) Applicant: MICROSOFT CORPORATION [US/US];

One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: BOLOSKY, William, J.; 24622 S.E. Mir-
rormont Drive, Issaquah, WA 98027 (US). CUTSHALL,
Scott, M.; 816 289th Avenue N.E., Carnation, WA 98014
(US).

(74) Agent: MICHALIK, Albert, S.; Michalik & Wylie,
PLLC, Suite 103, 14645 Bel-Red Road, Bellevue, WA
98007 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR BACKING UP AND RESTORING FILES STORED IN A SINGLE INSTANCE

STORE
82 " pest,)
Reparse f{— vz ! Reparse || 8%
T Point ! H Point FJ
84 66 0N
== UnkFie - Link File
Filosys SIS OIr\XYZ J— 71277 Dir2AXY2
Volume 102 ;Context
; e e /
t s/ 108
.
! . .
' 1 Volume }
: Backup / Restore b L _l J
) Interface (DLL) R
L}
!]
! 1
! L]
' e 1 1 68 —1 Backpointer Stream Filo
‘ 120 | 7 e JL—+ tinctuding Sigature) Comman
! Backup / Restore W Store\UUIDy
: Storage Medium
X Data :
Vo122 oH—T | Flle
L} g ca'lm’l
1 b Filesys fila
............. » ID,
Voluie CommonStore{UUID) StorelUUID,
78 44— Common Store

“ (57) Abstract: A method and system for backing up and restoring single instance store (SIS) files comprising links to common
store files. A dynamic link library (DLL) including an interface enables a backup/restore application to properly backup and restore
>~ SIS-enabled volumes including SIS links and their corresponding store files. For each link to be backed up, the DLL tracks whether

=

its corresponding common store file has already been identified for

backing up to the backup application, such that it is identified only

one, whereby only one copy of a common store file is backed up per volume, regardless of the number of additional links pointing

thereto. For each link to be restored, the DLL tracks whether its

corresponding common store file has already been identified for

restoring to the restore application, or is already present on the volume, whereby a common store file for a link file is only restored

to a volume only once and if not already present on that volume,

WO 01/06366 PCT/US00/18990

10

15

20

25

30

METHOD AND SYSTEM FOR BACKING UP AND RESTORING FILES
STORED IN A SINGLE INSTANCE STORE

TECHNICAL FIELD

The invention relates generally to computer systems
and data storage, and more particularly to the backing up

and restoring of files of a file system.

BACKGROUND OF THE INVENTION

The contents of a file of a file system may be
identical to the contents stored in one or more other
files. While some file duplication tends to occur on
even an individual user’s personal computer, duplication
is particularly prevalent on networks set up with a
server that centrally stores the contents of multiple
personal computers. For example, with a remote boot
facility on a computer network, each user boots from that
user’s private directory on a file server. Each private
directory thus ordinarily includes a number of files that
are identical to files on other users’ directories. As
can be readily appreciated, storing the private
directories on traditional file systems consumes a great
deal of disk and server file buffer cache space.

Techniques that have been used to reduce the amount
of used storage space include linked-file or shared
memory techniques, essentially storing the data only
once. However, when these techniques are used in a file
system, the files are not treated as logically separate
files. For example, if one user makes a change to a
linked-file, or if the contents of the shared memory
change, every other user linked to that file sees the
change. This is a significant drawback in a dynamic
environment where files do change, even if not very

frequently. For example, in many enterprises, different

- l —

WO 01/06366 PCT/US00/18990

10

15

20

25

30

users need to maintain different versions of files at
different times, including traditionally read-only files
such as applications. As a result, linked-file
techniques would work well for files that are strictly
read-only, but these techniques fail to provide the
flexibility needed in a dynamic environment.

Additional problems arise any time that a distinct
file is linked to its data rather than having the file
metadata and actual data treated as a whole. For
example, when dealing with linked files, the file data
may be lost if a link to the file data is backed up, but
not the data itself. As can be readily appreciated, such
a situation is unacceptable in critical data backup and
retrieval situations, but nonetheless may occur if the
user does not know that the backed-up link is actually
distinct from the data. On the other hand, if the data
is automatically backed up for each link, then the amount
of storage space needed to make the backup may be far
larger than the amount of space that the links and data
actually occupy on the machine being backed up. For
example, a user may overflow a backup storage device if
roughly 200 megabytes of space is needed to back up the
source data for two links, each link pointing to the same
100 megabytes of file data, (i.e., the links and data
occupy approximately 100 megabytes at the source).
Similarly, when restoring, the amount of data on the
storage device may not correspond to the amount the user
exXpects to restore. For example, if the 200 megabytes
did fit on the backup storage device, the user backed up
what appeared to be 100 megabytes and thus expects that
the restore program will put back 100 megabytes, not 200
megabytes. In sum, there has heretofore not been a way

to properly handle the backing up and restoring of files

WO 01/06366 PCT/US00/18990

10

15

20

25

30

having their data stored in a single instance

representation thereof.

SUMMARY OF THE INVENTION

Briefly, the present invention provides a method and
system for backing up and restoring single instance files
including link files and common store files pointed to by
those link files. The method and system, which may be
implemented in an interface such as in a dynamic link
library, receive information corresponding to a link
file, such as via a function call from a backup
application, and determine whether the link file has
common data corresponding thereto already identified for
backup. If not, the interface identifies the common data
(e.g., returns a common store filename) to back up. A
data structure may be used to track which common data has
already been identified to the backup application. 1In
this manner, one, but only one copy of the common data
will be identified for backup.

The interface may also receive function calls
specifying a link file from a restore application,
whereby the interface determines whether common data
corresponding to the link file needs to be restored. To
this end, the interféce identifies the common store data
(e.g., via a common store filename) when the common data
has neither been previously identified to the restore
application nor is already present on the volume. A data
structure may be used to track whether common data has
already been identified to the backup application, and/or
is known to be present on the volume. In this manner,
one, but only one copy of the common data will be
identified for restore, and only if the common data is

not already present on the volume.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

Other advantages will become apparent from the

following detailed description when taken in conjunction

‘with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representing a computer
system into which the present invention may be
incorporated;

FIGS. 2A - 2B are block diagrams representing
various components for working with single instance store
(SIS) link files and SIS common store files, including
the backing up and restoring thereof in accordance with
an aspect of the present invention;

FIG. 3 is block diagram representing various
components of a SIS link file and SIS common store file;

FIG. 4 is a flow diagram generally representing the
steps taken when copying a source file to a SIS link file
and SIS common store file;

FIG. 5 is a representation of a SIS link file open
request passing through a preferred SIS and file system
architecture;

FIGS. 6A - 6B comprise a flow diagram generally
representing the steps taken by the SIS facility to
handle the open request represented in FIG. 5;

FIG. 7 is a representation of a SIS link file write
request passing through a preferred SIS facility

FIG. 8 is a flow diagram generally representing the
steps taken by the SIS facility to handle the write
request represented in FIG. 7;

FIG. 9 is a representation of a SIS link file read
request passing through a preferred SIS facility;

FIG. 10 is a flow diagram generally representing the
steps taken by the SIS facility to handle the read
request represented in FIG. 9;

- 4 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

FIG. 11 is a flow diagram generally representing the
steps taken by the SIS facility to handle a SIS link file
close request;

FIG. 12 is a flow diagram generally representing the
steps taken by the SIS facility to handle a SIS link file
delete request;

FIGS. 13A and 13B comprise a flow diagram generally
representing the steps taken to back up SIS files in
accordance with an aspect of the present invention; and

FIGS. 14A and 14B comprise a flow diagram generally
representing the steps taken to restore SIS files in-

accordance with an aspect of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Exemplary Operating Environment

FIGURE 1 and the following discussion are intended
to provide a brief general description of a suitable
computing environment in which the invention may be
implemented. Although not required, the invention will
be described in the general context of computer-
executable instructions, such as program modules, being
executed by a personal computer. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular
tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that
the invention may be practiced with other computer system
configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers,
mainframe computers and the like. The invention may also
be practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. 1In a

- 5 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

distributed computing environment, program modules may be
located in both local and remote memory storage devices.
With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a conventional personal
computer 20 or the like, including a processing unit 21,
a system memory 22, and a system bus 23 that couples
various system components including the system memory to
the processing unit 21. The system bus 23 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. The system
memory includes read-only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26
(BIOS), containing the basic routines that help to
transfer information between elements within the personal
computer 20, such as during start-up, is stored in ROM
24, The personal computer 20 may further include a hard
disk drive 27 for reading from and writing to a hard
disk, not shown, a magnetic disk drive 28 for reading
from or writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or writing to a
removable optical disk 31 such as a CD-ROM, DVD-ROM or‘
other optical media. The hard disk drive 27, magnetic
disk drive 28, and optical disk drive 30 are connected to
the system bus 23 by a hard disk drive interface 32, a
magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data
structures, program modules and other data for the
personal computer 20. Although the exemplary environment
described herein employs a hard disk, a removable
magnetic disk 29 and a removable optical disk 31, it

- 6 _

WO 01/06366 PCT/US00/18990

10

15

20

25

30

should be appreciated by those skilled in the art that
other types of computer readable media that can store
data that is accessible by a computer, such as magnetic
cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used
in the exemplary operating environment.

A number of program modules may be stored on the
hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35 (preferably
Windows® 2000). The computer 20 includes a file system
36 associated with or included within the operating
system 35, such as the Windows NT® File System (NTFS),
one or more application programs 37, other program
modules 38 and program data 39. A user may enter
commands and information into the personal computer 20
through input devices such as a keyboard 40 and pointing
device 42. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner
or the like. These and other input devices are often
connected to the processing unit 21 through a serial port
interface 46 that is coupled to the system bus, but may
be connected by other interfaces, such as a parallel
port, game port or universal serial bus (USB). A monitor
47 or other type of display device is also connected to
the system bus 23 via an interface, such as a video
adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output
devices (not shown), such as speakers and printers.

The personal computer 20 may operate in a networked
environment using logical connections to one or more
remote computers 49. The remote computer (or computers)
49 may be another personal computer, a server, a router,
a network PC, a peer device or other common network node,

- 7 —

WO 01/06366 PCT/US00/18990

10

15

20

25

30

and typically includes many or all of the elements
described above relative to the personal computer 20,
although only a memory storage device 50 has been
illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area network (LAN) 51 and a
wide area network (WAN) 52. Such networking environments
are commonplace in offices, enterprise-wide computer
networks, Intranets and the Internet.

When used in a LAN networking environment, the
personal computer 20 is connected to the local network 51
through a network interface or adapter 53. When used in
a WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for
establishing communications over the wide area network
52, such as the Internet. The modem 54, which may be
internal or external, is connected to the system bus 23
via the serial port interface 46. In a networked
environment, program modules depicted relative to the
personal computer 20, or portions thereof, may be stored
in the remote memory storage device. It will be
appreciated that the network connections shown are
exemplary and other means of establishing a
communications link between the computers may be used.

The present invention is described herein with
reference to Microsoft Corporation’s Windows 2000
(formerly Windows NT®) operating system, and in
particular to the Windows NT® file system (NTFS).
Notwithstanding, there is no intention to limit the
present invention to Windows® 2000, Windows NT® or NTFS,
but on the contrary, the present invention is intended to
operate with and provide benefits with any operating
system, architecture and/or file system that needs to
back up and restore store duplicated data stored in a
single instance representation thereof.

- 8 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

SINGLE INSTANCE STORE

Turning now to FIGS. 2A - 2B, there is shown a
general concept of the single instance store (SIS)
facility and architecture underlying the present
invention, which may be implemented in the computer
system 20. In FIG. 2A, a user, via a SIS copy file
request 60 to a SIS facility 62, may explicitly request
that a source file 64 be copied to a destination file 66
as a SIS copy of the file. Note that the destination
file 66 ordinarily does not exist at this time, and is
thus represented in FIGS. 2A and 2B by a dashed box. The
preferred copy file request 60 may be implemented as a
Windows 2000 file system control named SIS_COPYFILE,
recognized by the SIS facility 62. As described in
detail below, the SIS COPYFILE request 60 to the SIS
facility 62 normally results in a single instance
representation of the original source file data with
links thereto, each link corresponding to the source and
destination files, respectively. Repeating the process
as desired adds links without (substantially) adding to
the single copy of the file. 1In this manner, for
example, an administrator user of a file server may place
the links for many client users on each user’s private
directory, while maintaining only one instance of the
file on the server. Note that the user need not specify
source and destination files, as it is feasible to have a
SIS file with only one link thereto, while alternatively,
a control may be implemented that allows more than two
files to be specified for merging into a single instance
representation thereof. It also may occur that the user
requests that a SIS file be made from a file that is not
a SIS link file but already has a single instance
representation thereof. 1In such an instance, similar to

- 9 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

the destination file, the non-SIS link source file may be
converted (described below) by the SIS _COPYFILE control
to a link to the existing single instance.

As an alternative to the manual SIS copy file
operation 60, a user level process that seeks identical
files may run (e.g., as a background process) to
automatically request merging identical files into a
single instance store file. The preferred user level
process, known as a “groveler” 74 (FIG. 2A), uses a file
system control named SIS MERGE FILES as described in
copending United States Patent Application entitled
“Method and System for Automatically Merging Files Into a
Single Instance Store,” assigned to the assignee of the
present invention, filed concurrently herewith, and
hereby incorporated by reference herein in its entirety.
In general, after locating identical files, (possibly
only those exceeding some threshold size), the result of
the automatic actions taken by the groveler 74 with
respect to the SIS MERGE_FILES control provide a similar
result to the manual SIS COPYFILE actions taken by the
user, and thus for purposes of simplicity, the groveler
actions are not separately described herein in detail.

FIG. 2B shows the result of the SIS COPYFILE
control. 1In FIG. 2B, the source and destination files
are SIS link files 70, 72, while the single instance
representation, including the file data 76, is maintained
as a common store file 68 in a common store 78. Each SIS
link file 70, 72 is a user file that is managed by the
SIS facility 62, while the common store 78 is preferably
a file system directory that is not intended to be
visible or accessible to users. The link files 70, 72
are preferably on the same file system volume 80, as is
the common store directory 78. Note that the single
instance representation need not actually be a file

- 10 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

system file in a common store directory, but may be
stored in some other data structure. Thus, as used
herein, the terms common store file and/or single
instance file are intended to mean any appropriate data
structure that can hold at least part of a file’s
contents.

For efficiency, the SIS facility 62 may be built
into the file system. However, although not necessary to
the present invention, primarily for flexibility and to
reduce complexity it is preferable in the Windows 2000
environment to implement the SIS facility 62 as a filter
driver 62’ (FIG. 5). Indeed, the present invention was
implemented without changing the Windows NT® file system
(NTFS). Notwithstanding, it will be understood that the
present invention is not limited to the NTFS filter
driver model.

In the NTFS environment, filter drivers are
independent, loadable drivers through which file system
I/0 (input / output) request packets (IRPs) are passed.
Each IRP corresponds to a request to perform a specific
file system operation, such as read, write, open, close
or delete, along with information related to that
request, e.g., identifying the file data to read. A
filter driver may perform actions to an IRP as it passes
therethrough, including modifying the IRP’s data,
aborting its completion and/or changing its returned
completion status.

The SIS link files 70 - 72 do not include the
original file data, thereby reclaiming disk space. More
particularly, the link files are NTFS sparse files, which
are files that generally appear to be normal files but do
not have the entire amount of physical disk space
allocated therefor, and may be extended without reserving
disk space to handle the extension. Reads to unallocated

- 11 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

regions of sparse files return zeros, while writes cause
physical space to be allocated. Regions may be
deallocated using an I/0 control call, sgbject to
granularity restrictions. Another I/O control call
returns a description of the allocated and unallocated
regions of the file.

The link files 70, 72 include a relatively small
amount of data in respective reparse points 82, 84, each
reparse point being a generalization of a symbolic link
added to a file via an I/0 control call. As generally
shown in FIG. 3, a reparse point (e.g., 82) includes a
tag 86 and reparse data 88. The tag is a thirty-two bit
number identifying the type of reparse point, i.e., SIS.
The reparse data 88 is a variable-length block of data
defined by and specific to the facility that uses the
reparse point, i.e., SIS-specific data, as described
below.

FIG. 4 represents the general flow of operation when
a user makes a SIS COPYFILE control request 60 to SIS
copy a source file 64 to a destination file 66 via the
SIS driver 62’. The SIS driver 62’ receives such
requests, and at step 400 first opens the source file 64
to determine whether the file is already a SIS link file
by looking for the existence of the SIS reparse point.
Note that the user generally does not know whether a file
is a SIS link or a regular file. If the source file 64
is already a SIS link, step 402 branches ahead to step
408, described below. Conversely, if the source file 64
is not a SIS link, step 402 branches to step 404 where
the contents of the source file 64 are copied as file
data 76 to a newly allocated file in the common store 78,
i.e., the SIS common store file 68 (FIG. 2A). Note that
for efficiency, SIS may employ some threshold test before
making the copy, e.g., do not allow the SIS COPYFILE

- 12 —_

WO 01/06366 PCT/US00/18990

10

15

20

25

30

operation on files less than one kilobyte in size.
Further, note that SIS COPYFILE does an actual copy of
the contents of the source file to the common store 78
rather than a rename of the source file 64. The link
file 70 thus maintains the file identifier (File ID)
number originally assigned by the NTFS to the source file
64, so that user open requests directed to the NTFS file
ID are to the link file 70 rather than to the common
store file 68. This file ID number is used by SIS to
identify the file, whereby any user-renaming of the link
file by the user is not an issue. In an alternate
embodiment, SIS could use rename in order to avoid
copying the file data, possibly at the cost of having the
source file’s file ID change because of the copy
operation.

The common store file 68, in the common store 78, 1is
named based upon a 128-bit universal unique identifier
(UUID), shown in FIGS. 2A - 2B as the file
CommonStore\ (UUID;). Using a UUID is particularly
beneficial when backing up and restoring SIS files, since
files with the same UUIDs are known to be exact copies,
and more than one such copy is not needed in the common
store 78. The backing up and restoring of SIS links and
common store files is described in detail below.

While not shown in FIG. 4, if a copying error
occurs, the source file 64 remains unchanged, an
appropriate error message is returned to the requesting
user, and the SIS COPYFILE control 60 is terminated. In
the normal event where there are no errors in the copying
process, step 404 continues to step 406 where the source
file 64 is converted to the SIS link file 70 (FIG. 2B).

To convert the source file 64 to the SIS link file
70 at step 406, the SIS COPYFILE control 60 provides the
reparse point 82, including the SIS tag 86, and reparse

_ 13 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

data 88 including the common store file’s unique file
identifier 90 and a signature 92 (FIG. 3). The signature
92 is a 64-bit checksum computed by applying a trinomial
hash function (known as the 131-hash) to the file data
74. The common store file 68 maintains the signature
therewith as part of a backpointer stream 94, described
below. The only way to determine the signature is via
the file data contents, and thus may be used to provide
security by preventing unauthorized access to the
contents via non-SIS created reparse points as described
below.

As another part of the conversion to a link file 70
at step 406, the data of the file is cleared out using
the aforementioned NTFS sparse file technology. The
resulting link file 70 thus essentially comprises the
reparse point 82 and a shell for the data. At step 408,
the destination link file 72 is created in the same
general manner, i.e., the link file 72 comprises a
reparse point 84 having the same information therein and
a shell for the data. Each link file is on the order of
approximately 300 bytes in size.

Note that the creation of SIS files when the SIS
groveler 74 recognizes identical files (SIS_MERGE_FILES)
is similar to the SIS COPYFILE control 60, except that
the “destination” file initially exists and is identical
to the “source” file. 1In general, if a single instance
representation of those identical files already exists in
the common store 78, the contents are not copied into the
common store 78, and the identical, non-SIS files are
converted to SIS link files as described above. The
SIS_COPYFILE control 60 may similarly be extended when
the source file is not already a SIS link, yet a single
instance representation 68 of the file data is already in
the common store 78, e.g., skip the copying at step 404,

- 14 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

but not the conversion of the source file to a link file
at step 406.

Step 410 represents the adding of identifiers of any
new link files (via conversion, step 406 or creation,
step 408) to the backpointer stream 94 maintained in the
common store file. As described in more detail below,
the backpointers identify to the common store file 68 the
link files that point to it. As also described below,
backpointers are particularly useful in delete
operations, i.e., delete the backpointer when the link
file is deleted, but only delete the common store file
when it has no more backpointers listed in the stream 94.
At this time, the common store file 68 and the links 70,
72 thereto are ready for use as SIS files, and the files
are closed as appropriate (step 412).

Turning to FIGS. 5 and 6, there is provided an
explanation of how a request to open a link file is
handled by the SIS / NTFS architecture. As shown in FIG.
5, an open request in the form of an IRP, (including a
file name of a file that has a SIS reparse point), as
represented by the arrow with circled numeral one, comes
in as a file I/0 operation and is passed through a driver
stack. The driver stack includes the SIS filter driver
62’ with other optional filter drivers 96, 98 possibly
above and/or below the SIS filter driver 62'. For
purposes of the examples herein, these other filter
drivers 96, 98 (shown herein for completeness) do not
modify the IRPs with respect to SIS-related IRPs. At
this time, the SIS filter driver 62’ passes the IRP on
without taking any action with respect thereto, as it is
generally not possible to determine if a given filename
corresponds to a file with a reparse point until NTFS

processes the open request.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

When the SIS link open IRP reaches the NTFS 100, the
NTFS 100 recognizes that the file named in the IRP has a
reparse point associated therewith. Without further
instruction, the NTFS 100 does not open files with
reparse points. Instead, the NTFS 100 returns the IRP
with a STATUS REPARSE completion error and with the
contents of the reparse point attached, by sending the
IRP back up the driver stack, as represented in FIG. 5A
by the arrow with circled numeral two. As represented in
FIG. 6A, at step 600 the SIS filter 62’ receives the
STATUS_REPARSE error and recognizes the IRP as having a
SIS reparse point.

In response, via steps 602 - 604, the SIS filter 62’
opens the common store file 68 identified in the reparse
point if the common store file 68 is not already open,
and reads the signature therein. This is accomplished by
the SIS filter 62’ sending separate IRPs to NTFS 100
identifying the common store file by its UUID name 90
(FIG. 3) in the reparse point 82, and then requesting a
read of the appropriate data. Then, at step 606, if the
open proceeded correctly, the SIS filter 62’ compares the
signature 92 in the reparse point with the signature in
the backpointer stream 94 of the common store file 68.

If they match, step 606 branches to step 620 of FIG. 6B
as described below. However, if the signatures do not
match, the SIS filter 62’ allows the open to proceed by
returning a file handle to the link file to the user, but
without attaching SIS context to the opened file,
essentially denying access to the common store file 68
for security reasons.

More particularly, a SIS reparse point may be
generated external to SIS, including the UUID-based name
of a common store file, a name which can be guessed in a
relatively straightforward manner. As a result, without

- 16 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

the signature check, such an externally-generated reparse
point could give potentially unauthorized access to the
common store file. However, since the SIS-reparse point
has a signature, and the signature may only be computed
by having access to the file data, only those who already
have access to the file data can know the signature and
provide a valid SIS-reparse point. The file data in the
common store is thus as secure as the file data was in
the original source file.

If the signature does not match at step 606, step
608 returns access to the link file without corresponding
access to the common store file to the user. Step 610
then tests to see if another link file has the common
store file open, and if not, step 612 closes the common
store file 68. More particularly, SIS maintains a data
object that represents the common store file, and the
common store file data object keeps a reference count of
open link files having a reference thereto. Step 610
essentially decrements the reference count and checks to
see if it is zero to determine whether it needs to close
the common store file handle. Note that valid users are
thus not stopped from working with their valid links to
the common store file 68 if an invalid reparse point is
encountered during the valid users’ sessions.

If the signatures match at step 606, at step 620 the
SIS filter driver 62’ sets a FILE OPEN REPARSE POINT flag
in the original link file open IRP, and returns the IRP
to the NTFS 100, as shown in FIG. 5 by the arrow with
circled numeral three. This flag essentially instructs
the NTFS 100 to open the link file 70 despite the reparse
point. As shown in FIG. 5 by thé arrow with circled
numeral four, the NTFS 100 returns success to the SIS
filter 62’ along with a file object having a handle
thereto (assuming the open was successful). At step 622

- 17 —_

WO 01/06366 PCT/US00/18990

10

15

20

25

30

of FIG. 6B, when the success is received, the SIS filter
driver 62’ attaches context 102 (FIG. 2B) to the file
object, including a context map 104 (FIG. 3) that will be
used to indicate any portions of the link file that have
been allocated to data. Note that the context 102 is an
in memory structure and only attached while the file is
open, and is thus represented by a dashed box in FIG. 2B
to reflect its transient nature. If the link file has
any allocated data portions, those portions are marked in
the map 104 in the context as “dirty” at step 622. A
link file having allocated data when first opened is a
special case situation that occurs, for example, when the
disk volume 80 was full, as described below.

At step 626, a check is made to ensure that the link
file’s identifier is listed among the backpointers in the
backpointer stream 94 of the common store file 68. It is
possible for the list of backpointers in the stream 94 to
become corrupted (e.g., when the SIS filter driver 62’ is
not installed) whereby the link file 70 is not listed.

If not listed at step 626, the link file’s identifier,
which is known to identify a valid link, is added to the
list of backpointers 94 at step 628, and a volume check
procedure 106 (FIG. 2B) is started at step 630 (unless
already running). The volume check 106 essentially works
with the backpointer streams of the various common store
files (UUID; - UUID,) so that common store files do not
contain backpointers to link files that do not exist, so
that common store files do not remain and use disk space
without at least one link pointing thereto, and so that
each valid link file has a backpointer in the
corresponding common store file. At step 632, if volume
check 106 is running, a check bit, used by the volume
check 106, is set to one in the backpointer for the file
each time that link file is opened. The volume check 106

- 18 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

and check bit are described in copending United States
Patent Application entitled "“Single Instance Store for
File Systems,” assigned to the assignee of the present
invention, filed concurrently herewith, and hereby
incorporated by reference herein in its entirety.

At step 634, the handle to the link file is returned
to the user, shown in FIG. 5 by the arrow with circled
numeral five. Note that the user thus works with the
link file 70, and generally has no idea that the link
file 70 links the file to the common store file 68. At
this time, assuming the signature was correct and the
opens were successful, the user has a handle to the link
file 70 and the common store file 68 is open.

Writing to a SIS link file 70 does not change the
common store file 68, since other links to the common
store file 68 are logically separate. Instead, write
requests are written to space allocated therefor in the
link file 70, as described below. In this manner,
changing the data via one link does not result in changes
seen by the other links. Thus, by “logically separate”
it is meant that in a SIS link, changes made to one link
file are not seen by users of another link file, in
contrast to simply having separate file names,
protections, attributes and so on.

FIGS. 7 and 8 describe how the SIS filter 62’
handles a write request to the open link file 70. As
shown in FIG. 7, the SIS write request comes through the
driver stack to the SIS filter driver 62’ as an IRP,
including the file handle and attached context 102. The
IRP designates the region of the file to be written and
identifies the location of the data to write. The SIS
filter driver 62’ can recognize the context 102 as
belonging to SIS, but because the write 1is directed to
the link file 70, SIS lets the IRP pass to the NTFS 100

- 19 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

as shown in FIG. 7 by the arrow with circled numeral one
and in FIG. 8 as step 800. NTFS attempts the write,
allocating appropriate space in the link file 70, and SIS
receives a status from the NTFS at step 802 (the arrow
with circled numeral two in FIG. 7). If the write
failed, e.g., the disk is full and the space could not be
allocated, step 804 branches to step 806 where the error
is returned to inform the user.

If the write was successful, step 804 branches to
step 808 where the SIS filter driver 62’ marks the region
that was written as dirty in the context map 104 of the
context 102, while step 810 then reports the successful
write status to the user. In this manner, SIS tracks
which part of the file data is current in the common
store file 68 and which part is current in the link file
70. By way of example, consider a user requesting to
write ten kilobytes of data beginning at offset one
megabyte, as generally shown in FIG. 3. The NTFS 100
allocates the space, unless already allocated, in the
appropriate region 108 of the link file’s (sparse) data
space 110 (note that the NTFS actually allocates space in
64-kilobyte blocks). SIS then marks the context map 104
to reflect this dirty region, as shown in FIG. 3. Note
that since the changes are not written to the common
store file 68, the changes written to one link file are
not seen by any other link to the common store file 68.

SIS thus lets NTFS 100 handle the allocation of the
space in the sparse file and the writing thereto.
However, if SIS is implemented in a file system that did
not have sparse file capabilities, SIS could perform the
equivalent operation by intercepting the write request
and writing the data to a temporary file. Upon closing
the “changed” link file, SIS only need copy the clean
data from the common store file to the temporary file,

- 20 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

delete the link file and rename the temporary file with
the name of the link file to achieve the logical
separation of files in a transparent manner.

FIGS. 9 and 10 describe how the SIS filter 62’
handles a read request to the open link file 70. As
shown in FIG. 9, the SIS read request comes through the
driver stack to the SIS filter driver 62’ as an IRP,
including the file handle and attached context. The SIS
filter driver 62’ recognizes the attached context 102 as
belonging to SIS, and intercepts the IRP, shown in FIG. 9
by the arrow with circled numeral one.

As shown in step 1000 of FIG. 10, the SIS filter
driver initially examines the map 104 in the attached
context 102 to determine if any of the link file is
marked as dirty, i.e., allocated to file data. Step 1002
then compares the region that the IRP is specifying to
read against the map 104, and if the read is to a clean
region, step 1002 branches to step 1004. At step 1004,
SIS converts the link file read request to a common store
file read request IRP and passes the modified IRP to the
NTFS 100 as also shown by the arrow accompanied by the
circled numeral 2a in FIG. 9. The NTFS 100 responds with
the requested data (or an error) as shown in FIG. 9 by
the arrow with circled numeral 3a. The data (or error)
is then returned to the user at step 1016 of FIG. 10,
(circled numeral 4 in FIG. 9). Note that to the user,
the request appears to have been satisfied via a read to
the link file, when in actuality the SIS filter 62’
intercepted the request and converted it to a request to
read from the common store file 68.

Returning to step 1002, it is possible that via a
write operation to the link file, some of the data
requested to be read is from a “dirty” region, that is,
one that has been allocated and written to while the link

- 21 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

file was open (or that was allocated on the disk when the
link was first opened in step 622). As described above,
write requests cause space to be allocated in the link
file 70 to provide an actual region to maintain the
current state of the changed data. At step 1002, if a
requested region to read is marked as dirty, step 1002
branches to step 1006 to determine if the entire read is
from a dirty region or spans both dirty and clean
regions.

If the entire region is dirty, then the SIS filter.
62’ passes the read request IRP to the NTFS 100 whereby
the link file 70 is read at step 1008 and returned to the
SIS filter 62’'. This is represented in FIG. 9 by the
arrows designated with circled numerals 2b and 3b. The
data (or error) is then returned to the user at step 1016
of FIG. 10, (circled numeral 4 in FIG. 9). 1In this
manner, the user receives the current changes that have
been written to the link file rather than the stale data
in the common store file 68.

Alternatively, if step 1006 detects that the user is
requesting both clean and dirty regions, the SIS filter
62’ splits up the read request into appropriate requests
to read the dirty region or regions from the link file 70
and the clean region or regions from the common store
file 68. To this end, at steps 1010 and 1012, the SIS
filter 62’ uses the map 104 to generate one or more IRPs
directed to reading the common store file 68 and passes
at least one IRP directed to reading the link file 70 and
at least one IRP directed to reading the common store
file 68 to the NTFS 100. This is represented in FIG. 9
by arrows labeled with circled numerals 2a and Z2b.
Assuming no read errors, step 1014 merges the read
results returned from the NTFS 100 (in FIG. 9, the arrows
labeled with circled numerals 3a and 3b) into a single

- 22 —

WO 01/06366 PCT/US00/18990

10

15

20

25

30

result returned to the user at step 1016 (the arrow
labeled with circled numeral 4). Note that any read
error will result in an error returned to the user,
although of course SIS may first retry on an error. By
appropriately returning the current data in response to a
read request from either the common store file 68 or the
link file 70, or both, SIS maintains the logical
separation of the link files in a manner that is
transparent to the requesting user.

FIG. 11 represents the steps taken when a request to
close the handle to the link file 70 is received and the
handle is closed at step 1100. At step 1102, a test is
performed to see if this was the last handle currently
open to this link file. If not, the process ends,
whereby the link file is left open for operations via the
other open file handles. If instead this was the last
open handle, step 1104 makes a determination (via the
context map 104) if any portion of the link file 70 is
marked as dirty (allocated). If not, the driver 62’
requests closing of the common store file handle, whereby
steps 1106 and 1108 cause the common store file 68 to be
closed if no other links have the common store file 68
open, otherwise the common store file 68 remains open for
the other links to use. Conversely, at step 1104, if any
region of the link file 70 was written to and is thus
marked as dirty, step 1104 branches to step 1110 since
the link file may no longer be properly represented by
the common store file 68. Note that steps 1110 and below
may take place after the link file handle has been
closed, by doing the work in a special system context.
This allows the users to access the SIS file while the
copyout of clean data is in progress. Step 1110 copies
the clean portions from the common store file 68 to space
allocated therefor in the link file 70. If successful at

- 23 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

step 1112, the now fully-allocated link file is converted
back to a regular file 64 at step 1114, essentially by
removing the reparse point. In this manner, logically
independent links to the common store file are supported,
as the changes made to one link file are not seen via any
other link file. The link file 70 is then deleted from
the list of files in the backpointer stream as described
below with reference to FIG. 12, which may further result
in the common store file being deleted. The process then
continues to steps 1106 and 1108 to close the common
store file if no other links have it open. Note that the
handle to the common store file needs to be closed even
if the common store file was deleted.

However, it is possible that the clean data from the
common store file 68 could not be copied back,
particularly if the space therefor could not be allocated
in the link file 70 due to a disk full condition. If
such an error occurs, step 1112 branches to step 1116
which represents the canceling of the copyout and leaving
the link file 70 as is, preserving the written data.

Note that this will not cause a disk full condition
because the space was already allocated to the link file
during the earlier write request without an error,
otherwise the write request that caused the space to be
allocated would have failed and the user notified (FIG.
8, steps 804 - 806). As described above, when the link
file is re-opened, step 622 of FIG. 6B will mark the
allocated portions of the link file 70 as dirty in the
map 104, whereby the changes are properly returned when
the file is read. Step 1116 then continues to steps 1106
and 1108 to close the common store file if no other links
have it open.

In a similar manner to the disk full coﬁdition, it
is thus possible in general to employ the SIS

- 24 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

architecture to use the link file 70 to maintain changes
(deltas), with the unchanged clean regions backed up by
the common store file 68. To this end, instead of
copying the clean portions from the common store file and
reconverting the link file to a regular file when the
file is closed, SIS may keep the link file as a link file
with whatever space is allocated thereto. Some criteria
also may be used to determine when it is better to
convert the link file back to a regular file. For
example, a threshold test as to the space saved may be
employed to determine when to return a link file to a
regular file versus keeping it as a link, whereby only
link files with relatively small deltas would be
maintained as link files. As a result, SIS may provide
space -savings with files that are not exact duplicates,
particularly if the file contents are almost exactly
identical. Notwithstanding, at present SIS preferably
employs the copy-on-close technique of FIG. 11, since
updates of SIS files and/or writes thereto are likely to
be relatively rare.

Turning to FIG. 12, there is shown a process
employed by SIS after a link file is deleted (e.g., by
file I/0) or reconverted to a regular file (e.g., by the
SIS close process). When a SIS link is deleted or
reconverted to a regular file, the common store file 68
corresponding to that SIS link file is not necessarily
deleted because other links may be pointing to that
common store file 68. Thus, at step 1202, the
backpointer stream 94 is evaluated to determine if the
deleted backpointer was the last backpointer remaining in
the stream, i.e., there are no more backpointers. If it
is not the last backpointer, then there is at least one
other link file pointing to the common store file 68, the
common store file 68 is thus still needed, and the

- 25 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

process ends. In this manner, logically independent
links to the common store file are again supported, as
deleting one link file does not affect any other link
file.

If no backpointers remain at step 1202, this
generally indicates that no link files are pointing to
the common store file and thus the common store file is
no longer needed. However, before deleting the common
store file, step 1202 branches to step 1204 where a test
is performed as to whether the volume check procedure 106
is running. If so, there is a possibility that the
backpointer stream is corrupted, as described below. If
the volume check is not currently running, step 1204
advances to step 1208 to delete the common store file
(after first closing it, if necessary). Otherwise, since
the backpointer stream is not necessarily trustworthy,
step 1204 branches to step 1206 where it is determined
whether the volume check 106 is calling this delete
procedure, i.e., whether the steps of FIG. 12 are being
invoked from FIG. 13B. If the volume check is not
calling to delete the file, step 1206 ends the process
without deleting the file, otherwise step 1206 branches
to step 1208 to delete the file. Step 1206 thus enables
the volume check 106 to delete a common store file when
the volume check has concluded that the backpointer
stream is correct and no link files point thereto.

In sum, step 1208 deletes the common store file when
the backpointer stream is both empty and trusted, thereby
reclaiming the disk space. Note that instead of
backpointers, counts of the links may be alternatively
used for this purpose, i.e., delete the common store file
when a count of zero links thereto remain. Backpointers
are preferable, however, primarily because they are more

robust than counts.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

SIS FILE BACKUP AND RESTORE

The present invention is directed to the backing up
and restoring of SIS files, including SIS links and
common store files, in a manner that safely preserves the
data without using unnecessary storage space for the
files. In general, this is accomplished via a backup
process of the present invention by backing up the link
files and only one copy of the common store file that
corresponds to each set of one or more backed-up link
files pointing to that common store file. Then, upon
restore, the restore process of the present invention
restores the 1link files and ensures that one (but only
one) copy of the common store file is in the common store
78. Note that for purposes of simplicity herein, the
present invention will be primarily described with
reference to one common store file per link, however in
an alternative embodiment, a single link may be backed by
multiple common store files, (e.g., one for each stream
in the file). The backup and restore operations of the
present invention are preferably implemented via a SIS
interface in the form of a dynamic link library (DLL)

116, in combination with backup and restore application
programs 118, 120 (FIG. 2B).

In order to back up and restore SIS links, the
backup application program 118 needs to be able to tell
which files are links to which common store files, and
store both the link and the common store file on a backup
storage medium 122, such as a tape. In keeping with the
invention, if there is more than one link to a given
common store file backed up on the backup storage medium
122, there is no need to put more than one copy of the
common store file on the backup storage medium 122.
Similarly, when restoring a SIS link, the restore

- 27 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

application program 120 needs to determine to which
common store file the link refers. If that file does not
already exist in the common store, and has not already
been identified to the restore application 120 via a
previous link, the restore application program 120 needs
to restore the file along with the link. If the link
refers to a common store file that is already present on
the disk volume or has already been identified to the
restore application 120, then only the link needs to be
restored. As described above, a common store file is
unique and the data therein does not change, and thus if
a given common store file is still on the disk at restore
time, it has the same contents as when it was backed up
and there is no need to overwrite it with itself.

As shown in FIGS. 2A - 2B, SIS provides a DLL 116
(e.g., sisbkup.dll) whereby the backup and restore
application programs 118, 120 may handle the backup and
restore operations in accordance with the present
invention, without having to understand the contents of
SIS reparse points. Instead, when a link is detected,
the backup and restore applications 118, 120 make
straightforward calls to an application programming
interface (API) of the DLL 116, which identifies one or
more common store files as necessary. Note that the API
does not make any assumptions about how the backup
program 118 stores the necessary information about SIS
links, or how it stores the content of the common store
file or files backing the links, but rather the API
operates under the premise that the backup application
118 will correctly back up a set of common store files as
identified by the SIS DLL 116, and that these common
store files will be available when the restore
application 120 is run. Moreover, the backup and/or
restore applications 118, 120 and DLL 116 may be arranged

- 28 -

WO 01/06366 PCT/US00/18990

10

15

20

25

to handle multiple link files in a single function call,
whereby one or more common store files may be identified
in response to the call. However, for purposes of
simplicity in the following description, only one link
file will be provided per call to the DLL 116.

Although not necessary to the present invention, one
advantage to using an API is that the contents of the SIS
reparse points are opaque to the backup and restore
applications 118, 120. This allows the format of the SIS
reparse points to change over time, while changing only
the DLL 116 and not the backup or restore applications
118, 120. To this end, the reparse points preferably
include a format version identifier, whereby the DLL 116
and SIS driver 62’ may handle downlevel reparse points.

The following sets forth the API calls to the DLL
116 that the backup application 118 makes in order to
back up SIS files:

SisCreateBackupStructure

BOOL SisCreateBackupStructure (
IN PWCHAR volumeRoot,
OUT PVOID *sisBackupStructure,
OUT PWCHAR *commonStoreRootPathname,
OUT PULONG countOfCommonStoreFilesToBackUp,
QUT PWCHAR **commonStoreFilesToBackUp) ;

The SisCreateBackupStructure call creates a SIS
backup structure, which is used by the SIS DLL 116 to
keep track of which files are links to which other files
on the volume 80. This function should be called once
for each SIS-enabled volume being backed up. Note that
the SIS backup/restore operations are volume-local, i.e.,
if for some reason the backup application 118 should need
to cross volumes during a backup, the backup application
118 will need to call SisCreateBackupStructure for each

- 29 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

different volume being backed up, and will need to
provide the appropriate sisBackupStructure corresponding
to the volume for the file in question in all subsequent
calls. Similar requirements apply to restore.

The volumeRoot parameter is the Win32 file name of
the volume root (without the trailing backsiash, e.g.,
use “c:” not “c:\”) for the volume being backed up. The
commonStoreRootPathname output parameter returns the
fully qualified pathname of the common store for this
volume (e.g., “c:\SIS Common Store”). Any files anywhere
under this directory should be treated as common store
files for this volume, and only backed up if SIS
indicates that they should be. The
countOfCommonStoreFilesToBackUp and
commonStoreFilesToBackUp parameters together return from
the DLL 116 a list of any files that SIS deems necessary
to back up, regardless of which links are backed up. The
commonStoreFilesToBackUp parameter is a pointer to an
array of filenames. These files should be backed up at
the same time and in the same manner as any common store
files requested by SisCSFilesToBackUpForLink, described
below. If countOfCommonStoreFilesToBackUp is zero, then
commonStoreFilesToBackUp may be a NULL pointer and should
be ignored by the backup application 118.

The return value is TRUE if the call succeeded, and
FALSE otherwise. If FALSE, the application may call
“GetLastError” to find out why the call failed. After
the backup application 118 is done with the (non-NULL)
commonstoreFilesToBackUp array, the backup application
118 should free the array and the strings to which it
points by calling the SisFreeAllocatedMemory function for
each individual file name and then also for the array of

filenames.

WO 01/06366 PCT/US00/18990

10

15

20

25

SisCSFilesToBackUpForLink

BOOL SisCSFilesToBackUpForLink (
IN PVOID sisBackupStructure,
IN PVOID reparseData,
IN ULONG reparseDataSize,
IN PVOID thisFileContext OPTIONAL,
OQUT PVOID *matchingFileContext OPTIONAL,
QUT PULONG countOfCommonStoreFilesToBackUp,
OUT PWCHAR **commonStoreFilesToBackUp) ;

The backup application 118 identifies SIS links by
the SIS reparse point in its tag, IO_REPARSE TAG _SIS.

For each SIS link to be backed up, the backup application
118 should call (only once per link file)
SisCSFilesToBackUpForLink.

The SisCSFilesToBackUpForLink function takes as
input a pointer to the contents of the SIS reparse point
for a link file that the backup application 118 is
planning to store on the backup storage medium 122. This
function also takes the length of the reparse data as a
parameter, as well as an optional context pointer that is
provided by the backup application and uninterpreted by
the SIS DLL 116.

In accordance with one aspect of the present
invention, if this reparse point represents the first
instance of the particular file being backed up, SIS will
return NULL as the matching file context, fill in the
countOfCommonStoreFilesToBackUp count (e.g., with a value
of one), fill in the commonStoreFilesToBackUp array with
a string comprising the name of the common store file to
include on the backup storage medium, and provide a
pointer to the array. At present, SIS returns at most
one common store file, but it is possible that in future
versions a single link may be backed by an entire set of

- 31 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

common store files, (e.g., one for each stream in the
file), whereby SIS will return an appropriate
countOfCommonStoreFilesToBackUp count and multiple
strings in the commonStoreFilesToBackUp array.
Regardless, each common store file will be returned at
most once per backup pass.

If this is not the first instance of the given
common store file being backed up, SIS will fill in the
matchingFileContext with the thisFileContext that was
passed in for the first instance of the file, and will
set the countOfCommonStoreFilesToBackUp to zero. If
there are multiple common store matches for this link,
the thisFileContext will correspond to the earliest match
with the first common store file returned in the array
(i.e., commonStoreFilesToBackUp{0]. The thisFileContext
and matchingFileContext parameters are optional, and if
they are supplied as NULL, they will be ignored by the
DLL 116.

When SisCSFilesToBRackUpForLink says there is a
common store file (or more than one common store file) to
back up for the link, the backup application 118 should
write out the common store file (or files) indicated by
the returned filenames to the backup storage medium 122.
Regardless of whether there is a common store file, the
backup application 118 should back up the link file as it
actually appears on the disk, i.e., as a reparse point
and a sparse file, most likely with no regions filled in.
The backup application 118 may write out the common store
files immediately, postpone backing them up, or mix them
together, as deemed convenient.

The return value is TRUE if the call succeeded, and
FALSE otherwise. If FALSE, the application may call
“GetLastError” to find out why the call failed. When the
backup application 118 is done with the array of

- 32 —_

WO 01/06366 PCT/US00/18990

10

15

20

25

filenames and the filenames themselves, it needs to
return them to SIS to be freed by calling the
SisFreeAllocatedMemory function.

SisFreeBackupStructure

BOOL SisFreeBackupStructure (
IN PVOID sisBackupStructure) ;

This call deallocates a SIS volume structure and
should be called after backup is done with a particular
volume. Note that SIS may take action other than simply
deallocating memory in response to this call, so the
SisFreeBackupStructure function should be called even if
the backup application program 118 intends to exit
immediately afterward. The return value is TRUE if the
call succeeded, and FALSE otherwise. If FALSE, the
application may call “GetlastError” to find out why the
call failed.

The following API functions are directed to
restoring SIS files:

SisCreateRestoreStructure

BOOL SisCreateRestoreStructure (
IN PWCHAR volumeRoot
OUT PVOID *sisRestoreStructure,
OUT PWCHAR *commonStoreRootPathname,
OUT PULONG countOfCommonStoreFilesToRestore
OUT PWCHAR **commonStoreFilesToRestore);

This function is analogous to
SisCreateBackupStructure, and has essentially the same
parameters, described above with respect to
SisCreateBackupStructure. The calling application is
responsible for freeing the returned file names by

calling SisFreeAllocatedMemory.

— 33 -

WO 01/06366 PCT/US00/18990

10

15

20

25

As a restore proceeds, when the restore application
program 120 wishes to restore a SIS link (which the
restore application 120 identifies by the reparse tag,
“IO REPARSE TAG SIS”), the restore application program
120 should restore the link from the backup storage
medium just as it was backed up, i.e., as a sparse,
possibly-empty file with a SIS reparse point, and then
call into the DLL 116 to see if it needs to also restore
a common store file (or files) as a result of restoring
the link.

Note that the DLL 116 will not necessarily report
common store files for a set of links on the backup
storage medium if the common store files to which the
particular links refer still exist on the disk. This is
because the contents of the data streams of common store
files never change once created, so if the file already
exists on the disk, there is no need to restore it. As
described above, common store file names are globally
unique, whereby even if a restore application program 120
is run on a different SIS-enabled volume from the backed-
up volume, bypassing the restoration of the common store
file when already present in the common store should

work properly.

SisRestoredLink
BOOL SisRestoredLink(

IN PVOID sisRestoreStruture,
IN PWCHAR restoredFileName,
IN PVOID reparseData,
IN ULONG reparseDataSize,
OUT PULONG countOfCommonStoreFilesToRestore,
OUT PWCHAR **commonStoreFilesToRestore) ;

WO 01/06366 PCT/US00/18990

10

15

20

25

30

The restore application program 120 should call the
SisRestoredLink function for each SIS link that it has
restored, passing in the fully qualified filename,
reparse buffer and length of the reparse data that was
stored for the SIS reparse point on the backup storage
medium. Note that if a link file is restored onto a
volume that does not support SIS, the SisRestoredLinkFile
function will fail, and GetLastError will return
ERROR_VOLUME NOT SIS ENABLED. 1In this manner, the
restore application does not need to be able to determine
on its own whether SIS is turned on for a particular
volume. If the call is successful, the
countOfCommonStoreFilesToRestore value and the
commonStoreFilesToRestore array reports the common store
file name (or file names) returned. If the value of
countOfCommonStoreFilesToRestore is non-zero,
commonStoreFilesToRestore will represent those common
store files that need to be restored as a result of
restoring the link. If it is zero, then either the
corresponding common store files have already been
returned once to the restore application program 120, or
are already present on the volume 80.

Thus, in accordance with one aspect of the present
invention, the SisRestoredLink function will return each
common store file once per restore, and subsequent links
that refer to the same common store file will not return
that file name. The SisRestoredLink will not return a
common store file that was not also returned in a
SisCSFilesToBackUpForLink call during backup, (presuming
that the reparse data has not been corrupted on the
backup storage medium). The return value is TRUE if the
call succeeded, and FALSE otherwise. If FALSE, the
restore application 120 may call “GetLastError” to find

out why the call failed.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

When the restore application program 120 restores a
link file, it should create the appropriate sparse file,
write in any allocated regions (if there are any), and
then set the reparse data on the file just as it was read
during backup. To properly restore a SIS link, the
restore application program 120 should create sparse
files with unallocated regions rather than sparse files
(or non-sparse files) filled in with zeroes.

After the restore application program 120 has
restored a common store file, the restore application
program 120 should call the following function:

SisRestoredCommonStoreFile

NTSTATUS SisRestoredCommonStoreFile (
IN PVOID sisRestoreStructure,
IN PWCHAR commonStoreFileName) ;

This function informs SIS that a new common store
file has been written, thereby allowing SIS to take any
action needed to initialize its internal data structures,
fix up the links to the file, and so on. The restore ‘
application program 120 should only restore common store
files that were returned as a result of calling
SisRestoredLink, even if there are more common store
files on the backup storage medium 122.

The restore application program 120 is free to
restore the link and common store files in any order it
wants, but in order to work properly, needs to call
SisRestoredLink after restoring any link, and also call
SisRestoredCommonStoreFile after it restores any common
store file. The restore application program 120 should
not overwrite any common store files that are not
returned from SisRestoreLink. Since the restore
application program 120 does not know the common store
files to restore until they are reported to it as a

- 36 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

result of restoring a link, the restore application
program 120 will always restore a common store file after
at least one link referring to the common store file is
restored. However, the restore application program 120
is then free to restore more links that point at the same
common store file.

The return value is TRUE if the call succeeded, and
FALSE otherwise. If FALSE, the application 120 may call
“GetLastError” to find out why the call failed.

SisFreeRestoreStructure

BOOL SisFreeRestoreStructure (

IN PVOID sisRestoreStructure);

This function deletes the sisRestoreStructure and
does work to cause the SIS filter 62’ to properly set up
the links created during the restore. Accessing the
links before this call completes can result in a volume
check and/or reading contents of the link. SIS may elect
to do more in response to this call than merely tear down
the SIS DLL’s data structures 124, and thus the
restoration should not be considered complete until the
sisRestoreStructure call is finished.

The return value is TRUE if the call succeeded, and
FALSE otherwise. If FALSE, the application may call
“GetLastError” to find out why the call failed.

SisFreeAllocatedMemory

VOID SisFreeAllocatedMemory (
IN PVOID allocatedSpace)

This function frees space allocated by the DLL 116.
It takes as input pointer to some memory allocated by the
DLL 116, and frees that memory. After the call
completes, the caller may no longer access the freed
memory. This call should be used for the
- 37 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

commonStoreRootPathname strings returned from
SisCreateBackupStructure and SisCreateRestoreStructure.
It should also be used on the strings in the arrays of
common store files returned from
SisCreateBackupStructure, SisCSFilesToBackupForLink,
SisCreateRestoreStructure, and SisRestoredLink. For
these functions, the array itself should be freed by
calling SisFreeAllocatedMemory.

Turning now to an explanation of the operation of
the present invention, FIGS. 13A and 13B show the general
steps taken to perform a SIS backup. Although the steps
generally follow the above-described operations of the
backup and restore applications 118, 120 and the
functions of the DLL 116, it can be readily appreciated
that the steps may be performed in alternative ways. For
example, the backup application may defer requesting the
creation of the SIS backup structure until at least one
SIS link is detected. Thus, the following description is
only an example of one way in which backup and restore
applications 118, 120 may utilize the DLL 116 to properly
back up SIS files.

At step 1300, the backup application 118 begins the
file backup by calling the DLL 116 to allocate the backup
data structure via the above-described
SisCreateBackupStructure call. Next, at step 1302, the
backup application 118 selects a file, typically from a
hierarchically organized set of files specified by a
user, and backs up the file by writing the file to the
backup storage medium 122. Note that the write operation
need not take place at this time, as the backup program
may, for example, collect a number of files to back up
(e.g., for compression or other efficiency purposes)

before writing out the file information, however for

WO 01/06366 PCT/US00/18990

10

15

20

25

30

purposes of the present example, the write operation may
take place at this time.

At step 1304, the backup program examines the file
metadata and determines whether the file is a SIS link
file based on whether the file has a reparse point
attached thereto (step 1304), and if so, whether the
reparse point includes a SIS tag (step 1306). If not a
SIS link file, the backup application branches ahead to
step 1314, where another file is selected and the process
repeated until all specified files have been backed up.
If steps 1304 and 1306 determine that the file is a SIS
link file, the béckup program calls the
SisCSFilesToBackUpForLink function as described above,
passing the link file information to the DLL 116.

Steps 1320 - 1328 of FIG. 13B represent the general
logic of the SisCSFilesToBackUpForLink function. In
general, each time the function returns a common store
file for a volume backup, an identifier of the common
store file (e.g., its filename or UUID) is added by the
DLL 116 to a data structure 124. 1In keeping with the
present invention, the common store filename is only
returned to the backup application program 118 if it is
not listed in the data structure 124, thus ensuring that
the backup program 118 is instructed to back up only one
copy of each common store file, regardless of how many
backed-up links ultimately point to that common store
file. Step 1320 of FIG. 13B first zeros the count of
files to return and sets the array pointer to NULL,
whereby the backup application 118 will not receive a
common store filename unless needed. To this end, step
1322 examines the data structure 124 to determine whether
the common store file has already once been returned to
the backup application 118. If already returned, step
1322 branches ahead to step 1328 wherein as described

- 39 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

above, the SisCSFilesToBackUpForLink function returns a
zero count and NULL pointer, respectively, in the
countOfCommonStoreFilesToBackUp and
commonStoreFilesToBackUp parameters. Otherwise, at step
1324, the SisCSFilesToBackUpForLink function adds the
common store file identifier to its data structure 124,
thereby tracking its returned status, and adds its
filename string to the array for returning to the backup
application. At step 1326 the
countOfCommonStoreFilesToBackUp and
commonStoreFilesToBackUp are appropriately adjusted,
after which step 1328 returns the array (i.e., 1its
pointer) and count to the backup application 118. Note
that multiple common store files corresponding to a link
file may be handled by repeating steps 1322 - 1326 for
each common store file corresponding to the link file,
and accumulating the common store files to return in the
array before returning the common store file information
at step 1328.

Returning to step 1310 of FIG. 13A, if at least one
common store file has been returned, each returned common
store file is backed up as represented by step 1312.
Note that as described above, the backup application 118
can write out the file when convenient for its purposes,
not necessarily as soon as returned, however for purposes
of the present example, step 1312 shows the write taking
place whenever at least one common store file is present
in the array.

Step 1314 repeats the process for the set of files
to be backed up. When no files remain to be backed up,
step 1314 branches to step 1316 where the
SisFreeBackupStructure function is called as described
above, to deallocate the backup data structure and allow
SIS to perform any other desired actions. Once the

—_ 40 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

SisFreeBackupStructure successfully returns, (and
assuming no earlier errors), the backup is complete.

The restore operations described in FIGS. 14A - 14B
generally mirror the backup operations, with a few
exceptions as described below. At step 1400, the restore
application 120 begins the restoration of files by
calling the DLL 116 to allocate the restore data
structure via the above-described
SisCreateRestoreStructure call. Next, at step 1402, the
restore application 120 selects a file, (e.g., from the
set of files that were backed up), and restores the file
to the volume by reading the file from the backup storage
medium 122 and writing it to the local volume. Note that
the write operation need not take place at this time,
particularly in that as described above, the restore
application 120 may first take particular steps to write
out any link files as sparse files with possibly
allocated regions. Thus, the restore application may
first determine if the files are SIS link files, such as
via steps 1404 and 1406, (described below), before
writing the file. 1In any event, steps 1404 and 1406
determine if the restored file is a SIS link file, and if
so, call the SisRestoredLink function. Otherwise, the
restore application 120 branches ahead to select another
file (step 1414) and repeat the process until the
restoration of the set of files is complete.

If the selected file is a SIS link file, step 1406
branches to call the SIS link 116, wherein step 1420 of
FIG. 14B first zeros the count of files to return and
sets the array pointer to NULL, whereby the restore
application 120 will not receive a common store filename
unless needed. Step 1422 tests whether the common store
file corresponding to that link file has previously been
returned to the restore application, or is known to be

- 41 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

present on the volume, as described below. A data
structure 124 is used by the DLL 116 to track the
returned / already present files. In keeping with the
invention, if the common store file is identified in the
data structure 124, via step 1422, the restore
application 120 will not be again instructed to restore
the common store file.

At step 1424, if not identified in the data
structure 124, the common store file identifier is added
to the data structure 124 to track its future “not-
needed-for-restore” status for link files that will
possibly reference the same common store file in the
future. Before returning the common store filename,
however, there is a possibility that the common store
file is otherwise already present on the volume, e.g., it
was never deleted since the backup took place. Since
common store files are unique (as identified by their
UUID) and unchanging, if present on the volume there is
no need to overwrite it with an identical file copy.
Thus, step 1426 tests to see if the common store file is
already present on the volume, and if so, exits (returns
a NULL pointer and a zero count) without returning the
filename thereof to the restore application program 120.
Note that if present on the volume, the common store file
identifier will have been added to the data structure 124
at step 1424, whereby for future link files pointing to
that common store file, only the data structure 124 and
not the volume will need to be checked.

In the event that the common store file has neither
been previously returned nor is present on the volume,
step 1428 sets the commonStoreFilesToRestore to point to
the array, increments the
countOfCommonStoreFilesToRestore value, and adds the name
of the common store file to the array. Step 1430 then

- 42 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

returns the filename via the array, along with the count.
Note that if multiple common store files need to be
returned for a single link, the steps 1422 - 1428 may be
repeated until the array and count properly reflect those
common store files that correspond to the link file, but
which have neither been previously returned to the
restore application program 120 nor are already present
on the volume.

Returning to step 1410 of FIG. 14A, if at least one
common store file has been returned, each returned common
store file is restored as represented by step 1412. Note
that as described above, the restore application 120 can
restore the file when convenient for its purposes, not
necessarily as soon as returned. For example, restore
applications often do not select the order in which they
restore files, because if the application is reading from
a tape, it is not efficient unless read in order. As a
result, the backup application will often postpone
writing common store files until the end of the tape,
while the restore program will build up the list of
common store files to be restored as it runs through the
normal files on the tape, and then restore the common
store files only when the restore application gets past
all of the normal files and to the common store file part
of the tape. In any event, for purposes of the present
example, step 1412 shows the restore taking place
whenever at least one common store file is returned.
Also, as shown in step 1412 and as described above, the
SisRestoredCommonStoreFile function is called after the
common store file has been written, to allow SIS to take
action as desired.

Step 1414 repeats the process for the set of files
to be backed up. When no files remain to be backed up,
step 1414 branches to step 1416 where the

- 43 -

WO 01/06366 PCT/US00/18990

10

15

20

SisFreeRestoreStructure function is called by the restore
application 120 as described above, to deallocate the
backup data structure and allow SIS to perform any other
desired actions. Once the SisFreeRestoreStructure
successfully returns, (assuming no previous errors), the
restoration is complete.

As can be seen from the foregoing detailed
description, there is provided a method and system that
provide for the backing up and restoring of single
instance store files. The method and system operate in a
manner that is efficient, and perform backups and
restores while essentially maintaining the original
storage space requirements of a set of files.

While the invention is susceptible to various
modifications and alternative constructions, a certain
illustrated embodiment thereof is shown in the drawings
and has been described above in detail. It should be
understood, however, that there is no intention to limit
the invention to the specific form or forms disclosed,
but on the contrary, the intention is to cover all
modifications, alternative constructions, and equivalents

falling within the spirit and scope of the invention.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

WHAT IS CLAIMED IS:

1. In a computer system, a method of providing
single instance store files for backing up to a storage
medium, comprising the steps of, receiving information
corresponding to a link, determining whether the link has
common data corresponding thereto already identified for

backup, and if not, identifying the common data to back

up.

2. The method of claim 1 wherein the step of
receiving information corresponding to a link comprises
the step of, receiving a function call from a backup

application program.

3. The method of claim 1 wherein the step of
determining whether the link has common data
corresponding thereto already identified for backup
comprises the step of, accessing a data structure for

information identifying the common data.

4. The method of claim 3 further comprising the
step of, adding information identifying the common data

to the data structure.

5. The method of claim 1 wherein the step of
identifying the common data to back up comprises the step
of, returning a file name to a backup application

program.

6. The method of claim 5 wherein the step of
returning a file name to a backup application program

includes the step of, writing the filename into an array.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

7. The method of claim 1 wherein the step of
receiving information corresponding to a link comprises
the steps of, determining whether a file to be backed up
is a link file, and if so, calling a function with

information corresponding to the link file.

8. The method of claim 1 further comprising the

step of, backing up the link and the common data.

9. The method of claim 8 further comprising the

step of, restoring the link and the common data.

10. In a computer system, a method of providing
single instance store files for restoring to a volume,
comprising the steps of, receiving information
corresponding to a link, determining whether the link has
common data corresponding thereto needed to be identified
for restore, and if so, identifying the common data to

restore.

11. The method of claim 10 wherein the step of
determining whether the link has common data
corresponding thereto needed to be identified for restore
comprises the step of, determining whether the common

data has been already identified for restore.

12. The method of claim 11 wherein the step of
determining whether the common data has been already
identified for restore comprises the step of, accessing a
data structure for information identifying the common

data.

WO 01/06366 PCT/US00/18990

10

15

20

25

30

13. The method of claim 12 further comprising the
step of, adding information identifying the common data

to the data structure.

14. The method of claim 10 wherein the step of
determining whether the link has common data
corresponding thereto needed to be identified for restore
comprises the step of, determining whether the common

data is already present on the volume.

15. The method of claim 14 wherein the step of
determining whether the common data is already present on
the volume comprises the step of, reading a common store

directory.

16. The method of claim 10 wherein the step of
determining whether the link has common data
corresponding thereto needed to be identified for restore
comprises the step of, determining if either the common
data has been already identified for restore or if the

common data is already present on the volume.

17. The method of claim 10 wherein the step of
receiving information corresponding to a link comprises
the step of, receiving a function call from a restore

application program.

©18. The method of claim 10 wherein the step of
identifying the common data to restore comprises the step
of, returning a file name to a restore application

program.

19. The method of claim 10 further comprising the
step of, restoring the link and the common data.

- 47 -

WO 01/06366 PCT/US00/18990

10

15

20

25

30

20. The method of claim 10 further comprising the

step of, backing up the link and the common data.

21. A computer-readable medium having computer-
executable instructions for performing steps comprising:

receiving information corresponding to a link from a
backup program;

determining whether the link has common data
corresponding thereto already identified to the backup
program, and if not, identifying the common data to the
backup program;

receiving information corresponding to the link from
a restore program for restoring files to a volume;

determining whether the link has common data
corresponding thereto already identified to a restore
program;

determining whether the link has common data
corresponding thereto already present on the volume; and

identifying the common data to the restore program
if the link has neither common data corresponding thereto
already present on the volume nor common data

corresponding thereto already identified for restore.

22. The computer-readable medium of claim 21 having
further computer-executable instructions for performing

the step of, restoring the link and the common data.

23. The computer-readable medium of claim 21 having
further computer-executable instructions for performing

the step of, backing up the link and the common data.

24. In a computer system, a system for selectively
identifying a single instance store file to a backup

—_ 48 -

WO 01/06366 PCT/US00/18990

10

15

20

program for backing up to a storage medium, comprising,
an interface for receiving link file information from the
backup application, a mechanism for determining a common
store file corresponding to the link file from the link
file information, a data structure for recording whether
the common store file has already been identified to the
backup application for backup, and if not, the interface
identifying the common store file to the backup

application.

25. The system of claim 24 wherein the interface

receives function calls from the backup program.

26. The system of claim 25 wherein the interface
further receives function calls from a restore program

for identifying common store files thereto.

27. The system of claim 24 wherein the interface is

incorporated into a dynamic link library.

28. The system of claim 24 wherein the mechanism
for determining a common store file corresponding to the

link file examines a reparse point of the link file.

PCT/US00/18990

WO 01/06366

7§ SWv¥90ud } 'Oid

NOILYOITddVY rA 4 asnow
om — - vy — —
- oy { 6¢ S3TNAONW e Mlm SAS3Id
C T £ _PiEogfey > ViVa | WYHO0¥d | SWVNDOM [SE / WILSAS
i FI‘ WNYHO0Ud | 8€ ¥HIHLO | NOILYIITddY | ONILYHALO
_ N -
(29 62 — '\ -
(suayndwon AN P
ajoway woapolN [@ AN ~
> z -~
10MJaN BAIY 2PIM € 82 \ -
77 oo TVl val A]
6V - I
€S~ op pe ee ze
TN A) N — viva
LS S aoseu9U| ELEITET] aoseuau| aoeuaju| 6% WVYY¥90ud
IOMN uod w>t% anuqg m_m_o anug
| Jeuag leando | | onaubew | | s1a PieH | | [o= s3ndom
_ WYYO0Ud ¥3HIO
ao1meqQ _ —
sbeiors | | Z¢ SWYd90dd
NOLLYOIlddV
| sng wysAg
| 9¢ W3LSAS
! N 3114
! 55 WALSAS
_ | | ONILV¥3dO
1aydepy 193depy | =
3SOH 093pIA \ ||||| MW xm_@.‘w_.v _]
[J nun
Buissasos A4 9C
_ 1] gy 12 : d 9¢ soig
Jojluo _ _ - m|M| hs_mmb | |
_ 0 fowsap) waysAs
Ly - —— lt

1/18

PCT/US00/18990

WO 01/06366

910)S uowwo) -1 82 <N G\l
UginMesols (*ainn)aioiguowwon swmoopy
shAso|4 [+ |
uowwo) o4 | _ 08 .
ajd _ YR _
: ejeq _
I
Zainn\aiols 6 "
(aunjeubis Buipnjoul) —
uowwo) 1
wea)s Jajulodyoeg — 89
CI[E _
1
m/// :
/ I
1
sis PR S
_/ [1sanbay sosn] “
29 joJ3uo) 13]9A019) ,
3714AdOD SIS |
i
\- / o8y
! awnjoA
sAsaj4
FzAaxzna | ZAX\LIG
e 1 g ald \uw
L Jsead I_|\ 924N0G]

2/18

PCT/US00/18990

WO 01/06366

210}S UOWWOD —1 84 gz 'old
Uginmesors (*ainn)aoisuowwod Dty P
ollg shsaji4 - -
uowiwo) ! 08
a4 1 !
‘- | 9. r44 2
. ejeq / :
wnipay abesoyg 7 !
Zainn\ai103s 210359y / dnyjoeg :
(aanyeubig Buipnjoul) — ve _
uowwo?n (1745 !
o114 weal}s sajutodyoeyg AT — 89 % a ﬁ Q 19 S
(weiboud | wesboid p :
A aio)say | dnyoeg "
< _]
— k > (771Q) 29epdu] L |
— - SIS
| yoouo | \ e 20152y / dnyoeg [« |
I awnjop | / .M N\ "
— e 29 _ _ ¥ _ 9 !
\ o/ 314 “ mvw._:uo:.;w“/ \
90} \ '} ejleg 1 vZi r 08 +
Y » / - — = /
uxwu:OU_ col awNJoA
ZAX\cad Z. . ZAX\L4id _ /
ad qur or | apawuny | S 3 shsand
F | A4 | m wua | V9
[duod ! Jutod W,
8 asseday _ asJedoy /wa 410

3/18

PCT/US00/18990

WO 01/06366

€ Ol

rA1]% yoL

/]

/
Xaju0) SIS \

/7

depy 1xa3u0)

uesjd gIZ o3 aol + aiNi
Aaa 1-ayol + giNL o3 aiNL
uea|dn L-gAL 03 0

(*ainn)eisoisuowwoy — 89
a4 9,
\\\
&ied 29
-~> sis -
(aameubig Buipnjout)
weang Joyuiodyoeg | 78
oo ZAX\LAId 3114 jur
aMoi oLl
awe +anL 8NL 0

julod esieday —1 [¢8

axy9
+dWN1

A
N

c6

ainmeubis | ainn | 06
ejeq asieday | 88
be) asieday SIS | 08

4/18

WO 01/06366 PCT/US00/18990

< Slsbgg:)r;/file) FIG. 4

Y

Open
Source File

Source
File Already
a SIS Link

Yes

Copy Contents of 404
-/

Source File to
Common Store

* 406
Convert Source File to J

a Link File Including
Reparse Point

r

Create Destination
as Link to Common
Store File

Y

Add Backpointer(s) 410
to any New Link(s) to \.}
Common Store File

408

+ 412

Close Files \J

5/18

WO 01/06366 PCT/US00/18990

Open Request
SIS Link

User Level /

Kernel Level
Optional Filter @

Driver(s) —}—96

SIS Filter Driver | %2
A A
Optional Filter @ @ @
Driver(s)
/
—
v % \
100
NTFS -1
FT Disk
FIG. 5

6/18

WO 01/06366

begin
SIS Open / Create

v

PCT/US00/18990

) FIG. 6A

Receive NTFS Error =
STATUS_REPARSE

600
/

602

SIS
Common
Store File
Already Open
?

Open Common
Store File

Yes

604

606

Opened
Correctly and
Signature
OK?

608

Y

Delete Reparse Point,
Return Handle to Link
File to User

610

Another
Open Link

612

Close Common
Store File

Yes

To / From
FIG. 6B

.-

7/18

WO 01/06366 PCT/US00/18990

(From FIG. 6A) FIG. 6B
Y

Instruct NTFS to Open Link 620
File (Resubmit Open IRP |~
with Reparse Flag Set)

Y

622 Receive Success Status from NTFS,
L— Attach Context, Mark Any Allocated
Portions as Dirty in Context Map

Is
Link File
Listed in Backpointer
Stream of Common
Store File
?

628

L

Add Link File to List in
BackpointerStream of
Common Store File

Start Volume Check 630
in Background)
(Unless Already Running)
| 4
t Bit i 632
Set Check Bitin |5

Backpointer Stream if
Volume Check Running

Return Handle to 63,4

Link File to User

Y
(To FIG. 6A)

Yes

8/18

WO 01/06366 PCT/US00/18990

SIS Write
Request
User Level

Kernel Level
Optional Filter @

Driver(s) -|—96

. . 62'
@ SIS Filter Driver | o
A
Optional Filter @
Driver(s)
/
 J 98 —
100
NTFS —+
FT Disk

FIG. 7

9/18

WO 01/06366 PCT/US00/18990

FIG. 8

begin
SIS Write
‘ 800

Receive (Link File) /

Write Request, Pass
to NTFS

l 802

Receive Status
from NTFS

804

Success
No\?/ Yes l
806 808

/ Mark Written /

Region as Dirty in
Return Error Context Map
to User ¢
- 810
Return Success /_J
to User

10/18

WO 01/06366

PCT/US00/18990

[

SIS Read
Request

User Level
Kernel Level
@ Optional Filter @
Driver(s) _| ~96
Y
62' SIS Filter Driver
-
A A
Optional Filter @ . .
Driver(s) . @ @
L
98'/ Y Y
100—— NTFS
FT Disk

58 -

11/18

WO 01/06366

begin
SIS Read

Access Map in

Context

1002

Any
Requested
Region
Marked

Convert Read
Request to Read
from Common Store
File, Pass to NTFS,
Receive Data (or
Error) from NTFS

1012

PCT/US00/18990

FIG. 10

/ 1000

(1010

Pass Dirty
Portion of Read
Request to NTFS

v

1008
1

Request to NTFS,
Receive Data (or
Error) from NTFS

Pass Read

Convert Clean Portion of
Read Request to Read
from Common Store File,
Pass to NTFS

Y

1014 —

Receive Data (or Error)
from NTFS, Merge Dirty
and Clean Portions

_

1016 ——

Return Data (or
Error) to User

12/18

WO 01/06366 PCT/US00/18990

begin
SIS Close

Close Link File Handle

“j” FIG. 11

1102

Last
Open Handle

to Link File

? No

1104

Any
Region
Marked
Dirty?

1110

Yes l)
Copy Clean Portion(s)
from Common Store

File to Link File
1 <
Convert
Link File to
Close Common Regular File (Leave Dirty
Store File Portion
¢ Allocated)

To / From FIG. 12

-« (Delete Backpointer /

'

Common Store File)

13/18

WO 01/06366 PCT/US00/18990

(begin Delete Backpointer /> FIG. 12

Common Store File

!

Delete Backpointer |
Corresponding to Link File

1202

Backpointer

Volume
Check
Running

1206

Volume
Check
Calling
?

No

Delete Common |— 1208
Store File

14/18

WO 01/06366 PCT/US00/18990

(begin Backup) FIG. 13A
Y

A - 1300
ocate Backup
Data Structure \-/

1 1302

Select File to Back Up, _J
Write to Storage Medium

Reparse
Point

No

1306

Reparse
Point
?

No

To/ From FIG. 13B Call
SisCSFilesToBackUpForLink

1310

1312

)

Common
Store File
Returned

Write Common 1316
Store File to
Storage Medium
— !
Deallocate Backup
Data Structure
Another

?

15/18

WO 01/06366 PCT/US00/18990

FIG. 13B

begin
SisCSFilesToBackUpForLink
(From FIG. 13A)

l 1320

Set Array Pointer to
NULL, Zero Count

1322

Is
Common Store
File ID in Data

Structure
?

1324

\

Yes

Add Common Store File
ID to Data Structure,

1326

y

Set Array Pointer to
Array, Increment Count,
Add Common Store Y
Filename to Array

> 1328

Y
Return Common /

Store File Array
Pointer, Count

!

(Return to FIG. 13A)

16/18

WO 01/06366 PCT/US00/18990

(begin Restore) FIG. 14A
Y

= 1400
Allocate Restore \/

Data Structure

ﬂ 1402

Select File to Restore,
Restore to Volume ‘-J

Reparse
Point

No
Yy 1406
< Reparse

Point
No
To/ From FIG. 14B
Call SisRestoredLink
1410

Common
Store File
Returned

Restore Common
Store File; Call

4
SisRestoredC-S-F 1416

—

L)

Deallocate Restore
Data Structure

Yes

17/18

WO 01/06366

begin
SisRestoredLink
(From FIG. 14A)

Y

PCT/US00/18990

FIG. 14B

1420

Set Array Pointer to
NULL, Zero Count

L

Is
Common Store
File ID In Data
Structure

1424

\

Add Common Store File
ID to Data Structure

1426

Is
Common
Store File on

Volume Yes

Set Array Pointer to
Array, Increment Count,
Add Common Store
Filename to Array

| >
A 4

1422

1430

Return Common
Store File Array
Pointer, Count

/

!

(Return to FIG. 14A

)

18/18

INTERNATIONAL SEARCH REPORT

Inta onal Application No

PCT/US 00/18990

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F11/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, PAJ, IBM-TDB, INSPEC

Electronic data base consuited during the international search (name of data base and, where practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

11 March 1999 (1999-03-11)
page 12, line 31 -page 13, line 10
page 14, line 33 -page 15, line 2

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A EP 0 774 715 A (STAC ELECTRONICS) 1,10,21,
21 May 1997 (1997-05-21) 24
column 10, 1ine 33 - line 46
column 16, 1ine 6 - line 21

A WO 99 09480 A (TELEBACKUP SYSTEMS INC) 1,10,21,
25 February 1999 (1999-02-25) 24
page 3, line 12 -page 4, 1ine 10
page 9, line 1 -page 13, line 16

A WO 99 12098 A (BATHIE JON ;GOLD STEPHEN 1,10,21,
(GB); KING PETER (GB); CRIGHTON IAN PETER) 24

EI Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or afterthe international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

invention

T later document published after the international filing date"
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

“P* document published prior to the international filing date but
later than the priority date claimed

in the ar.
& document member of the same patent family

Date of the actual completion of the international search

16 November 2000

Date of mailing of the international search report

24/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Fernandez Balseiro,J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

“Yiformation on patent family members

Inte onal Application No

PCT/US 00/18990

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP 0774715 A 21-05-1997 us 5778395 A 07-07-1998
JP 10049416 A 20-02-1998
WO 9909480 A 25-02-1999 AU 8457698 A 08-03-1999
WO 9912098 A 11-03-1999 EP 0899662 A 03-03-1999
EP 1008048 A 14-06-2000

Form PCT/ISA/210 (patent family arnex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

