

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2017266738 B2

(54) Title
Tri-segmented Pichinde viruses as vaccine vectors

(51) International Patent Classification(s)
C12N 15/86 (2006.01) **C07K 14/005** (2006.01)

(21) Application No: **2017266738** (22) Date of Filing: **2017.05.17**

(87) WIPO No: **WO17/198726**

(30) Priority Data

(31) Number **62/338,400** (32) Date **2016.05.18** (33) Country **US**

(43) Publication Date: **2017.11.23**
(44) Accepted Journal Date: **2023.10.12**

(71) Applicant(s)
Universität Basel;Hookipa Biotech GmbH

(72) Inventor(s)
Bonilla, Weldi;Pinschewer, Daniel David;Orlinger, Klaus

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
WO 2016/048949 A1
DHANWANI R et al., 'A Novel Live Pichinde Virus-Based Vaccine Vector Induces Enhanced Humoral and Cellular Immunity after a Booster Dose', JOURNAL OF VIROLOGY. (2016), vol. 90, no. 5, pages 2551-2560.
WO 2009/083210 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2017/198726 A1

(43) International Publication Date
23 November 2017 (23.11.2017)

(51) International Patent Classification:

C12N 15/86 (2006.01) C07K 14/005 (2006.01)

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(21) International Application Number:

PCT/EP2017/061865

(22) International Filing Date:

17 May 2017 (17.05.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/338,400 18 May 2016 (18.05.2016) US

(71) Applicants: HOOKIPA BIOTECH AG [AT/AT];
Helmut-Qualtinger-Gasse 2, 1030 Wien (AT).
UNIVERSITÄT BASEL [CH/CH]; Vizerektorat
Forschung, Petersgraben 35, 4001 Basel (CH).

(72) Inventors: BONILLA, Weldi; Im Zehntenfrei 5, 4102 Binningen (CH). PINSCHEWER, Daniel David; Im Zehntenfrei 5, 4102 Binningen (CH). ORLINGER, Klaus; Schätzgasse 4/1, 1190 Wien (AT).

(74) Agent: JONES DAY (ASSOCIATION NO. 215);
Prinzregentenstraße 11, 80538 München (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: TRI-SEGMENTED PICHINDE VIRUSES AS VACCINE VECTORS

(57) Abstract: The present application relates to Pichinde viruses with rearrangements of their open reading frames ("ORF") in their genomes. In particular, described herein is a modified Pichinde virus genomic segment, wherein the Pichinde virus genomic segment is engineered to carry a viral ORF in a position other than the wild-type position of the ORF. Also described herein are trisegmented Pichinde virus particles comprising one L segment and two S segments or two L segments and one S segment. The Pichinde virus, described herein may be suitable for vaccines and/or treatment of diseases and/or for the use in immunotherapies.

TRI-SEGMENTED PICHINDE VIRUSES AS VACCINE VECTORS

[0001] This application claims the benefit of U.S. Provisional Application No. 62/338,400 filed May 18, 2016, which is hereby incorporated by reference in its entirety.

REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

[0002] This application incorporates by reference a Sequence Listing submitted with this application as text file entitled “Sequence_Listing_13194-020-228.TXT” created on May 16, 2017 and having a size of 61,423 bytes.

1. INTRODUCTION

[0003] The present application relates to Pichinde viruses with rearrangements of their open reading frames (“ORF”) in their genomes. In particular, described herein is a modified Pichinde virus genomic segment, wherein the Pichinde virus genomic segment is engineered to carry a viral ORF in a position other than the wild-type position of the ORF. Also described herein are tri-segmented Pichinde virus particles comprising one L segment and two S segments or two L segments and one S segment. The Pichinde virus, described herein may be suitable for vaccines and/or treatment of diseases and/or for the use in immunotherapies.

2. BACKGROUND

2.1 Pichinde Virus General Background and Genomic Organization

[0004] Pichinde virus is an arenavirus isolated from *Oryzomys albigularis* (rice rats) in Columbia (reviewed in McLay *et al*, 2014, Journal of General Virology, 95: 1-15). Pichinde virus is nonpathogenic and is generally not known to cause diseases in humans. Serological evidence suggest a very low seroprevalence even in local human population (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641). The family *Arenaviridae* is classified into two groups: the Old World (OW) arenaviruses such as Lassa fever virus (LASV) and Lymphocytic Choriomeningitis Virus (LCMV), and the New World (NW) arenaviruses such as Pichinde virus and Junin virus (Buchmeier *et al*, 2001, Arenaviridae: The Viruses and Their Replication, Fields Virology Vol 2, 1635-1668). Arenaviruses are enveloped RNA viruses. Their genome consists

of two segments of single-stranded RNA of negative sense (FIG. 1A) (McLay *et al*, 2014, Journal of General Virology, 95: 1-15). Each segment encodes for two viral genes in opposite orientations. The short segment (S segment) encodes the viral glycoprotein (GP) and the nucleoprotein (NP). The long segment (L segment) expresses the RNA-dependent RNA polymerase (RdRp; L protein) and the matrix protein Z (protein Z), a RING finger protein. The two genes on each segment are separated by a non-coding intergenic region (IGR) and flanked by 5' and 3' untranslated regions (UTR). The IGR forms a stable hairpin structure and has been shown to be involved in structure-dependent termination of viral mRNA transcription (Pinschewer *et al.*, 2005, J Virol 79(7): 4519-4526). The terminal nucleotides of the UTR show a high degree of complementarity, thereby thought to result in the formation of secondary structures. These panhandle structures are known to serve as the viral promoter for transcription and replication, and their analysis by site-directed mutagenesis has revealed sequence- and structure-dependence, tolerating not even minor sequence changes (Perez and de la Torre, 2003, Virol 77(2): 1184-1194).

2.2 Reverse Genetic System

[0005] Isolated and purified RNAs of negative-strand viruses like Pichinde virus cannot directly serve as mRNA *i.e.*, cannot be translated when introduced into cells. Consequently transfection of cells with viral RNA does not lead to production of infectious viral particles. In order to generate infectious viral particles of negative-stranded RNA viruses from cDNA in cultured permissive cells, the viral RNA segment(s) must be trans-complemented with the minimal factors required for transcription and replication. With the help of a minigenome system which has been published several years ago, viral cis-acting elements and transacting factors involved in transcription, replication and formation of viral particles could finally be analyzed (Lee *et al.*, 2000, J Virol 74(8): 3470-3477; Lee *et al.*, 2002, J Virol 76(12): 6393-6397; Perez and de la Torre 2003, J Virol 77(2): 1184-1194; Pinschewer *et al.*, 2003, J Virol 77(6): 3882-3887; Pinschewer *et al.*, 2005, J Virol 79(7): 4519-4526.). Such reverse genetics systems have been developed to successfully demonstrate Pichinde virus rescue (See, *eg*, Liang *et al*, 2009, Ann N Y Acad Sci, 1171: E65-E74; Lan *et al*, 2009, Journal of Virology, 83 (13): 6357-6362).

2.3 Recombinant Pichinde Expressing Genes of Interest

[0006] The generation of recombinant negative-stranded RNA viruses expressing foreign genes of interest has been pursued for a long time. Different strategies have been published for other viruses (Garcia-Sastre *et al.*, 1994, J Virol 68(10): 6254-6261; Percy *et al.*, 1994, J Virol 68(7): 4486-4492; Flick and Hobom, 1999, Virology 262(1): 93-103; Machado *et al.*, 2003, Virology 313(1): 235-249). Live Pichinde Virus-based vectors have been published (Dhanwani *et al.*, 2015, Journal of Virology 90:2551-2560; International Patent Application Publication No. WO 2016/048949). Tri-segmented Pichinde viruses were published (Dhanwani *et al.*, 2015, Journal of Virology 90:2551-2560; International Patent Application Publication No. WO 2016/048949). In the tri-segmented virus, published by Dhanwani 2015, both NP and GP were kept in their respective natural position in the S segment and thus were expressed under their natural promoters in the flanking UTR.

2.4 Replication-defective Arenavirus

[0007] It has been shown that an infectious arenavirus particle can be engineered to contain a genome with the ability to amplify and express its genetic material in infected cells but unable to produce further progeny in normal, not genetically engineered cells (*i.e.*, an infectious, replication-deficient arenavirus particle) (International Publication No.: WO 2009/083210 A1 and International Publication No.: WO 2014/140301 A1).

3. SUMMARY OF THE INVENTION

[0008] The present application, relates to Pichinde viruses with rearrangements of their ORFs in their genomes. In particular, the present application relates to a Pichinde virus genomic segment that has been engineered to carry a Pichinde virus ORF in a position other than the wild-type position. The present application also provides a tri-segmented Pichinde virus particle comprising one L segment and two S segments or two L segments and one S segment that do not recombine into a replication-competent bi-segmented Pichinde virus particle. The present application demonstrates that the tri-segmented Pichinde virus particle can be engineered to improve genetic stability and ensure lasting transgene expression.

[0009] In certain embodiments, a viral vector as provided herein is infectious, *i.e.*, is capable of entering into or injecting its genetic material into a host cell. In certain more specific embodiments, a viral vector as provided herein is infectious, *i.e.*, is capable of entering into or

injecting its genetic material into a host cell followed by amplification and expression of its genetic information inside the host cell. In certain embodiments, the viral vector is an infectious, replication-deficient Pichinde virus viral vector engineered to contain a genome with the ability to amplify and express its genetic information in infected cells but unable to produce further infectious progeny particles in normal, not genetically engineered cells. In certain embodiments, the infectious Pichinde virus viral vector is replication-competent and able to produce further infectious progeny particles in normal, not genetically engineered cells. In certain more specific embodiments, such a replication-competent viral vector is attenuated relative to the wild type virus from which the replication-competent viral vector is derived.

3.1 Non-natural Open Reading Frame

Accordingly, in one aspect, provided herein is a Pichinde virus genomic segment. In certain embodiments, the genomic segment is engineered to carry a viral ORF in a position other than the wild-type position of the ORF. In some embodiments, the Pichinde virus genomic segment is selected from the group consisting of:

- (i) an S segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;
- (ii) an S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 5' UTR;
- (iii) an S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iv) an S segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) an S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 3' UTR;
- (vi) an S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR;
- (vii) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 5' UTR;
- (viii) an L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;

- (ix) an L segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (x) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (xi) an L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 3' UTR; and
- (xii) an L segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[0010] In some embodiments, the Pichinde virus 3' UTR is the 3' UTR of the Pichinde virus S segment or the Pichinde virus L segment. In certain embodiments, the Pichinde virus 5' UTR is the 5' UTR of the Pichinde virus S segment or the Pichinde virus L segment.

[0011] Also provided herein is an isolated cDNA of a Pichinde virus genomic segment provided herein. Also provided herein, is a DNA expression vector comprising a cDNA of the Pichinde virus genomic segment.

[0012] Also provided herein, is a host cell comprising the Pichinde virus genomic segment, a cDNA of the Pichinde virus genomic segment, or the vector comprising a cDNA of the Pichinde virus genomic segment.

[0013] Also provided herein, is a Pichinde virus particle comprising the Pichinde virus genomic segment and a second Pichinde virus genomic segment so that the Pichinde virus particle comprises an S segment and an L segment.

[0014] In certain embodiments, the Pichinde virus particle is infectious and replication competent. In some embodiments, the Pichinde virus particle is attenuated. In other embodiments, the Pichinde virus particle is infectious but unable to produce further infectious progeny in non-complementing cells.

[0015] In certain embodiments, at least one of the four ORFs encoding GP, NP, Z protein, and L protein is removed or functionally inactivated.

[0016] In certain embodiments, at least one of the four ORFs encoding GP, NP, Z protein and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In other embodiments, only one of the four ORFs encoding GP, NP, Z protein and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In a more specific embodiment, the ORF encoding GP is removed and replaced

with a heterologous ORF from an organism other than a Pichinde virus. In other embodiments, the ORF encoding NP is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In some embodiments, the ORF encoding the Z protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In other embodiments, the ORF encoding the L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus.

[0017] In certain embodiments, the heterologous ORF encodes a reporter protein. In some embodiments, the heterologous ORF encodes an antigen derived from an infectious organism, tumor, or allergen. In other embodiments, the heterologous ORF encoding an antigen is selected from human immunodeficiency virus antigens, hepatitis C virus antigens, hepatitis B surface antigen, varizella zoster virus antigens, cytomegalovirus antigens, mycobacterium tuberculosis antigens, tumor associated antigens, and tumor specific antigens (such as tumor neoantigens and tumor neoepitopes).

[0018] In certain embodiments, the growth or infectivity of the Pichinde virus particle is not affected by the heterologous ORF from an organism other than a Pichinde virus.

[0019] Also provided herein is a method of producing the Pichinde virus genomic segment. In certain embodiments, the method comprises transcribing the cDNA of the Pichinde virus genomic segment.

[0020] Also provided herein is a method of generating the Pichinde virus particle. In certain embodiments the method of generating the Pichinde virus particle comprises:

- (i) transfecting into a host cell the cDNA of the Pichinde virus genomic segment;
- (ii) transfecting into the host cell a plasmid comprising the cDNA of the second Pichinde virus genomic segment;
- (iii) maintaining the host cell under conditions suitable for virus formation; and
- (iv) harvesting the Pichinde virus particle.

[0021] In certain embodiments, the transcription of the L segment and the S segment is performed using a bidirectional promoter.

[0022] In certain embodiments, the method further comprises transfecting into a host cell one or more nucleic acids encoding a Pichinde virus polymerase. In yet more specific embodiments,

the polymerase is the L protein. In other embodiments, the method further comprises transfecting into the host cell one or more nucleic acids encoding the NP.

[0023] In certain embodiments, transcription of the L segment, and the S segment are each under the control of a promoter selected from the group consisting of:

- (i) a RNA polymerase I promoter;
- (ii) a RNA polymerase II promoter; and
- (iii) a T7 promoter.

[0024] In another embodiment, provided herein is a vaccine comprising a Pichinde virus particle, wherein at least one of the four ORFs encoding GP, NP, Z protein, and L protein is removed or functionally inactivated; or wherein at least one ORF encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from another organism other than a Pichinde virus; or wherein only one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In more specific embodiments, the vaccine further comprises a pharmaceutically acceptable carrier.

[0025] In another embodiment, provided herein is a pharmaceutical composition comprising a Pichinde virus particle, wherein at least one of the four ORFs encoding GP, NP, Z protein, and L protein is removed or functionally inactivated; or wherein at least one ORF encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from another organism other than a Pichinde virus; or wherein only one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In more specific embodiments, the pharmaceutically acceptable carrier further comprises a pharmaceutically acceptable carrier.

[0026] In some embodiments, the Pichinde virus genomic segment or Pichinde virus particle is derived from the highly virulent, high-passaged strain Munchique CoAn4763 isolate P18, or low passaged P2 strain, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641).

3.2 Tri-segmented Pichinde virus

[0027] In one aspect, provided herein is a tri-segmented Pichinde virus particle comprising one L segment and two S segments. In some embodiments, propagation of the tri-segmented

Pichinde virus particle does not result in a replication-competent bi-segmented viral particle after 70 days of persistent infection in mice lacking type I interferon receptor, type II interferon receptor and recombination activating gene 1 (RAG1), and having been infected with 10^4 PFU of the tri-segmented Pichinde virus particle. In certain embodiments, inter-segmental recombination of the two S segments, uniting two Pichinde virus ORFs on only one instead of two separate segments, abrogates viral promoter activity.

[0028] In another aspect, provided herein is a tri-segmented Pichinde virus particle comprising two L segments and one S segment. In certain embodiments, propagation of the tri-segmented Pichinde virus particle does not result in a replication-competent bi-segmented viral particle after 70 days of persistent infection in mice lacking type I interferon receptor, type II interferon receptor and recombination activating gene 1 (RAG1), and having been infected with 10^4 PFU of the tri-segmented Pichinde virus particle. In certain embodiments, inter-segmental recombination of the two L segments, uniting two Pichinde virus ORFs on only one instead of two separate segments, abrogates viral promoter activity.

[0029] In certain embodiments, one of the two S segments is selected from the group consisting of:

- (i) an S segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR
- (ii) an S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 5' UTR;
- (iii) an S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iv) an S segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) an S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 3' UTR; and
- (vi) an S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[0030] In certain embodiments, one of the two L segments is selected from the group consisting of:

- (i) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 5' UTR;

- (ii) an L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;
- (iii) an L segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iv) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) an L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 3' UTR; and
- (vi) an L segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[0031] In certain embodiments, the tri-segmented Pichinde virus particle 3' UTR is the 3' UTR of the Pichinde virus S segment or the Pichinde virus L segment. In other embodiments, the tri-segmented Pichinde virus particle 5' UTR is the 5' UTR of the Pichinde virus S segment or the Pichinde virus L segment.

[0032] In certain embodiments, the two S segments comprise (i) one or two heterologous ORFs from an organism other than a Pichinde virus; or (ii) one or two duplicated Pichinde virus ORFs; or (iii) one heterologous ORF from an organism other than a Pichinde virus and one duplicated Pichinde virus ORF.

[0033] In certain embodiments, the two L segments comprise (i) one or two heterologous ORFs from an organism other than a Pichinde virus; or (ii) one or two duplicated Pichinde virus ORFs; or (iii) one heterologous ORF from an organism other than a Pichinde virus and one duplicated Pichinde virus ORF.

[0034] In certain embodiments, the heterologous ORF encodes an antigen derived from an infectious organism, tumor, or allergen. In other embodiments, the heterologous ORF encoding an antigen is selected from human immunodeficiency virus antigens, hepatitis C virus antigens, hepatitis B surface antigen, varicella zoster virus antigens, cytomegalovirus antigens, mycobacterium tuberculosis antigens, tumor associated antigens, and tumor specific antigens (such as tumor neoantigens and tumor neoepitopes).

[0035] In certain embodiments, at least one heterologous ORF encodes a fluorescent protein. In other embodiments the fluorescent protein is a green fluorescent protein (GFP) or red fluorescent protein (RFP).

[0036] In certain embodiments, the tri-segmented Pichinde virus particle comprises all four Pichinde virus ORFs. In some embodiments the tri-segmented Pichinde virus particle is infectious and replication competent.

[0037] In certain embodiments, the tri-segmented Pichinde virus particle lacks one or more of the four Pichinde virus ORFs. In other embodiments, the tri-segmented Pichinde virus particle is infectious but unable to produce further infectious progeny in non-complementing cells.

[0038] In certain embodiments, the tri-segmented Pichinde virus particle lacks one of the four Pichinde virus ORFs, wherein the tri-segmented Pichinde virus particle is infectious but unable to produce further infectious progeny in non-complementing cells.

[0039] In some embodiments, the tri-segmented Pichinde virus particle lacks the GP ORF.

[0040] In a further aspect, provided herein is a tri-segmented Pichinde virus particle comprising one L segment and two S segments. In certain embodiments, a first S segment is engineered to carry an ORF encoding GP in a position under control of a Pichinde virus 3' UTR and an ORF encoding a first gene of interest in a position under control of a Pichinde virus 5' UTR. In some embodiments, a second S segment is engineered to carry an ORF encoding the NP in a position under control of a Pichinde virus 3' UTR and an ORF encoding a second gene of interest in a position under control of a Pichinde virus 5' UTR.

[0041] In yet another aspect, provided herein, is a tri-segmented Pichinde virus particle comprising one L segment and two S segments. In certain embodiments, a first S segment is engineered to carry an ORF encoding GP in a position under control of a Pichinde virus 5' UTR and an ORF encoding a first gene of interest in a position under control of a Pichinde virus 3' UTR. In some embodiments, a second S segment is engineered to carry an ORF encoding NP in a position under control of a Pichinde virus 5' UTR and an ORF encoding a second gene of interest in a position under control of a Pichinde virus 3' UTR.

[0042] In certain embodiments, the gene of interest encodes an antigen derived from an infectious organism, tumor, or allergen. In other embodiments, the gene of interest encodes an antigen selected from human immunodeficiency virus antigens, hepatitis C virus antigens, hepatitis B surface antigen, varizella zoster virus antigens, cytomegalovirus antigens, mycobacterium tuberculosis antigens, tumor associated antigens, and tumor specific antigens (such as tumor neoantigens and tumor neoepitopes). In yet another embodiment, at least one

gene of interest encodes a fluorescent protein. In a specific embodiment, the fluorescent protein is GFP or RFP.

[0043] Also provided herein is an isolated cDNA of the genome of the tri-segmented Pichinde virus particle. Also provided herein, is a DNA expression vector comprising a cDNA of the genome of the tri-segmented Pichinde virus particle. Also provided herein is one or more DNA expression vectors comprising either individually or in their totality the cDNA of the tri-segmented Pichinde virus.

[0044] Also provided herein, is a host cell comprising the tri-segmented Pichinde virus particle, the cDNA of the genome of the tri-segmented Pichinde virus particle, or the vector comprising the cDNA of the genome of the tri-segmented Pichinde virus particle.

[0045] In certain embodiments, the tri-segmented Pichinde virus particle is attenuated.

[0046] Also provided herein is a method of generating the tri-segmented Pichinde virus particle. In certain embodiments the method of generating the Pichinde virus particle comprises:

- (i) transfecting into a host cell one or more cDNAs of one L segment and two S segments;
- (ii) maintaining the host cell under conditions suitable for virus formation; and
- (iii) harvesting the Pichinde virus particle.

[0047] Also provided herein is a method of generating the tri-segmented Pichinde virus particle. In certain embodiments the method of generating the tri-segmented Pichinde virus particle comprises:

- (i) transfecting into a host cell one or more cDNAs of two L segments and one S segment;
- (ii) maintaining the host cell under conditions suitable for virus formation; and
- (iii) harvesting the Pichinde virus particle.

[0048] In certain embodiments, the transcription of the one L segment and two S segment is performed using a bidirectional promoter. In some embodiments, the transcription of the two L segments and one S segment is performed using a bidirectional promoter.

[0049] In certain embodiments, the method further comprises transfecting into a host cell one or more nucleic acids encoding a Pichinde virus polymerase. In yet more specific embodiments,

the polymerase is the L protein. In other embodiments, the method further comprises transfecting into the host cell one or more nucleic acids encoding the NP protein.

[0050] In certain embodiments, transcription of the one L segment, and two S segments are each under the control of a promoter selected from the group consisting of:

- (i) a RNA polymerase I promoter;
- (ii) a RNA polymerase II promoter; and
- (iii) a T7 promoter.

[0051] In certain embodiments, transcription of the two L segments, and one S segment are each under the control of a promoter selected from the group consisting of:

- (i) a RNA polymerase I promoter;
- (ii) a RNA polymerase II promoter; and
- (iii) a T7 promoter.

[0052] In certain embodiments, the tri-segmented Pichinde virus particle has the same tropism as the bi-segmented Pichinde virus particle. In other embodiments, the tri-segmented Pichinde virus particle is replication deficient.

[0053] In another embodiment, provided herein is a vaccine comprising a tri-segmented Pichinde virus particle and a pharmaceutically acceptable carrier.

[0054] In another embodiment, provided herein is a pharmaceutical composition comprising a tri-segmented Pichinde virus particle and a pharmaceutically acceptable carrier.

[0055] In some embodiments, the Pichinde virus genomic segment or Pichinde virus particle is derived from the highly virulent, high-passaged strain Munchique CoAn4763 isolate P18, or low passaged P2 strain, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641).

3.3 Conventions and Abbreviations

Abbreviation	Convention
APC	Antigen presenting cell
art	Artificial
CAT	Chloramphenicol acetyltransferase
CMI	cell-mediated immunity
CD8	Cluster of differentiation 8
CD4	Cluster of differentiation 4
GFP	Green fluorescent protein

Abbreviation	Convention
GP	Glycoprotein
IGR	Intergenic region
LCMV	Lymphocytic choriomeningitis virus
L protein	RNA-dependent RNA polymerase
L segment	Long segment
MHC	Major Histocompatibility Complex
Z protein	Matrix protein Z
NP	Nucleoprotein
ORF	Open reading frame
RFP	Red fluorescent protein
r3PIC	Recombinant tri-segmented Pichinde virus
S segment	Short segment
UTR	Untranslated region
VSV	Vesicular Stomatitis Virus
VSVG	Vesicular Stomatitis Virus Glycoprotein
GM-CSF	Granulocyte Macrophage Colony-Stimulating Factor
sP1AGM protein	A fusion protein of i) the VSVG signal peptide, ii) the P1A antigen of the P815 mouse mastocytoma tumor cell line, iii) a GSG linker, iv) an enterovirus 2A peptide, and v) mouse GM-CSF
RNP	Ribonucleoprotein
RAG1	Recombination Activating Gene
OW	Old World arenaviruses
NW	New World arenaviruses
LASV	Lassa fever virus

4. BRIEF DESCRIPTION OF THE FIGURES

[0056] FIGS. 1A-1D: Schematic representation of the genomic organization of bi- and tri-segmented Pichinde virus. The bi-segmented genome of wild-type Pichinde virus consists of one S segment encoding the GP and NP and one L segment encoding the Z protein and the L protein. Both segments are flanked by the respective 5' and 3' UTRs. (FIG. 1A) Schematic description of rPIC^{wt} Pichinde virus genome that was cDNA-derived wild type Pichinde virus with its natural genome segments S (SEQ ID NO: 16) and L (SEQ ID NO: 2), which were modified by silent mutations introduced to abrogate BsmBI and BbsI sites in the respective cDNAs. (FIGS. 1B-1D) The genome of recombinant tri-segmented Pichinde viruses (r3PIC) consists of one L and two S segments with one position where to insert a gene of interest (here GFP/sP1AGM

fusion protein) into each one of the S segments. (FIG. 1B) Schematic description of the trisegmented Pichinde virus vector genome with an artificial organization. In one of the duplicated S segments, the glycoprotein (GP) ORF is positioned *in lieu* of the nucleoprotein (NP) ORF in the natural S segment, i.e. between 3'UTR and IGR. (FIG. 1C) r3PIC-GFP^{art} consists of all viral genes in their natural position, except for the GP ORF, which is artificially juxtaposed to and expressed under control of the 3' UTR (S-GP/GFPart; SEQ ID NO:13). (FIG. 1D) Schematic description of the trisegmented Pichinde virus-based sP1AGM-expressing r3PIC-sP1AGM^{art} vector genome.

[0057] FIG. 2: Trisegmented r3PIC-GFP^{art} was attenuated as compared to its bisegmented wild type parental virus. Growth kinetics of the indicated viruses in BHK-21 cells, infected at a multiplicity of infection (moi) of 0.01 (wild-type Pichinde virus: black squares; r3PIC-GFP^{art}: black circles). Supernatant was taken at the indicated time points after infection and viral titers were determined by focus forming assay.

[0058] FIG. 3: Schematic description of the expression cassettes of plasmids used for the experiments described in FIGS. 2 and 4.

[0059] FIG. 4: Re-constitution of infectious, GFP-expressing virus from cDNA in cells with r3PIC-GFP^{art}. Fluorescence images of GFP expression captured either 48 or 168 hours after transfection of BHK-21 cells with plasmid combinations as follows:

S segment minigenome: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-miniS-GFP;

L segment minigenome: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L-GFP-Bsm;

r3PIC-GFP^{art}: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L, pol-I-PIC-NP-GFP, pol-I-PIC-GP-GFP;

rPIC^{wt}: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L, pol-I-PIC-S

[0060] FIGS. 5A-5B: Trisegmented Pichinde virus based viral vectors are highly immunogenic. BALB/c mice were infected intravenously with 10e5 FFU of r3PIC-sP1AGM^{art}. Control mice were left unimmunized. Eight days later, P1A-specific CD8+ T cell frequencies in peripheral blood were determined by MHC class I tetramer staining. Exemplary FACS plots (FIG. 5A) and frequencies of tetramer-binding cells within CD8+ T cell in peripheral blood (FIG. 5B) are shown. Symbols in B represent individual mice.

[0061] FIG. 6: Schematic description of the trisegmented Pichinde virus vector genome designed to express its glycoprotein (GP) and nucleoprotein (NP) genes under control of the 5' and 3' UTR promoters, respectively, i.e. in their respective "natural" position in the context of an artificially duplicated S segments - S-GP/GFPnat (SEQ ID NO: 15) and S-NP/GFP (also known as PIC-NP-GFP; SEQ ID NO: 11). The genome consists of one L and two S segments with one position where to insert a gene of interest (here GFP protein) into each one of the S segments.

[0062] FIG. 7: Early passages of trisegmented r3PIC-GFP^{nat} and r3PIC-GFP^{art} were attenuated as compared to their bisegmented wild type parental virus. Growth kinetics of the indicated viruses in BHK-21 cells in culture, infected at a multiplicity of infection (moi) of 0.01. Supernatant was taken at 48 hours after infection and viral titers were determined by focus forming assay. Symbols show titers from individual parallel cell culture wells; error bars denote the mean+/-SD.

[0063] FIG. 8: Unlike r3PIC-GFP^{art}, which is stably attenuated, r3PIC-GFP^{nat} reached titers in the range of rPIC^{wt} during persistent infection of mice. AGR mice (mice triple-deficient in type I and type II interferon receptors as well as RAG1) were infected intravenously with 10e5 FFU of viruses as indicated in the figure (wild-type Pichinde virus - rPIC^{wt}: gray triangles; r3PIC-GFP^{art}: black circles; r3PIC-GFP^{nat}: white squares). Blood was collected on day 7, 14, 21, 28, 35, 42, 56, 77, 98, 120 and 147 and viral infectivity was determined in focus formation assays detecting Pichinde virus nucleoprotein (NP FFU).

[0064] FIG. 9: Unlike r3PIC-GFP^{art}, which is stably attenuated, r3PIC-GFP^{nat} reaches titers in the range of rPIC^{wt} during persistent infection of mice. AGR mice (mice triple-deficient in type I and type II interferon receptors as well as RAG1) were infected intravenously with 10e5 FFU of viruses as indicated in the figure (wild-type Pichinde virus - rPIC^{wt}: gray triangles; r3PIC-GFP^{art}: black circles; r3PIC-GFP^{nat}: white squares). Blood was collected on day 7, 14, 21, 28, 35, 42, 56, 77, 98, 120 and 147 and viral infectivity was determined in focus formation assays detecting the viral GFP transgenes in r3PIC-GFP^{nat} and r3PIC-GFP^{art} (GFP FFU).

[0065] FIG. 10: Trisegmented Pichinde virus based viral vectors with artificial genomes are highly immunogenic. AGR mice (mice triple-deficient in type I and type II interferon receptors as well as RAG1) were infected intravenously with 10e5 FFU of viruses as indicated in the figure (r3PIC-GFP^{art}: black circles; r3PIC-GFP^{nat}: white squares). Blood was collected on day 7, 14, 21, 28, 35, 42, 56, 77, 98, 120 and 147 and viral infectivity was determined by focus

formation assays as displayed in FIG. 9 and FIG. 10. The obtained values were used to calculate the NP : GFP FFU ratio for each animal and time point.

[0066] FIG. 11: Virus in mouse serum collected 147 days after r3PIC-GFP^{art} infection showed attenuated growth when directly passaged in cell culture, whereas virus grown from r3PIC-GFP^{nat}-infected mice reached titers comparable to rPIC^{wt}. Serum collected on day 147 after infection on BHK-21 cells was passaged and viral infectivity was determined by NP FFU assays 48 hours later. Symbols show titers of individual mouse serum-derived viruses; error bars denote the mean+/-SD.

[0067] FIG. 12: Virus isolated and expanded from mouse serum collected 147 days after r3PIC-GFP^{art} infection showed attenuated growth when directly passaged in cell culture, whereas virus isolated and expanded from r3PIC-GFP^{nat}-infected mice reached titers comparable to rPIC^{wt}. BHK-21 cells were infected at a standardized multiplicity of infection = 0.01 with viruses that were obtained from serum collected on day 147 after infection and previously passaged for 48 hours. Viral titers were determined 48 hours later. Symbols show titers from individual mouse serum-derived viruses; error bars denote the mean+/-SD

[0068] FIG. 13: r3PIC-GFP^{art} failed to recombine its two S segments during a 147 day period of persistent infection in mice, whereas S segment RNA species containing both NP and GP sequences were detected in the serum of mice persistently infected with r3PIC-GFP^{nat} for 147 days. RT-PCR was performed on serum samples collected on day 147 after viral infection, using primers that were designed to bind to Pichinde virus NP and GP, respectively, and that spanned the intergenic region (IGR) of the Pichinde virus S segment such that they were predicted to yield a PCR amplicon of 357 base pairs on the rPIC^{wt} genome template. Each lane represents the RT-PCR product from one individual mouse in the experiment shown in FIGS. 8-10.

DETAILED DESCRIPTION OF THE INVENTION

4.1 Pichinde viruses with an Open Reading Frame in a Non-natural Position

[0069] Provided herein are Pichinde viruses with rearrangements of their ORFs. In certain embodiments, such Pichinde viruses are replication competent and infectious. Genomic sequences of such Pichinde viruses are provided herein. In one aspect, provided herein is a Pichinde virus genomic segment, wherein the Pichinde virus genomic segment is engineered to carry a Pichinde virus ORF in a position other than the position in which the respective gene is

found in viruses isolated from the wild, such as Pichinde virus strain Munchique CoAn4763 isolate P18 (see SEQ ID NOs: 1 and 2 in 7. Sequence Listing) (referred to herein as “wild-type position”) of the ORF (*i.e.*, a non-natural position).

[0070] The wild-type Pichinde virus genomic segments and ORFs are known in the art. In particular, the Pichinde virus genome consists of an S segment and an L segment. The S segment carries the ORFs encoding the GP and the NP. The L segment encodes the L protein and the Z protein. Both segments are flanked by the respective 5' and 3' UTRs (see FIG. 1A). Illustrative wild-type Pichinde virus genomic segments are provided in SEQ ID NOs: 1 and 2.

[0071] In certain embodiments, a Pichinde virus genomic segment can be engineered to carry two or more Pichinde virus ORFs in a position other than the wild-type position. In other embodiments, the Pichinde virus genomic segment can be engineered to carry two Pichinde virus ORFs, or three Pichinde virus ORFs, or four Pichinde virus ORFs in a position other than the wild-type position.

[0072] In certain embodiments, a Pichinde virus genomic segment provided herein can be:

- (i) a Pichinde virus S segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;
- (ii) a Pichinde virus S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 5' UTR;
- (iii) a Pichinde virus S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iv) a Pichinde virus S segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) a Pichinde virus S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 3' UTR;
- (vi) a Pichinde virus S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR;
- (vii) a Pichinde virus L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 5' UTR;
- (viii) a Pichinde virus L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;
- (ix) a Pichinde virus L segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;

- (x) a Pichinde virus L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (xi) a Pichinde virus L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 3' UTR; and
- (xii) a Pichinde virus L segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[0073] In certain embodiments, the ORF that is in the non-natural position of the Pichinde virus genomic segment described herein can be under the control of a Pichinde virus 3' UTR or a Pichinde virus 5' UTR. In more specific embodiments, the Pichinde virus 3' UTR is the 3' UTR of the Pichinde virus S segment. In another specific embodiment, the Pichinde virus 3' UTR is the 3'UTR of the Pichinde virus L segment. In more specific embodiments, the Pichinde virus 5' UTR is the 5' UTR of the Pichinde virus S segment. In other specific embodiments, the 5' UTR is the 5' UTR of the L segment.

[0074] In other embodiments, the ORF that is in the non-natural position of the Pichinde virus genomic segment described herein can be under the control of the arenavirus conserved terminal sequence element (the 5'- and 3'-terminal 19-21-nt regions) (see e.g., Perez & de la Torre, 2003, *J Virol.* 77(2): 1184–1194).

[0075] In certain embodiments, the ORF that is in the non-natural position of the Pichinde virus genomic segment can be under the control of the promoter element of the 5' UTR (see e.g., Albarino *et al.*, 2011, *J Virol.*, 85(8):4020-4). In another embodiment, the ORF that is in the non-natural position of the Pichinde virus genomic segment can be under the control of the promoter element of the 3' UTR (see e.g., Albarino *et al.*, 2011, *J Virol.*, 85(8):4020-4). In more specific embodiments, the promoter element of the 5' UTR is the 5' UTR promoter element of the S segment or the L segment. In another specific embodiment, the promoter element of the 3' UTR is the 3' UTR the promoter element of the S segment or the L segment.

[0076] In certain embodiments, the ORF that is in the non-natural position of the Pichinde virus genomic segment can be under the control of a truncated Pichinde virus 3' UTR or a truncated Pichinde virus 5' UTR (see e.g., Perez & de la Torre, 2003, *J Virol.* 77(2): 1184–1194; Albarino *et al.*, 2011, *J Virol.*, 85(8):4020-4). In more specific embodiments, the truncated 3' UTR is the 3' UTR of the Pichinde virus S segment or L segment. In more specific embodiments, the truncated 5' UTR is the 5' UTR of the Pichinde virus S segment or L segment.

[0077] Also provided herein, is a Pichinde virus particle comprising a first genomic segment that has been engineered to carry an ORF in a position other than the wild-type position of the ORF and a second Pichinde virus genomic segment so that the Pichinde virus particle comprises an S segment and an L segment. In specific embodiments, the ORF in a position other than the wild-type position of the ORF is one of the Pichinde virus ORFs.

[0078] In certain specific embodiments, the Pichinde virus particle can comprise a full complement of all four Pichinde virus ORFs. In specific embodiments, the second Pichinde virus genomic segment has been engineered to carry an ORF in a position other than the wild-type position of the ORF. In another specific embodiment, the second Pichinde virus genomic segment can be the wild-type genomic segment (*i.e.*, comprises the ORFs on the segment in the wild-type position).

[0079] In certain embodiments, the first Pichinde virus genomic segment is an L segment and the second Pichinde virus genomic segment is an S segment. In other embodiments, the first Pichinde virus genomic segment is an S segment and the second Pichinde virus genomic segment is an L segment.

[0080] Non-limiting examples of the Pichinde virus particle comprising a genomic segment with an ORF in a position other than the wild-type position of the ORF and a second genomic segment are illustrated in Table 1.

Table 1

Pichinde virus particle

*Position 1 is under the control of a Pichinde virus S segment 5' UTR; Position 2 is under the control of a Pichinde virus S segment 3' UTR; Position 3 is under the control of a Pichinde virus L segment 5' UTR; Position 4 is under the control of a Pichinde virus L segment 3' UTR.

Position 1	Position 2	Position 3	Position 4
GP	NP	L	Z
GP	Z	L	NP
GP	Z	NP	L
GP	L	NP	Z
GP	L	Z	NP
NP	GP	L	Z
NP	GP	Z	L
NP	L	GP	Z
NP	L	Z	GP

Position 1	Position 2	Position 3	Position 4
NP	Z	GP	L
NP	Z	L	GP
Z	GP	L	NP
Z	GP	NP	L
Z	NP	GP	L
Z	NP	L	GP
Z	L	NP	GP
Z	L	GP	NP
L	NP	GP	Z
L	NP	Z	GP
L	GP	Z	NP
L	GP	NP	Z
L	Z	NP	GP
L	Z	GP	NP

[0081] Also provided herein, is a cDNA of the Pichinde virus genomic segment engineered to carry an ORF in a position other than the wild-type position of the ORF. In more specific embodiments, provided herein is a cDNA or a set of cDNAs of a Pichinde virus genome as set forth in Table 1.

[0082] In certain embodiments, a nucleic acid encoding a Pichinde virus genome segment described herein can have at least a certain sequence identity to a nucleic acid sequence disclosed herein. Accordingly, in some aspects, a nucleic acid encoding a Pichinde virus genome segment has a nucleic acid sequence of at least 80% identity, at least 85% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, or at least 99% identity, or is identical, to a nucleic acid sequence disclosed herein by SEQ ID NO or a nucleic acid sequence that hybridizes to a nucleic acid sequence disclosed herein by SEQ ID NO. Hybridization conditions can include highly stringent, moderately stringent, or low stringency hybridization conditions that are well known to one of skill in the art such as those described herein. Similarly, a nucleic acid that can be used in generating a Pichinde virus genome segment as described herein can have a certain percent sequence identity to a nucleic acid disclosed herein by SEQ ID NO or a nucleic acid that hybridizes to a nucleic acid sequence disclosed herein by SEQ ID NO. For example, the nucleic acid that is used to generate a Pichinde virus genome segment can have at least 80% identity, at least 85% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95%

identity, at least 96% identity, at least 97% identity, at least 98% identity or at least 99% identity, or be identical, to a nucleic acid sequence described herein.

[0083] Sequence identity (also known as homology or similarity) refers to sequence similarity between two nucleic acid molecules or between two polypeptides. Identity can be determined by comparing a position in each sequence, which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are identical at that position. A degree of identity between sequences is a function of the number of matching or homologous positions shared by the sequences. The alignment of two sequences to determine their percent sequence identity can be done using software programs known in the art, such as, for example, those described in Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Baltimore, MD (1999). Preferably, default parameters are used for the alignment. One alignment program well known in the art that can be used is BLAST set to default parameters. In particular, programs are BLASTN and BLASTP, using the following default parameters: Genetic code = standard; filter = none; strand = both; cutoff = 60; expect = 10; Matrix = BLOSUM62; Descriptions = 50 sequences; sort by = HIGH SCORE; Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + SwissProtein + SPupdate + PIR. Details of these programs can be found at the National Center for Biotechnology Information.

[0084] Stringent hybridization refers to conditions under which hybridized polynucleotides are stable. As known to those of skill in the art, the stability of hybridized polynucleotides is reflected in the melting temperature (T_m) of the hybrids. In general, the stability of hybridized polynucleotides is a function of the salt concentration, for example, the sodium ion concentration and temperature. A hybridization reaction can be performed under conditions of lower stringency, followed by washes of varying, but higher, stringency. Reference to hybridization stringency relates to such washing conditions. Highly stringent hybridization includes conditions that permit hybridization of only those nucleic acid sequences that form stable hybridized polynucleotides in 0.018M NaCl at 65°C, for example, if a hybrid is not stable in 0.018M NaCl at 65°C, it will not be stable under high stringency conditions, as contemplated herein. High stringency conditions can be provided, for example, by hybridization in 50% formamide, 5X Denhart's solution, 5X SSPE, 0.2% SDS at 42°C, followed by washing in 0.1X SSPE, and 0.1% SDS at 65°C. Hybridization conditions other than highly stringent hybridization conditions can

also be used to describe the nucleic acid sequences disclosed herein. For example, the phrase moderately stringent hybridization refers to conditions equivalent to hybridization in 50% formamide, 5X Denhart's solution, 5X SSPE, 0.2% SDS at 42°C, followed by washing in 0.2X SSPE, 0.2% SDS, at 42°C. The phrase low stringency hybridization refers to conditions equivalent to hybridization in 10% formamide, 5X Denhart's solution, 6X SSPE, 0.2% SDS at 22°C, followed by washing in 1X SSPE, 0.2% SDS, at 37°C. Denhart's solution contains 1% Ficoll, 1% polyvinylpyrrolidone, and 1% bovine serum albumin (BSA). 20X SSPE (sodium chloride, sodium phosphate, ethylene diamide tetraacetic acid (EDTA)) contains 3M sodium chloride, 0.2M sodium phosphate, and 0.025 M (EDTA). Other suitable low, moderate and high stringency hybridization buffers and conditions are well known to those of skill in the art and are described, for example, in Sambrook and Russell, Molecular Cloning: A laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory N.Y. (2001); and Ausubel et al., *Current Protocols in Molecular Biology*, John Wiley and Sons, Baltimore, MD (1999).

[0085] In certain embodiments, a cDNA of the Pichinde virus genomic segment that is engineered to carry an ORF in a position other than the wild-type position of the ORF is part of or incorporated into a DNA expression vector. In a specific embodiment, a cDNA of the Pichinde virus genomic segment that is engineered to carry an ORF in a position other than the wild-type position of the ORF is part of or incorporated into a DNA expression vector that facilitates production of a Pichinde virus genomic segment as described herein. In another embodiment, a cDNA described herein can be incorporated into a plasmid. More detailed description of the cDNAs or nucleic acids and expression systems are provided in Section 4.5.1. Techniques for the production of a cDNA are routine and conventional techniques of molecular biology and DNA manipulation and production. Any cloning technique known to the skilled artesian can be used. Such as techniques are well known and are available to the skilled artesian in laboratory manuals such as, Sambrook and Russell, Molecular Cloning: A laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory N.Y. (2001).

[0086] In certain embodiments, the cDNA of the Pichinde virus genomic segment that is engineered to carry an ORF in a position other than the wild-type position of the ORF is introduced (*e.g.*, transfected) into a host cell. Thus, in some embodiments provided herein, is a host cell comprising a cDNA of the Pichinde virus genomic segment that is engineered to carry an ORF in a position other than the wild-type position of the ORF (*i.e.*, a cDNA of the genomic

segment). In other embodiments, the cDNA described herein is part of or can be incorporated into a DNA expression vector and introduced into a host cell. Thus, in some embodiments provided herein is a host cell comprising a cDNA described herein that is incorporated into a vector. In other embodiments, the Pichinde virus genomic segment described herein is introduced into a host cell.

[0087] In certain embodiments, described herein is a method of producing the Pichinde virus genomic segment, wherein the method comprises transcribing the cDNA of the Pichinde virus genomic segment. In certain embodiments, a viral polymerase protein can be present during transcription of the Pichinde virus genomic segment *in vitro* or *in vivo*.

[0088] In certain embodiments transcription of the Pichinde virus genomic segment is performed using a bi-directional promoter. In other embodiments, transcription of the Pichinde virus genomic segment is performed using a bi-directional expression cassette (see *e.g.*, Ortiz-Riaño *et al.*, 2013, *J Gen Virol.*, 94(Pt 6): 1175–1188). In more specific embodiments the bi-directional expression cassette comprises both a polymerase I and a polymerase II promoter reading from opposite sides into the two termini of the inserted Pichinde virus genomic segment, respectively. In yet more specific embodiments the bi-directional expression cassette with pol-I and pol-II promoters read from opposite sides into the L segment and S segment

[0089] In other embodiments, transcription of the cDNA of the Pichinde virus genomic segment described herein comprises a promoter. Specific examples of promoters include an RNA polymerase I promoter, an RNA polymerase II promoter, an RNA polymerase III promoter, a T7 promoter, an SP6 promoter or a T3 promoter.

[0090] In certain embodiments, the method of producing the Pichinde virus genomic segment can further comprise introducing into a host cell the cDNA of the Pichinde virus genomic segment. In certain embodiments, the method of producing the Pichinde virus genomic segment can further comprise introducing into a host cell the cDNA of the Pichinde virus genomic segment, wherein the host cell expresses all other components for production of the Pichinde virus genomic segment; and purifying the Pichinde virus genomic segment from the supernatant of the host cell. Such methods are well-known to those skilled in the art.

[0091] Provided herein are cell lines, cultures and methods of culturing cells infected with nucleic acids, vectors, and compositions provided herein. More detailed description of nucleic acids, vector systems and cell lines described herein is provided in Section 4.5.

[0092] In certain embodiments, the Pichinde virus particle as described herein results in an infectious and replication competent Pichinde virus particle. In specific embodiments, the Pichinde virus particle described herein is attenuated. In a particular embodiment, the Pichinde virus particle is attenuated such that the virus remains, at least partially, able to spread and can replicate *in vivo*, but can only generate low viral loads resulting in subclinical levels of infection that are non-pathogenic. Such attenuated viruses can be used as an immunogenic composition. Provided herein, are immunogenic compositions that comprise a Pichinde virus with an ORF in a non-natural position as described in Section 4.7.

4.1.1 Replication-Defective Pichinde Virus Particle with an Open Reading Frame in a Non-natural Position

[0093] In certain embodiments, provided herein is a Pichinde virus particle in which (i) an ORF is in a position other than the wild-type position of the ORF; and (ii) an ORF encoding GP, NP, Z protein, and L protein has been removed or functionally inactivated such that the resulting virus cannot produce further infectious progeny virus particles. A Pichinde virus particle comprising a genetically modified genome in which one or more ORFs has been deleted or functionally inactivated can be produced in complementing cells (*i.e.*, cells that express the Pichinde virus ORF that has been deleted or functionally inactivated). The genetic material of the resulting Pichinde virus particle can be transferred upon infection of a host cell into the host cell, wherein the genetic material can be expressed and amplified. In addition, the genome of the genetically modified Pichinde virus particle described herein can encode a heterologous ORF from an organism other than a Pichinde virus particle.

[0094] In certain embodiments, at least one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In another embodiment, at least one ORF, at least two ORFs, at least three ORFs, or at least four ORFs encoding GP, NP, Z protein and L protein can be removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In specific embodiments, only one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus particle. In more specific embodiments, the ORF that encodes GP of the Pichinde virus genomic segment is removed. In another specific embodiment, the ORF that encodes the NP of the Pichinde virus genomic segment is removed. In more specific embodiments, the ORF that encodes the Z

protein of the Pichinde virus genomic segment is removed. In yet another specific embodiment, the ORF encoding the L protein is removed.

[0095] Thus, in certain embodiments, the Pichinde virus particle provided herein comprises a genomic segment that (i) is engineered to carry an ORF in a non-natural position; (ii) an ORF encoding GP, NP, Z protein, or L protein is removed; (iii) the ORF that is removed is replaced with a heterologous ORF from an organism other than a Pichinde virus.

[0096] In certain embodiments, the heterologous ORF is 8 to 100 nucleotides in length, 15 to 100 nucleotides in length, 25 to 100 nucleotides in length, 50 to 200 nucleotide in length, 50 to 400 nucleotide in length, 200 to 500 nucleotide in length, or 400 to 600 nucleotides in length, 500 to 800 nucleotide in length. In other embodiments, the heterologous ORF is 750 to 900 nucleotides in length, 800 to 1000 nucleotides in length, 850 to 1000 nucleotides in length, 900 to 1200 nucleotides in length, 1000 to 1200 nucleotides in length, 1000 to 1500 nucleotides or 10 to 1500 nucleotides in length, 1500 to 2000 nucleotides in length, 1700 to 2000 nucleotides in length, 2000 to 2300 nucleotides in length, 2200 to 2500 nucleotides in length, 2500 to 3000 nucleotides in length, 3000 to 3200 nucleotides in length, 3000 to 3500 nucleotides in length, 3200 to 3600 nucleotides in length, 3300 to 3800 nucleotides in length, 4000 nucleotides to 4400 nucleotides in length, 4200 to 4700 nucleotides in length, 4800 to 5000 nucleotides in length, 5000 to 5200 nucleotides in length, 5200 to 5500 nucleotides in length, 5500 to 5800 nucleotides in length, 5800 to 6000 nucleotides in length, 6000 to 6400 nucleotides in length, 6200 to 6800 nucleotides in length, 6600 to 7000 nucleotides in length, 7000 to 7200 nucleotides in lengths, 7200 to 7500 nucleotides in length, or 7500 nucleotides in length. In some embodiments, the heterologous ORF encodes a peptide or polypeptide that is 5 to 10 amino acids in length, 10 to 25 amino acids in length, 25 to 50 amino acids in length, 50 to 100 amino acids in length, 100 to 150 amino acids in length, 150 to 200 amino acids in length, 200 to 250 amino acids in length, 250 to 300 amino acids in length, 300 to 400 amino acids in length, 400 to 500 amino acids in length, 500 to 750 amino acids in length, 750 to 1000 amino acids in length, 1000 to 1250 amino acids in length, 1250 to 1500 amino acids in length, 1500 to 1750 amino acids in length, 1750 to 2000 amino acids in length, 2000 to 2500 amino acids in length, or more than 2500 or more amino acids in length. In some embodiments, the heterologous ORF encodes a polypeptide that does not exceed 2500 amino acids in length. In specific embodiments the heterologous ORF does not contain a stop codon. In certain embodiments, the heterologous ORF is codon-

optimized. In certain embodiments the nucleotide composition, nucleotide pair composition or both can be optimized. Techniques for such optimizations are known in the art and can be applied to optimize a heterologous ORF.

[0097] Any heterologous ORF from an organism other than a Pichinde virus may be included in a Pichinde virus genomic segment. In one embodiment, the heterologous ORF encodes a reporter protein. More detailed description of reporter proteins are described in Section 4.3. In another embodiment, the heterologous ORF encodes an antigen for an infectious pathogen or an antigen associated with any disease that is capable of eliciting an immune response. In specific embodiments the antigen is derived from an infectious organism, a tumor (*i.e.*, cancer), or an allergen. More detailed description on heterologous ORFs is described in Section 4.3.

[0098] In certain embodiments, the growth and infectivity of the Pichinde virus particle is not affected by the heterologous ORF from an organism other than a Pichinde virus.

[0099] Techniques known to one skilled in the art may be used to produce a Pichinde virus particle comprising a Pichinde virus genomic segment engineered to carry a Pichinde virus ORF in a position other than the wild-type position. For example, reverse genetics techniques may be used to generate such Pichinde virus particle. In other embodiments, the replication-defective Pichinde virus particle (*i.e.*, the Pichinde virus genomic segment engineered to carry a Pichinde virus ORF in a position other than the wild-type position, wherein an ORF encoding GP, NP, Z protein, L protein, has been deleted) can be produced in a complementing cell.

[00100] In certain embodiments, the present application relates to the Pichinde virus particle as described herein suitable for use as a vaccine and methods of using such Pichinde virus particle in a vaccination and treatment or prevention of, for example, infections or cancers. More detailed description of the methods of using the Pichinde virus particle described herein is provided in Section 4.6

[00101] In certain embodiments, provided herein is a kit comprising, in one or more containers, one or more cDNAs described herein. In a specific embodiment, a kit comprises, in one or two or more containers a Pichinde virus genomic segment or a Pichinde virus particle as described herein. The kit may further comprise one or more of the following: a host cell suitable for rescue of the Pichinde virus genomic segment or the Pichinde virus particle, reagents suitable for transfecting plasmid cDNA into a host cell, a helper virus, plasmids encoding viral proteins

and/or one or more primers specific for an modified Pichinde virus genomic segment or Pichinde virus particle or cDNAs of the same.

[00102] In certain embodiments, the present application relates to the Pichinde virus particle as described herein suitable for use as a pharmaceutical composition and methods of using such Pichinde virus particle in a vaccination and treatment or prevention of, for example, infections and cancers. More detailed description of the methods of using the Pichinde virus particle described herein is provided in Section 4.7.

4.2 Tri-segmented Pichinde Virus Particle

[00103] Provided herein are tri-segmented Pichinde virus particles with rearrangements of their ORFs. In one aspect, provided herein is a tri-segmented Pichinde virus particle comprising one L segment and two S segments or two L segments and one S segment. In certain embodiments, the tri-segmented Pichinde virus particle does not recombine into a replication competent bi-segmented Pichinde virus particle. More specifically, in certain embodiments, two of the genomic segments (*e.g.*, the two S segments or the two L segments, respectively) cannot recombine in a way to yield a single viral segment that could replace the two parent segments. In specific embodiments, the tri-segmented Pichinde virus particle comprises an ORF in a position other than the wild-type position of the ORF. In yet another specific embodiment, the tri-segmented Pichinde virus particle comprises all four Pichinde virus ORFs. Thus, in certain embodiments, the tri-segmented Pichinde virus particle is replication competent and infectious. In other embodiments, the tri-segmented Pichinde virus particle lacks one of the four Pichinde virus ORFs. Thus, in certain embodiments, the tri-segmented Pichinde virus particle is infectious but unable to produce further infectious progeny in non-complementing cells.

[00104] In certain embodiments, the ORF encoding GP, NP, Z protein, or the L protein of the tri-segmented Pichinde virus particle described herein can be under the control of a Pichinde virus 3' UTR or a Pichinde virus 5' UTR. In more specific embodiments, the tri-segmented Pichinde virus 3' UTR is the 3' UTR of a Pichinde virus S segment(s). In another specific embodiment, the tri-segmented Pichinde virus 3' UTR is the 3' UTR of a tri-segmented Pichinde virus L segment(s). In more specific embodiments, the tri-segmented Pichinde virus 5' UTR is the 5' UTR of a Pichinde virus S segment(s). In other specific embodiments, the 5' UTR is the 5' UTR of the L segment(s).

[00105] In other embodiments, the ORF encoding GP, NP, Z protein, or the L protein of tri-segmented Pichinde virus particle described herein can be under the control of the arenavirus conserved terminal sequence element (the 5'- and 3'-terminal 19-21-nt regions) (see e.g., Perez & de la Torre, 2003, J Virol. 77(2): 1184–1194).

[00106] In certain embodiments, the ORF encoding GP, NP, Z protein or the L protein of the tri-segmented Pichinde virus particle can be under the control of the promoter element of the 5' UTR (see e.g., Albarino *et al.*, 2011, J Virol., 85(8):4020-4). In another embodiment, the ORF encoding GP, NP Z protein, L protein of the tri-segmented Pichinde virus particle can be under the control of the promoter element of the 3' UTR (see e.g., Albarino *et al.*, 2011, J Virol., 85(8):4020-4). In more specific embodiments, the promoter element of the 5' UTR is the 5' UTR promoter element of the S segment(s) or the L segment(s). In another specific embodiment, the promoter element of the 3' UTR is the 3' UTR the promoter element of the S segment(s) or the L segment(s).

[00107] In certain embodiments, the ORF that encoding GP, NP, Z protein or the L protein of the tri-segmented Pichinde virus particle can be under the control of a truncated Pichinde virus 3' UTR or a truncated Pichinde virus 5' UTR (see e.g., Perez & de la Torre, 2003, J Virol. 77(2): 1184–1194; Albarino *et al.*, 2011, J Virol., 85(8):4020-4). In more specific embodiments, the truncated 3' UTR is the 3' UTR of the Pichinde virus S segment or L segment. In more specific embodiments, the truncated 5' UTR is the 5' UTR of the Pichinde virus S segment(s) or L segment(s).

[00108] Also provided herein, is a cDNA of the tri-segmented Pichinde virus particle. In more specific embodiments, provided herein is a DNA nucleotide sequence or a set of DNA nucleotide sequences encoding a tri-segmented Pichinde virus particle as set forth in Table 2 or Table 3.

[00109] In certain embodiments, a nucleic acid encoding a tri-segmented Pichinde virus genome segment described herein can have at least a certain sequence identity to a nucleic acid sequence disclosed herein. Accordingly, in some aspects, a nucleic acid encoding a tri-segmented Pichinde virus genome segment has a nucleic acid sequence of at least 80% identity, at least 85% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity, or at least 99% identity, or is identical, to a nucleic acid sequence

disclosed herein by SEQ ID NO or a nucleic acid sequence that hybridizes to a nucleic acid sequence disclosed herein by SEQ ID NO. Hybridization conditions can include highly stringent, moderately stringent, or low stringency hybridization conditions that are well known to one of skill in the art such as those described herein. Similarly, a nucleic acid that can be used in generating a tri-segmented Pichinde virus genome segment as described herein can have a certain percent sequence identity to a nucleic acid disclosed herein by SEQ ID NO or a nucleic acid that hybridizes to a nucleic acid sequence disclosed herein by SEQ ID NO. For example, the nucleic acid that is used to generate a tri-segmented Pichinde virus genome segment can have at least 80% identity, at least 85% identity, at least 90% identity, at least 91% identity, at least 92% identity, at least 93% identity, at least 94% identity, at least 95% identity, at least 96% identity, at least 97% identity, at least 98% identity or at least 99% identity, or be identical, to a nucleic acid sequence described herein.

[00110] In certain embodiments, the nucleic acids encoding the tri-segmented Pichinde virus genome are part of or incorporated into one or more DNA expression vectors. In a specific embodiment, nucleic acids encoding the genome of the tri-segmented Pichinde virus particle is part of or incorporated into one or more DNA expression vectors that facilitate production of a tri-segmented Pichinde virus particle as described herein. In another embodiment, a cDNA described herein can be incorporated into a plasmid. More detailed description of the cDNAs and expression systems are provided in Section 4.5.1. Techniques for the production of a cDNA routine and conventional techniques of molecular biology and DNA manipulation and production. Any cloning technique known to the skilled artesian can be used. Such techniques are well known and are available to the skilled artesian in laboratory manuals such as, Sambrook and Russell, Molecular Cloning: A laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory N.Y. (2001).

[00111] In certain embodiments, the cDNA of the tri-segmented Pichinde virus is introduced (*e.g.*, transfected) into a host cell. Thus, in some embodiments provided herein, is a host cell comprising a cDNA of the tri-segmented Pichinde virus particle (*i.e.*, a cDNA of the genomic segments of the tri-segmented Pichinde virus particle). In other embodiments, the cDNA described herein that is part of or can be incorporated into a DNA expression vector and introduced into a host cell. Thus, in some embodiments provided herein is a host cell comprising a cDNA described herein that is incorporated into a vector. In other embodiments, the tri-

segmented Pichinde virus genomic segments (*i.e.*, the L segment and/or S segment or segments) described herein is introduced into a host cell.

[00112] In certain embodiments, described herein is a method of producing the tri-segmented Pichinde virus particle, wherein the method comprises transcribing the cDNA of the tri-segmented Pichinde virus particle. In certain embodiments, a viral polymerase protein can be present during transcription of the tri-segmented Pichinde virus particle *in vitro* or *in vivo*. In certain embodiments, transcription of the Pichinde virus genomic segment is performed using a bi-directional promoter.

[00113] In other embodiments, transcription of the Pichinde virus genomic segment is performed using a bi-directional expression cassette (see *e.g.*, Ortiz-Riaño *et al.*, 2013, *J Gen Virol.*, 94(Pt 6): 1175–1188). In more specific embodiments the bi-directional expression cassette comprises both a polymerase I and a polymerase II promoter reading from opposite sides into the two termini of the inserted Pichinde virus genomic segment, respectively.

[00114] In other embodiments, transcription of the cDNA of the Pichinde virus genomic segment described herein comprises a promoter. Specific examples of promoters include an RNA polymerase I promoter, an RNA polymerase II promoter, an RNA polymerase III promoter, a T7 promoter, an SP6 promoter or a T3 promoter.

[00115] In certain embodiments, the method of producing the tri-segmented Pichinde virus particle can further comprise introducing into a host cell the cDNA of the tri-segmented Pichinde virus particle. In certain embodiments, the method of producing the tri-segmented Pichinde virus particle can further comprise introducing into a host cell the cDNA of the tri-segmented Pichinde virus particle, wherein the host cell expresses all other components for production of the tri-segmented Pichinde virus particle; and purifying the tri-segmented Pichinde virus particle from the supernatant of the host cell. Such methods are well-known to those skilled in the art.

[00116] Provided herein are cell lines, cultures and methods of culturing cells infected with nucleic acids, vectors, and compositions provided herein. More detailed description of nucleic acids, vector systems and cell lines described herein is provided in Section 4.5.

[00117] In certain embodiments, the tri-segmented Pichinde virus particle as described herein results in an infectious and replication competent Pichinde virus particle. In specific embodiments, the Pichinde virus particle described herein is attenuated. In a particular embodiment, the tri-segmented Pichinde virus particle is attenuated such that the virus remains,

at least partially, replication-competent and can replicate *in vivo*, but can only generate low viral loads resulting in subclinical levels of infection that are non-pathogenic. Such attenuated viruses can be used as an immunogenic composition.

[00118] In certain embodiments, the tri-segmented Pichinde virus particle has the same tropism as the bi-segmented Pichinde virus particle.

[00119] Also provided herein is a kit comprising, in one or more containers, one or more cDNAs described herein. In a specific embodiment, a kit comprises, in one or two or more containers a tri-segmented Pichinde virus particle as described herein. The kit may further comprise one or more of the following: a host cell suitable for rescue of the tri-segmented Pichinde virus particle, reagents suitable for transfecting plasmid cDNA into a host cell, a helper virus, plasmids encoding viral proteins and/or one or more oligonucleotide primers specific for a modified Pichinde virus genomic segment or Pichinde virus particle or nucleic acids encoding the same.

[00120] Also provided herein are immunogenic compositions that comprise the tri-segmented Pichinde virus particle as described in Section 4.6 and 4.7.

4.2.1 Tri-segmented Pichinde Virus Particle comprising one L segment and two S segments

[00121] In one aspect, provided herein is a tri-segmented Pichinde virus particle comprising one L segment and two S segments. In certain embodiments, propagation of the tri-segmented Pichinde virus particle comprising one L segment and two S segments does not result in a replication-competent bi-segmented viral particle. In specific embodiments, propagation of the tri-segmented Pichinde virus particle comprising one L segment and two S segments does not result in a replication-competent bi-segmented viral particle after at least 10 days, at least 20 days, at least 30 days, at least 40 days, at least 50 days, at least 60 days, at least 70 days, at least 80 days, at least 90 days, or at least 100 days of persistent infection in mice lacking type I interferon receptor, type II interferon receptor and recombination activating gene (RAG1), and having been infected with 10^4 PFU of the tri-segmented Pichinde virus particle (see Section 4.8.13). In other embodiments, propagation of the tri-segmented Pichinde virus particle comprising one L segment and two S segments does not result in a replication-competent bi-segmented viral particle after at least 10 passages, at least 20 passages, at least 30 passages, at least 40 passages, or at least 50 passages.

[00122] In certain embodiments, inter-segmental recombination of the two S segments of the tri-segmented Pichinde virus particle, provided herein, that unites the two arenaviral ORFs on one instead of two separate segments results in a non functional promoter (*i.e.*, a genomic segment of the structure: 5' UTR-----5' UTR or a 3' UTR-----3' UTR), wherein each UTR forming one end of the genome is an inverted repeat sequence of the other end of the same genome.

[00123] In certain embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments has been engineered to carry a Pichinde virus ORF in a position other than the wild-type position of the ORF. In other embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments has been engineered to carry two Pichinde virus ORFs, or three Pichinde virus ORFs, or four Pichinde virus ORFs, or five Pichinde virus ORFs, or six Pichinde virus ORFs in a position other than the wild-type position. In specific embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments comprises a full complement of all four Pichinde virus ORFs. Thus, in some embodiments, the tri-segmented Pichinde virus particle is an infectious and replication competent tri-segmented Pichinde virus particle. In specific embodiments, the two S segments of the tri-segmented Pichinde virus particle have been engineered to carry one of their ORFs in a position other than the wild-type position. In more specific embodiments, the two S segments comprise a full complement of the S segment ORF's. In certain specific embodiments, the L segment has been engineered to carry an ORF in a position other than the wild-type position or the L segment can be the wild-type genomic segment.

[00124] In certain embodiments, one of the two S segments can be:

- (i) a Pichinde virus S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 5' UTR;
- (ii) a Pichinde virus S segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iii) a Pichinde virus S segment, wherein the ORF encoding the NP is under control of a Pichinde virus 5' UTR;
- (iv) a Pichinde virus S segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) a Pichinde virus S segment, wherein the ORF encoding the L is under control of a Pichinde virus 3' UTR; and

(vi) a Pichinde virus S segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[00125] In certain embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments can comprise a duplicate ORF (*i.e.*, two wild-type S segment ORFs *e.g.*, GP or NP). In specific embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments can comprise one duplicate ORF (*e.g.*, (GP, GP)) or two duplicate ORFs (*e.g.*, (GP, GP) and (NP, NP)).

[00126] Table 2A, below, is an illustration of the genome organization of a tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein intersegmental recombination of the two S segments in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the resulting recombined S segment is made up of two 3'UTRs instead of a 3' UTR and a 5' UTR).

Table 2A

Tri-segmented Pichinde virus particle comprising one L segment and two S segments

Position 1 is under the control of a Pichinde virus S segment 5' UTR; Position 2 is under the control of a Pichinde virus S segment 3' UTR; Position 3 is under the control of a Pichinde virus S segment 5' UTR; Position 4 under the control of a Pichinde virus S segment 3' UTR; Position 5 is under the control of a Pichinde virus L segment 5' UTR; Position 6 is under the control of a Pichinde virus L segment 3' UTR.

*ORF indicates that a heterologous ORF has been inserted.

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
*ORF	GP	*ORF	NP	Z	L
*ORF	NP	*ORF	GP	Z	L
*ORF	NP	*ORF	GP	L	Z
*ORF	NP	*ORF	Z	L	GP
*ORF	NP	Z	GP	*ORF	Z
*ORF	NP	Z	GP	Z	*ORF
*ORF	NP	*ORF	L	Z	GP
*ORF	L	*ORF	NP	Z	GP
*ORF	L	Z	NP	*ORF	GP
*ORF	L	*ORF	GP	Z	NP
*ORF	L	Z	GP	*ORF	NP
*ORF	Z	L	NP	*ORF	GP

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
*ORF	Z	*ORF	GP	L	NP
*ORF	Z	L	GP	*ORF	NP
L	GP	*ORF	NP	*ORF	Z
L	GP	*ORF	*ORF	Z	NP
L	GP	*ORF	Z	*ORF	NP
L	*ORF	Z	GP	*ORF	NP
L	GP	*ORF	NP	*ORF	Z
L	GP	*ORF	Z	*ORF	NP
L	GP	Z	NP	*ORF	*ORF
L	GP	Z	NP	*ORF	*ORF
L	*ORF	Z	NP	*ORF	GP
L	NP	*ORF	Z	*ORF	GP
L	NP	Z	*ORF	GP	*ORF
L	*ORF	Z	*ORF	GP	NP
L	NP	Z	GP	*ORF	*ORF
L	NP	*ORF	Z	*ORF	GP
L	*ORF	Z	NP	*ORF	GP
L	Z	*ORF	GP	*ORF	NP
L	Z	*ORF	NP	*ORF	GP
Z	GP	*ORF	NP	*ORF	L
Z	GP	*ORF	*ORF	L	NP
Z	GP	*ORF	L	*ORF	NP
Z	*ORF	L	GP	*ORF	NP
Z	GP	*ORF	NP	*ORF	L
Z	GP	*ORF	L	*ORF	NP
Z	GP	L	NP	*ORF	*ORF
Z	GP	L	NP	*ORF	*ORF
Z	*ORF	L	NP	*ORF	GP
Z	NP	*ORF	*ORF	L	GP
Z	NP	*ORF	GP	*ORF	L
Z	NP	*ORF	*ORF	L	GP
Z	NP	*ORF	L	*ORF	GP
Z	NP	L	GP	*ORF	*ORF
Z	*ORF	L	GP	*ORF	NP
Z	NP	*ORF	GP	*ORF	L
Z	NP	*ORF	L	*ORF	GP
Z	*ORF	L	NP	*ORF	GP
Z	L	*ORF	GP	*ORF	NP

[00127] In certain embodiments, the IGR between position one and position two can be a Pichinde virus S segment or L segment IGR; the IGR between position two and three can be a Pichinde virus S segment or L segment IGR; and the IGR between the position five and six can be a Pichinde virus L segment IGR. In a specific embodiment, the IGR between position one

and position two can be a Pichinde virus S segment IGR; the IGR between position two and three can be a Pichinde virus S segment IGR; and the IGR between the position five and six can be a Pichinde virus L segment IGR. In certain embodiments, other combinations are also possible. For example, a tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein intersegmental recombination of the two S segments in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the resulting recombined S segment is made up of two 5'UTRs instead of a 3' UTR and a 5' UTR).

[00128] In certain embodiments, intersegmental recombination of an S segment and an L segment in the tri-segmented Pichinde virus particle comprising one L segment and two S segments, restores a functional segment with two viral genes on only one segment instead of two separate segments. In other embodiments, intersegmental recombination of an S segment and an L segment in the tri-segmented Pichinde virus particle comprising one L segment and two S segments does not result in a replication-competent bi-segmented viral particle.

[00129] Table 2B, below, is an illustration of the genome organization of a tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein intersegmental recombination of an S segment and an L segment in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the resulting recombined S segment is made up of two 3'UTRs instead of a 3' UTR and a 5' UTR).

Table 2B

Tri-segmented Pichinde virus particle comprising one L segment and two S segments

Position 1 is under the control of a Pichinde virus S segment 5' UTR; Position 2 is under the control of a Pichinde virus S segment 3' UTR; Position 3 is under the control of a Pichinde virus S segment 5' UTR; Position 4 under the control of a Pichinde virus S segment 3' UTR; Position 5 is under the control of a Pichinde virus L segment 5' UTR; Position 6 is under the control of a Pichinde virus L segment 3' UTR.

*ORF indicates that a heterologous ORF has been inserted.

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
L	GP	*ORF	NP	Z	*ORF
L	GP	Z	*ORF	*ORF	NP

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
L	GP	*ORF	NP	Z	*ORF
L	GP	Z	*ORF	*ORF	NP
L	NP	*ORF	GP	Z	*ORF
L	NP	Z	*ORF	*ORF	GP
L	NP	*ORF	GP	Z	*ORF
L	NP	Z	*ORF	*ORF	GP
Z	GP	*ORF	NP	L	*ORF
Z	GP	L	*ORF	*ORF	NP
Z	GP	*ORF	NP	L	*ORF
Z	NP	L	*ORF	*ORF	GP
Z	NP	*ORF	GP	L	*ORF
Z	NP	L	*ORF	*ORF	GP

[00130] In certain embodiments, the IGR between position one and position two can be a Pichinde virus S segment or L segment IGR; the IGR between position two and three can be a Pichinde virus S segment or L segment IGR; and the IGR between the position five and six can be a Pichinde virus L segment IGR. In a specific embodiment, the IGR between position one and position two can be a Pichinde virus S segment IGR; the IGR between position two and three can be a Pichinde virus S segment IGR; and the IGR between the position five and six can be a Pichinde virus L segment IGR. In certain embodiments, other combinations are also possible. For example, a tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein intersegmental recombination of the two S segments in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the resulting recombined S segment is made up of two 5'UTRs instead of a 3' UTR and a 5' UTR).

[00131] In certain embodiments, one of skill in the art could construct a Pichinde virus genome with an organization as illustrated in Table 2A or 2B and as described herein, and then use an assay as described in Section 4.8 to determine whether the tri-segmented Pichinde virus particle is genetically stable, *i.e.*, does not result in a replication-competent bi-segmented viral particle as discussed herein.

4.2.2 Tri-segmented Pichinde Virus Particle comprising two L segments and one S segment

[00132] In one aspect, provided herein is a tri-segmented Pichinde virus particle comprising two L segments and one S segment. In certain embodiments, propagation of the tri-segmented Pichinde virus particle comprising two L segments and one S segment does not result in a

replication-competent bi-segmented viral particle. In specific embodiments, propagation of the tri-segmented Pichinde virus particle comprising two L segments and one S segment does not result in a replication-competent bi-segmented viral particle after at least 10 days, at least 20 days, at least 30 days, at least 40 days, or at least 50 days, at least 60 days, at least 70 days, at least 80 days, at least 90 days, at least 100 days of persistent in mice lacking type I interferon receptor, type II interferon receptor and recombination activating gene (RAG1), and having been infected with 10^4 PFU of the tri-segmented Pichinde virus particle (see Section 4.8.13). In other embodiments, propagation of the tri-segmented Pichinde virus particle comprising two L segments and one S segment does not result in a replication-competent bi-segmented viral particle after at least 10 passages, 20 passages, 30 passages, 40 passages, or 50 passages.

[00133] In certain embodiments, inter-segmental recombination of the two L segments of the tri-segmented Pichinde virus particle, provided herein, that unites the two Pichinde virus ORFs on one instead of two separate segments results in a non functional promoter (*i.e.*, a genomic segment of the structure: 5' UTR-----5' UTR or a 3' UTR-----3' UTR), wherein each UTR forming one end of the genome is an inverted repeat sequence of the other end of the same genome.

[00134] In certain embodiments, the tri-segmented Pichinde virus particle comprising two L segments and one S segment has been engineered to carry a Pichinde virus ORF in a position other than the wild-type position of the ORF. In other embodiments, the tri-segmented Pichinde virus particle comprising two L segments and one S segment has been engineered to carry two Pichinde virus ORFs, or three Pichinde virus ORFs, or four Pichinde virus ORFs, or five Pichinde virus ORFs, or six Pichinde virus ORFs in a position other than the wild-type position. In specific embodiments, the tri-segmented Pichinde virus particle comprising two L segments and one S segment comprises a full complement of all four Pichinde virus ORFs. Thus, in some embodiments, the tri-segmented Pichinde virus particle is an infectious and replication competent tri-segmented Pichinde virus particle. In specific embodiments, the two L segments of the tri-segmented Pichinde virus particle have been engineered to carry one of their ORFs in a position other than the wild-type position. In more specific embodiments, the two L segments comprise a full complement of the L segment ORF's. In certain specific embodiments, the S segment has been engineered to carry one of their ORFs in a position other than the wild-type position or the S segment can be the wild-type genomic segment.

[00135] In certain embodiments, one of the two L segments can be:

- (i) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 5' UTR;
- (ii) an L segment, wherein the ORF encoding NP is under control of a Pichinde virus 5' UTR;
- (iii) an L segment, wherein the ORF encoding the L protein is under control of a Pichinde virus 5' UTR;
- (iv) an L segment, wherein the ORF encoding the GP is under control of a Pichinde virus 3' UTR;
- (v) an L segment, wherein the ORF encoding the NP is under control of a Pichinde virus 3' UTR; and
- (vi) an L segment, wherein the ORF encoding the Z protein is under control of a Pichinde virus 3' UTR.

[00136] In certain embodiments, the tri-segmented Pichinde virus particle comprising one L segment and two S segments can comprise a duplicate ORF (*i.e.*, two wild-type L segment ORFs *e.g.*, Z protein or L protein). In specific embodiments, the tri-segmented Pichinde virus particle comprising two L segments and one S segment can comprise one duplicate ORF (*e.g.*, (Z protein, Z protein)) or two duplicate ORFs (*e.g.*, (Z protein, Z protein) and (L protein, L protein)).

[00137] Table 3, below, is an illustration of the genome organization of a tri-segmented Pichinde virus particle comprising two L segments and one S segment, wherein intersegmental recombination of the two L segments in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the putatively resulting recombinant L segment would be made up of two 3'UTRs or two 5' UTRs instead of a 3' UTR and a 5' UTR). Based on Table 3 similar combinations could be predicted for generating a Pichinde virus particle made up of two 5' UTRs instead of a 3' UTR and a 5' UTR.

Table 3

Tri-segmented Pichinde virus particle comprising two L segments and one S segment

*Position 1 is under the control of a Pichinde virus L segment 5' UTR; position 2 is under the control of a Pichinde virus L segment 3' UTR; position 3 is under the control of a Pichinde virus

L segment 5' UTR; position 4 is under the control of a Pichinde virus L segment 3' UTR; position 5 is under the control of a Pichinde virus S segment 5' UTR; position 6 is under the control of a Pichinde virus S segment 3' UTR.

* ORF indicates that a heterologous ORF has been inserted.

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
ORF*	Z	ORF*	L	NP	GP
ORF*	Z	ORF*	L	GP	NP
ORF*	Z	GP	L	ORF*	NP
ORF*	Z	ORF*	GP	NP	L
ORF*	Z	GP	ORF*	NP	L
ORF*	Z	NP	ORF*	GP	L
ORF*	ORF*	NP	Z	GP	L
ORF*	Z	GP	NP	ORF*	L
ORF*	Z	NP	GP	ORF*	L
ORF*	L	ORF*	Z	NP	GP
ORF*	L	ORF*	Z	GP	NP
ORF*	L	ORF*	GP	NP	Z
ORF*	L	GP	Z	ORF*	NP
ORF*	L	ORF*	GP	NP	Z
ORF*	L	NP	Z	ORF*	GP
ORF*	L	GP	NP	ORF*	Z
ORF*	L	NP	GP	ORF*	Z
ORF*	GP	ORF*	L	NP	Z
ORF*	GP	NP	L	ORF*	Z
ORF*	GP	ORF*	Z	NP	L
ORF*	GP	NP	Z	ORF*	L
ORF*	NP	ORF*	L	GP	Z
ORF*	NP	GP	L	ORF*	Z
ORF*	NP	GP	Z	ORF*	L
ORF*	NP	ORF*	Z	GP	L
ORF*	L	ORF*	Z	NP	GP
ORF*	L	ORF*	Z	GP	NP
ORF*	L	ORF*	NP	GP	Z
ORF*	L	ORF*	GP	NP	Z
ORF*	L	NP	Z	ORF*	GP
ORF*	Z	ORF*	GP	NP	L
ORF*	Z	GP	L	ORF*	NP
ORF*	Z	NP	GP	ORF*	L
ORF*	Z	GP	NP	ORF*	L
ORF*	GP	ORF*	L	NP	Z
ORF*	GP	ORF*	L	Z	NP
ORF*	GP	ORF*	Z	GP	L
ORF*	GP	NP	L	ORF*	Z

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
GP	L	ORF*	Z	ORF*	NP
GP	L	ORF*	NP	ORF*	Z
GP	Z	ORF*	L	ORF*	NP
GP	Z	ORF*	L	ORF*	NP
GP	Z	ORF*	NP	ORF*	L
GP	NP	ORF*	Z	ORF*	L
NP	L	ORF*	Z	ORF*	GP
NP	L	ORF*	GP	ORF*	Z
NP	L	ORF*	Z	ORF*	GP

[00138] In certain embodiments, the IGR between position one and position two can be a Pichinde virus S segment or L segment IGR; the IGR between position two and three can be a Pichinde virus S segment or L segment IGR; and the IGR between the position five and six can be a Pichinde virus S segment or L segment IGR. In a specific embodiment, the IGR between position one and position two can be a Pichinde virus L segment IGR; the IGR between position two and three can be a Pichinde virus L segment IGR; and the IGR between the position five and six can be a Pichinde virus S segment IGR. In certain embodiments, other combinations are also possible.

[00139] In certain embodiments intersegmental recombination of an L segment and an S segment from the tri-segmented Pichinde virus particle comprising two L segments and one S segment restores a functional segment with two viral genes on only one segment instead of two separate segments. In other embodiments, intersegmental recombination of an L segment and an S segment in the tri-segmented Pichinde virus particle comprising two L segments and one S segment does not result in a replication-competent bi-segmented viral particle..

[00140] Table 3B, below, is an illustration of the genome organization of a tri-segmented Pichinde virus particle comprising two L segments and one S segment, wherein intersegmental recombination of an L segment and an S segment in the tri-segmented Pichinde virus genome does not result in a replication-competent bi-segmented viral particle and abrogates arenaviral promoter activity (*i.e.*, the resulting recombined S segment is made up of two 3'UTRs instead of a 3' UTR and a 5' UTR).

Table 3B

Tri-segmented Pichinde virus particle comprising two L segments and one S segment

*Position 1 is under the control of a Pichinde virus L segment 5' UTR; position 2 is under the control of a Pichinde virus L segment 3' UTR; position 3 is under the control of a Pichinde virus L segment 5' UTR; position 4 is under the control of a Pichinde virus L segment 3' UTR; position 5 is under the control of a Pichinde virus S segment 5' UTR; position 6 is under the control of a Pichinde virus S segment 3' UTR.

* ORF indicates that a heterologous ORF has been inserted.

Position 1	Position 2	Position 3	Position 4	Position 5	Position 6
NP	Z	*ORF	GP	L	*ORF
NP	Z	GP	*ORF	*ORF	L
NP	Z	*ORF	GP	L	*ORF
NP	Z	GP	*ORF	*ORF	L
NP	L	*ORF	GP	Z	*ORF
NP	L	GP	*ORF	*ORF	Z
NP	L	*ORF	GP	Z	*ORF
NP	L	GP	*ORF	*ORF	Z
GP	Z	*ORF	NP	L	*ORF
GP	Z	NP	*ORF	*ORF	L
GP	Z	*ORF	NP	L	*ORF
GP	L	NP	*ORF	*ORF	Z
GP	L	*ORF	NP	Z	*ORF
GP	L	NP	*ORF	*ORF	Z

[00141] In certain embodiments, the IGR between position one and position two can be a Pichinde virus S segment or L segment IGR; the IGR between position two and three can be a Pichinde virus S segment or L segment IGR; and the IGR between the position five and six can be a Pichinde virus S segment or L segment IGR. In a specific embodiment, the IGR between position one and position two can be a Pichinde virus L segment IGR; the IGR between position two and three can be a Pichinde virus L segment IGR; and the IGR between the position five and six can be a Pichinde virus S segment IGR. In certain embodiments, other combinations are also possible.

[00142] In certain embodiments, one of skill in the art could construct a Pichinde virus genome with an organization as illustrated in Table 3A or 3B and as described herein, and then use an assay as described in Section 4.8 to determine whether the tri-segmented Pichinde virus particle is genetically stable, *i.e.*, does not result in a replication-competent bi-segmented viral particle as discussed herein.

4.2.3 Replication-Defective Tri-segmented Pichinde Virus Particle

[00143] In certain embodiments, provided herein is a tri-segmented Pichinde virus particle in which (i) an ORF is in a position other than the wild-type position of the ORF; and (ii) an ORF encoding GP, NP, Z protein, or L protein has been removed or functionally inactivated such that the resulting virus cannot produce further infectious progeny virus particles (*i.e.*, is replication defective). In certain embodiments, the third Pichinde virus segment can be an S segment. In other embodiments, the third Pichinde virus segment can be an L segment. In more specific embodiments, the third Pichinde virus segment can be engineered to carry an ORF in a position other than the wild-type position of the ORF or the third Pichinde virus segment can be the wild-type Pichinde virus genomic segment. In yet more specific embodiments, the third Pichinde virus segment lacks a Pichinde virus ORF encoding GP, NP, Z protein, or the L protein.

[00144] In certain embodiments, a tri-segmented genomic segment could be a S or a L segment hybrid (*i.e.*, a genomic segment that can be a combination of the S segment and the L segment). In other embodiments, the hybrid segment is an S segment comprising an L segment IGR. In another embodiment, the hybrid segment is an L segment comprising an S segment IGR. In other embodiments, the hybrid segment is an S segment UTR with and L segment IGR. In another embodiment, the hybrid segment is an L segment UTR with an S segment IGR. In specific embodiments, the hybrid segment is an S segment 5' UTR with an L segment IGR or an S segment 3' UTR with an L segment IGR. In other specific embodiments, the hybrid segment is an L segment 5' UTR with an S segment IGR or an L segment 3' UTR with an S segment IGR.

[00145] A tri-segmented Pichinde virus particle comprising a genetically modified genome in which one or more ORFs has been deleted or functionally inactivated can be produced in complementing cells (*i.e.*, cells that express the Pichinde virus ORF that has been deleted or functionally inactivated). The genetic material of the resulting Pichinde virus particle can be transferred upon infection of a host cell into the host cell, wherein the genetic material can be expressed and amplified. In addition, the genome of the genetically modified Pichinde virus particle described herein can encode a heterologous ORF from an organism other than a Pichinde virus particle.

[00146] In certain embodiments, at least one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a

Pichinde virus. In another embodiment, at least one ORF, at least two ORFs, at least three ORFs, or at least four ORFs encoding GP, NP, Z protein and L protein can be removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In specific embodiments, only one of the four ORFs encoding GP, NP, Z protein, and L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus particle. In more specific embodiments, the ORF that encodes GP of the Pichinde virus genomic segment is removed. In another specific embodiment, the ORF that encodes the NP of the Pichinde virus genomic segment is removed. In more specific embodiments, the ORF that encodes the Z protein of the Pichinde virus genomic segment is removed. In yet another specific embodiment, the ORF encoding the L protein is removed.

[00147] In certain embodiments, provided herein is a tri-segmented Pichinde virus particle comprising one L segment and two S segments in which (i) an ORF is in a position other than the wild-type position of the ORF; and (ii) an ORF encoding GP or NP has been removed or functionally inactivated, such that the resulting virus is replication-defective and not infectious. In a specific embodiment, one ORF is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In another specific embodiment, two ORFs are removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In other specific embodiments, three ORFs are removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In specific embodiments, the ORF encoding GP is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In other specific embodiments, the ORF encoding NP is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In yet more specific embodiments, the ORF encoding NP and the ORF encoding GP are removed and replaced with one or two heterologous ORFs from an organism other than a Pichinde virus particle. Thus, in certain embodiments the tri-segmented Pichinde virus particle comprises (i) one L segment and two S segments; (ii) an ORF in a position other than the wild-type position of the ORF; (iii) one or more heterologous ORFs from an organism other than a Pichinde virus.

[00148] In certain embodiments, provided herein is a tri-segmented Pichinde virus particle comprising two L segments and one S segment in which (i) an ORF is in a position other than the wild-type position of the ORF; and (ii) an ORF encoding the Z protein, and/or the L protein has been removed or functionally inactivated, such that the resulting virus replication-defective

and not infectious. In a specific embodiment, one ORF is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In another specific embodiment, two ORFs are removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In specific embodiments, the ORF encoding the Z protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In other specific embodiments, the ORF encoding the L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus. In yet more specific embodiments, the ORF encoding the Z protein and the ORF encoding the L protein is removed and replaced with a heterologous ORF from an organism other than a Pichinde virus particle. Thus, in certain embodiments the tri-segmented Pichinde virus particle comprises (i) two L segments and one S segment; (ii) an ORF in a position other than the wild-type position of the ORF; (iii) a heterologous ORF from an organism other than a Pichinde virus.

[00149] Thus, in certain embodiments, the tri-segmented Pichinde virus particle provided herein comprises a tri-segmented Pichinde virus particle (*i.e.*, one L segment and two S segments or two L segments and one S segment) that i) is engineered to carry an ORF in a non-natural position; ii) an ORF encoding GP, NP, Z protein, or L protein is removed); iii) the ORF that is removed is replaced with one or more heterologous ORFs from an organism other than a Pichinde virus.

[00150] In certain embodiments, the heterologous ORF is 8 to 100 nucleotides in length, 15 to 100 nucleotides in length, 25 to 100 nucleotides in length, 50 to 200 nucleotide in length, 50 to 400 nucleotide in length, 200 to 500 nucleotide in length, or 400 to 600 nucleotides in length, 500 to 800 nucleotide in length. In other embodiments, the heterologous ORF is 750 to 900 nucleotides in length, 800 to 1000 nucleotides in length, 850 to 1000 nucleotides in length, 900 to 1200 nucleotides in length, 1000 to 1200 nucleotides in length, 1000 to 1500 nucleotides or 10 to 1500 nucleotides in length, 1500 to 2000 nucleotides in length, 1700 to 2000 nucleotides in length, 2000 to 2300 nucleotides in length, 2200 to 2500 nucleotides in length, 2500 to 3000 nucleotides in length, 3000 to 3200 nucleotides in length, 3000 to 3500 nucleotides in length, 3200 to 3600 nucleotides in length, 3300 to 3800 nucleotides in length, 4000 nucleotides to 4400 nucleotides in length, 4200 to 4700 nucleotides in length, 4800 to 5000 nucleotides in length, 5000 to 5200 nucleotides in length, 5200 to 5500 nucleotides in length, 5500 to 5800 nucleotides in length, 5800 to 6000 nucleotides in length, 6000 to 6400 nucleotides in length, 6200 to 6800

nucleotides in length, 6600 to 7000 nucleotides in length, 7000 to 7200 nucleotides in lengths, 7200 to 7500 nucleotides in length, or 7500 nucleotides in length. In some embodiments, the heterologous ORF encodes a peptide or polypeptide that is 5 to 10 amino acids in length, 10 to 25 amino acids in length, 25 to 50 amino acids in length, 50 to 100 amino acids in length, 100 to 150 amino acids in length, 150 to 200 amino acids in length, 200 to 250 amino acids in length, 250 to 300 amino acids in length, 300 to 400 amino acids in length, 400 to 500 amino acids in length, 500 to 750 amino acids in length, 750 to 1000 amino acids in length, 1000 to 1250 amino acids in length, 1250 to 1500 amino acids in length, 1500 to 1750 amino acids in length, 1750 to 2000 amino acids in length, 2000 to 2500 amino acids in length, or more than 2500 or more amino acids in length. In some embodiments, the heterologous ORF encodes a polypeptide that does not exceed 2500 amino acids in length. In specific embodiments the heterologous ORF does not contain a stop codon. In certain embodiments, the heterologous ORF is codon-optimized. In certain embodiments the nucleotide composition, nucleotide pair composition or both can be optimized. Techniques for such optimizations are known in the art and can be applied to optimize a heterologous ORF.

[00151] Any heterologous ORF from an organism other than a Pichinde virus may be included in the tri-segmented Pichinde virus particle. In one embodiment, the heterologous ORF encodes a reporter protein. More detailed description of reporter proteins are described in Section 4.3. In another embodiment, the heterologous ORF encodes an antigen for an infectious pathogen or an antigen associated with any disease and where the antigen is capable of eliciting an immune response. In specific embodiments the antigen is derived from an infectious organism, a tumor (*i.e.*, cancer), or an allergen. More detailed description on heterologous ORFs is described in Section 4.3

[00152] In certain embodiments, the growth and infectivity of the Pichinde virus particle is not affected by the heterologous ORF from an organism other than a Pichinde virus.

[00153] Techniques known to one skilled in the art may be used to produce a Pichinde virus particle comprising a Pichinde virus genomic segment engineered to carry a Pichinde virus ORF in a position other than the wild-type position. For example, reverse genetics techniques may be used to generate such Pichinde virus particle. In other embodiments, the replication-defective Pichinde virus particle (*i.e.*, the Pichinde virus genomic segment engineered to carry a Pichinde

virus ORF in a position other than the wild-type position, wherein an ORF encoding GP, NP, Z protein, L protein, has been deleted) can be produced in a complementing cell.

[00154] In certain embodiments, the present application relates to the Pichinde virus particle as described herein suitable for use as a vaccine and methods of using such Pichinde virus particle in a vaccination and treatment or prevention of, for example, infections and cancers. More detailed description of the methods of using the Pichinde virus particle described herein is provided in Section 4.6.

[00155] In certain embodiments, the present application relates to the Pichinde virus particle as described herein suitable for use as a pharmaceutical composition and methods of using such Pichinde virus particle in a vaccination and treatment or prevention of, for example, infections or cancers. More detailed description of the methods of using the Pichinde virus particle described herein is provided in Section 4.6.

4.3 Pichinde Virus Particle or Tri-segmented Pichinde Virus Particle Expressing a Heterologous ORF

[00156] In certain embodiments, the Pichinde virus genomic segment, and the respective Pichinde virus particle or tri-segmented Pichinde virus particle can comprise a heterologous ORF. In other embodiments, the Pichinde virus genomic segment and the respective Pichinde virus particle or tri-segmented Pichinde virus particle can comprise a gene of interest. In more specific embodiments, the heterologous ORF or the gene of interest encodes an antigen. In more specific embodiments, the heterologous ORF or the gene of interest encodes a reporter protein or a fluorescent protein.

[00157] In certain embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle can comprise one or more heterologous ORFs or one or more genes of interest. In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle can comprise at least one heterologous ORF, at least two heterologous ORFs, at least three heterologous ORFs, or more heterologous ORFs. In other embodiments, the Pichinde virus particle or the tri-segmented Pichinde virus particle comprises at least one gene of interest, at least two genes of interest, at least three genes of interest, or more genes of interest.

[00158] A wide variety of antigens may be expressed by the Pichinde virus genomic segment, Pichinde virus particle or the tri-segmented Pichinde virus particle of the present application. In

one embodiment, the heterologous ORF encodes an antigen of an infectious pathogen or an antigen associated with any disease that is capable of eliciting an immune response. In certain embodiments, the heterologous ORF can encode an antigen derived from a virus, a bacterium, a fungus, a parasite, or can be expressed in a tumor or tumor associated disease (*i.e.*, cancer), an autoimmune disease, a degenerative disease, an inherited disease, substance dependency, obesity, or an allergic disease.

[00159] In some embodiments, the heterologous ORF encodes a viral antigen. Non-limiting examples of viral antigens include antigens from adenoviridae (*e.g.*, mastadenovirus and aviadenovirus), herpesviridae (*e.g.*, herpes simplex virus 1, herpes simplex virus 2, herpes simplex virus 5, herpes simplex virus 6, Epstein-Barr virus, HHV6-HHV8 and cytomegalovirus), leviviridae (*e.g.*, levivirus, enterobacteria phage MS2, allovirus), poxyiridae (*e.g.*, chordopoxvirinae, parapoxvirus, avipoxvirus, capripoxvirus, leporiipoxvirus, suipoxvirus, molluscipoxvirus, and entomopoxvirinae), papovaviridae (*e.g.*, polyomavirus and papillomavirus), paramyxoviridae (*e.g.*, paramyxovirus, parainfluenza virus 1, mabillivirus (*e.g.*, measles virus), rubulavirus (*e.g.*, mumps virus), pneumonovirinae (*e.g.*, pneumovirus, human respiratory syncytial virus), human respiratory syncytial virus and metapneumovirus (*e.g.*, avian pneumovirus and human metapneumovirus), picornaviridae (*e.g.*, enterovirus, rhinovirus, hepatovirus (*e.g.*, human hepatitis A virus), cardiovirus, and aphovirus), reoviridae (*e.g.*, orthoreovirus, orbivirus, rotavirus, cypovirus, fijivirus, phytoreovirus, and oryzavirus), retroviridae (*e.g.*, mammalian type B retroviruses, mammalian type C retroviruses, avian type C retroviruses, type D retrovirus group, BLV-HTLV retroviruses, lentivirus (*e.g.* human immunodeficiency virus (HIV) 1 and HIV-2 (*e.g.*, HIV gp160), spumavirus), flaviviridae (*e.g.*, hepatitis C virus, dengue virus, West Nile virus), hepadnaviridae (*e.g.*, hepatitis B virus), togaviridae (*e.g.*, alphavirus (*e.g.*, sindbis virus) and rubivirus (*e.g.*, rubella virus)), rhabdoviridae (*e.g.*, vesiculovirus, lyssavirus, ephemeroavirus, cytorhabdovirus, and nucleorhabdovirus), arenaviridae (*e.g.*, arenavirus, lymphocytic choriomeningitis virus, Ippy virus, and lassa virus), and coronaviridae (*e.g.*, coronavirus and torovirus). In a specific embodiment the viral antigen, is HIV gp120, gp41, HIV Nef, RSV F glycoprotein, RSV G glycoprotein, HTLV tax, herpes simplex virus glycoprotein (*e.g.*, gB, gC, gD, and gE) or hepatitis B surface antigen, hepatitis C virus E protein or coronavirus spike protein. In one embodiment, the viral antigen is not an HIV antigen.

[00160] In other embodiments, the heterologous ORF encodes a bacterial antigen (e.g., bacterial coat protein). In other embodiments, the heterologous ORF encodes parasitic antigen (e.g., a protozoan antigen). In yet other embodiments, a heterologous nucleotide sequence encodes a fungal antigen.

[00161] Non-limiting examples of bacterial antigens include antigens from bacteria of the Aquaspirillum family, Azospirillum family, Azotobacteraceae family, Bacteroidaceae family, Bartonella species, Bdellovibrio family, *Campylobacter* species, *Chlamydia* species (e.g., *Chlamydia pneumoniae*), *clostridium*, Enterobacteriaceae family (e.g., *Citrobacter* species, *Edwardsiella*, *Enterobacter aerogenes*, *Envinia* species, *Escherichia coli*, *Hafnia* species, *Klebsiella* species, *Morganella* species, *Proteus vulgaris*, *Providencia*, *Salmonella* species, *Serratia marcescens*, and *Shigella flexneri*), *Gardinella* family, *Haemophilus influenzae*, Halobacteriaceae family, *Helicobacter* family, Legionallaceae family, *Listeria* species, Methylcocccaceae family, mycobacteria (e.g., *Mycobacterium tuberculosis*), Neisseriaceae family, Oceanospirillum family, Pasteurellaceae family, *Pneumococcus* species, *Pseudomonas* species, Rhizobiaceae family, *Spirillum* family, Spirosomaceae family, *Staphylococcus* (e.g., methicillin resistant *Staphylococcus aureus* and *Staphylococcus pyogenes*), *Streptococcus* (e.g., *Streptococcus enteritidis*, *Streptococcus fasciae*, and *Streptococcus pneumoniae*), *Vampirovibr* *Helicobacter* family, *Yersinia* family, *Bacillus antracis* and *Vampirovibrio* family.

[00162] Non-limiting examples of parasite antigens include antigens from a parasite such as an amoeba, a malarial parasite, *Plasmodium*, *Trypanosoma cruzi*. Non-limiting examples of fungal antigens include antigens from fungus of *Absidia* species (e.g., *Absidia corymbifera* and *Absidia ramosa*), *Aspergillus* species, (e.g., *Aspergillus flavus*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Aspergillus niger*, and *Aspergillus terreus*), *Basidiobolus ranarum*, *Blastomyces dermatitidis*, *Candida* species (e.g., *Candida albicans*, *Candida glabrata*, *Candida kern*, *Candida krusei*, *Candida parapsilosis*, *Candida pseudotropicalis*, *Candida quillermondii*, *Candida rugosa*, *Candida stellatoidea*, and *Candida tropicalis*), *Coccidioides immitis*, *Conidiobolus* species, *Cryptococcus neoforms*, *Cunninghamella* species, *dermatophytes*, *Histoplasma capsulatum*, *Microsporum gypseum*, *Mucor pusillus*, *Paracoccidioides brasiliensis*, *Pseudallescheria boydii*, *Rhinosporidium seeberi*, *Pneumocystis carinii*, *Rhizopus* species (e.g., *Rhizopus arrhizus*, *Rhizopus oryzae*, and *Rhizopus microsporus*), *Saccharomyces* species,

Sporothrix schenckii, *zygomycetes*, and classes such as Zygomycetes, Ascomycetes, the Basidiomycetes, Deuteromycetes, and Oomycetes.

[00163] In some embodiments, a heterologous ORF encodes a tumor antigen or tumor associated antigen. In some embodiments, the tumor antigen or tumor associated antigen includes antigens from tumor associated diseases including acute lymphoblastic leukemia, acute myeloid leukemia, adrenocortical carcinoma, childhood adrenocortical carcinoma, AIDS-Related Cancers, Kaposi Sarcoma, anal cancer, appendix cancer, astrocytomas, atypical teratoid/rhabdoid tumor, basal-cell carcinoma, bile duct cancer, extrahepatic (see cholangiocarcinoma), bladder cancer, bone osteosarcoma/malignant fibrous histiocytoma, brainstem glioma, brain cancer, brain tumor, cerebellar astrocytoma, cerebral astrocytoma/malignant glioma brain tumor, ependymoma, medulloblastoma, supratentorial primitive neuroectodermal tumors, visual pathway and hypothalamic glioma, breast cancer, bronchial adenomas/carcinoids, burkitt's lymphoma, carcinoid tumor, carcinoid gastrointestinal tumor, carcinoma of unknown primary, central nervous system lymphoma, primary, cerebellar astrocytoma, cerebral astrocytoma/malignant glioma, cervical cancer, childhood cancers, chronic bronchitis, chronic lymphocytic leukemia, chronic myelogenous leukemia, chronic myeloproliferative disorders, colon cancer, cutaneous T-cell lymphoma, desmoplastic small round cell tumor, emphysema, endometrial cancer, ependymoma, esophageal cancer, ewing's sarcoma in the Ewing family of tumors, extracranial germ cell tumor, extragonadal germ cell tumor, extrahepatic bile duct cancer, intraocular melanoma, retinoblastoma, gallbladder cancer, gastric (stomach) cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, germ cell tumor: extracranial, extragonadal, or ovarian gestational trophoblastic tumor, glioma of the brain stem, glioma, childhood cerebral astrocytoma, childhood visual pathway and hypothalamic, gastric carcinoid, hairy cell leukemia, head and neck cancer, heart cancer, hepatocellular (liver) cancer, hodgkin lymphoma, hypopharyngeal cancer, hypothalamic and visual pathway glioma, intraocular melanoma, islet cell carcinoma (endocrine pancreas), kaposi sarcoma, kidney cancer (renal cell cancer), laryngeal cancer, acute lymphoblastic lymphoma, acute lymphocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, lip and oral cavity cancer, liposarcoma, liver cancer (primary), lung cancer, non-small cell, small cell, AIDS-related lymphoma, Burkitt lymphoma, cutaneous T-cell lymphoma, hodgkin lymphoma, non-hodgkin lymphoma, lymphoma, primary central nervous system, macroglobulinemia,

Waldenström, male breast cancer, malignant fibrous histiocytoma of bone/osteosarcoma, medulloblastoma, melanoma, intraocular (eye), merkel cell cancer, mesothelioma, adult malignant, mesothelioma, metastatic squamous neck cancer with occult primary, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma/plasma cell neoplasm, mycosis fungoides, myelodysplastic syndromes, myelodysplastic/myeloproliferative diseases, myelogenous leukemia, chronic, myeloid leukemia, adult acute, myeloid leukemia, childhood acute, myeloma, multiple (cancer of the bone-marrow), myeloproliferative disorders, chronic, nasal cavity and paranasal sinus cancer, nasopharyngeal carcinoma, neuroblastoma, non-small cell lung cancer, oligodendrolioma, oral cancer, oropharyngeal cancer, osteosarcoma/malignant fibrous histiocytoma of bone, ovarian cancer, ovarian epithelial cancer (surface epithelial-stromal tumor), ovarian germ cell tumor, ovarian low malignant potential tumor, pancreatic cancer, islet cell, paranasal sinus and nasal cavity cancer, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytoma, pineal astrocytoma, pineal germinoma, pineoblastoma and supratentorial primitive neuroectodermal tumors, pituitary adenoma, plasma cell neoplasia/multiple myeloma, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell carcinoma (kidney cancer), renal pelvis and ureter, transitional cell cancer, retinoblastoma, rhabdomyosarcoma, childhood, salivary gland cancer, sarcoma, Ewing family of tumors, Kaposi sarcoma, soft tissue sarcoma, uterine sarcoma, sézary syndrome, skin cancer (non-melanoma), skin cancer (melanoma), merkel cell skin carcinoma, small cell lung cancer, small intestine cancer, soft tissue sarcoma, squamous cell carcinoma – see skin cancer (non-melanoma), squamous neck cancer with occult primary, metastatic, stomach cancer, supratentorial primitive neuroectodermal tumor, T-Cell lymphoma, cutaneous – see Mycosis Fungoides and Sézary syndrome, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, childhood transitional cell cancer of the renal pelvis and ureter, gestational trophoblastic tumor, unknown primary site, carcinoma of, adult unknown primary site, cancer of childhood, ureter and renal pelvis, transitional cell cancer, rethral cancer, uterine cancer, endometrial uterine sarcoma, bronchial tumor, central nervous system embryonal tumor; childhood chordoma, colorectal cancer, craniopharyngioma, ependymoblastoma, langerhans cell histiocytosis, acute lymphoblastic leukemia, acute myeloid leukemia (adult / childhood), small cell lung cancer, medulloepithelioma, oral cavity cancer, papillomatosis, pineal parenchymal tumors of intermediate differentiation, pituary tumor,

respiratory tract carcinoma involving the NUT gene on chromosome 15, spinal cord tumor, thymoma, thyroid cancer, vaginal Cancer; vulvar Cancer, and Wilms Tumor.

[00164] Non-limiting examples of tumor or tumor associated antigens include Adipophilin, AIM-2, ALDH1A1, BCLX (L), BING-4, CALCA, CD45, CPSF, cyclin D1, DKK1, ENAH (hMena), EpCAM, EphA3, EZH2, FGF5, glypican-3, G250 /MN/CAIX, HER-2/neu, IDO1, IGF2B3, IL13Ralpha2, Intestinal carboxyl esterase, alpha-fetoprotein, Kallikrein 4, KIF20A, Lengsin, M-CSF, MCSP, mdm-2, Meloe, MMP-2, MMP-7, MUC1, MUC5AC, p53, PAX5, PBF, PRAME, PSMA, RAGE-1, RGS5, RhoC, RNF43, RU2AS, secernin 1, SOX10, STEAP1, survivinn, Telomerase, VEGF, or WT1, EGF-R, CEA, CD52, gp 100 protein, MELANA/MART1, NY-ESO-1, p53 MAGE1, MAGE3 and CDK4, alpha-actinin-4, ARTC1, BCR-ABL fusion protein (b3a2), B-RAF, CASP-5, CASP-8, beta-catenin, Cdc27, CDK4, CDKN2A, CLPP, COA-1, dek-can fusion protein, EFTUD2, Elongation factor 2, ETV6-AML1 fusion protein, FLT3-ITD, FN1, GPNMB, LDLR-fucosyltransferaseAS fusion protein, NFYC, OGT, OS-9, pml-RARalpha fusion protein, PRDX5, PTPRK, K-ras, N-ras, RBAF600, SIRT2, SNRPD1, SYT-SSX1 or -SSX2 fusion protein, TGF-betaRII, Triosephosphate isomerase, Lengsin, M-CSF, MCSP, or mdm-2.

[00165] In some embodiments, the heterologous ORF encodes a respiratory pathogen antigen. In a specific embodiment, the respiratory pathogen is a virus such as RSV, coronavirus, human metapneumovirus, parainfluenza virus, hendra virus, nipah virus, adenovirus, rhinovirus, or PRRSV. Non-limiting examples of respiratory viral antigens include Respiratory Syncytial virus F, G and M2 proteins, Coronavirus (SARS, HuCoV) spike proteins (S), human metapneumovirus fusion proteins, Parainfluenza virus fusion and hemagglutinin proteins (F, HN), Hendra virus (HeV) and Nipah virus (NiV) attachment glycoproteins (G and F), Adenovirus capsid proteins, Rhinovirus proteins, and PRRSV wild type or modified GP5 and M proteins.

[00166] In a specific embodiment, the respiratory pathogen is a bacteria such as *Bacillus anthracis*, *mycobacterium tuberculosis*, *Bordetella pertussis*, *streptococcus pneumoniae*, *yersinia pestis*, *staphylococcus aureus*, *Francisella tularensis*, *legionella pneumophila*, *chlamydia pneumoniae*, *pseudomonas aeruginosa*, *neisseria meningitidis*, and *haemophilus influenzae*. Non-limiting examples of respiratory bacterial antigens include *Bacillus anthracis* Protective antigen PA, *Mycobacterium tuberculosis* mycobacterial antigen 85A and heat shock protein (Hsp65), *Bordetella pertussis* pertussis toxoid (PT) and filamentous hemagglutinin (FHA),

Streptococcus pneumoniae sortase A and surface adhesin A (PsaA), Yersinia pestis F1 and V subunits, and proteins from Staphylococcus aureus, Francisella tularensis, Legionella pneumophila, Chlamydia pneumoniae, Pseudomonas aeruginosa, Neisseria meningitidis, and Haemophilus influenzae.

[00167] In some embodiments, the heterologous ORF encodes a T-cell epitope. In other embodiments, the heterologous ORF encodes a cytokine or growth factor.

[00168] In other embodiments, the heterologous ORF encodes an antigen expressed in an autoimmune disease. In more specific embodiments, the autoimmune disease can be type I diabetes, multiple sclerosis, rheumatoid arthritis, lupus erythematosus, and psoriasis. Non-limiting examples of autoimmune disease antigens include Ro60, dsDNA, or RNP.

[00169] In other embodiments, ORF encodes an antigen expressed in an allergic disease. In more specific embodiments, the allergic disease can include but is not limited to seasonal and perennial rhinoconjunctivitis, asthma, and eczema. Non-limiting examples of allergy antigens include Bet v 1 and Fel d 1.

[00170] In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle further comprises a reporter protein. The reporter protein is capable of expression at the same time as the antigen described herein. Ideally, expression is visible in normal light or other wavelengths of light. In certain embodiments, the intensity of the effect created by the reporter protein can be used to directly measure and monitor the Pichinde virus particle or tri-segmented Pichinde virus particle.

[00171] Reporter genes would be readily recognized by one of skill in the art. In certain embodiments, the Pichinde virus particle is a fluorescent protein. In other embodiments, the reporter gene is GFP. GFP emits bright green light when exposed to UV or blue light.

[00172] Non-limiting examples of reporter proteins include various enzymes, such as, but not to β -galactosidase, chloramphenicol acetyltransferase, neomycin phosphotransferase, luciferase or RFP.

[00173] In certain embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF has desirable properties for use as a vector for vaccination (see *e.g.*, Section 4.6). In another embodiment, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF is capable of inducing an immune response in a host

(e.g., mouse rabbit, goat, donkey, human). In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF described herein induces an innate immune response. In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF induces an adaptive immune response. In more specific embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF both an innate and adaptive immune response.

[00174] In another embodiment, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF induces a T cell response. In yet more specific embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or tri-segmented Pichinde virus particle expressing a heterologous ORF induces a CD8+T cell response. In other embodiments, the Pichinde virus particle carrying a foreign gene of interest induces a potent CD8+ T cell response of high frequency and functionality. In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen induces CD8+ T cells specific to one or multiple epitopes of the corresponding foreign gene of interest.

[00175] In certain embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing a heterologous ORF can induce T helper 1 differentiation, memory formation of CD4+ T cells and/or elicit durable antibody responses. These antibodies can be neutralizing, opsonizing, toxic to tumor cells or have other favorable biological features. In other embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or tri-segmented Pichinde virus particle expressing a heterologous ORF has a strong tropism for dendritic cells and activates them upon infection. This potentiates presentation of the antigen by antigen presenting cells.

[00176] In certain embodiments, the Pichinde virus genomic segment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen induces low or undetectable neutralizing antibody titers against Pichinde virus and high protective neutralizing antibody responses to the respective foreign transgene. In some embodiments, the Pichinde virus backbone forming the particle or

tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen has low capacity for inducing immunity to the Pichinde viral backbone components.

4.4 Generation of a Pichinde virus particle and a tri-segmented Pichinde virus particle

[00177] Generally, Pichinde virus particles can be recombinantly produced by standard reverse genetic techniques as described for LCMV, another arenavirus (see Flatz *et al.*, 2006, Proc Natl Acad Sci USA 103:4663-4668; Sanchez *et al.*, 2006, Virology 350:370; Ortiz-Riano *et al.*, 2013, J Gen Virol. 94:1175-88, which are incorporated by reference herein). To generate the Pichinde virus particles provided herein, these techniques can be applied as described below. The genome of the viruses can be modified as described in Section 4.1 and Section 4.2, respectively.

4.4.1 Non-natural Position Open Reading Frame

[00178] The generation of a Pichinde virus particle comprising a genomic segment that has been engineered to carry a viral ORF in a position other than the wild-type position of the ORF can be recombinantly produced by any reverse genetic techniques known to one skilled in the art.

(i) Infectious and Replication Competent Pichinde virus Particle

[00179] In certain embodiments, the method of generating the Pichinde virus particle comprises (i) transfecting into a host cell the cDNA of the first Pichinde virus genomic segment; (ii) transfecting into a host cell the cDNA of the second Pichinde virus genomic segment; (iii) transfecting into a host cell plasmids expressing the Pichinde virus' minimal trans-acting factors NP and L; (iv) maintaining the host cell under conditions suitable for virus formation; and (v) harvesting the Pichinde virus particle. In certain more specific embodiments, the cDNA is comprised in a plasmid.

[00180] Once generated from cDNA, Pichinde virus particles (*i.e.*, infectious and replication competent) can be propagated. In certain embodiments, the Pichinde virus particle can be propagated in any host cell that allows the virus to grow to titers that permit the uses of the virus as described herein. In one embodiment, the host cell allows the Pichinde virus particle to grow to titers comparable to those determined for the corresponding wild-type.

[00181] In certain embodiments, the Pichinde virus particle may be propagated in host cells. Specific examples of host cells that can be used include BHK-21, HEK 293, VERO or other. In a specific embodiment, the Pichinde virus particle may be propagated in a cell line.

[00182] In certain embodiments, the host cells are kept in culture and are transfected with one or more plasmid(s). The plasmid(s) express the Pichinde virus genomic segment(s) to be generated under control of one or more expression cassettes suitable for expression in mammalian cells, *e.g.*, consisting of a polymerase I promoter and terminator.

[00183] Plasmids that can be used for the generation of the Pichinde virus particle can include: i) a plasmid encoding the S genomic segment *e.g.*, pol-I S, ii) a plasmid encoding the L genomic segment *e.g.*, pol-I L. In certain embodiments, the plasmid encoding a Pichinde virus polymerase that direct intracellular synthesis of the viral L and S segments can be incorporated into the transfection mixture. For example, a plasmid encoding the L protein and/or a plasmid encoding NP (pC-L and pC-NP, respectively) can be present. The L protein and NP are the minimal trans-acting factors necessary for viral RNA transcription and replication.

Alternatively, intracellular synthesis of viral L and S segments, together with NP and L protein can be performed using an expression cassette with pol-I and pol-II promoters reading from opposite sides into the L and S segment cDNAs of two separate plasmids, respectively.

[00184] In certain embodiments, the Pichinde virus genomic segments are under the control of a promoter. Typically, RNA polymerase I-driven expression cassettes, RNA polymerase II-driven cassettes or T7 bacteriophage RNA polymerase driven cassettes can be used. In certain embodiments, the plasmid(s) encoding the Pichinde virus genomic segments can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by a promoter from one plasmid. Specific examples of promoters include an RNA polymerase I promoter, an RNA polymerase II promoter, an RNA polymerase III promoter, a T7 promoter, an SP6 promoter or a T3 promoter.

[00185] In addition, the plasmid(s) can feature a mammalian selection marker, *e.g.*, puromycin resistance, under control of an expression cassette suitable for gene expression in mammalian cells, *e.g.*, polymerase II expression cassette as above, or the viral gene transcript(s) are followed by an internal ribosome entry site, such as the one of encephalomyocarditis virus, followed by the mammalian resistance marker. For production in *E.coli*, the plasmid additionally features a bacterial selection marker, such as an ampicillin resistance cassette.

[00186] Transfection of a host cell with a plasmid(s) can be performed using any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation. A few days later the suitable selection agent, *e.g.*, puromycin, is added in titrated concentrations. Surviving clones are isolated and subcloned following standard procedures, and high-expressing clones are identified using Western blot or flow cytometry procedures with antibodies directed against the viral protein(s) of interest.

[00187] For recovering the Pichinde virus particle described herein, the following procedures are envisaged. First day: cells, typically 80% confluent in M6-well plates, are transfected with a mixture of the plasmids, as described above. For this one can exploit any commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation.

[00188] 3-5 days later: The cultured supernatant (Pichinde virus vector preparation) is harvested, aliquoted and stored at 4 °C, -20 °C, or -80 °C, depending on how long the Pichinde virus vector should be stored prior use. The Pichinde virus vector preparation's infectious titer is assessed by an immunofocus assay. Alternatively, the transfected cells and supernatant may be passaged to a larger vessel (*e.g.*, a T75 tissue culture flask) on day 3-5 after transfection, and culture supernatant is harvested up to five days after passage.

[00189] The present application furthermore relates to expression of a heterologous ORF, wherein a plasmid encoding the genomic segment is modified to incorporate a heterologous ORF. The heterologous ORF can be incorporated into the plasmid using restriction enzymes.

(ii) Infectious, Replication-Defective Pichinde virus Particle

[00190] Infectious, replication-defective Pichinde virus particles can be rescued as described above. However, once generated from cDNA, the infectious, replication-deficient Pichinde viruses provided herein can be propagated in complementing cells. Complementing cells are cells that provide the functionality that has been eliminated from the replication-deficient Pichinde virus by modification of its genome (*e.g.*, if the ORF encoding the GP protein is deleted or functionally inactivated, a complementing cell does provide the GP protein).

[00191] Owing to the removal or functional inactivation of one or more of the ORFs in Pichinde virus vectors (here deletion of the glycoprotein, GP, will be taken as an example), Pichinde virus vectors can be generated and expanded in cells providing *in trans* the deleted viral gene(s), *e.g.*, the GP in the present example. Such a complementing cell line, henceforth referred to as C-cells, is generated by transfecting a cell line such as BHK-21, HEK 293, VERO or other

with one or more plasmid(s) for expression of the viral gene(s) of interest (complementation plasmid, referred to as C-plasmid). The C-plasmid(s) express the viral gene(s) deleted in the Pichinde virus vector to be generated under control of one or more expression cassettes suitable for expression in mammalian cells, *e.g.*, a mammalian polymerase II promoter such as the EF1alpha promoter with a polyadenylation signal. In addition, the complementation plasmid features a mammalian selection marker, *e.g.*, puromycin resistance, under control of an expression cassette suitable for gene expression in mammalian cells, *e.g.*, polymerase II expression cassette as above, or the viral gene transcript(s) are followed by an internal ribosome entry site, such as the one of encephalomyocarditis virus, followed by the mammalian resistance marker. For production in *E. coli*, the plasmid additionally features a bacterial selection marker, such as an ampicillin resistance cassette.

[00192] Cells that can be used, *e.g.*, BHK-21, HEK 293, MC57G or other, are kept in culture and are transfected with the complementation plasmid(s) using any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation. A few days later the suitable selection agent, *e.g.*, puromycin, is added in titrated concentrations. Surviving clones are isolated and subcloned following standard procedures, and high-expressing C-cell clones are identified using Western blot or flow cytometry procedures with antibodies directed against the viral protein(s) of interest. As an alternative to the use of stably transfected C-cells transient transfection of normal cells can complement the missing viral gene(s) in each of the steps where C-cells will be used below. In addition, a helper virus can be used to provide the missing functionality *in trans*.

[00193] Plasmids can be of two types: i) two plasmids, referred to as TF-plasmids for expressing intracellularly in C-cells the minimal transacting factors of the Pichinde virus, is derived from *e.g.*, NP and L proteins of Pichinde virus in the present example; and ii) plasmids, referred to as GS-plasmids, for expressing intracellularly in C-cells the Pichinde virus vector genome segments, *e.g.*, the segments with designed modifications. TF-plasmids express the NP and L proteins of the respective Pichinde virus vector under control of an expression cassette suitable for protein expression in mammalian cells, typically *e.g.*, a mammalian polymerase II promoter such as the CMV or EF1alpha promoter, either one of them preferentially in combination with a polyadenylation signal. GS-plasmids express the small (S) and the large (L) genome segments of the vector. Typically, polymerase I-driven expression cassettes or T7

bacteriophage RNA polymerase (T7-) driven expression cassettes can be used, the latter preferentially with a 3'-terminal ribozyme for processing of the primary transcript to yield the correct end. In the case of using a T7-based system, expression of T7 in C-cells must be provided by either including in the recovery process an additional expression plasmid, constructed analogously to TF-plasmids, providing T7, or C-cells are constructed to additionally express T7 in a stable manner. In certain embodiments, TF and GS plasmids can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by T7, polII and polIII promoters from one plasmid.

[00194] For recovering of the Pichinde virus vector, the following procedures can be used. First day: C-cells, typically 80% confluent in M6-well plates, are transfected with a mixture of the two TF-plasmids plus the two GS-plasmids. In certain embodiments, the TF and GS plasmids can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by T7, polII and polIII promoters from one plasmid. For this one can exploit any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation.

[00195] 3-5 days later: The culture supernatant (Pichinde virus vector preparation) is harvested, aliquoted and stored at 4 °C, -20 °C or -80 °C depending on how long the Pichinde virus vector should be stored prior to use. Then the Pichinde virus vector preparation's infectious titer is assessed by an immunofocus assay on C-cells. Alternatively, the transfected cells and supernatant may be passaged to a larger vessel (*e.g.*, a T75 tissue culture flask) on day 3-5 after transfection, and culture supernatant is harvested up to five days after passage.

[00196] The invention furthermore relates to expression of a antigen in a cell culture wherein the cell culture is infected with an infectious, replication-deficient Pichinde virus expressing a antigen. When used for expression of a antigen in cultured cells, the following two procedures can be used:

[00197] i) The cell type of interest is infected with the Pichinde virus vector preparation described herein at a multiplicity of infection (MOI) of one or more, *e.g.*, two, three or four, resulting in production of the antigen in all cells already shortly after infection.

[00198] ii) Alternatively, a lower MOI can be used and individual cell clones can be selected for their level of virally driven antigen expression. Subsequently individual clones can be expanded infinitely owing to the non-cytolytic nature of Pichinde virus vectors. Irrespective of the approach, the antigen can subsequently be collected (and purified) either from the culture

supernatant or from the cells themselves, depending on the properties of the antigen produced. However, the invention is not limited to these two strategies, and other ways of driving expression of antigen using infectious, replication-deficient Pichinde viruses as vectors may be considered.

4.4.2 Generation of a Tri-segmented Pichinde Virus Particle

[00199] A tri-segmented Pichinde virus particle can be recombinantly produced by reverse genetic techniques known in the art, for example as described by Emonet *et al.*, 2008, PNAS, 106(9):3473-3478; Popkin *et al.*, 2011, J. Virol., 85 (15):7928-7932; Dhanwani *et al.*, 2015, Journal of Virology, doi:10.1128/JVI.02705-15, which are incorporated by reference herein. The generation of the tri-segmented Pichinde virus particle provided herein can be modified as described in Section 4.2.

- (i) Infectious and Replication Competent Tri-segmented Pichinde virus Particle

[00200] In certain embodiments, the method of generating the tri-segmented Pichinde virus particle comprises (i) transfecting into a host cell the cDNAs of the one L segment and two S segments or two L segments and one S segment; (ii) transfecting into a host cell plasmids expressing the Pichinde virus' minimal trans-acting factors NP and L; (iii) maintaining the host cell under conditions suitable for virus formation; and (iv) harvesting the Pichinde virus particle.

[00201] Once generated from cDNA, the tri-segmented Pichinde virus particle (*i.e.*, infectious and replication competent) can be propagated. In certain embodiments tri-segmented Pichinde virus particle can be propagated in any host cell that allows the virus to grow to titers that permit the uses of the virus as described herein. In one embodiment, the host cell allows the tri-segmented Pichinde virus particle to grow to titers comparable to those determined for the corresponding wild-type.

[00202] In certain embodiments, the tri-segmented Pichinde virus particle may be propagated in host cells. Specific examples of host cells that can be used include BHK-21, HEK 293 or other. In a specific embodiment, the tri-segmented Pichinde virus particle may be propagated in a cell line.

[00203] In certain embodiments, the host cells are kept in culture and are transfected with one or more plasmid(s). The plasmid(s) express the Pichinde virus genomic segment(s) to be

generated under control of one or more expression cassettes suitable for expression in mammalian cells, *e.g.*, consisting of a polymerase I promoter and terminator.

[00204] In specific embodiments, the host cells are kept in culture and are transfected with one or more plasmid(s). The plasmid(s) express the viral gene(s) to be generated under control of one or more expression cassettes suitable for expression in mammalian cells, *e.g.*, consisting of a polymerase I promoter and terminator.

[00205] Plasmids that can be used for generating the tri-segmented Pichinde virus comprising one L segment and two S segments can include: i) two plasmids each encoding the S genome segment *e.g.*, pol-I-PIC-S, ii) a plasmid encoding the L genome segment *e.g.*, pol-I-PIC-L. Plasmids needed for the tri-segmented Pichinde virus comprising two L segments and one S segments are: i) two plasmids each encoding the L genome segment *e.g.*, pol-I-PIC-L, ii) a plasmid encoding the S genome segment *e.g.*, pol-I-PIC-S.

[00206] In certain embodiments, plasmids encoding a Pichinde virus polymerase that direct intracellular synthesis of the viral L and S segments can be incorporated into the transfection mixture. For example, a plasmid encoding the L protein and a plasmid encoding NP (pC-PIC-L and pC-PIC-NP, respectively). The L protein and NP are the minimal trans-acting factors necessary for viral RNA transcription and replication. Alternatively, intracellular synthesis of viral L and S segments, together with NP and L protein can be performed using an expression cassette with pol-I and pol-II promoters reading from opposite sides into the L and S segment cDNAs of two separate plasmids, respectively.

[00207] In addition, the plasmid(s) features a mammalian selection marker, *e.g.*, puromycin resistance, under control of an expression cassette suitable for gene expression in mammalian cells, *e.g.*, polymerase II expression cassette as above, or the viral gene transcript(s) are followed by an internal ribosome entry site, such as the one of encephalomyocarditis virus, followed by the mammalian resistance marker. For production in *E.coli*, the plasmid additionally features a bacterial selection marker, such as an ampicillin resistance cassette.

[00208] Transfection of BHK-21 cells with a plasmid(s) can be performed using any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation. A few days later the suitable selection agent, *e.g.*, puromycin, is added in titrated concentrations. Surviving clones are isolated and subcloned following standard

procedures, and high-expressing clones are identified using Western blot or flow cytometry procedures with antibodies directed against the viral protein(s) of interest.

[00209] Typically, RNA polymerase I-driven expression cassettes, RNA polymerase II-driven cassettes or T7 bacteriophage RNA polymerase driven cassettes can be used, , the latter preferentially with a 3'-terminal ribozyme for processing of the primary transcript to yield the correct end. In certain embodiments, the plasmids encoding the Pichinde virus genomic segments can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by T7, polI and polII promoters from one plasmid.

[00210] For recovering the Pichinde virus the tri-segmented Pichinde virus vector, the following procedures are envisaged. First day: cells, typically 80% confluent in M6-well plates, are transfected with a mixture of the plasmids, as described above. For this one can exploit any commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation.

[00211] 3-5 days later: The cultured supernatant (Pichinde virus vector preparation) is harvested, aliquoted and stored at 4 °C, -20 °C, or -80 °C, depending on how long the Pichinde virus vector should be stored prior use. The Pichinde virus vector preparation's infectious titer is assessed by an immunofocus assay. Alternatively, the transfected cells and supernatant may be passaged to a larger vessel (*e.g.*, a T75 tissue culture flask) on day 3-5 after transfection, and culture supernatant is harvested up to five days after passage.

[00212] The present application furthermore relates to expression of a heterologous ORF and/or a gene of interest, wherein a plasmid encoding the genomic segment is modified to incorporate a heterologous ORF and/or a gene of interest. The heterologous ORF and/or gene of interest can be incorporated into the plasmid using restriction enzymes.

(ii) Infectious, Replication-Defective Tri-segmented Pichinde virus Particle

[00213] Infectious, replication-defective tri-segmented Pichinde virus particles can be rescued as described above. However, once generated from cDNA, the infectious, replication-deficient Pichinde viruses provided herein can be propagated in complementing cells. Complementing cells are cells that provide the functionality that has been eliminated from the replication-deficient Pichinde virus by modification of its genome (*e.g.*, if the ORF encoding the GP protein is deleted or functionally inactivated, a complementing cell does provide the GP protein).

[00214] Owing to the removal or functional inactivation of one or more of the ORFs in Pichinde virus vectors (here deletion of the glycoprotein, GP, will be taken as an example), Pichinde virus vectors can be generated and expanded in cells providing *in trans* the deleted viral gene(s), *e.g.*, the GP in the present example. Such a complementing cell line, henceforth referred to as C-cells, is generated by transfecting a mammalian cell line such as BHK-21, HEK 293, VERO or other (here BHK-21 will be taken as an example) with one or more plasmid(s) for expression of the viral gene(s) of interest (complementation plasmid, referred to as C-plasmid). The C-plasmid(s) express the viral gene(s) deleted in the Pichinde virus vector to be generated under control of one or more expression cassettes suitable for expression in mammalian cells, *e.g.*, a mammalian polymerase II promoter such as the CMV or EF1alpha promoter with a polyadenylation signal. In addition, the complementation plasmid features a mammalian selection marker, *e.g.*, puromycin resistance, under control of an expression cassette suitable for gene expression in mammalian cells, *e.g.*, polymerase II expression cassette as above, or the viral gene transcript(s) are followed by an internal ribosome entry site, such as the one of encephalomyocarditis virus, followed by the mammalian resistance marker. For production in *E. coli*, the plasmid additionally features a bacterial selection marker, such as an ampicillin resistance cassette.

[00215] Cells that can be used, *e.g.*, BHK-21, HEK 293, MC57G or other, are kept in culture and are transfected with the complementation plasmid(s) using any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation. A few days later the suitable selection agent, *e.g.*, puromycin, is added in titrated concentrations. Surviving clones are isolated and subcloned following standard procedures, and high-expressing C-cell clones are identified using Western blot or flow cytometry procedures with antibodies directed against the viral protein(s) of interest. As an alternative to the use of stably transfected C-cells transient transfection of normal cells can complement the missing viral gene(s) in each of the steps where C-cells will be used below. In addition, a helper virus can be used to provide the missing functionality *in trans*.

[00216] Plasmids of two types can be used: i) two plasmids, referred to as TF-plasmids for expressing intracellularly in C-cells the minimal transacting factors of the Pichinde virus, is derived from *e.g.*, NP and L proteins of Pichinde virus in the present example; and ii) plasmids, referred to as GS-plasmids, for expressing intracellularly in C-cells the Pichinde virus vector

genome segments, *e.g.*, the segments with designed modifications. TF-plasmids express the NP and L proteins of the respective Pichinde virus vector under control of an expression cassette suitable for protein expression in mammalian cells, typically *e.g.*, a mammalian polymerase II promoter such as the CMV or EF1alpha promoter, either one of them preferentially in combination with a polyadenylation signal. GS-plasmids express the small (S) and the large (L) genome segments of the vector. Typically, polymerase I-driven expression cassettes or T7 bacteriophage RNA polymerase (T7-) driven expression cassettes can be used, the latter preferentially with a 3'-terminal ribozyme for processing of the primary transcript to yield the correct end. In the case of using a T7-based system, expression of T7 in C-cells must be provided by either including in the recovery process an additional expression plasmid, constructed analogously to TF-plasmids, providing T7, or C-cells are constructed to additionally express T7 in a stable manner. In certain embodiments, TF and GS plasmids can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by T7, polII and polIII promoters from one plasmid.

[00217] For recovering of the Pichinde virus vector, the following procedures can be used. First day: C-cells, typically 80% confluent in M6-well plates, are transfected with a mixture of the two TF-plasmids plus the two GS-plasmids. In certain embodiments, the TF and GS plasmids can be the same, *i.e.*, the genome sequence and transacting factors can be transcribed by T7, polII and polIII promoters from one plasmid. For this one can exploit any of the commonly used strategies such as calcium-phosphate, liposome-based protocols or electroporation.

[00218] 3-5 days later: The culture supernatant (Pichinde virus vector preparation) is harvested, aliquoted and stored at 4 °C, -20 °C or -80 °C depending on how long the Pichinde virus vector should be stored prior to use. Then the Pichinde virus vector preparation's infectious titer is assessed by an immunofocus assay on C-cells. Alternatively, the transfected cells and supernatant may be passaged to a larger vessel (*e.g.*, a T75 tissue culture flask) on day 3-5 after transfection, and culture supernatant is harvested up to five days after passage.

[00219] The invention furthermore relates to expression of an antigen in a cell culture wherein the cell culture is infected with an infectious, replication-deficient tri-segmented Pichinde virus expressing a antigen. When used for expression of a CMV antigen in cultured cells, the following two procedures can be used:

[00220] i) The cell type of interest is infected with the Pichinde virus vector preparation described herein at a multiplicity of infection (MOI) of one or more, *e.g.*, two, three or four, resulting in production of the antigen in all cells already shortly after infection.

[00221] ii) Alternatively, a lower MOI can be used and individual cell clones can be selected for their level of virally driven antigen expression. Subsequently individual clones can be expanded infinitely owing to the non-cytolytic nature of Pichinde virus vectors. Irrespective of the approach, the antigen can subsequently be collected (and purified) either from the culture supernatant or from the cells themselves, depending on the properties of the antigen produced. However, the invention is not limited to these two strategies, and other ways of driving expression of CMV antigen using infectious, replication-deficient Pichinde viruses as vectors may be considered.

4.5 Nucleic Acids, Vector Systems and Cell Lines

[00222] In certain embodiments, provided herein are cDNAs comprising or consisting of the Pichinde virus genomic segment or the tri-segmented Pichinde virus particle as described in Section 4.1 and Section 4.2, respectively.

4.5.1 Non-natural Position Open Reading Frame

[00223] In one embodiment, provided herein are nucleic acids that encode an Pichinde virus genomic segment as described in Section 4.1. In more specific embodiments, provided herein is a DNA nucleotide sequence or a set of DNA nucleotide sequences as set forth in Table 1. Host cells that comprise such nucleic acids are also provided Section 4.1.

[00224] In specific embodiments, provided herein is a cDNA of the Pichinde virus genomic segment engineered to carry an ORF in a position other than the wild-type position of the ORF, wherein the Pichinde virus genomic segment encodes a heterologous ORF as described in Section 4.1.

[00225] In one embodiment, provided herein is a DNA expression vector system that encodes the Pichinde virus genomic segment engineered to carry an ORF in a position other than the wild-type position of the ORF. Specifically, provided herein is a DNA expression vector system wherein one or more vectors encodes two Pichinde virus genomic segments, namely, an L segment and an S segment, of an Pichinde virus particle described herein. Such a vector system can encode (one or more separate DNA molecules).

[00226] In another embodiment, provided herein is a cDNA of the Pichinde virus S segment that has been engineered to carry an ORF in a position other than the wild-type position is part of or incorporated into a DNA expression system. In other embodiments, a cDNA of the Pichinde virus L segment that has been engineered to carry an ORF in a position other than the wild-type position is part of or incorporated into a DNA expression system. In certain embodiments, is a cDNA of the Pichinde virus genomic segment that has been engineered to carry (i) an ORF in a position other than the wild-type position of the ORF; and (ii) an ORF encoding GP, NP, Z protein, or L protein has been removed and replaced with a heterologous ORF from an organism other than an Pichinde virus.

[00227] In certain embodiments, the cDNA provided herein can be derived from a particular strain of Pichinde virus. Strains of Pichinde virus include Munchique CoAn4763 isolate P18 and their derivatives, P2 and their derivatives, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641). In specific embodiments, the cDNA is derived from Pichinde virus Munchique CoAn4763 isolate P18 strain.

[00228] In certain embodiments, the vector generated to encode an Pichinde virus particle or a tri-segmented Pichinde virus particle as described herein may be based on a specific strain of Pichinde virus. Strains of Pichinde virus include Munchique CoAn4763 isolate P18 and their derivatives, P2 and their derivatives, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641). In certain embodiments, an Pichinde virus particle or a tri-segmented Pichinde virus particle as described herein may be based on Pichinde virus Munchique CoAn4763 isolate P18 strain. The sequence of the S segment of Pichinde virus strain Munchique CoAn4763 isolate P18 is listed as SEQ ID NO: 1. In certain embodiments, the sequence of the S segment of Pichinde virus strain Munchique CoAn4763 isolate P18 is the sequence set forth in SEQ ID NO: 1. The sequence of the L segment of Pichinde virus is listed as SEQ ID NO: 2.

[00229] In another embodiment, provided herein is a cell, wherein the cell comprises a cDNA or a vector system described above in this section. Cell lines derived from such cells, cultures comprising such cells, methods of culturing such cells infected are also provided herein. In certain embodiments, provided herein is a cell, wherein the cell comprises a cDNA of the Pichinde virus genomic segment that has been engineered to carry an ORF in a position other

than the wild-type position of the ORF. In some embodiments, the cell comprises the S segment and/or the L segment.

4.5.2 Tri-segmented Pichinde virus Particle

[00230] In one embodiment, provided herein are nucleic acids that encode a tri-segmented Pichinde virus particle as described in Section 4.2. In more specific embodiments, provided herein is a DNA nucleotide sequence or a set of DNA nucleotide sequences, for example, as set forth in Table 2 or Table 3. Host cells that comprise such nucleic acids are also provided Section 4.2.

[00231] In specific embodiments, provided herein is a cDNA consisting of a cDNA of the tri-segmented Pichinde virus particle that has been engineered to carry an ORF in a position other than the wild-type position of the ORF. In other embodiments, is a cDNA of the tri-segmented Pichinde virus particle that has been engineered to (i) carry a Pichinde virus ORF in a position other than the wild-type position of the ORF; and (ii) wherein the tri-segmented Pichinde virus particle encodes a heterologous ORF as described in Section 4.2.

[00232] In one embodiment, provided herein is a DNA expression vector system that together encode the tri-segmented Pichinde virus particle as described herein. Specifically, provided herein is a DNA expression vector system wherein one or more vectors encode three Pichinde virus genomic segments, namely, one L segment and two S segments or two L segments and one S segment of a tri-segmented Pichinde virus particle described herein. Such a vector system can encode (one or more separate DNA molecules).

[00233] In another embodiment, provided herein is a cDNA of the Pichinde virus S segment(s) that has been engineered to carry an ORF in a position other than the wild-type position, and is part of or incorporated into a DNA expression system. In other embodiments, a cDNA of the Pichinde virus L segment(s) that has been engineered to carry an ORF in a position other than the wild-type position is part of or incorporated into a DNA expression system. In certain embodiments, is a cDNA of the tri-segmented Pichinde virus particle that has been engineered to carry (i) an ORF in a position other than the wild-type position of the ORF; and (ii) an ORF encoding GP, NP, Z protein, or L protein has been removed and replaced with a heterologous ORF from an organism other than a Pichinde virus.

[00234] In certain embodiments, the cDNA provided herein can be derived from a particular strain of Pichinde virus. Strains of Pichinde virus include Munchique CoAn4763 isolate P18 and

their derivatives, P2 and their derivatives, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641). In specific embodiments, the cDNA is derived from Pichinde virus Munchique CoAn4763 isolate P18 strain.

[00235] In certain embodiments, the vector generated to encode an Pichinde virus particle or a tri-segmented Pichinde virus particle as described herein may be based on a specific strain of Pichinde virus. Strains of Pichinde virus include Munchique CoAn4763 isolate P18 and their derivatives, P2 and their derivatives, or is derived from any of the several isolates described by Trapido and colleagues (Trapido *et al*, 1971, Am J Trop Med Hyg, 20: 631-641). In certain embodiments, an Pichinde virus particle or a tri-segmented Pichinde virus particle as described herein may be based on Pichinde virus Munchique CoAn4763 isolate P18 strain. The sequence of the S segment of Pichinde virus strain Munchique CoAn4763 isolate P18 is listed as SEQ ID NO: 1. In certain embodiments, the sequence of the S segment of Pichinde virus strain Munchique CoAn4763 isolate P18 is the sequence set forth in SEQ ID NO: 1. A sequence of the L segment of Pichinde virus is listed as SEQ ID NO: 2.

[00236] In another embodiment, provided herein is a cell, wherein the cell comprises a cDNA or a vector system described above in this section. Cell lines derived from such cells, cultures comprising such cells, methods of culturing such cells infected are also provided herein. In certain embodiments, provided herein is a cell, wherein the cell comprises a cDNA of the tri-segmented Pichinde virus particle. In some embodiments, the cell comprises the S segment and/or the L segment.

4.6 Methods of Use

[00237] Vaccines have been successful for preventing and/or treating infectious diseases, such as those for polio virus and measles. However, therapeutic immunization in the setting of established, chronic disease, including both chronic infections and cancer has been less successful. The ability to generate a Pichinde virus particle and/or a tri-segmented Pichinde virus particle represents a new novel vaccine strategy.

[00238] In one embodiment, provided herein are methods of treating an infection and/or cancer in a subject comprising administering to the subject one or more types of Pichinde virus particles or tri-segmented Pichinde virus particles, as described herein or a composition thereof. In a specific embodiment, a method for treating an infection and/or cancer described herein

comprises administering to a subject in need thereof an effective amount of one or more Pichinde virus particles or tri-segmented Pichinde virus particles, described herein or a composition thereof. The subject can be a mammal, such as but not limited to a human being, a mouse, a rat, a guinea pig, a domesticated animal, such as, but not limited to, a cow, a horse, a sheep, a pig, a goat, a cat, a dog, a hamster, a donkey. In a specific embodiment, the subject is a human. The human subject might be male, female, adults, children, seniors (65 and older), and those with multiple diseases (*i.e.*, a polymorbid subject). In certain embodiments, subjects are those whose disease has progressed after treatment with chemotherapy, radiotherapy, surgery, and/or biologic agents.

[00239] In another embodiment, provided herein are methods for inducing an immune response against an antigen derived from an infectious organism, tumor, or allergen in a subject comprising administering to the subject a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, tumor, or allergen or a composition thereof.

[00240] In another embodiment, the subjects to whom a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, tumor, or allergen described herein or a composition thereof is administered have, are susceptible to, or are at risk for a infection, development of cancer or a allergy, or exhibit a pre-cancerous tissue lesion. In another specific embodiment, the subjects to whom a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, tumor, or allergen described herein or a composition thereof is administered are infected with, are susceptible to, are at risk for, or diagnosed with an infection, cancer, pre-cancerous tissue lesion, or allergy.

[00241] In another embodiment, the subjects to whom a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, tumor, or allergen described herein or a composition thereof is administered are suffering from, are susceptible to, or are at risk for, an infection, a cancer, a pre-cancerous lesion, or an allergy in the pulmonary system, central nervous system, lymphatic system, gastrointestinal system, or circulatory system among others. In a specific embodiment, the subjects to whom a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derive from an infectious organism, tumor, or allergen described herein or a composition thereof is administered

are suffering from, are susceptible to, or are at risk for, an infection, a cancer, or an allergy in one or more organs of the body, including but not limited to the brain, liver, lungs, eyes, ears, intestines, esophagus, uterus, nasopharynx or salivary glands.

[00242] In another embodiment, the subjects to whom a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to a subject suffering from symptoms including but not limited to fever, night sweats, tiredness, malaise, uneasiness, sore throat, swollen glands, joint pain, muscle pain, loss of appetite, weight loss, diarrhea, gastrointestinal ulcerations, gastrointestinal bleeding, shortness of breath, pneumonia, mouth ulcers, vision problems, hepatitis, jaundice, encephalitis, seizures, coma, pruritis, erythema, hyperpigmentation, changes in lymph node, or hearing loss.

[00243] In another embodiment, a Pichinde virus or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject of any age group suffering from, are susceptible to, or are at risk for, an infection, a cancer, or an allergy. In a specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject with a compromised immune system, a pregnant subject, a subject undergoing an organ or bone marrow transplant, a subject taking immunosuppressive drugs, a subject undergoing hemodialysis, a subject who has cancer, or a subject who is suffering from, are susceptible to, or are at risk for, an infection, a cancer, or an allergy. In a more specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject who is a child of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, or 17 years of age suffering from, are susceptible to, or are at risk for, an infection, a cancer, or an allergy. In yet another specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to a subject who is an infant suffering from, is susceptible to, or is at risk for, an infection, cancer or an allergy. In yet another specific embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or

an allergen described herein or a composition thereof is administered to a subject who is an infant of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months of age suffering from, is susceptible to, or is at risk for, an infection, cancer, or an allergy. In yet another specific embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to an elderly subject who is suffering from, is susceptible to, or is at risk for, an infection, cancer, or an allergy. In a more specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to a subject who is a senior subject of 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, or 90 years of age.

[00244] In another embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to subjects with a heightened risk of disseminated infection, a cancer, or an allergy. In a specific embodiment, Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to subjects in the neonatal period with a neonatal and therefore immature immune system.

[00245] In another embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject having a dormant infection, cancer, or allergy. In a specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus expressing an antigen derived from an infectious organism, a cancer, or an allergen described herein or a composition thereof is administered to a subject having a dormant infection, a dormant cancer, or a dormant allergy which can reactivate upon immune system compromise. Thus, provided herein is a method for preventing reactivation of an infection, a cancer, or an allergy.

[00246] In another embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject having a recurrent infection, a cancer, or an allergy.

[00247] In another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject with a genetic predisposition for an infection, a cancer, or an allergy. In another embodiment, a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof is administered to a subject. In another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen is administered to a subject with risk factors. Exemplary risk factors include, aging, tobacco, sun exposure, radiation exposure, chemical exposure, family history, alcohol, poor diet, lack of physical activity, or being overweight.

[00248] In another embodiment, administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen reduces a symptomatic infection, cancer, or allergy. In another embodiment, administering a Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen reduces an asymptomatic infection, cancer, or allergy.

[00249] In another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism described herein or a composition thereof is administered to subjects or animals infected with one or more strains of influenza virus, infectious bursal disease virus, rotavirus, infectious bronchitis virus, infectious laryngotracheitis virus, chicken anemia virus, Marek's disease virus, avian leukosis virus, avian adenovirus, or avian pneumovirus, SARS-causing virus, human respiratory syncytial virus, human immunodeficiency virus, hepatitis A virus, hepatitis B virus, hepatitis C virus, poliovirus, rabies virus, Hendra virus, Nipah virus, human parainfluenza 3 virus, measles virus, mumps virus, Ebola virus, Marburg virus, West Nile disease virus, Japanese encephalitis virus, Dengue virus, Hantavirus, Rift Valley fever virus, Lassa fever virus, herpes simplex virus and yellow fever virus.

[00250] In another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from a cancer described herein or a composition thereof is administered to subjects who suffer from one or more types of cancers. In other embodiments,

any type of a cancer susceptible to treatment with the vaccines described herein might be targeted. In a more specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from a cancer described herein or a composition thereof is administered to subjects suffering from, for example, melanoma, prostate carcinoma, breast carcinoma, lung carcinoma, neuroblastoma, hepatocellular carcinoma, cervical carcinoma, and stomach carcinoma, burkitt lymphoma; non-Hodgkin lymphoma; Hodgkin lymphoma; nasopharyngeal carcinoma (cancer of the upper part of the throat behind the nose), leukemia, mucosa-associated lymphoid tissue lymphoma.

[00251] In another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an allergen described herein or a composition thereof is administered to subjects who suffer from one or more allergies. In a more specific embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an allergen described herein or a composition thereof is administered to subjects suffering from, for example, a seasonal allergy, a perennial allergy, rhinoconjunctivitis, asthma, eczema, a food allergy.

[00252] In another embodiment, administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein or a composition thereof to subjects confer cell-mediated immunity (CMI) against an infection, a cancer, or an allergen. Without being bound by theory, in another embodiment, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, an allergen as described herein or a composition thereof infects and expresses antigens of interest in antigen presenting cells (APC) of the host (*e.g.*, macrophages, dendritic cells, or B cells) for direct presentation of antigens on Major Histocompatibility Complex (MHC) class I and II. In another embodiment, administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, an allergen as described herein or a composition thereof to subjects induces plurifunctional cytolytic as well as IFN- γ and TNF- α co-producing CMV-specific CD4+ and CD8+ T cell responses of high magnitude to treat or prevent an infection, a cancer, or an allergy.

[00253] In another embodiment, administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or

an allergen or a composition thereof reduces the risk that an individual will develop an infection, a cancer, an allergy by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or more, compared to the risk of developing an infection, a cancer, or an allergy in the absence of such treatment.

[00254] In another embodiment, administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen or a composition thereof reduces the symptoms of an infection, a cancer, or an allergy by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or more, compared to the manifestation of the symptoms of an infection, a cancer, an allergy in the absence of such treatment.

[00255] In certain embodiments, the Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen is preferably administered in multiple injections (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 40, 45, or 50 injections) or by continuous infusion (e.g., using a pump) at multiple sites (e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, or 14 sites). In certain embodiments, the Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen is administered in two or more separate injections over a 6-month period, a 12-month period, a 24-month period, or a 48-month period. In certain embodiments, the Pichinde virus particle or tri-segmented Pichinde virus particle expressing an antigen derived from a infectious organism, a cancer, or an allergen is administered with a first dose at an elected date, a second dose at least 2 months after the first dose, and a third does 6 months after the first dose.

[00256] In one example, cutaneous injections are performed at multiple body sites to reduce extent of local skin reactions. On a given vaccination day, the patient receives the assigned total dose of cells administered from one syringe in 3 to 5 separate intradermal injections of the dose (e.g., at least 0.4 ml, 0.2 ml, or 0.1 ml) each in an extremity spaced at least about 5 cm (e.g., at least 4.5, 5, 6, 7, 8, 9, or cm) at needle entry from the nearest neighboring injection. On subsequent vaccination days, the injection sites are rotated to different limbs in a clockwise or counter-clockwise manner.

[00257] In another embodiment, administering an infectious, replication-deficient Pichinde virus expressing a CMV antigen or a composition thereof in subjects with a neonatal and therefore immune system induces a cell-mediated immune (CMI) response against an infection, a cancer, or an allergy, exceeding by at least about 10%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or more, the CMI response against an infection, a cancer, or a allergy in the absence of such a treatment.

[00258] In certain embodiments, administrating to a subject a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen, as described herein induces a detectable antibody titer for a minimum of at least four weeks. In another embodiment, administering to a subject a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen, as describe herein increases the antibody titer by at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000%.

[00259] In certain embodiments, primary antigen exposure elicits a functional, (neutralizing) and minimum antibody titer of at least 50%, at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000% of mean control sera from infection-immune human subjects. In more specific embodiments, the primary neutralizing geometric mean antibody titer increases up to a peak value of at least 1:50, at least 1:100, at least 1:200, or at least 1:1000 within at least 4 weeks post-immunization. In another embodiment, immunization with a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein produces high titers of antibodies that last for at least 4 weeks, at least 8 weeks, at least 12 weeks, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, or at least 5 years post-immunization following a single administration of the vaccine, or following two or more sequential immunizations.

[00260] In yet another embodiment, secondary antigen exposure increases the antibody titer by at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000%. In another embodiment, secondary antigen exposure elicits a functional, (neutralizing) and minimum antibody titer of at least 50%, at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000% of mean control sera from infection-immune human

subjects. In more specific embodiments, the secondary neutralizing geometric mean antibody titer increases up to a peak value of at least 1:50, at least 1:100, at least 1:200, or at least 1:1000 within at least 4 weeks post-immunization. In another embodiment, a second immunization with a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein produces high titers of antibodies that last for at least 4 weeks, at least 8 weeks, at least 12 weeks, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, or at least 5 years post-immunization.

[00261] In yet another embodiment, a third boosting immunization increases the antibody titer by at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000%. In another embodiment, the boosting immunization elicits a functional, (neutralizing) and minimum antibody titer of at least 50 %, at least 100 %, at least 200 %, at least 300%, at least 400%, at least 500%, or at least 1000% of mean control sera from infection-immune human subjects. In more specific embodiments, the third boosting immunization elicits a functional, (neutralizing), and minimum antibody titer of at least 50%, at least 100%, at least 200%, at least 300%, at least 400%, at least 500%, or at least 1000% of mean control sera from infection-immune human subjects. In another embodiment, a third boosting immunization prolongs the antibody titer by at least 4 weeks, at least 8 weeks, at least 12 weeks, at least 6 months, at least 12 months, at least 2 years, at least 3 years, at least 4 years, or at least 5 years post-immunization

[00262] In certain embodiments, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, elicits a T cell independent or T cell dependent response. In other embodiments, Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, elicits a T cell response. In other embodiments, a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein elicits a T helper response. In another embodiment, Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein elicits a Th1-orientated response or a Th2-orientated response.

[00263] In more specific embodiments, the Th1-orientated response is indicated by a predominance of IgG2 antibodies versus IgG1. In other embodiments the ratio of IgG2:IgG1 is

greater than 1:1, greater than 2:1, greater than 3:1, or greater than 4:1. In another embodiment the infectious, Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein is indicated by a predominance of IgG1, IgG2, IgG3, IgG4, IgM, IgA or IgE antibodies.

[00264] In some embodiments, the infectious, replication-deficient Pichinde virus expressing a CMV antigen or a fragment thereof elicits a CD8+ T cell response. In another embodiment, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy elicits both CD4+ and CD8+ T cell responses, in combination with antibodies or not.

[00265] In certain embodiments, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein elicits high titers of neutralizing antibodies. In another embodiment, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergy, as described herein elicits higher titers of neutralizing antibodies than expression of the protein complex components individually.

[00266] In another embodiment, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing one, two, three, four, five, or more antigen derived from an infectious organism, a cancer, or an allergy elicits higher titers of neutralizing antibodies than a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing one expressing one antigen derived from an infectious organism, a cancer, or an allergen.

[00267] In certain embodiments, the methods further comprise co-administration of the Pichinde virus particle or tri-segmented Pichinde virus particle and at least one additional therapy. In certain embodiments, the co-administration is simultaneous. In another embodiment, the Pichinde virus particle or tri-segmented Pichinde virus particle is administered prior to administration of the additional therapy. In other embodiments, the Pichinde virus particle or tri-segmented Pichinde virus particle is administered after administration of the additional therapy. In certain embodiments, the administration of the Pichinde virus particle or tri-segmented Pichinde virus particle and the additional therapy is about 1 hour, about 2 hours, about 3 hours, about 4 hours, about 5 hours, about 6 hours, about 7 hours, about 8 hours, about 9 hours, about 10 hours, about 11 hours, or about 12 hours. In certain embodiments, the interval between administration of the Pichinde virus particle or tri-segmented Pichinde virus particle and said

additional therapy is about 1 day, 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 7 weeks, about 8 weeks, about 9 weeks, about 10 weeks, about 11 weeks, about 12 weeks. In certain embodiments, the interval between administration of the Pichinde virus particle or tri-segmented Pichinde virus particle and the additional therapy is about 1 month, about 2 months, about 3 months, about 4 months, about 5 months, or about 6 months.

[00268] In certain embodiments, administering a Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen or a composition thereof reduces the number of antibodies detected in a patient blood sample, or serum sample. In certain embodiments, administering a Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen composition thereof reduces the amount of the infectious organism, cancer, or allergy detected in urine, saliva, blood, tears, semen, exfoliated cell sample, or breast milk.

[00269] In another embodiment, the Pichinde virus particle or the tri-segmented Pichinde virus particle expressing an antigen derived from an infection organism, a cancer, or an allergen as described herein or a composition may further comprise a reporter protein. In a more specific embodiment, the , the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infection organism, a cancer, or an allergen and reporter protein as described herein or a composition is administered to subjects for treating and/or preventing an infection, a cancer, or an allergy. In yet another specific embodiment, the reporter protein can be used for monitoring gene expression, protein localization, and vaccine delivery, *in vivo*, *in situ* and in real time.

[00270] In another embodiment, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infection organism, a cancer, or an allergen as described herein or a composition may further comprise a fluorescent protein. In a more specific embodiment, the Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infection organism, a cancer, or an allergen and reporter protein as described herein or a composition is administered to subjects for treating and/or preventing an infection, a cancer, or an allergy. In yet another specific embodiment, the fluorescent protein can be the reporter protein can be used for monitoring gene expression, protein localization, and vaccine delivery, *in vivo*, *in situ* and in real time.

[00271] Changes in the CMI response function against an infection, a cancer, or an allergy induced by administering a Pichinde virus particle or a tri-segmented Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, an allergen or a composition thereof in subjects can be measured by any assay known to the skilled artisan including, but not limited to flow cytometry (see, *e.g.*, Perfetto S.P. *et al.*, 2004, *Nat Rev Immun.*, 4(8):648-55), lymphocyte proliferation assays (see, *e.g.*, Bonilla F.A. *et al.*, 2008, *Ann Allergy Asthma Immunol.*, 101:101-4; and Hicks M.J. *et al.*, 1983, *Am J Clin Pathol.*, 80:159-63), assays to measure lymphocyte activation including determining changes in surface marker expression following activation of measurement of cytokines of T lymphocytes (see, *e.g.*, Caruso A. *et al.*, *Cytometry*. 1997;27:71-6), ELISPOT assays (see, *e.g.*, Czernik C.C. *et al.*, 1983, *J Immunol Methods*, 65:109-121; and Hutchings P.R. *et al.*, 1989, *J Immunol Methods*, 120:1-8), or Natural killer cell cytotoxicity assays (see, *e.g.*, Bonilla F.A. *et al.*, 2006, *Ann Allergy Asthma Immunol.*, 94(5 Suppl 1):S1-63).

[00272] Successful treatment of a cancer patient can be assessed as prolongation of expected survival, induction of an anti-tumor immune response, or improvement of a particular characteristic of a cancer. Examples of characteristics of a cancer that might be improved include tumor size (*e.g.*, T0, T is, or T1-4), state of metastasis (*e.g.*, M0, M1), number of observable tumors, node involvement (*e.g.*, N0, N1-4, Nx), grade (*i.e.*, grades 1, 2, 3, or 4), stage (*e.g.*, 0, I, II, III, or IV), presence or concentration of certain markers on the cells or in bodily fluids (*e.g.*, AFP, B2M, beta-HCG, BTA, CA 15-3, CA 27.29, CA 125, CA 72.4, CA 19-9, calcitonin, CEA, chromogranin A, EGFR, hormone receptors, HER2, HCG, immunoglobulins, NSE, NMP22, PSA, PAP, PSMA, S-100, TA-90, and thyroglobulin), and/or associated pathologies (*e.g.*, ascites or edema) or symptoms (*e.g.*, cachexia, fever, anorexia, or pain). The improvement, if measurable by percent, can be at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, or 90% (*e.g.*, survival, or volume or linear dimensions of a tumor).

[00273] In another embodiment, described herein, is a method of use with a Pichinde virus particle expressing an antigen derived from an infectious organism, a cancer, or an allergen as described herein in which the at least one of the ORF encoding the GP, NP, Z protein, and L protein is substituted with a nucleotide sequence encoding an infectious a nucleotide sequence encoding an antigen derived from an infectious organism, a cancer, an allergen, or an antigenic fragment thereof.

4.7 Compositions, Administration, and Dosage

[00274] The present application furthermore relates to vaccines, immunogenic compositions (e.g., vaccine formulations), and pharmaceutical compositions comprising a Pichinde virus particle or a tri-segmented Pichinde virus particle as described herein. Such vaccines, immunogenic compositions and pharmaceutical compositions can be formulated according to standard procedures in the art.

[00275] It will be readily apparent to one of ordinary skill in the relevant arts that suitable modifications and adaptations to the methods and applications described herein can be obvious and can be made without departing from the scope of the scope or any embodiment thereof.

[00276] In another embodiment, provided herein are compositions comprising a Pichinde virus particle or a tri-segmented Pichinde virus particle described herein. Such compositions can be used in methods of treatment and prevention of disease. In a specific embodiment, the compositions described herein are used in the treatment of subjects infected with, or susceptible to, an infection. In other embodiments, the compositions described herein are used in the treatment of subjects susceptible to or exhibiting symptoms characteristic of cancer or tumorigenesis or are diagnosed with cancer. In another specific embodiment, the immunogenic compositions provided herein can be used to induce an immune response in a host to whom the composition is administered. The immunogenic compositions described herein can be used as vaccines and can accordingly be formulated as pharmaceutical compositions. In a specific embodiment, the immunogenic compositions described herein are used in the prevention of infection or cancer of subjects (e.g., human subjects). In other embodiments, the vaccine, immunogenic composition or pharmaceutical composition are suitable for veterinary and/or human administration.

[00277] In certain embodiments, provided herein are immunogenic compositions comprising a Pichinde virus vector as described herein. In certain embodiments, such an immunogenic composition further comprises a pharmaceutically acceptable excipient. In certain embodiments, such an immunogenic composition further comprises an adjuvant. The adjuvant for administration in combination with a composition described herein may be administered before, concomitantly with, or after administration of said composition. In some embodiments, the term “adjuvant” refers to a compound that when administered in conjunction with or as part of a composition described herein augments, enhances and/or boosts the immune response to a

Pichinde virus particle or tri-segmented Pichinde virus particle and, most importantly, the gene products it vectorises, but when the compound is administered alone does not generate an immune response to the Pichinde virus particle or tri-segmented Pichinde virus particle and the gene products vectorised by the latter. In some embodiments, the adjuvant generates an immune response to the Pichinde virus particle or tri-segmented Pichinde virus particle and the gene products vectorised by the latter and does not produce an allergy or other adverse reaction. Adjuvants can enhance an immune response by several mechanisms including, *e.g.*, lymphocyte recruitment, stimulation of B and/or T cells, and stimulation of macrophages or dendritic cells. When a vaccine or immunogenic composition of the invention comprises adjuvants or is administered together with one or more adjuvants, the adjuvants that can be used include, but are not limited to, mineral salt adjuvants or mineral salt gel adjuvants, particulate adjuvants, microparticulate adjuvants, mucosal adjuvants, and immunostimulatory adjuvants. Examples of adjuvants include, but are not limited to, aluminum salts (alum) (such as aluminum hydroxide, aluminum phosphate, and aluminum sulfate), 3 De-O-acylated monophosphoryl lipid A (MPL) (see GB 2220211), MF59 (Novartis), AS03 (GlaxoSmithKline), AS04 (GlaxoSmithKline), polysorbate 80 (Tween 80; ICL Americas, Inc.), imidazopyridine compounds (see International Application No. PCT/US2007/064857, published as International Publication No. WO2007/109812), imidazoquinoxaline compounds (see International Application No. PCT/US2007/064858, published as International Publication No. WO2007/109813) and saponins, such as QS21 (see Kensil *et al.*, 1995, in Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY); U.S. Pat. No. 5,057,540). In some embodiments, the adjuvant is Freund's adjuvant (complete or incomplete). Other adjuvants are oil in water emulsions (such as squalene or peanut oil), optionally in combination with immune stimulants, such as monophosphoryl lipid A (see Stoute *et al.*, 1997, N. Engl. J. Med. 336, 86-91).

[00278] The compositions comprise the Pichinde viruses particle or tri-segmented Pichinde virus particle described herein alone or together with a pharmaceutically acceptable carrier. Suspensions or dispersions of the Pichinde virus particle or tri-segmented Pichinde virus particle, especially isotonic aqueous suspensions or dispersions, can be used. The pharmaceutical compositions may be sterilized and/or may comprise excipients, *e.g.*, preservatives, stabilizers, wetting agents and/or emulsifiers, solubilizers, salts for regulating osmotic pressure and/or

buffers and are prepared in a manner known *per se*, for example by means of conventional dispersing and suspending processes. In certain embodiments, such dispersions or suspensions may comprise viscosity-regulating agents. The suspensions or dispersions are kept at temperatures around 2 °C to 8 °C, or preferentially for longer storage may be frozen and then thawed shortly before use, or alternatively may be lyophilized for storage. For injection, the vaccine or immunogenic preparations may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. The solution may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

[00279] In certain embodiments, the compositions described herein additionally comprise a preservative, *e.g.*, the mercury derivative thimerosal. In a specific embodiment, the pharmaceutical compositions described herein comprise 0.001% to 0.01% thimerosal. In other embodiments, the pharmaceutical compositions described herein do not comprise a preservative.

[00280] The pharmaceutical compositions comprise from about 10³ to about 10¹¹ focus forming units of the Pichinde virus particle or tri-segmented Pichinde virus particle.

[00281] In one embodiment, administration of the pharmaceutical composition is parenteral administration. Parenteral administration can be intravenous or subcutaneous administration. Accordingly, unit dose forms for parenteral administration are, for example, ampoules or vials, *e.g.*, vials containing from about 10³ to 10¹⁰ focus forming units or 10⁵ to 10¹⁵ physical particles of the Pichinde virus particle or tri-segmented Pichinde virus particle. In certain embodiments, the term "10eX" means 10 to the power of X.

[00282] In another embodiment, a vaccine or immunogenic composition provided herein is administered to a subject by, including but not limited to, oral, intradermal, intramuscular, intraperitoneal, intravenous, topical, subcutaneous, percutaneous, intranasal and inhalation routes, and via scarification (scratching through the top layers of skin, *e.g.*, using a bifurcated needle). Specifically, subcutaneous or intravenous routes can be used.

[00283] For administration intranasally or by inhalation, the preparation for use according to the present invention can be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, *e.g.*, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by

providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflators may be formulated containing a powder mix of the compound and as suitable powder base such as lactose or starch.

[00284] The dosage of the active ingredient depends upon the type of vaccination and upon the subject, and their age, weight, individual condition, the individual pharmacokinetic data, and the mode of administration. In certain embodiments, an *in vitro* assay is employed to help identify optimal dosage ranges. Effective doses may be extrapolated from dose response curves derived from *in vitro* or animal model test systems.

[00285] In certain embodiments, the vaccine, immunogenic composition, or pharmaceutical composition comprising a Pichinde virus particle or the tri-segmented Pichinde virus particle can be used as a live vaccination. Exemplary doses for a live Pichinde virus particle may vary from 10-100, or more, PFU of live virus per dose. In some embodiments, suitable dosages of a Pichinde virus particle or the tri-segmented Pichinde virus particle are 10^2 , 5×10^2 , 10^3 , 5×10^3 , 10^4 , 5×10^4 , 10^5 , 5×10^5 , 10^6 , 5×10^6 , 10^7 , 5×10^7 , 10^8 , 5×10^8 , 1×10^9 , 5×10^9 , 1×10^{10} , 5×10^{10} , 1×10^{11} , 5×10^{11} or 10^{12} pfu, and can be administered to a subject once, twice, three or more times with intervals as often as needed. In another embodiment, a live Pichinde virus is formulated such that a 0.2-mL dose contains $10^{6.5}$ - $10^{7.5}$ fluorescent focal units of live Pichinde virus particle. In another embodiment, an inactivated vaccine is formulated such that it contains about 15 μ g to about 100 μ g, about 15 μ g to about 75 μ g, about 15 μ g to about 50 μ g, or about 15 μ g to about 30 μ g of a Pichinde virus

[00286] In certain embodiments, for administration to children, two doses of a Pichinde virus particle or a tri-segmented Pichinde virus particle described herein or a composition thereof, given at least one month apart, are administered to a child. In specific embodiments for administration to adults, a single dose of the Pichinde virus particle or tri-segmented Pichinde virus particle described herein or a composition thereof is given. In another embodiment, two doses of a Pichinde virus particle or a tri-segmented Pichinde virus particle described herein or a composition thereof, given at least one month apart, are administered to an adult. In another embodiment, a young child (six months to nine years old) may be administered a Pichinde virus particle or a tri-segmented Pichinde virus particle described herein or a composition thereof for the first time in two doses given one month apart. In a particular embodiment, a child who received only one dose in their first year of vaccination should receive two doses in the following

year. In some embodiments, two doses administered 4 weeks apart are preferred for children 2-8 years of age who are administered an immunogenic composition described herein, for the first time. In certain embodiments, for children 6-35 months of age, a half dose (0.25 ml) may be preferred, in contrast to 0.5 ml which may be preferred for subjects over three years of age..

[00287] In certain embodiments, the compositions can be administered to the patient in a single dosage comprising a therapeutically effective amount of the Pichinde virus particle or the tri-segmented Pichinde virus particle. In some embodiments, the Pichinde virus particle or tri-segmented Pichinde virus particle can be administered to the patient in a single dose comprising a therapeutically effective amount of a Pichinde virus particle or tri-segmented Pichinde virus particle and, one or more pharmaceutical compositions, each in a therapeutically effective amount.

[00288] In certain embodiments, the composition is administered to the patient as a single dose followed by a second dose three to six weeks later. In accordance with these embodiments, the booster inoculations may be administered to the subjects at six to twelve month intervals following the second inoculation. In certain embodiments, the booster inoculations may utilize a different Pichinde virus or composition thereof. In some embodiments, the administration of the same composition as described herein may be repeated and separated by at least 1 day, 2 days, 3 days, 4 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.

[00289] Also provided herein, are processes and to the use the Pichinde virus particle or the tri-segmented Pichinde virus particle for the manufacture of vaccines in the form of pharmaceutical preparations, which comprise the Pichinde virus particle or tri-segmented Pichinde virus particle as an active ingredient. The pharmaceutical compositions of the present application are prepared in a manner known per se, for example by means of conventional mixing and/or dispersing processes.

4.8 Assays

4.8.1 Pichinde virus Detection Assays

[00290] The skilled artesian could detect a Pichinde virus genomic segment or tri-segmented Pichinde virus particle, as described herein using techniques known in the art. For example, RT-PCR can be used with primers that are specific to a Pichinde virus to detect and quantify a Pichinde virus genomic segment that has been engineered to carry an ORF in a position other

than the wild-type position of the ORF or a tri-segmented Pichinde virus particle. Western blot, ELISA, radioimmunoassay, immunoprecipitation, immunocytochemistry, or immunocytochemistry in conjunction with FACS can be used to quantify the gene products of the Pichinde virus genomic segment or tri-segmented Pichinde virus particle.

4.8.2 Assay to Measure Infectivity

[00291] Any assay known to the skilled artisan can be used for measuring the infectivity of a Pichinde virus vector preparation. For example, determination of the virus/vector titer can be done by a “focus forming unit assay” (FFU assay). In brief, complementing cells, *e.g.*, MC57 cells are plated and inoculated with different dilutions of a virus/vector sample. After an incubation period, to allow cells to form a monolayer and virus to attach to cells, the monolayer is covered with Methylcellulose. When the plates are further incubated, the original infected cells release viral progeny. Due to the Methylcellulose overlay the spread of the new viruses is restricted to neighboring cells. Consequently, each infectious particle produces a circular zone of infected cells called a Focus. Such Foci can be made visible and by that countable using antibodies against Pichinde virus- NP or another protein expressed by the Pichinde virus particle or the tri-segmented Pichinde virus particle and a HRP-based color reaction. The titer of a virus / vector can be calculated in focus-forming units per milliliter (FFU/mL).

4.8.3 Growth of a Pichinde virus Particle

[00292] Growth of a Pichinde virus particle described herein can be assessed by any method known in the art or described herein (*e.g.*, cell culture). Viral growth may be determined by inoculating serial dilutions of a Pichinde virus particle described herein into cell cultures (*e.g.*, BHK-21 cells). After incubation of the virus for a specified time, the virus is isolated using standard methods.

4.8.4 Serum ELISA

[00293] Determination of the humoral immune response upon vaccination of animals (*e.g.*, mice, guinea pigs) can be done by antigen-specific serum ELISA's (enzyme-linked immunosorbent assays). In brief, plates are coated with antigen (*e.g.*, recombinant protein), blocked to avoid unspecific binding of antibodies and incubated with serial dilutions of sera. After incubation, bound serum-antibodies can be detected, *e.g.*, using an enzyme-coupled anti-species (*e.g.*, mouse, guinea pig)-specific antibody (detecting total IgG or IgG subclasses) and

subsequent color reaction. Antibody titers can be determined as, *e.g.*, endpoint geometric mean titer.

4.8.5 Assay to Measure the Neutralizing Activity of Induced Antibodies

[00294] Determination of the neutralizing antibodies in sera is performed with the following cell assay using ARPE-19 cells from ATCC and a GFP-tagged virus. In addition supplemental guinea pig serum as a source of exogenous complement is used. The assay is started with seeding of 6.5×10^3 cells/well (50 μ l/well) in a 384 well plate one or two days before using for neutralization. The neutralization is done in 96-well sterile tissue culture plates without cells for 1 h at 37 °C. After the neutralization incubation step the mixture is added to the cells and incubated for additional 4 days for GFP-detection with a plate reader. A positive neutralizing human sera is used as assay positive control on each plate to check the reliability of all results. Titers (EC50) are determined using a 4 parameter logistic curve fitting. As additional testing the wells are checked with a fluorescence microscope.

4.8.6 Plaque Reduction Assay

[00295] In brief, plaque reduction (neutralization) assays for Pichinde virus can be performed by use of a replication-competent or –deficient Pichinde virus that is tagged with green fluorescent protein, 5% rabbit serum may be used as a source of exogenous complement, and plaques can be enumerated by fluorescence microscopy. Neutralization titers may be defined as the highest dilution of serum that results in a 50%, 75%, 90% or 95% reduction in plaques, compared with that in control (pre-immune) serum samples.

[00296] qPCR: Pichinde virus RNA genomes are isolated using QIAamp Viral RNA mini Kit (QIAGEN), according to the protocol provided by the manufacturer. Pichinde virus RNA genome equivalents are detected by quantitative PCR carried out on an StepOnePlus Real Time PCR System (Applied Biosystems) with SuperScript® III Platinum® One-Step qRT-PCR Kit (Invitrogen) and primers and probes (FAM reporter and NFQ-MGB Quencher) specific for part of the Pichinde NP coding region or another genomic stretch of the Pichinde virus particle or the tri-segmented Pichinde virus particle. The temperature profile of the reaction may be : 30 min at 60 °C, 2 min at 95 °C, followed by 45 cycles of 15 s at 95 °C, 30 s at 56 °C. RNA can be quantified by comparison of the sample results to a standard curve prepared from a log10 dilution series of a spectrophotometrically quantified, in vitro-transcribed RNA fragment, corresponding to a fragment of the NP coding sequence or another genomic stretch of the

Pichinde virus particle or the tri-segmented Pichinde virus particle containing the primer and probe binding sites.

4.8.7 Western Blotting

[00297] Infected cells grown in tissue culture flasks or in suspension are lysed at indicated timepoints post infection using RIPA buffer (Thermo Scientific) or used directly without cell-lysis. Samples are heated to 99 °C for 10 minutes with reducing agent and NuPage LDS Sample buffer (NOVEX) and chilled to room temperature before loading on 4-12% SDS-gels for electrophoresis. Proteins are blotted onto membranes using Invitrogen's iBlot Gel transfer Device and visualized by Ponceau staining. Finally, the preparations are probed with a primary antibodies directed against proteins of interest and alkaline phosphatase conjugated secondary antibodies followed by staining with 1-Step NBT/BCIP solution (INVITROGEN).

4.8.8 MHC-Peptide Multimer Staining Assay for Detection of Antigen-Specific CD8+ T-cell proliferation

[00298] Any assay known to the skilled artisan can be used to test antigen-specific CD8+ T-cell responses. For example, the MHC-peptide tetramer staining assay can be used (see, e.g., Altman J.D. *et al.*, *Science*. 1996; 274:94-96; and Murali-Krishna K. *et al.*, *Immunity*. 1998; 8:177-187). Briefly, the assay comprises the following steps, a tetramer assay is used to detect the presence of antigen specific T-cells. In order for a T-cell to detect the peptide to which it is specific, it must both recognize the peptide and the tetramer of MHC molecules custom made for a defined antigen specificity and MHC haplotype of T-cells (typically fluorescently labeled). The tetramer is then detected by flow cytometry via the fluorescent label.

4.8.9 ELISPOT Assay for Detection of Antigen-Specific CD4+ T-cell Proliferation.

[00299] Any assay known to the skilled artisan can be used to test antigen-specific CD4+ T-cell responses. For example, the ELISPOT assay can be used (see, e.g., Czernik C.C. *et al.*, *J Immunol Methods*. 1983; 65:109-121; and Hutchings P.R. *et al.*, *J Immunol Methods*. 1989; 120:1-8). Briefly, the assay comprises the following steps: An immunospot plate is coated with an anti-cytokine antibody. Cells are incubated in the immunospot plate. Cells secrete cytokines and are then washed off. Plates are then coated with a second biotinylated-anticytokine antibody and visualized with an avidin-HRP system.

4.8.10 Intracellular Cytokine Assay for Detection of Functionality of CD8+ and CD4+ T-cell Responses.

[00300] Any assay known to the skilled artisan can be used to test the functionality of CD8+ and CD4+ T cell responses. For example, the intracellular cytokine assay combined with flow cytometry can be used (see, *e.g.*, Suni M.A. *et al.*, *J Immunol Methods*. 1998; 212:89-98; Nomura L.E. *et al.*, *Cytometry*. 2000; 40:60-68; and Ghanekar S.A. *et al.*, *Clinical and Diagnostic Laboratory Immunology*. 2001; 8:628-63). Briefly, the assay comprises the following steps: activation of cells via specific peptides or protein, an inhibition of protein transport (*e.g.*, brefeldin A) is added to retain the cytokines within the cell. After a defined period of incubation, typically 5 hours, a washing steps follows, and antibodies to other cellular markers can be added to the cells. Cells are then fixed and permeabilized. The flurochrome-conjugated anti-cytokine antibodies are added and the cells can be analyzed by flow cytometry.

4.8.11 Assay for Confirming Replication-Deficiency of Viral Vectors

[00301] Any assay known to the skilled artisan that determines concentration of infectious and replication-competent virus particles can also be used as a to measure replication-deficient viral particles in a sample. For example, FFU assays with non-complementing cells can be used for this purpose.

[00302] Furthermore, plaque-based assays are the standard method used to determine virus concentration in terms of plaque forming units (PFU) in a virus sample. Specifically, a confluent monolayer of non-complementing host cells is infected with the virus at varying dilutions and covered with a semi-solid medium, such as agar to prevent the virus infection from spreading indiscriminately. A viral plaque is formed when a virus successfully infects and replicates itself in a cell within the fixed cell monolayer, and spreads to surrounding cells (see, *e.g.*, Kaufmann, S.H.; Kabelitz, D. (2002). *Methods in Microbiology* Vol.32:Immunology of Infection. Academic Press. ISBN 0-12-521532-0). Plaque formation can take 2 – 14 days, depending on the virus being analyzed. Plaques are generally counted manually and the results, in combination with the dilution factor used to prepare the plate, are used to calculate the number of plaque forming units per sample unit volume (PFU/mL). The PFU/mL result represents the number of infective replication-competent particles within the sample. When C-cells are used, the same assay can be used to titrate replication-deficient Pichinde virus particles or tri-segmented Pichinde virus particles.

4.8.12 Assay for Expression of Viral Antigen

[00303] Any assay known to the skilled artisan can be used for measuring expression of viral antigens. For example, FFU assays can be performed. For detection, mono- or polyclonal antibody preparation(s) against the respective viral antigens are used (transgene-specific FFU).

4.8.13 Animal Models

[00304] To investigate recombination and infectivity of a Pichinde virus particle described herein *in vivo* animal models can be used. In certain embodiments, the animal models that can be used to investigate recombination and infectivity of a tri-segmented Pichinde virus particle include mouse, guinea pig, rabbit, and monkeys. In a preferred embodiment, the animal models that can be used to investigate recombination and infectivity of a Pichinde virus include mouse. In a more specific embodiment, the mice can be used to investigate recombination and infectivity of a Pichinde virus particle are triple-deficient for type I interferon receptor, type II interferon receptor and recombination activating gene 1 (RAG1).

[00305] In certain embodiments, the animal models can be used to determine Pichinde virus infectivity and transgene stability. In some embodiments, viral RNA can be isolated from the serum of the animal model. Techniques are readily known by those skilled in the art. The viral RNA can be reverse transcribed and the cDNA carrying the Pichinde virus ORFs can be PCR-amplified with gene-specific primers. Flow cytometry can also be used to investigate Pichinde virus infectivity and transgene stability.

5. EXAMPLES

[00306] These examples demonstrate that Pichinde virus-based vector technology can be used to successfully develop (1) an Pichinde virus genomic segment with a viral ORF in a position other than the wild-type position of the ORF, and (2) a tri-segmented Pichinde virus particle that does not result in a replication competent bi-segmented viral particle.

5.1 Materials and Methods

5.1.1 Cells

[00307] BHK-21 cells were cultured in high-glucose Dulbecco's Eagle medium (DMEM; Sigma) supplemented with 10 % heat-inactivated fetal calf serum (FCS; Biochrom), 10 mM HEPES (Gibco), 1 mM sodium pyruvate (Gibco) and 1x tryptose phosphate broth. Cells were

cultured at 37 °C in a humidified 5 % CO₂ incubator. 293-T cells were cultured in Dulbecco's Eagle medium (DMEM, containing Glutamax; Sigma) supplemented with 10 % heat-inactivated fetal calf serum (FCS).

5.1.2 Transgenes

[00308] (1) Green fluorescent protein(GFP) was synthesized as GFP-Bsm (SEQ ID NO.: 9) with flanking BsmBI sites for seamless cloning. (2) A fusion protein consisting of i) the vesicular stomatitis virus glycoprotein (VSVG) signal peptide, ii) the P1A antigen of the P815 mouse mastocytoma tumor cell line, iii) a GSG linker, iv) an enterovirus 2A peptide, and v) mouse GM-CSF. This fusion protein will be referred to as sP1AGM. We synthesized it with flanking BsmBI sites as sP1AGM-Bsm (SEQ ID NO.: 10) for seamless cloning. (3) The Pichinde virus GP with flanking BsmBI sites for seamless cloning to reconstitute a wild type Pichinde virus S segment expression plasmid (S segment devoid of BbsI sites) (SEQ ID NO.: 8).

5.1.3 Plasmids

[00309] We synthesized a modified cDNA of the L ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein a non-coding mutation was introduced to delete the BsmBI restriction site. This synthetic ORF with suitably flanking BsmBI as well as EcoRI and NheI restriction sites (LΔBsmBI; SEQ ID NO: 3) was introduced into the polymerase-II (pol-II) expression vector pCAGGS, yielding pC-PIC-L-Bsm (FIG. 3) for expression of the Pichinde L protein in eukaryotic cells.

[00310] We synthesized a modified L segment (PIC-L-GFP-Bsm; SEQ ID NO: 4) of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein the L ORF was deleted and substituted by a GFP ORF with flanking BsmBI sites on each side. This synthetic cDNA was introduced into a mouse polymerase I (pol-I) expression cassette (Pinschewer et al. J Virol. 2003 Mar;77(6):3882-7), yielding pol-I-PIC-L-GFP-Bsm (FIG. 3).

[00311] We digested PIC-L-Bsm with BsmBI to insert the BsmBI-mutated L ORF into the equally digested pol-I-PIC-L-GFP-Bsm backbone, thereby replacing the GFP ORF with the L ORF to seamlessly reconstitute the Pichinde virus L segment cDNA, with all restriction sites for cloning purposes removed. The resulting pol-I-PIC-L plasmid (FIG. 3) was designed for intracellular expression of a full-length Pichinde Virus L segment (PIC-L-seg; SEQ ID NO.: 2) in eukaryotic cells.

[00312] We synthesized a modified S segment cDNA of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number: EF529746.1), referred to as PIC-miniS-GFP (SEQ ID NO: 5) wherein the GP ORF was replaced by two BsmBI restriction sites and the NP ORF was replaced by GFP with two flanking BbsI restriction sites. This synthetic cDNA was introduced into a mouse polymerase I (pol-I) expression cassette (Pinschewer et al. J Virol. 2003 Mar;77(6):3882-7), yielding pol-I-PIC-miniS-GFP (FIG. 3).

[00313] We synthesized a modified cDNA of the NP ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein non-coding mutation were introduced to delete both BbsI restriction sites. This synthetic ORF with suitably flanking BbsI as well as EcoRI and NheI restriction sites (NPΔBbsI; SEQ ID NO: 6) was introduced into the polymerase-II (pol-II) expression vector pCAGGS, yielding pC-PIC-NP-Bbs (FIG. 3) for expression of the Pichinde NP protein in eukaryotic cells.

[00314] We digested NPΔBbsI with BbsI to insert the BbsI-mutated NP ORF into the equally digested pol-I-PIC-miniS-GFP backbone, thereby replacing the GFP ORF with the NP ORF to seamlessly reconstitute the 3'UTR – NP – IGR portion of the Pichinde virus S segment cDNA, with all restriction sites for cloning purposes removed. The resulting pol-I-PIC-NP-Bsm plasmid (FIG. 3), expressing PIC-NP-Bsm (SEQ ID NO: 7) under control of pol-I, was designed for accepting transgenes of interest, to be inserted between the 5'UTR and the IGR, by seamlessly replacing the BsmBI sites, for expression of the resulting recombinant Pichinde virus S segment in eukaryotic cells.

[00315] We synthesized a modified cDNA of the GP ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein non-coding mutation were introduced to delete both BbsI restriction sites. Analogously to NPΔBbsI, this synthetic ORF was introduced into the pol-I-PIC-miniS-GFP backbone, thereby replacing the GFP ORF with the GP ORF to seamlessly reconstitute a 3'UTR – GP – IGR portion of the Pichinde virus S segment cDNA, with all restriction sites for cloning purposes removed. The resulting pol-I-PIC-GP-Bsm plasmid (FIG. 3), expressing PIC-GP-Bsm (SEQ ID NO: 8), was designed for accepting transgenes of interest, to be inserted between the 5'UTR and the IGR, by seamlessly replacing the BsmBI sites, for expression of a recombinant Pichinde virus S segment in eukaryotic cells.

[00316] We then inserted into pol-I-PIC-NP-Bsm the following genes and transgenes: 1. GFP, 2. sP1AGM, and 3. Pichinde GP all with flanking BsmBI sites. The resulting plasmids

were denominated pol-I-PIC-NP-GFP (expressing PIC-NP-GFP, also known as S-NP/GFP; SEQ ID NO: 11) and pol-I-PIC-NP-sP1AGM (expressing PIC-NP-sP1AGM; SEQ ID NO: 12) and pol-I-PIC-S (expressing PIC-S, SEQ ID NO: 1). Analogously we inserted either GFP or sP1AGM into pol-I-PIC-GP-Bsm, yielding pol-I-PIC-GP-GFP (expressing PIC-GP-GFP, also known as S-GP/GFPart; SEQ ID NO: 13) and pol-I-PIC-GP-sP1AGM (expressing PIC-GP-sP1AGM; SEQ ID NO: 14).

5.1.4 DNA transfection of cells and rescue of recombinant viruses

[00317] BHK-21 cells stably transfected to express the glycoprotein of lymphocytic choriomeningitis virus (BHK-GP cells, Flatz et al. *Nat Med.* 2010 Mar;16(3):339-45) were seeded into 6-well plates at a density of 5×10^5 cells/well and transfected 24 hours later with different amounts of DNA using either lipofectamine (approx. 3 μ l/ μ g DNA; Invitrogen) according to the manufacturer's instructions. For rescue of recombinant bi-segmented viruses entirely from plasmid DNA, the two minimal viral trans-acting factors NP and L were delivered from pol-II driven plasmids (0.8 μ g pC-PIC-NP-Bbs, 1.4 μ g pC-PIC-L-Bsm) and were co-transfected with 1 μ g of pol-I-PIC-L and 0.8 μ g of pol-I-PIC-S. In case of rescue of tri-segmented r3PIC consisting of one L and two S segments, 0.8 μ g of both pol-I driven S segments were included in the transfection mix. 72 hours after transfection the cells and supernatant were transferred to a 75 cm² tissue culture flask, and supernatant was harvested another 48-96 hours later. Viral infectivity was determined in a focus forming assay and the virus was passaged for 48 on normal BHK-21 cells for further amplification (multiplicity of infection = 0.01 for 48 hours). Viral titers in the so obtained virus stocks were again determined by focus forming assay.

5.1.5 Viruses and growth kinetics of viruses

[00318] Stocks of wild-type and recombinant viruses were produced by infecting either BHK-21 or 293-T cells at a multiplicity of infection (moi) of 0.01 and supernatant was harvested 48 hours after infection. Growth curves of viruses were done in vitro in T75 cell culture flask format. BHK021 cells were seeded at a density of 5×10^6 cells/flask and infected 24 hours later by incubating the cells together with 5 ml of the virus inoculum at a moi of 0.01 for 90 minutes on a rocker plate at 37°C and 5% CO₂. Fresh medium was added and cells incubated at 37°C / 5% CO₂. Supernatant was taken at given time points (normally 24, 48, 72 hours) and viral titers analyzed by focus forming assay.

5.1.6 Focus forming assay

[00319] Next, titers of Pichinde virus are determined by focus forming assay. 293-T cells or 3T3 cells were used for focus forming assay if not stated otherwise. Cells were seeded at a density of 3×10^4 cells per well in a 96-well plate and mixed with 100 μ l of 3.17-fold serial dilutions of virus prepared in MEM/ 2 % FCS. After 2-4 hours of incubation at 37 °C, 80 μ l of a viscous medium (2 % Methylcellulose in 2x supplemented DMEM) were added per well to ensure spreading of viral particles only to neighboring cells. After 48 hours at 37 °C the supernatant was flicked off and cells were fixed by adding 100 μ l of methanol for 20 minutes at room temperature (all following steps are performed at room temperature). Cells were permeabilised with 100 μ l per well of BSS/ 1 % Triton X-100 (Merck Millipore) for 20 minutes and subsequently blocked for 60 minutes with PBS/ 5 % FCS. For anti-NP staining a rat anti-Pichinde-NP monoclonal antibody was used as a primary staining antibody, diluted in PBS/ 2.5 % FCS for 60 minutes. Plates were washed three times with tap water and the secondary HRP-goat-anti-rat-IgG was added at a dilution of 1:100 in PBS/ 2.5 % FCS and incubated for 1 hour. The plate was again washed three times with tap water. The color reaction (0.5 g/l DAB (Sigma D-5637), 0.5 g/l Ammonium Nickel sulfate in PBS/ 0.015 % H₂O₂) was added and the reaction was stopped after 10 minutes with tap water. Stained foci were counted and the final titer calculated according to the dilution.

5.1.7 Mice

[00320] BALB/c mice were purchased from Charles River Laboratories and housed under specific pathogen-free (SPF) conditions for experiments. All animal experiments were performed at the University of Basel in accordance with the Swiss law for animal protection and the permission of the respective responsible cantonal authorities. Infection of the mice was done intravenously at a dose of 1×10^5 FFU per mouse.

5.1.8 Flow Cytometry

[00321] Blood was stained with MHC class I tetramers loaded with the immunodominant P1A-derived H-2L^d-restricted epitope LPYLGWLVF (Aa35-43), in combination with anti-CD8a and anti-B220 antibodies, and epitope-specific CD8+ T cell frequencies were determined on a BD LSRII Fortessa flow cytometer and the data processed using FlowJo software (Tree Star, Ashland, OR).

5.1.9 Statistical Analysis

[00322] Statistical significance was determined by two-tailed unpaired t test using Graphpad Prism software (version 6.0d).

5.2 Results

5.2.1 Design of trisegmented Pichinde virus-based vectors with an artificial genome organization

[00323] The genome of wild-type Pichinde virus consists of two single-stranded RNA segments of negative polarity (one L, one S segment) (FIG. 1A). We designed a polymerase-I/II-driven cDNA rescue system for replication-competent, tri-segmented Pichinde virus vectors with an artificial genome organization (r3PIC-art, FIGS. 1B, 1C and 1D), based on a cassette system allowing the seamless insertion of transgenes of choice between the 5' untranslated region (5'UTR) and the intergenic region (IGR) of duplicated S segments. The molecular cloning strategy for seamless insertion (i.e. without residual nucleotide stretches derived from molecular cloning, and thus without additional restriction enzyme recognition sites) of transgenes into arenavirus S segments using BsmBI sites, which are completely removed upon transgene insertion and thus are absent from the resulting recombinant virus, has been described in detail by Pinschewer et al. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7895-900 in Supporting FIG. 4. The BbsI enzyme was used analogously for seamless cloning, as outlined by Flick et al. J Virol. 2001 Feb;75(4):1643-55. These Pichinde virus-based r3PIC-art genomes consisted of the wild type Pichinde virus L segment together with artificially duplicated S segments, designed to carry either the nucleoprotein (NP) or the glycoprotein (GP) under control of the 3'UTR, i.e. between the 3'UTR and the IGR. This left in each S segment one position for insertion of a transgene, i.e. one transgene each could be inserted between the 5'UTR and IGR of each of the two S segments, respectively .

5.2.2 Infectious GFP-expressing virus rescued from trisegmented recombinant virus vectors with an artificial genome organization

[00324] To generate trisegmented recombinant Pichinde virus, we synthesized multiple plasmids as described in section 5.1.3. We transfected BHK-21 cells with plasmid combinations as follows:

(A) S segment minigenome: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-miniS-GFP;

- (B) L segment minigenome: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L-GFP-Bsm;
- (C) r3PIC-GFP^{art}: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L, pol-I-PIC-NP-GFP, pol-I-PIC-GP-GFP;
- (D) rPIC^{wt}: pC-PIC-L-Bsm, pC-PIC-NP-Bbs, pol-I-PIC-L, pol-I-PIC-S

[00325] We found GFP expression 48 hours after transfection of the S and L segment minigenomes (FIG. 4, plasmid combinations A and B as outlined above), documenting the intracellular reconstitution of functional Pichinde virus S and L segment analogues as ribonucleoproteins (RNPs), which were active in gene expression. Analogously, the transfection C aimed at generating r3PIC-GFP^{art} evidenced GFP-positive cells at 48 hours after transfection, whereas the plasmid combination D for generating rPIC^{wt} did not evidence green fluorescence, as expected. At 168 hours after transfection, GFP-positive cells had mostly disappeared in the S and L segment minigenome transfections, but were abundant in cells with r3PIC-GFP^{art}, indicating that an infectious, GFP-expressing virus had been reconstituted from cDNA and spread in the cell culture

5.2.3 Recombinant tri-segmented viruses grow to lower titers than wild-type Pichinde virus

[00326] Comparative growth curves were performed with the viruses obtained with rPIC^{wt} and r3PIC-GFP^{art} (FIG. 2). Supernatant from transfections C and D from section 5.2.2 were collected and passaged in parallel in BHK-21 cells (multiplicity of infection = 0.01, FIG. 2). For both viruses, peak infectivity was reached after 48 hours, yet for r3PIC-GFP^{art} was substantially lower than for rPIC^{wt}. This indicated that the trisegmented r3PIC-GFP^{art} was attenuated as compared to its bisegmented wild type parental virus.

5.2.4 Recombinant r3PIC expressing sP1AGM induces a rapid, strong and polyfunctional P1A-specific CD8+ T cell response.

[00327] To test the utility of the r3PIC^{art} vector delivery technology for vaccination purposes we generated the r3PIC-sP1AGM^{art} vaccine vector (FIG. 1D) with a genome organization analogous to r3PIC-GFP^{art} (FIG. 1C). We created a virus expressing sP1AGM (r3PIC-sP1AGM^{art}), by procedures analogous to those outlined above for r3PIC-GFP^{art}, but using plasmids pol-I-PIC-NP-sP1AGM and pol-I-PIC-GP-sP1AGM instead of pol-I-PIC-NP-GFP and pol-I-PIC-GP-GFP, respectively. We immunized BALB/c mice intravenously with 10e5 focus

forming units (FFU) r3PIC-sP1AGM^{art} i.v. and eight days later measured CD8+ T cell responses against the immunodominant P1A-derived H-2Ld-restricted epitope LPYLGWLVF (Aa35-43) by flow cytometry using MHC class I tetramers. r3PIC-sP1AGM^{art}-immunized mice exhibited very substantial populations of P1A35-43-specific CD8 T cells in peripheral blood, which were absent from the blood of unimmunized mice (FIGS. 5A and 5B). These observations demonstrated that r3PIC-art-based viral vectors are highly immunogenic, rendering them promising tools for immunotherapy and vaccination.

5.2.5 When tested in an early passage after rescue from cDNA, both a recombinant tri-segmented virus designed to express its glycoprotein and nucleoprotein genes in their respective natural position and also a recombinant tri-segmented virus artificially designed to express its glycoprotein under control of its 3' untranslated region (UTR) promoter grow to lower titers than wild-type Pichinde virus

[00328] We generated a trisegmented Pichinde virus that expressed its glycoprotein (GP) and nucleoprotein (NP) genes under control of the 5' and 3' UTR promoters, respectively, i.e. in their respective “natural” position in the context of artificially duplicated S segments consisting of S-GP/GFPnat (SEQ ID NO: 15) and S-NP/GFP (also known as PIC-NP-GFP; SEQ ID NO: 11) (FIG. 6). This r3PIC-GFP^{nat} virus was created by procedures analogous to those outlined above for the trisegmented r3PIC-GFP^{art} virus. r3PIC-GFP^{nat} expressed GFP as schematically outlined in FIG. 6. When grown in BHK-21 cells in culture (multiplicity of infection = 0.01, harvested at 48 hours), r3PIC-GFP^{nat} reached substantially lower titers than rPIC^{wt}, titers that were similarly low as those observed for r3PIC-GFP^{art} (FIG. 7; symbols show titers from individual parallel cell culture wells; error bars denote the mean+/-SD). This indicated that the trisegmented r3PIC-GFP^{nat} was attenuated as compared to its bisegmented wild type parental virus.

5.2.6 During persistent infection of immunodeficient mice, recombinant tri-segmented viruses with an artificial genome organization (r3PIC-GFP^{art}) retain transgenic GFP expression and remain at consistently lower viral titers in blood than wild-type Pichinde virus (rPIC^{wt}) whereas tri-segmented virus designed to express its glycoprotein and nucleoprotein genes in their respective natural position (r3PIC-GFP^{nat}) eventually lose GFP expression and reach viral loads in blood equivalent to animals infected with rPIC^{wt}.

[00329] We infected mice triple-deficient in type I and type II interferon receptors as well as RAG1 (AGR mice; Grob et al, 1999, Role of the individual interferon systems and specific immunity in mice in controlling systemic dissemination of attenuated pseudorabies virus

infection. J Virol, 4748-54) with 10e5 focus-forming units (“FFU”) of either one of r3PIC-GFP^{art}, r3PIC-GFP^{nat}, or rPIC^{wt} viruses intravenously (i.v.) on day 0. We collected blood on day 7, 14, 21, 28, 35, 42, 56, 77, 98, 120 and 147 and determined viral infectivity by FFU assays. In these assays we detected either the Pichinde virus nucleoprotein (NP FFU; FIG. 8) or the viral GFP transgenes in r3PIC-GFP^{nat} and r3PIC-GFP^{art} (GFP FFU; FIG. 9). From these values we calculated for each animal and time point the NP : GFP FFU ratio (FIG. 10).

[00330] During the first 21 days after infection, r3PIC-GFP^{nat} and r3PIC-GFP^{art} total infectivity (as determined by NP FFU assay) persisted at similar levels in the blood of AGR mice and was approximately ten-fold lower than in rPIC^{wt}-infected controls (FIG. 8). From day 28 onwards, however, r3PIC-GFP^{nat} infectivity, as determined by NP FFU assay, reached levels that were indistinguishable from rPIC^{wt}. Conversely, r3PIC-GFP^{art} NP FFU titers remained at approximately 10-fold lower levels than those of rPICwt throughout the observation period of 147 days (FIG. 8).

[00331] Besides detecting the viral structural protein NP for determining the total viral infectivity (FIG. 8), we also performed FFU assays to assess GFP-expressing transgene-expressing infectivity in the blood of r3PIC-GFP^{nat}- and r3PIC-GFP^{art}-infected AGR mice (GFP FFU, FIG. 9). In striking contrast to NP FFU titers (FIG. 8), GFP FFU titers in r3PIC-GFP^{nat}-infected AGR mice dropped from day 28 onwards and were undetectable from day 120 onwards (FIG. 9). This contrasted with largely constant GFP FFU titers in the blood of r3PIC-GFP^{art}-infected mice (FIG. 9). By calculating the “NP : GFP FFU ratio” (FIG. 10), we determined that in r3PIC-GFP^{art}-infected mice, virtually all infectivity (NP FFU) expressed also the GFP transgene. This was borne out in a “NP:GFP FFU ratio” in the range of 1 throughout the observation period of 147 days (FIG. 10). In stark contrast, “NP : GFP FFU ratios” in the blood of r3PIC-GFP^{nat}-infected mice also started out around 1 but reached into the hundreds and above from day 28 onwards (FIG. 10). This indicated that within the population of virions circulating in the blood of r3PIC-GFPnat-infected mice on day 28 and thereafter only about one in one hundred or less still expressed the GFP transgene, and that GFP-expressing infectivity dropped eventually to below detectable levels. Hence, r3PIC-GFP^{art} retained GFP transgene expression throughout 147 days of persistent infection in AGR mice.

5.2.7 Viruses recovered from the serum of r3PIC-GFP^{art}-infected mice remained attenuated as compared to those from r3PIC-GFP^{nat}-infected animals, which reached titers similar to virus isolated from r3PIC^{wt}-infected animals

[00332] To assess the growth properties of viruses circulating in the serum of persistently infected AGR mice, we passaged viremic serum collected on day 147 after infection on BHK-21 cells and determined viral infectivity by NP FFU assays 48 hours later. The viruses grown from the serum of r3PIC-GFP^{nat}-infected mice reached IFF titers similar or higher than those from rPIC^{wt} virus-infected animals (FIG. 11; symbols show titers of individual mouse serum-derived viruses; error bars denote the mean+/-SD). Conversely, viral titers obtained after passage of serum from r3PIC-GFP^{art}-infected mice were substantially lower than either one of the aforementioned groups (FIG. 11).

[00333] From these viruses, which had been passaged for 48 hours, we randomly chose four from each group for further analysis of cell culture growth. Unlike the experiment displayed in FIG. 11 (direct passage of infectivity from serum), this experiment (FIG. 12) was normalized for input infectivity and thereby excluded differential amounts of input infectivity as a potential confounder in the assessment of viral titers reached in culture. Accordingly, we infected BHK-21 cells at a standardized multiplicity of infection = 0.01 and determined viral titers 48 hours later (FIG. 12; symbols show titers from individual mouse serum-derived viruses; error bars denote the mean+/-SD). Analogously to the differences in titers found after direct *ex vivo* passage from serum, r3PIC-GFP^{nat}-derived viruses reached titers that were at least equivalent to those of rPIC^{wt}-derived viruses. Conversely, the titers reached by viruses derived from *in vivo* passaged r3PIC-GFP^{art} were substantially lower than those of the aforementioned two groups.

[00334] This suggested that the virus recovered from the serum of r3PIC-GFP^{nat}-infected animals was no longer attenuated while the virus circulating in the blood of r3PIC-GFP^{art}-infected mice was still clearly attenuated as compared to rPIC^{wt}-derived viruses. Hence, as judged from lower r3PIC-GFP^{art} viremia than rPIC^{wt} viremia throughout the experiment in AGR mice (see section 5.2.6), and also from lower r3PIC-GFP^{art} titers than rPIC^{wt} titers when re-amplified from blood in cell culture, r3PIC-GFP^{art} retained its attenuation throughout the 147 day-period of *in vivo* replication in mice.

5.2.8 Unlike r3PIC-GFP^{nat}, recombinant tri-segmented virus with an artificial genome organization (r3PIC-GFP^{art}) did not recombine its two S segments and retained its transgenes

[00335] We wanted to determine whether in the course of persistent infection in AGR mice, r3PIC-GFP^{nat} may have recombined its two S segments to reunite the NP and GP genes on a single RNA segment, thereby eliminating the GFP transgenes. To test this possibility, we extracted viral RNA from serum samples collected from each animal on day 147 after viral infection. We performed RT-PCR using primers that were designed to bind to Pichinde virus NP and GP, respectively, and that spanned the intergenic region (“IGR”) of the Pichinde virus S segment such that they were predicted to yield a PCR amplicon of 357 base pairs on the rPIC^{wt} genome template. Such amplicons were indeed obtained when using viral RNA from the animals infected with either rPIC^{wt} or r3PIC-GFP^{nat}, but not when using viral RNA from the blood of r3PIC-GFP^{art}-infected mice (FIG. 13; each lane represents the RT-PCR product from one individual mouse in the experiment shown in FIGS. 8-10).

[00336] Taken together, these data indicated that in the course of persistent infection of AGR mice, r3PIC-GFP^{nat} recombined its two S segments (S-GP/GFPnat, S-NP/GFP) to re-unite the NP and GP open reading frames in one single segment of RNA. Thereby it lost expression of the GFP transgenes and augmented its growth capacity to the one of rPIC^{wt}, both in mice as evident in the levels of viremia and in cell culture as seen upon harvest from blood and re-expansion in cell culture. Conversely, r3PIC-GFP^{art} failed to recombine its two S segments as evident in the lack of an RT-PCR amplicon spanning the NP and GP genes.

6. EQUIVALENTS

[00337] The viruses, nucleic acids, methods, host cells, and compositions disclosed herein are not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the viruses, nucleic acids, methods, host cells, and compositions in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

[00338] Various publications, patents and patent applications are cited herein, the disclosures of which are incorporated by reference in their entireties.

[00339] Various publications, patents and patent applications are cited herein, the disclosures of which are incorporated by reference in their entireties.

7. SEQUENCE LISTING

SEQ ID NO.	Description	Sequence
1	PIC-S: Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529746.1) segment S, complete sequence. The genomic segment is RNA, the sequence in SEQ ID NO: 1 is shown for DNA; however, exchanging all thymidines ("T") in SEQ ID NO:1 for uridines ("U") provides the RNA sequence.	gcgccaccggg gatcctaggc ataccttgg cgcgcatatt acttgatcaa agatgggaca agtttgact ttgatccagt ctatacccg agtccctgcag gaggtcttca atgtgcgcctt aatcattgtc tcaaccctat gcatcatcaa aggatttgtc aatctgatga gatgtggcct attccaaactc atcaccttcc tcattttggc tggcagaagt tgtgatggca tggatgattga taggaggcac aatctcaccc acgttgagtt caacccatcaca agaatgtttg acaacttgcc acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg ggaaattgaa ctcacttga caaacacatc cattgcaaattt gaaactactg gaaactttc caacatcaga agccttgcattt atggtaacat tagtaattgt gataagacag aagaaggcagg tcacacattt aaatggttgc ttaatgagtt acacttcaat gtgctccatg tcactcgatc tgttaggtgcc agatgaaaaa cagttgaggg tgctgggtg ttgatccagt acaacttgac agttgggtat agaggaggtg aggttggcag acatcttattt gcgtcgcttgc ctcaaatcat tggggaccca aaaattgcgt ggggtggaaa atgtttcaat aactgttagt ggggtcttg cagactaaca aactgtgaag gtgggacaca ttacaatttc ctgatcatac agaacaccac atggggaaat cactgtacat atactccaat ggcaacaata aggtggctc tccaaaaaaac tgcttataatgt tctgtgagca gggaaactcct tggcttttc acttggact ttagtgactc tactggccaa catgtccctt ggggtactg tttggagcaa tggctattt ggggtctgg aataaaatgt tttgataaca ctgtgatggc aaaatgcacaa aaagatcaca atgaagaattt ttgcgatacg atgaggttat ttgatttcaa tcagaatgct atcaaaaacct tacaacttaa tggtgagaat tcggtgaatc tctttaaaaaa gactatcaac ggacttattt ctgactcact tgtgattaga aacagtctca aacagcttgc caaaatccct tattgcaact atacaaaattt ttggtacatc aatgatacca tcacaggaag acattctta ccgcagtgtt ggttagttca caatggctcg tacctcaatg aaacgcattt taagaatgat tggtgtggg agagccagaa tctgtacaat gaaatgctga taaaagaata tgaagaaaaga caaggtaaaga ctccacttagc attgacagac atttgcttct ggtctttgg gttttacacc atcacagtgt ttctccactt agttggataa cccactcataa ggcacatcat

SEQ NO.	Description	Sequence
		tgggtatggc tgcggaaac cacaatggat tacttaggaac tcttttgcg gctgtgggta ttataaaaatc ccaaagaaac cctacaatg ggtagactg gtaataaag ccctagcctc gacatgggccc tcgacgtcac tccccaaatag gggagtgacg tcgaggcctc tgaggacttg agctcagagg ttgatcagat ctgtgttgg cctgtacagc gtgtcaatag gcaagcatct catcggcttc tggccctaa cccagcctgt cactgttgc tcaaacatga tggatcaag caatgcacag tgaggattcg cagtggttg tgcagccccc ttcttcttct tctttatgac caaaccctta tggttggtgc agagtagatt gtatctctcc cagatctcat cctcaaaaggt gcgtgttgc tcggactgat gttcacgtc aagcactttt aagtctcttc tcccatgcat ttcgaacaaa ctgattatat catctgaacc ttgagcagtg aaaaccatgt tttgaggtaa atgtctgtat attgaggaaa tcagggctgg ttgggcatca gccaagtccct taaaagaag accatgttag tacttgctt gctctttgaa ggacttctca tcgtgggaa atctgtaaaca atgtatgtat ttgcccgtgt caggctggta gatggccatt tccaccggat catttggtgt tccttcaatg tcaatccatg tggtagctt tgaatcaagc atctgaattg aggacacaac agtgtcttct ttctccttag ggatttgg aagggtccggat gatccctccgt ttcttactgg tggctggata gcactcggt tcgaatctaa atctacagtg gtgttatccc aagccctccc ttgaacttga gacccgtgac caatgtaaagg ccaaccatcc cctgaaagac aaatcttgta tagtaaattt tcataaggat ttctctgtcc gggtgttagtg ctcacaaaca taccttcacg attctttatt tgcaatagac tctttatgag agtactaaac atagaaggct tcacctggat ggtctcaagc atattgccac catcaatcat gcaaggcagct gcttgactg ctgcagacaa actgagattt taccctgaga tggatgg tgatggctca ttactaatga ttttttagggc actgtgttgc tgtgtgagtt tctctagatc tgtcatgttc gggaaacttga cagtgttagag caaaccaagt gcactcagcg ctggacaac atcattaagt tggtccatccc cttgtcagt catacaagcg atggtaagg ctggcattqa tccaaatttga ttgatcaaca atgtattatc cttgatgtcc cagatctca cAACCCCATC tctgttgcct gtgggtctag cattagcgaa ccccatttag cgaaggattt cggctcttg ttccaacttga gtgttgtga gattgcccc ataaaacacca ggctgagaca aactctcagt tcttagtact ttcttctta acttgtccaa atcagatgca agctccattt gctcccttt ggctaaggct cccaccttaa gcacattgtc cctctggatt gatctcatat tcattcagagc atcaacctct ttgttcatgt ctcttaactt

SEQ ID NO.	Description	Sequence
		tcatccagat tcattgtcct agaagtgtta ttcttttgc agtcacaaaat gaactgggtt aattgtttca gatcatgttgc tgcattgttt ggcaacaatt caagctcacc aaaccaaaaa tatttcttga actgagatgt tgacataatc acaggcacca acattgactc aaacaaaatc tgtatcaaga aatttgtgca cacttcttct ggttcaaggt tgaatcctct ctccagtgg tgagactctc tgctatggga cattgcaagg tcattttgct ttacaatata caattcttct ctgcgatgtt ttataatatg actaacaata ccaagacatt ctgatgttat atcaattgcc acacaaaaggt ctaagaactt tattcctctg acccatgata gcctcagcat attcaaata gacaggaaag gggatatgtg ttcatcaaata agtgttaggaa agttcctctt gattgagtaa agtatgtggt tgatgcccac cttgtcctca agctcagaat gtgtgcttgg ttttattggc cagaagtgtat tgggattgtt taggtgagtg actatcttgg gtacttcagc ttttgaaac acccagttac ccaactcgca agcattgg aacacaagag caaaataatc ccaaattaag ggtctggagt actcacttac ttccaccaatg gctgcttac aataaaccacc ttgcgcgt ttacaaaagt gacaatcacg gtgtaagata atcttgcttgc taatatccct gatataactt aatcctccctt tcccatctt tacacatttt gagccatac ttttgc当地 ac tcctatgaat cctgatgcta tgctgctctg aaaagctgat ttgtttagatg catcagccaa aatcttctt gcccctctga catagttctt tgataatttg gactgtacgg atttgacaag actgggtatt tcttcgcct gcacagttct tgggtgctc attaacttag tacgaagcac caatctgaga tcaccatgaa cccttaaatt taaccaccta atattaagag catcctcaat agcctcagtc tcgacatcac aagtctctaa taactgtttt aagcagtcat ccggtgattt ctgaagagtt gttacaatat aactttcttcc cagggtcc gactgtattt tgtaaaatat ttccctgc gccttctga ttattgaaag tagcagatca tcagggaaata gtgtctcaat tgatcgct agtctgtacc ctctcgaccc attaacc tcgagtagat ccatttcc caggcacaaa aatggatcat ttggaaaccc actatagatt atcatgctat ttgttcgttt tgcaatggcc cctacaacct ctattgacac cccgttagca acacattggt ccagtttgtt gtcaattgt tctgcttgc gattgggtgc ttttagc atgttgtgtt gagctgcaggc aacaaactt gtaaggaggg ggacttctt tgaccaa aagaatctcg atttgaactc acttgca gtccccacaa ctgttttagg gctcac ttgtttagt tggatgtt aatgtgt aactccatac agtccatac caattcaaca ttcaactcat ctctgtcattt aaatttgaaa

SEQ ID NO.	Description	Sequence
		ccctcattca aggataacat gatctcatca tcactcgaag tataatgagat gaaccgtgct ccataacaaa gctccaatgc gtaattgtatg aactgctcag tgatttagacc atataagtca gaggtgttgt gtaggatgcc ctgaccata tctaagactg aagagatgtg tgatggtacc ttgcccttct caaagtagccc aaacataaat tcctctgcaa ttgtgcaccc ccctttatcc atcataccca accccccttt caagaaaccc ttcatgtatg cctcaacgac attgaaggcc acttccacca tcttgtgaat gtccatagc aatatgttga tgactgcacg attggaaact tctgacccat ctttgagttt gaactcaaga cctttataa atgcggcaaa gataaccggc gacatgtgtg gccccccattt tgaatggtcc attgacacccg caagaccact ttgcctaaca actgacttca tgtctaaataa tgctctctca aactctttct cgttggtcag acaagtatac ctcatgtttt gcataaggga ttcaagagtaa tcctcaatga gtctgggtgt gagtttagta tttaaatcac cgacataaaag ctccctgttg ccaccacac tttcttata agaaagacca aatttcaatc tccctacatt ggtggataca ccagacctct ctgtgggaga ctcatctgaa tagaaacaga gatttcgtaa ggatgagttg gtaaaaaaagc tttgatccaa tcttttagct atcgattcag aatttgctctc tctttagctt atacgtgatg tctctctaaat ttgttagtgc gcatctgtga acccaagtct gcttctactt ttgtgatcat atcttccgac tcgattatca taatcgcttga caatgagaat gtatttaag caactcaaaat aatcagcttc tttgtacgcc ttcaatgtga ggttctttttaaaaactcc agaggacacg gattcattag tctgtctgca aagtacactg atcttagcagt gacatcctca tagatcaagt ttacaagatc ctcatcact tctgctgaaa acaggctgta atcaaaatcc tttacatcat gaagtgaagt ctctcttttg atgacaacca ttgtcgattt gggccataat ctctcttagt gacatgaagt cttaagggtt gttttgacat tgggtcaac cttagacaat acttttgcac ctctggctc aatttcttta agacagtcac cctgatctc tgatagtaac tcttcaactc catcaggctc tattgactcc tttttttattt ggtatcaatga tgacaacctc ttcagaatct taaaatttac ctcccttgg tctaacttgt atttaccctt agtttgaaa tgttcaatca tttccacaac aacagcagac acaatggaag agtaatcata ttcaatgtatg acctcacca cttcatttgag ttttggaaacc accacactt ttttgcgttga catatccaag gctgtactt gtaaggaggg agtcataggg tcacaaggaa gcaggggtt cacttccat gagctactgt taaatgtga tagacaaaca ctaagtacat ccttattcaa ccccgccctt ccctcacatt tggattccag ctttttacca

SEQ ID NO.	Description	Sequence
		<code> agtagtctct ctatatacatg caccatctc tcttccttcct cagtaggaag ttccataacta ttagaagggt tgaccaagac tgaatcaaac tttaactttg gttccaagaa cttctcaaaa cattgattt gatcagttaa tctatcaggg gtttcttgg ttataaaatg gcataaaatag gagacattca aaacaaactt aaagatctt gccatatactt cctctcttggaa gttgctgagt accagaagta tcaaatacatc aataaggatt gctgtctgcc attctgaagg tggtagcata acgactttca atttctcaaa caattcttta aaatgaactt catttacaaa ggccataatg taatatactaa agccttgcaa gtaaaacttga atacgcttgg aagggggtgca cagtatgcag agaataagtc gtctgagtaa atcagaaaaca gaatccaaga ggggttggaa cataaaagtcc aaccaggata acatctccac acaaggcctt tgaatcacat ctgcactaaa gatcggttaag aaaaatctct tgggatcaca gtaaaaagac gctttgttt catacaaaacc cccactttt gatctataag caacagcata acacctggac ctctccctg tcttctggta cagtagtgtg agagaacctc cttctccaaa tcgctggaaag aaaacttcgt cacagtaaac ctcccataa aactcatcag cattgttcac cttcatctt ggaactgctg ctgtcttcat gctattaatg agtgacaaac tcaaacttga caatgtttt agcaattcct caaactcaact ttcccccatt atggtataat caggctgccc tcttcctggc ctaccccccac acatacactg tgactttgtc ttgtattgaa gacaggggaa agcaccccat tcatctaaca ctgatgtttt cagattgaag taatattcaa catcaggttc ccgtagaaga gggagaatgt catcaagggg aagttcacca cagaccgagc tcagtctt cttagccttc tctaaccagt tggggttttt aatgaatttt ttagtgattt gttccatcag gaagtcgaca ttaatcaacc tgcattttac agacggtaac ccttgcatta ggagcacctc tctgaacaca gcacctggag aagacttgc caagtcacac aaaatgttgt acatgataag gtccagaacc aacatgttgt tcctccttgt gttaaaaacc ttttgagact taattttgtt gcatattgaa agtactctaa aatattctt gctttcagtt gatgaatgct tgacctcaga ttgcctgagt tggccttatta tgcccaaaat gtgtactgag caaaaactcac ataatcttgc ttctgattt ggtacatctt tgacagaaca ttggataaaat tcatggttct gaagtctaga aatcatatct tccctatctg tagcctgcag tttcctatcg agttgaccag caagttgcaa cattttaaat tgctgaaaga tttccatgat ttttgttcta cattgatctg ttgtcagttt attattaatg ccagacatttca atgccttttc caacctcact ttgttaaggaa gtccccttcc ctttacagca agtagtgact ccagaccgag actctgattt </code>

SEQ ID NO.	Description	Sequence
		tctaaaggatg agagggaaact tataaggcgt tcgtactcca actcctcaac ttcttcacca gatgtcccta atccatccat gagttttaaa agcaaccacc gaagtctctc taccacccaa tcaggaacaa attctacata ataactggat ctaccgtcaa taacaggtag taaggttagt ttctgtctct tgagatcaga actaagctgc aacagctca aaaagtctg gttgtatttc ttctcaaata gttcttgact ggtcctcaca aacacttcca aaagaatgag gacatctcca accatacagt aaccatctgg tctaacaatcc ggcataatgt gacatgtac tctcaactcc ctaaggatag cattgacagt catctttgtt ttgtgtttgc aggagtgtt cttgcataa tccacttcca ctagcatgga caaaagcttc aggccctcta tcgtgatggc cctatcttg acttgtgcaa gaacgttggt tttctgttca gatagtctt cccattcggg aaccatattt ctgactatgt cttaaagtgc gaaaacgtat tcctccatga tcaagaaatg ccttagatcc tcggatcg
3	L Δ BsmBI: Representative cDNA of the L ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein a non-coding mutation was introduced to delete the BsmBI restriction site. ORF also contains flanking BsmBI (bold) as well as EcoRI (uppercase) and NheI (uppercase and italicized) restriction sites.	GAATT C g t c tctgatcatg gaggaatacg ttttgcact taaagacata gtcagaaaaat gggttcccgaa atggaaagag ctatctgaac agaaaaacaa cgttctgca caagtcaaag ataggccat cacgataagag ggcctgaagc ttttgcatt gctagtggaa gtggattcat gcaagaaaca ctcctgcaaa cacaacacaa agatgactgt caatgctatc cttagggagt tgagagtaac atgtcctaca ttgccggatg ttacaccaga tggtaactgt atggttggag atgtcctcat tctttggaa gtgtttgtga ggaccagtca agaagcatt gagaagaaat acaaccagga cttttgaag ctgtgcagc ttagttctga tctcaagaga cagaacataa ccttagtacc tggatttgac ggttagatcca gttattatgt agaatttggt cctgattggg tggtagagag acttcgggtt ttgctttaa aactcatgga tggattaagg acatctggtg aagaagttga ggagttggag tacgaacgc ttataaagtcc cctctcatcc ttagaaaatc agagtctcggt tctggagtc ctacttgctg taaaggaaag gggacttcct tacaagtga ggttggaaaa ggcattaaatg tctggcatta ataataaact gacaacagat caatgtagaa caaaaatcat gggaaatctt cagcaattta aatgttgca acttgctggt caactcgata gggaaactgca ggctacagat agggaaagata tgatttctag acttcagaac catgaattt tccaaatgttc tgtcaaagat gtacctaaat cagaaatcag attatgttag ttttgcgtc tacacattt gggcataata ggccaaactca ggcaatctga ggtcaagcat tcatcaactg aaagcagaga atattttaga gtactttca tatgcacacaa aattaagtct caaaaggttt ttaacacaag gaggaacacc atgttgggtc

SEQ ID NO.	Description	Sequence
		tggaccttat catgtacaac attttgttg acttggacaa gtcttctcca ggtgctgtgt tcagagaggt gctcctaatg caagggttac cgtctgtaaa tgacaggttg attaatgtcg acttcctgat ggaacaaatc actaaaaaaat tcattaaaaaa ccccaactgg ttagagaagg ctaagaagag actgagctcg gtctgtggtg aacttcccct tcatgacatt ctccctcttc tacggaaacc tgatgttcaa tattacttca atctgaaaac atcagtgtta gatgaatggg gtgctaaacc ctgtcttcaa tacaagacaa agtcacagtg tatgtgtggg ggtaggccag gaagagggca gcctgattat accatcatgg gcgaaagtga gtttgaggaa ttgctgaaaaa cattgtcaag tttgagtttg tcactcatta atagcatgaa gacagcagca gttcctaaga tgaaggtgaa caatgctgat gagttttatg ggaaggttta ctgtgaccaa gttttcttcc agcgatttgg agaaggaggt tctctcacac tactgtacca gaagacacggg gagaggtcca ggtgttatgc tggtgcttat agatccaaaaa gtgggggttt gtatgaaaca aaagcgtctt tttactgtga tcccaagaga tttttcttac cgatcttag tgcagatgtg attcaaagga cttgcgtgga gatgttatcc tggttgact ttatgtccca acccctcttg gattctgttt ctgatttact cagacgactt attctctgca tactgtgcac cccttccaaag cgtattcaag tttacttgca aggctttaga tattacatta tggccttgtt aaatgaagtt cattttaaag aattgtttga gaaattgaaa gtcgttatgc taacaccctc agaatggcag acagcaatgc ttattgtgaa tttgatactt ctggtactca gcaactccag agaggaagat atggctaaga tcttaagtt tggttgaat gtctcctatt tatgccattt tataacccaaa gaaacccctg atagattaac tgatcaaatc aaatgttttg agaagttctt ggaaccaaag taaaagtttg attcaagtctt ggtcaaccct tctaatacgta tggaaacttcc tactgagggaa gaagagaaga tggtgcatga tatagagaga ctacttggtt aaaagctgga atccaaatgt gagggaaaggc cgggggtgaa taaggatgta cttagtgttt gtctatcact atttaacagt agtcattgg aagtgaaacc cctgcttcct tggaccctta tgactccctc cttcacaatgt acagccttgg atatgtccag caacaaaatgt gtgggtggttc caaaactcaa tgaagtttgtt gaggtcatca ctgaatatga ttactcttcc attgtgtctg ctgttgggtt gggaaatgattt gaacatttca aaactaaaggg taaatacaag ttagatccaa aggaggtaaa tttcaagattt ctgaagaggt tgtcatcatt gatccaaata aaaaaggagt caatagagcc tgatggagttt gaagagttac tatcagaaga tcagggtgac tgcgtttaaag aaattgagac cagagttgca aaagtattgt

SEQ ID NO.	Description	Sequence
		<p>ctaagggtga caccaatgtc aaaacccaacc ttaagacttc atgtccacta gagagattat ggcccaaatac gacaatgtt gtcataaaaa gagagacttc acttcatgat gtaaaggatt ttgattacag cctgtttca gcagaagtgt atgaggatct tgtaaacttg atctatgagg atgtcaactgc tagatcagtg tactttgcag acagactaat gaatccgtgt cctctggagt tttaataaaa gaacctcaca ttgaaggcgt acaaagaagc tgattattt gagtgcattta aatacattct cattgcaagc gattatgata atcgagtcgg aagatatgat cacaaggta gaagcagact tgggttcaca gatgcagcac tacaaattag agagacatca cgtataagct caagagagag caattctgaa tcgatagcta aaagattgga tcaaagctt ttaccaact catccttacg aaatctctgt ttctattcag atgagtctcc cacagagagg tctgggttat ccaccaatgt agggagattg aaatttggtc tttcttataa agaacaggtg ggtggcaaca gggagctta tgcgggtat taaaatacta aactcacaac cagactcatt gaggattact ctgaatccct tatgcaaaac atgaggtata cttgtctgaa caacgagaaa gagtttgaga gagcattatt agacatgaag tcagttgtta ggcaaagtgg tcttcgggtg tcaatggacc attcaaaatg ggggccacac atgtcgccgg ttatcttgc cgcattatta aaaggtcttg agttcaaaact caaagatggg tcagaagttc ccaatgctgc agtcatcaac atattgctat ggcacattca caagatgtg gaagtgcct tcaatgtcgt tgaggcatac atgaaagggtt tcttggaaag ggggttgggt atgatggata aaggggggtg cacaattgca gaggaattta tgttgggtt ctttggaaag ggcaaggta catcacacat ctttcagtc ttagatatgg gtcaggcat cctacacaac acctctgact tatatggtct aatcactgag cagttcatca attacgcatt ggagcttgc tatggagcac ggttcatctc atatacttcg agtgatgtat agatcatgtt atccttgaat gagggtttca aatttaagga cagagatgag ttgaatgttgc aattggattt ggactgtatg gagtttca actttctatc agacaaactc aacaaggttt tgagccctaa aacagttgtg gggaccttt caagtggatg caaatcgaga ttcttcattt ggtcacaaga agtccccctc cttacaaagt ttgttgcgtc agtctacac aacataaagg ctaaagcacc caatcagcaa gcagatacaa ttgacacaat actggaccaa tgggttgcata acgggggtgtc aatagaggtt gttagggcca ttgaaaacg aacaaatagc atgataatct atagtggtt tccaaatgat ccattttgt gcctggaaga aatggatgta ctcgattggg ttaatgggtc gagagggtac agacttcagc gatcaattga gacactattt cctgtatgatc</p>

SEQ ID NO.	Description	Sequence
		tgctactttc aataaatcaga aaggcatgca ggaaaatatt ttacaaaata cagtctggag ccctggaaga aagttatatt gtaacaactc ttcagcaatc accggatgac tgcttaaaac agttattaga gacttgtat gtcgagactg aggctattga ggatgcttt aatatttagt ggttaaattt aagggttcat ggtgatctca gattggtgct tcgtactaag ttaatgagca caacaagaac tgtgcagcga gaagaaatac ccagtcgttgc caaatccgtt cagtccaaat tatcaaagaa ctatgtcaga ggggctaaga agattttggc tgatgctatc aacaaatcag cttttcagag cagcatagca tcaggattca taggagtttgc caaaagtatg ggctcaaaat gtgttaagaga tgggaaagga ggatttaagt atatacaggga tattacaagc aagattatct tacaccgtga ttgtcacattt tctaattcagc gcaaaagggtgt ttattgtaaa gcagcacttg gtgaagtaag tgagtaactcc agacccttaa tttgggattttttgtctttt gtgttaacca atgcttcgtga gttgggttaac tgggtgtttc aaaaaagctga agtaccctt aatgtcactc acctaaacaa tcccaatcac ttctggccaa taaaaccaag cacacatct gagcttgagg acaagggtggg catcaaccac atactttact caatcaggag gaacttccctt acactatgg atgaacacat atcccccttc ctgtctgatt tgaatatgtt gaggctatca tgggttcaga ggataaaagtt ctttagacccctt tgggtggca ttgtatataac atcagaatgt ctgggtattt tttagtcataat tataaaacat cgcagagaag aattgttatat tggtaaagcaa aatgagcttgc caatgtccca tagcagagag tctcatccac tggagagagg attcaacccctt gaaccagaag aagtgtgcac aaatttcttgc atacagattt tggttggatc aatgttgggtc cctgtgattt tgtcaacatc tcagttcaag aaatattttt gggttggatc gcttgaattt tggccaaacca atgcacacaaca tgatctgaaa caattaaaccc agttcatttgc tgactgcaaa aagaataaca cttctaggac aatgaatctg gatgacttgg atgttggctt tgtaaggcgc aaactgattt tgtcctgtgt taatttgcac attagtgttat ttattaaatgtt acttgactgg gtgaatagag ataactatgtt gaacatttgc caactcattt tagcatcacc ttctgggttc attccccattt agctcaacccctt aacattttctt cataagagag tgagccacaa atttagat tttttttttt gagggtctt ccaaatttgcattt attaaaattt agatttctt ttgaaaggatc gtcattgtt gacttattt tttttttttt actctgtatgg ttacattttt tttttttttt tttttttttt attctgttgc gtattatgtt tctcaatctt ccggaaatca cataagtcgtt gatgggtgtt cactttggatc tctgaatccctt ctcatcaacg gaaaagatgt tcttagacttc aatgatctat tggaaaggatc agacatttcac ttcaagtcaa

SEQ ID NO.	Description	Sequence
		ggtcaactgt gttccagaag gtgagaatag atttgaaaaa tcgttcaag gattgaaaa acaaatttc ctataagttg attggctcg atgttggat gcaaccctc atttagagg gtgggtgat caaagaggc aacagagtgg tttctagatt ggaagtgaac ttagactcaa aggtgtcat cattgcactg gaagcattag aacctgagaa aaggccaaga tttattgcca acctttca gtaccttca agtgcacagt ctcacaacaa gggataagt atgaacgagc aggatthaag actcatgatt gaaaatttcc ccgaagtgtt tgaacacatg ttgcattatg ccaaagattg gttgaattgt ggtcaattta gtataataag aagtaagact ctaggatctg ttatgattgc agacgagaca ggacccttca agatcaaggg aatcaggtgt cgaaagttgt ttgaggacaa tgagtcaatg gagatcgagt aaacaaa agag acg GCTAGC
4	PIC-L-GFP-Bsm: Representative cDNA of modified L segment of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein the L ORF was deleted and substituted by a GFP ORF with flanking BsmBI sites (bold) on each side.	gcgccaccgg cagagacgat ggtgagcaag ggcgaggagc tgttcacccgg ggtgggtgccc atccctggtcg agctggacgg cgacgtaaac ggcacacaatg tcagcgtgtc cggcgagggc gagggcgatg ccacccatcg ggacgttca ctgaagttca tctgcaccac cggcaagctg cccgtgccc ggcccaccct cgtgaccacc ttgacctacg gcgtgcagtg ctgcgtccgc taccggacc acatgaagca gcacgactc ttcaagtccg ccatgcccga aggctacgtc caggagcgc ccatcttctt caaggacgac ggcaactaca agaccggcgc cgaggtgaag ttgcaggcg acaccctggt gaaccgcattc gagctgaagg gcatcgactt caaggaggac ggcaacatcc tggggcacaat gctggagttac aactacaaca gccacaaggat ctatatcacc gccgacaagg agaagaacgg catcaaggatg aacttcaaga cccgccacaa catcgaggac ggcagcgtgc agctcgccga ccactaccag cagaacaccc ccatcgccga cggcccccgtg ctgcgtcccg acaaccacta cctgagcacc cagtccgccc tgagcaaaga ccccaacgg aagcgcgatc acatggtcct gctggagttc gtgaccgccc ccgggatcac tctcggcatg gacgagctgt acaagtaa cg tctt acaac cggcccccatt ggggccggggg ccccccggcg caccgggaa gggggggtgcg cccaggggccc ctggttatg gctcgtaggg tggtgacagag gggctttcta ggaactccat cttgggtggc agtgagttgc cgcatatctc gcagagatttgc cctctggagt gcattttgggt taagcaccca agacacagat agtggtcattt gcacccatgt agacccatgt tgacgaacca gcaagatgg cagttgaacc tgccatatacg gcccgtgtgt agattgaggg tcatggggac cttcccccacc acatcttcgt cgccatgtct cttccctgacc tctttgctat atctgagtcc catcccaagt tttgaccagg

SEQ ID NO.	Description	Sequence
		acttgagctg ggttcaaatt ggacaaattt gaagcgtgac ccaaagatgc ctaggatccc cggtgcg
5	PIC-miniS-GFP: Representative cDNA of a modified S segment cDNA of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number: EF529746.1), wherein the GP ORF was replaced by two BsmBI restriction sites (bold) and the NP ORF was replaced by GFP with two flanking BbsI restriction sites (italicized).	gcgaccggg gatcctaggc ataccttgg cgcgcattt acttgatcaa agagagacga ggcctcgtct ct gcccctagc ctcgacatgg gcctcgacgt cactcccaa taggggagtg acgtcgaggc ctctgaggac ttgagcatgt cttcttactt gtacagctcg tccatgccga gagtatccc ggcggcggtc acgaactcca gcaggaccat gtatcgccgc ttctcggtgg ggtctttgct cagggcgac tggtgtctca ggttagtggtt gtcggcagc agacacgggg cgtcgcccgt ggggggtttc tgctggtagt ggtcggcgag ctgcacgctg ccgtcctcga tggttggcg ggtttaagag ttacacattga tgccgttctt ctgcttgcg gccgtgatata agacccttgcg gctgtttagt ttgtactcca gcttgcgccc caggatgttgc ccgtcctcc tgaagtgcgt gcccattcagc tcgatgcgg tcaccagggt gtgcgcctcg aacttcaccc cggcgcgggt cttgttagtt ccgtcgtcc tgaagaagat ggtgcgcgtcc tgacgttagc cttcgggcat ggccggacttg aagaagtcgt gctgcttcat gtggtcgggg tagcggacga agcaactgcac gccgttagtc aaggtggtca cgaggggtggg ccagggcacg ggcagcttgc cggtgtgtca gatgaacttc agggtcagct tgccgttaggt ggcatcgccc tcgcccctcgc cggacacgcgt aacttgcgg ccgtttacgt cgccgtccag ctgcaccagg atgggcacca ccccggtgaa cagtcctcg ccctgctca ccatgaagac atttgggt tgttgcact tcctccgagt cagtgaagaa gtgaacgtac agcgtgatct agaatcgccct aggatccact gtgcg
6	NPΔBbsI : Representative cDNA of a modified NP ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1), wherein non-coding mutation were introduced to delete both BbsI restriction sites (italicized). This ORF also contains flanking BbsI as well as EcoRI (uppercase) and NheI (uppercase and italicized) restricti	GAATT ^C gaag acatcaaaat gtctgacaac atcccattat tccgctgggt acagtccctt aggaggggtc tatccaactg gaccatcct gtgaaggctg atgtgttgc ggacacaaga gcactgttat ctgcttgcg ctttcacaaa gttgctcaag ttcaaaagaat gatgcgcaaa gataaaaagga ctgatttgcg tctgaccaag ttaagagaca tgaacaaaga ggttgcgt ctgatgaata tgagatcaat ccagagggac aatgtgccta aggtggggagg cttagccaaa gaggagctaa tggagcttc atctgatttgc gacaagttaa gaaagaaagt cactagaact gagagttgt ctcagcctgg tggttatgg ggcaatctca caaacactca gttggaccaa agagccgaaa tccttcgctc aatggggttc gctaattgcta gaccacagg caacagagat gggggtgtga agatctggga catcaaggat aatacattgt tgatcaatca atttggatca atgccagcct taaccatcgc ttgtatgact gagcaagggg gtgaacaact taatgtatgtt

SEQ ID NO.	Description	Sequence
	on sites	gtccaagcgc tgagtgcact tggtttgctc tacactgtca agttcccgaa catgacagat ctagagaaac tcacacagca acacagtgcc ctaaaaatca ttagtaatga gccatcagcc ataaacatct cagggtacaa tctcagtttg tctgcagcag tcaaaggcagc tgcttgcatg attgatggtg gcaatatgct tgagaccatc caggtgaagc cttctatgtt tagtactctc ataaaagatc tattgcaaat aaagaatcgt gaaggtatgt ttgtgagcac tacacccgga cagagaaatc cttatgaaaa ttactatac aagatttgtc tttcagggga tggttggcct tacattggct caaggtctca agttcaaggg agggcttggg ataacaccac tggtagattta gattcgaagc cgagtgcattt ccagccacca gtaagaaacg gaggatcacc ggaccttaaa caaattctta agggagaaaga agataactgtt gtgtcctcaa ttcatgatgt tgattcaaaaa gctaccacat ggattgacat tgaaggaaaca ccaaatgtatc cggtgaaat ggccatctac cagcctgaca cgggcaacta catacattgt tacagatttc cccacgtatc gaagtccttc aaagagcaaa gcaagtactc acatggtctc cttttaaagg acttggctga tgcccaacca ggcctgattt cctcaatcat cagacattta cctcaaaaca tggttttcac tgctcaaggt tcagatgata taatcagttt gttcgaaatg catggagaa gagacttaaa agtgcttgac gtgaaactca gtgccgagca agcacgcacc tttgaggatg agatctgggagatacaat ctactctgca ccaaacataa aggtttggtc ataaaagaaga agaagaaggg ggctgcacaa accactgcga atcctcactg tgatttgctt gataccatca tgtttgatgc aacagtgaca ggctgggta gggaccagaa gccgatgaga tgcttgctta ttgacacgtt gtacaggaac aacacagatc tgatcaacct ctgagctcat gttttcGCTA GC
7	PIC-NP-Bsm : Representative cDNA obtained when NP Δ BbsI was digested with BbsI to insert the BbsI-mutated NP ORF into the equally digested pol-I-PIC-miniS-GFP backbone, thereby replacing the GFP ORF with the NP ORF.	gcgccaccggg gatccttaggc ataccttgga cgcgcatatt acttgcataa agagagacga ggcct cgtct ct gccttagc ctcgacatgg gcctcgacgt cactcccaa taggggagtg acgtcgaggc ctctgaggac ttgagctcag aggttgcataa gatctgtgtt gttcctgtac agcgtgtcaa taggcaagca tctcatcgcc ttctggtccc taacccagcc tgcactgtt gcatcaaaca tgcgttgcata aagcaatgca cagtggatgc tcgcagtggt ttgtgcagcc cccttcttct tcttctttat gaccaaacc ttatgtttgg tgcagatgtt attgtatctc tcccagatct catcctcaaa ggtgcgtgct tgctcggcac tgatttcac gtcaagcact tttaagtctc ttctccatg cattcgaac aaactgatta tatcatctga accttgagca gtgaaaacca tggtttgagg taaatgtctg atgattgagg aaatcaggcc tggttggca

SEQ ID NO.	Description	Sequence
		tcagccaagt cctttaaaag gagaccatgt gagtaattgc tttgctctt gaaggactc tcatcggtgg gaaatctgta acaatgtatg tagttgcccgtgtcaggctg gtagatggcc atttccaccg gatcatttg tggccttca atgtcaatcc atgtggtagc ttttgaatca agcatctgaa ttgaggacac aacagtatct tctttctcct tagggatttg ttaagggtcc ggtgatcctc cgtttcttac tggggctgg atagcactcg gcttcgaatc taaatctaca gtgggtttat cccaaaggccct cccttgaact tgagaccctt agccaatgta aggccaacca tcccctgaaa gacaaatctt gtatagtaaa ttttcataag gatttctctg tccgggtgtt gtgctcacaacataccctt acgattctt atttgaataa gactctttag gagagtacta aacatagaag gcttcacactg gatggctca agcatattgc caccatcaat catgcaagca gctgcttga ctgctgcaga caaactgaga ttgttaccctt agatgtttat ggctgatggc tcattactaa tgatttttag ggcaactgtgt tgctgtgtga gtttctctag atctgtcatg ttcgggaact tgacagtgtt gacaaacca agtgcactca gcgcttgac aacatcatta agttgttcac ccccttgc tgc tgc tgc gcatgggta aggctggcat tgc tgc tgc tgattgatca acaatgtatt atccttgatg tcccagatct tcacaacccc atctctgtt cctgtgggtc tagcattagc gacccat gagcgaagga ttccggctt ttgttccaac tgagtgtttt tgagattgac cccat ccaggctgag acaaacttgc agttcttagt acttttttc ttaacttgac caaatcagat gcaagctcca tttagctc tttggctaa cctcccacct taagcacatt gtccctctg attgatctca tattcatcag agcatcaacc tctttgttca tgc tgc tgc tgc tgc tcagaatcag tcctttatc tttgcgc attcttgaa cttgagcaac tttgtgaa tcaagagcag ataacagtgc tcttgtgt gacaacacat cagccttcac aggatgggt cagttggata gaccccttca aaggactgt acccagcggaa atgatggat gttgtc attttgggt tggact tcctcc cagtgaagaa gtgaacgtac agcgtgatct agaatcgccct aggatccact gtgcg
8	PIC-GP-Bsm: Representative cDNA obtained when GP Δ BbsI was digested with BbsI to insert the BbsI-mutated GP ORF into the equally digested pol-I-PIC-miniS-GFP backbone, thereby replacing	gcgccaccggg gatccttaggc ataccttgg cgcgcatatt acttgatcaa agagagacg ggcctcgatct ctgccttagc ctgcacatgg gcctcgacgt cactccccaa taggggagtg acgtcgaggc ctctgaggac ttgagctt ttaccctggatc tcacccattt gtgggttt tttgggattt tataataccc acagctgca agagagttcc tagtaatcct atgtggcttc ggacagccat caccaatgat gtgcctatga gtgggtattc caactaagt gagaacact

SEQ ID NO.	Description	Sequence
	the GFP ORF with the GP ORF.	gtgatggtgt aaaacaccaa agaccagaag caaatgtctg tcaatgttag tggagtctta ccttgtctt cttcatattc ttttatcagc atttcattgt acagattctg gctctccac aaccaatcat tcttaaaatg cgtttcattg aggtacgagc cattgtgaac taaccaacac tgcggtaaag aatgtctccc tgtgatggta tcatttgcgtt accaaaattt tgtatagttg caataaggaa ttttggcaag ctgtttgaga ctgtttctaa tcacaagtga gtcagaaaata agtcgggtga tagtctttt aaagagattc aacgaattct caacattaag ttgtaaagggt ttgatagcat tctgattgaa atcaaataac ctcatacgat cgcaaaaattt ttcattgtga tctttgtgc attttgcatt cacagtgtta tcaaaaacatt ttattccagc ccaaacaata gcccatgtctt ccaaacagta accacctggg acatgttgcc cagtagagtc actcaagtcc caagtaaaaa agccaaggag tttcctgctc acagaactt aaggagttt ttggagagcc atccttattt ttgcatttgg agtataatgtt cagtattttt cccatgtggt gttctgtatg atcaggaaat tgaatgtgtt cccacccatca cagtttgcattt gtctgcaaga ccctccacta cagttattga aacattttcc aacccacgca atttttgggt ccccaatgtat ttgagcaagc gacgcaataa gatgtctgccc aacctcacct ccctctatccc caactgtcaa gttgtactgg atcaacacccc cagcaccctc aactgttttg catctggcac ctacatgacg agtgcacatgg agcacattga agtgcactt attaagcaac cattttatgt tgcatttttttgc ttcttctgtc ttatcacaat tactaatgtt accatatgca aggctctga tggggaaaa gtttccagta gtttcatttgc caatggatgt gtttgcataaa gtgaggttcaaa ttcccatgt tgggttagat ggtcctttgtt agtaatgtat tgggtttttc ttgctacatg attgtggcaaa gttgtcaaaac attctgtga gtttgcactt aacgtgggtt agattgtgcc tccttatcaat catcatgcca tcacaacttc tgccagccaa aatgaggaag gtgatggatgtt ggaataggcc acatctcatc agattgacaa atcctttgtat gatgcataagg gttgcacatgg tggggaaaa gacattgaac acctcctgca ggacttcggg tataactgg atcaaaagtca caactgtcc cattttgggg ttgtttgcac ttccctccgag tcagtgaaag agtgcacatgg tggggaaaa gacattgaac taggtccac tgggttttttgc tagaatgccc taggtccac tgggttttttgc tagaatgccc
9	GFP-Bsm: Green fluorescent protein (GFP) synthesized with flanking BsmBI sites (bold).	cgtctctaaa gatggtgagc aaggccgagg agctgttcac cgggggtggtg cccatcctgg tcgagctggc cggcgacgta aacggccaca agttcagcgt gtccggcgag ggcgagggcg atgccaccta cggcaagctg accctgaagt tcatctgcac caccggcaag ctgcccgtgc cctggccac cctcgtgacc accttgaccc

SEQ ID NO.	Description	Sequence
		acggcgtgca gtgcttcgtc cgctaccccg accacatgaa gcagcacgac ttcttcaagt ccgcatgcc cgaaggctac gtccaggagc gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg aagttcgagg gacacaccct ggtgaaccgc atcgagctga agggcatcga cttcaaggag gacggcaaca tcctgggca caagctggag tacaactaca acagccacaa ggtctatatac accgcccaca agcagaagaa cggcatcaag gtgaacttca agaccgcca caacatcgag gacggcagcg tgcagctcgc cgaccactac cagcagaaca ccccatcgg cgacggcccc gtgctgctgc ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac gagaagcgcg atcacatggt cctgctggag ttcgtgaccg ccgcccggat cactctcggc atggacgagc tgtacaagta agcccagaga cg
10	SP1AGM-Bsm: Fusion protein consisting of i) the vesicular stomatitis virus glycoprotein (VSVG) signal peptide, ii) the P1A antigen of the P815 mouse mastocytoma tumor cell line, iii) a GSG linker, iv) an enterovirus 2A peptide, and v) mouse GM-CSF synthesized with flanking BsmBI sites (bold).	cgtctcta ag gatgaaatgc ctcccttacc ttgcatttct cttcatttga gtcaactgca tgagtgacaa caagaaggct gacaaggccc actctggcag tggaggagat ggtgatggca acagatgcaa cctgctgcac agatacagcc tggaaagagat cctgcccac ctgggctggc tgggtttgc tgtggtgaca acaagcttcc tggccctgca gatgttcat gatgccctgt atgagaaca gtatgagagg gatgtggcct ggattgccag acagagcaag agaatgagca gtgtggatga ggtgaggat gatgaggatg atgaagatga ctactatgt gatgaggatg atgatgtga tgccttctat gatgatgagg atgatgaaga ggaagaactg gaaaacctga tggatgatga gtctgaggat gaggctgagg aagagatgag tgtggaaatg gggctgggg cagaagagat gggagcagg gccaactgtg cttgtgtgcc aggacaccac ctgagaaaga atgaagtgaa gtgcaggatg atctacttct tccatgaccc caacttctg gtgtccatcc ctgtgaaccc caaagaacag atgaaatgca gatgtgagaa tgcagatgaa gaggtggcca tggaaagaaga agaggaagag gaagaagaag aagaagagga agaaatggc aaccaggatg gcttcagccc tggaaagtgtt caccatcacc accatcatgg cagtgggca accaacttca gcctgctgaa acaggctgg gatgtggaag aaaatcctgg cccatgtgg ctccagaatc tgcttttct gggcattgtt gttacagcc tgagtgcacc cacaagatct cccatcacag tgacaagacc ttggaagcat gtggagcaa tcaaagaggc cctgaatctg cttgatgaca tgccagtgac cctgaatgaa gaagtggaaag tggtgtcaaa tgagttcagc ttcaaaaaac tgacctgtgt gcagaccagg ctgaaaattt ttgaacaggg cctgagagga aacttcacaa agctgaaggg agctctgaac atgactgcca gctactacca gacctactgc cccccccaccc

SEQ ID NO.	Description	Sequence
		cagagacaga ttgtgagaca caagtgacca cctatgctga cttcattgac agcctgaaaa ccttcctgac tgacatcccc tttgagtgca agaaacctgt gcagaagtga agaaa agagac g
11	PIC-NP-GFP (S-NP/GFP)	gcgcacccggg gatccttaggc ataccttgg cgcgcatatt acttgatcaa agatggtag caaggcgag gagctgtca ccgggggtgg gcccattcctg gtcgagctgg acggcgacgt aaacggccac aagttcagcg tgcggcgca ggcgagggc gatgccacct acggcaagct gaccctgaag ttcatctgca ccacccggca gctgcccgtg ccctggccca ccctcggtac caccttgacc tacggcggtgc agtgcttcgt ccgctaccccc gaccacatga agcagcacga cttcttcaag tccgccccatgc ccgaaggcta cgtccaggag cgacccatct tcttcaagg cgacggcaac tacaagaccc gcgcggaggt gaagttcgag ggacacaccc tggtaaccg catcgagctg aagggcatcg acttcaagg ggacggcaac atcctggggc acaagctgg gtacaactac aacagccaca aggtctata caccggccac aagcagaaga acggcatcaa ggtgaacttc aagacccgac acaacatcg ggacggcagc gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgcacggccc cgtgctgctg cccgacaacc actacctgag caccctgtcc gccctgagca aagaccccaa cgagaagcgc gatcacatgg tcctgctgg gttcgtgacc gccgcccggta tcactctcg catggacgag ctgtacaagt aagccctag ctcgacatgg gcctcgacgt cactcccaa tagggagtg acgtcgaggc ctctgaggac tttagctcag agttgtatca gatctgtgtt gttcctgtac agcgtgtcaa taggcaagca tctcatcgcc ttctggtccc taacccagcc tgtcaactgtt gcatcaaaca tggatgtatc aagcaatgca cagtgaggat tcgcagtggt tttgtcagcc cccttcttct tcttctttat gaccaaacct ttatgtttgg tgcaagatgt attgtatctc tcccagatct catcctcaaa ggtgctgtct tgctcgccac tggatgttac gtcaagact ttaagtctc ttctccatg catttcgaac aaactgatta tatcatctga accttggaca gtgaaaaacca tggatgttgg taaatgtctg atgattgagg aaatcaggcc tggttggca tcagccaagt cctttaaaag gagaccatgt gagtacttgc tttgctctt gaaggacttc tcatcggtgg gaaatctgt acaatgtatg tagttccccg tgcaggctg gtagatggcc atttccaccgc gatcatttg tggatgttca atgtcaatcc atgtggtagc ttttgaatca agcatctgaa ttgaggacac aacagtatct tctttcttct tagggatttg tttaagggtcc ggtgatctc cggttcttac tggatgttca atgtcaatcc atgtggtagc

SEQ ID NO.	Description	Sequence
		taaatctaca gtggtgttat cccaagccct cccttgaact tgagaccttg agccaatgt aggccaaacca tccccctgaaa gacaaatctt gtatagtaaa ttttcataaag gatttctctg tccgggtgta gtgctcacaa acataaccttc acgattctt atttgcaata gactctttat gagagacta aacatagaag gcttcacctg gatggtctca agcatatgc caccatcaat catgcaagca gctgcttga ctgctgcaga caaactgaga ttgtaccctg agatgtttat ggctgatggc tcattactaa tgattttag ggcactgtgt tgctgtgtga gtttctctag atctgtcatg ttcgggaact tgacagtgt gagcaaacca agtgcactca gcgccttggac aacatcatta agttgttcac ccccttgctc agtcatacaa gcgcgtggta aggctggcat tgatccaaat tgattgatca acaatgtatt atccttgatg tcccagatct tcacaacccc atctctgttgc cctgtgggtc tagcattagc gaaccccatt gagcgaagga tttcggctct ttgttccaac tgagtgtttg tgagattgcc cccataaaca ccaggctgag acaaactctc agttcttagtgc actttcttc ttaacttgc caaatcagat gcaagctcca ttagctcctc tttggctaaag cctcccacct taagcacatt gtccctctgg attgatctca tattcatcag agcatcaacc tctttgttca tgtctcttaa cttggtcaga tcagaatcag tcctttatc tttgcgcatac attctttgaa cttgagcaac tttgtgaaag tcaagagcag ataacagtgc tcttgcgtcc gacaacacat cagccttcac aggatgggtc cagttggata gacccttcct aagggactgt acccagcggaa atgatgggat gttgtcagac attttgggt tgggtgcact tcctccgagt cagtgaagaa gtgaacgtac agcgtgatct agaatcgccct aggatccact gtgcg
12	PIC-NP-sP1AGM	gcgcacccggg gatccttaggc ataccttgg cgcgcatatt acttgcataa agatgaaatg cctcctctac cttgcatttc tcttcattgg agtcaactgc atgagtgaca acaagaagcc tgacaaggcc cactctggca gtggaggaga tggtgatggc aacagatgca acctgctgca cagatacagc ctggaaagaga tcctgcctca cctgggttgg ctgggtttg ctgtgggtgac aacaagcttc ctggccctgc agatgttcat tgatgccctg tatgaggaac agtatgagag ggatgtggcc tggattgcca gacagagcaa gagaatgagc agtgtggatg aggtgagga tgatgaggat gatgaagatg actactatga tgatgaggat gatgatgatg atgccttcta tgatgatgag gatgatgaag aggaagaact ggaaaacctg atggatgatg agtctgagga tgaggctgag gaagagatga gtgtggaaat gggggctggc gcagaagaga tgggagcagg tgccaaactgt gcttgcgtgc caggacacca cctgagaaag aatgaagtga agtgcaggat

SEQ NO.	Description	Sequence
		gatctacttc ttccatgacc ccaactttct gggtgtccatc cctgtgaacc ccaaagaaca gatggaatgc agatgtgaga atgcagatga agaggtggcc atggaagaag aagaggaaga ggaagaagaa gaagaagagg aagaaatggg caacccagat ggcttcagcc ctggaaagtgg tcaccatcac caccatcatg gcagtggggc aaccacatcc agcctgctga aacaggctgg ggatgtggaa gaaaatcctg gcccctggct ccagaatctg cttttctgg gcattgtgg ttacagccctg agtgcaccca caagatctcc catcacagtg acaagacctt ggaagcatgt ggaagcaatc aaagaggccc tgaatctgct tcatgacatg ccagtgaccc tgaatgaaga agtggaaagtg gtgtcaatg agttcagctt caaaaaactg acctgtgtgc agaccaggct gaaaattttt gaacagggcc tgagaggaaa cttcacaaag ctgaagggag ctctgaacat gactgccagc tactaccaga cctactgccc ccccacccca gagacagatt gtgagacaca agtgaccacc tatgctgact tcattgacag cctgaaaacc ttccctgactg acatccctt tgagtgcaag aaacctgtgc agaagtgagc cctagcctcg acatgggcct cgacgtcact ccccaaatagg ggagtgacgt cgaggccct gaggacttga gctcagaggt tgatcagatc tgtgttgttc ctgtacagcg tgtcaatagg caagcatctc atcgcttct ggtcccta ccagcctgtc actgttgcatt caaacatgat ggtatcaagc aatgcacagt gaggattcgc agtggtttgt gcagccccct tcttcttctt ctttatgacc aaacctttat gtttggtgca gagtagattt tatctctccc agatctcatc ctcaaagggt cgtgcttgct cggcactgag tttcacgtca agcactttt agtctcttct cccatgcatt tcgaacaaac tgattatatc atctgaacct tgagcagtga aaaccatgtt ttgaggtaaa tgtctgatga ttgagggaaat caggcctggt tgggcatcag ccaagtccctt taaaaggaga ccatgtgagt acttgctttg ctctttgaag gacttctcat cgtggggaaa tctgtaaaca tgtatgttagt tgcccggtc aggctggtag atggccattt ccacccggatc atttgggtt cttcaatgt caatccatgt ggtagcttt gaatcaagca tctqaattga ggacacaaca gtatcttctt tctccottagg gatttggtaa aggtccggtg atcctccgtt tcttactggc ggctggatag cactcggctt cgaatctaaa tctacagtgg tgttatccca agccctccct tgaacttgag accttgagcc aatgtaaaggc caaccatccc ctgaaagaca aatcttgtat agtaaatttt cataaggatt tctctgtccg ggtgttagtgc tcacaaacat actttcacga ttctttattt gcaatagact ctttatgaga gtactaaaca tagaaggctt cacctggatg gtctcaagca tattgccacc

SEQ ID NO.	Description	Sequence
		atcaatcatg caagcagctg ctttactgc tgcagacaaa ctgagattgt accctgagat gtttatggct gatggctcat tactaatgat ttttagggca ctgtgttgct gtgtgagttt ctctagatct gtcatgttcg ggaacttgac agttagatgc aaaccaagtg cactcagcgc ttggacaaca tcattaagtt gttcacccccc ttgctcagtc atacaagcga tggtaaggc tggcattgat ccaaattgat tggatcaacaa tgtattatcc ttgatgtccc agatcttcac aaccatct ctgtgcctg tgggtcttagc attagcgaac cccattgagc gaaggatttc ggctcttgc tccaaactgag tgggtgtgag attgccccca taaacaccag gctgagacaa actctcagtt ctatgtactt tctttcttaa cttgccaaa tcagatgcaa gctccattag ctcctcttg gctaaggcctc ccacccatgg cacattgtcc ctctggattt atctcatatt catcagagca tcaaccttctt tggatcatgtc tcttaacttgc gtcagatcag aatcagtcct tttacccatgc cgcatttttgc tttgaacttg agcaactttgc taaaatgtcaa gagcagataa cagtgcctt gtgtccgaca acacatcagc cttcacagga tgggtccagg tggatagaccc cctccatagg gactgtaccc agcggatgaa tggatgttgc tcagacattt tgggttgg tgcacttcctt ccgagtcactt gaagaagtga acgtacagcg tgatctagaa tcgccttagga tccactgtgc g
13	PIC-GP-GFP (S-GP/GFPart)	gcccacccggg gatccttaggc atacccatgg cgccatatt acttgcataa agatggtgag caaggccgag gagctgttca ccgggggtgg gcccacccctg gtcgagctgg acggcgacgt aaacggccac aagttcagcg tggatccggcg ggcgaggcc gatgccaccc acggcaagct gacccttgc gttcatcttca ccaccggca gctgcccgtt ccctggccca ccctcgatgc cacccatggc tacggcgatgc agtgcattcg ccgctacccca gaccacatga agcagcacga cttcttcaag tccgcccattgc ccgaaggcta cgccaggagg cgcaccatct tcttcaaggg cgacggcaac tacaagaccc ggcggcgg gaagttcaggg ggcgacaccc tggatgg catcgagctg aaggccatcg acttcaaggg ggacggcaac atccctggggc acaagctgg gtacaactac aacagccaca aggtctata caccggccac aagcagaaga acggcatcaa ggtaacttc aagacccggcc acaacatcg ggacggcaggc gtgcagctcg ccgaccacta ccagcagaac accccatcg ggcacggccc cgtgcgtctg cccgacaacc actacccatgg caccctgtcc gcccgttgc aagacccatgg cgagaagcgc gatcacaatgg tcactctcg gttcgttgc gccggccggc tcactctcg catggacgag ctgtacaatgg aagcccttagc ctcgacatgg gcctcgacgt cactcccaa

SEQ ID NO.	Description	Sequence
		tagggagtg acgtcgaggc ctctgaggac ttgagcttat ttacccagtc tcacccattt gtagggttc tttgggattt tataatacc acagctgcaa agagagtcc tagtaatcct atgtggctc ggacagccat caccaatgat gtgcctatga gtgggtattc caactaagt gagaaacact gtgatgggt aaaacaccaa agaccagaag caaatgtctg tcaatgctag tggagtccta cttgtcttt cttcatattc ttttatcagc atttcattgt acagattctg gctctccac aaccaatcat tcttaaaatg cgtttcattt aggtacgagc cattgtgaac taaccaacac tgccgttaaag aatgtctccc tgtgatggta tcattgatgt accaaaattt tgtatagttt caataaggaa ttttggcaag ctgtttgaga ctgtttctaa tcacaagtga gtcagaaata agtccgttga tagtctttt aaagagattt aacgaattct caacattaag ttgtaagggtt ttgatagcat tctgattgaa atcaaataac ctcatcgat cgccaaattt ttcattgtga tctttgtgc attttgcatt cacagtgttca tcaaaacatt ttattccagc ccaaacaata gcccattgtct ccaaacagta accacctggg acatgttgcc cagtagagtc actcaagtcc caagtaaaaa agccaaggag tttcctgctc acagaactat aagcagttt ttggagagggc atccttattt ttgccattgg agtatatgtt cagtgatattt cccatgtgg gttctgtatg atcaggaaat tgtaatgtgt cccacccatca cagtttttta gtctgcaaga ccctccacta cagttatttga aacattttcc aacccacgca atttttgggt ccccaatgat ttgagcaagc gacgcaataa gatgtctgcc aacctcacct cctctatccc caactgtcaa gttgtactgg atcaacacccc cagcaccctc aactgttttgc atctggcac ctacatgacg agtgacatgg agcacatttga agtgtaactc attaagcaac cattttatgt tggacactgc ttcttctgtc ttatcacaat tactaatgtt accatatgca aggcttctga tggggaaaa gtttccagta gtttcatatttga caatggatgt gtttgtcaaa gtgagttcaa ttccccatgt tgtgttagat ggtcctttgt agtaatgtat tgtgtgttc ttgctacatg attgtggcaa gttgtcaaac attcttgtga ggttgaactc aacgtgggtg agattgtgcc tcctatcaat catcatgcca tcacaacttc tgccagccaa aatgaggaag gtgatgggtt ggaataggcc acatctcatc agattgacaa atccttgcatt gatgcatagg gttgagacaa tgattaaggc gacattgaac acctcctgca ggacttcggg tataagactgg atcaaagtca caacttgc cattttgggg ttggttgcac ttccctccgag tcagtgaaaga agtgaacgta cagcgtgatc tagaatcgcc taggatccac tggcg

SEQ ID NO.	Description	Sequence
14	PIC-GP-sP1AGM	gcgcacccggg gatccttaggc ataccttgg cgcgcatatt acttgatcaa agatgaaatg cctccctctac cttgcatttc tcttcattgg agtcaactgc atgagtgaca acaagaagcc tgacaaggcc cactctggca gtggaggaga tggtgatggc aacagatgca acctgctgca cagatacagc ctggaagaga tcctgccccta cctgggctgg ctgggtttg ctgtggtgac aacaagctt cttggccctgc agatgttcat tgatgccctg tatgaggaac agtatgagag ggatgtggcc tggattgccca gacagagcaa gagaatgagc agtgtggatg aggtgagga tgatgaggat gatgaagatg actactatga tgatgaggat gatgatgatg atgccttcta tgatgatgag gatgatgaag aggaagaact ggaaaaacctg atggatgatg agtctgg tgaggctgag gaagagatga gtgtggaaat gggggctggg gcagaagaga tggagcagg tgccaaactgt gcttgtgtgc caggacacca cctgagaaag aatgaagtga agtgcaggat gatctacttc ttccatgacc ccaactttct ggtgtccatc cctgtgaacc ccaaagaaca gatgaaatgc agatgtgaga atgcagatga agaggtggcc atggaagaag aagaggaaga ggaagaagaa gaagaagagg aagaaatggg caaccagat ggcttcagcc ctggaagtgg tcaccatcac caccatcatg gcagtggggc aaccaacttc agcctgtga aacaggctgg ggatgtggaa gaaaatctg gcccctggct ccagaatctg cttttctgg gcattgtgg ttacagcctg agtgcaccca caagatctcc catcacagtg acaagaccc ggaagcatgt ggaagcaatc aaagaggccc tgaatctgct tgatgacatg ccagtgcaccc tgaatgaaga agtgaaagtg gtgtcaaatg agttcagctt caaaaaactg acctgtgtgc agaccaggct gaaaattttt gaacaggggcc tgagaggaaa cttcacaaag ctgaagggag ctctgaacat gactgccagc tactaccaga cctactgccc ccccacccca gagacagatt gtgagacaca agtgaccacc tatgctgact tcattgacag cctgaaaacc ttcctgactg acatcccctt tgagtgcaag aaacctgtgc agaagtgagc cctagcctcg acatgggcct cgacgtcact ccccaatagg ggagtgcacgt cgaggcctct gaggacttga gcttatttac ccagtctcac ccattttagt ggtttcttg ggattttata ataccacag ctgcaaagag agttcctagt aatcctatgt ggcttcggac agccatcacc aatgatgtgc ctatgatgg gtattccaac taagtggaga aacactgtga tggtgaaaa caccaaagac cagaagcaaa tgtctgtcaa tgctagtggc gtcttacctt gtcttcttc atattctttt atcagcattt cattgtacag attctggctc tcccacaacc aatcattctt aaaatgcgtt tcattgaggt acgagccatt

SEQ ID NO.	Description	Sequence
		gtgaactaac caacactgcg gtaaagaatg tctccctgtg atggtatcat tcatgttacca aaattttgtt tagttcaat aagggatttt ggcaagctgt tttagactgt ttctaatcac aagttagtca gaaataagtc cgtttagtgc ctttttaaag agattcaacg aattctcaac attaagttgt aaggtttga tagcattctg attgaaatca aataacctca tcgtatcgca aaattttca ttgtgatctt tggcatt tgccatcaca gtgttatcaa aacattttat tccagccaa acaatagccc attgctccaa acagtaacca cctgggacat gttgcccagt agagtcaactc aagtcccaag taaaaaagcc aaggagttc ctgctcacag aactataagc agtttttgg agagccatcc ttattgttg cattggagta tatgtacagt gattttccca tgtgggttgc tggatgatca gggaaattgtt atgtgtccca ccttcacagt ttgttagtct gcaagaccct ccactacagt tattgaaaca ttttccaacc cacgcaattt ttgggtcccc aatgatttga gcaagcgacg caataagatg tctgccaacc tcaccccttc tatcccccaac tgtcaagttg tactggatca acaccccgac accctcaact gttttgcatc tggcacctac atgacgagtg acatggagca cattgaagtg taactcatta agcaaccatt ttaatgttg acctgcttct tctgtcttat cacaattact aatgttacca tatgcaaggc ttctgtatgtt ggaaaagttt ccagtagttt cattgcaat ggatgtgtt gtcaaagtga gttcaattcc ccatgttgc ttagatgttc cttttagtgc atgatgtgtg ttgttcttc tacatgatttg tggcaagttg tcaaaccattt ttgttaggtt gaactcaacg tgggtgagat tggcctcct atcaatcatc atgcccacac aacttctgccc agccaaaatg aggaaggta tgagttggaa taggccccat ctcacatcgat tgacaaatcc tttgatgtatg catagggtt agacaatgt taaggcgaca ttgaacaccc cctgcaggac ttcgggtata gactggatca aagtccaaac ttgtcccttgc ttgggttgc ttgcacttcc tccgagtcag tgaagaatg aacgtacagc gtgatctaga atcgcctagg atccactgtg cg
15	S-GP/GFPnat	gcccacccggg gatccttaggc atacccggaa cgccatatt acttgcataa agatgggaca agttgtgact ttgtatccatg ctatcccgaa agtccctgcag gaggtgttca atgtccctt aatcattgtc tcaaccctat gcatcatcaa aggatttgc aatctgtatgat gatgtggcct attccaaactc atcaccctcc tcattttggc tggcagaagt tgtatggca tgatgattga taggaggcac aatctccaccc acgtttagtt caacccatca agaatgtttg acaacttgcc acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg ggaaattgaa ctcactttga caaacacatc

SEQ ID NO.	Description	Sequence
		cattgcaa at gaaactactg gaaactttc caacatcaga agccttgc at atggtaacat tagtaattgt gataagacag aagaagcagg tcacacatta aaatggtgc ttaatgagtt acacttcaat gtgctccatg tcactcgtca tgttagtgcc agatgcaaaa cagttgaggg tgctgggtg ttgatccagt acaacttgac agttgggat agaggaggtg aggttggcag acatcttatt gcgtcgcttgc ctcaa atcat tggggaccca aaaattgcgt ggg tggaaa atgttcaat aactgttagt gagggtctt cagactaaca aactgtgaag gtgggacaca ttacaatttc ctgatcatac agaacaccac atgggaaaat cactgtacat atactccaa ggcaacaata aggatggctc tccaaaaa tgcttata tagt tctgtgagca gggaaactc tggcttttc acttggact tgagtgactc tactggcaa catgtcccag gtggttactg tttggagcaa tgggctattt gttgggctgg aataaaatgt tttgataaca ctgtgatggc aaaatgcaac aaagatcaca atgaagaatt ttgcgatacg atgaggat tttgatttcaa tcagaatgtc atcaaaaacct tacaactt tgttgagaat tcggtgaatc tctttaaaaa gactatcaac ggacttattt ctgactcact tgtgatttga aacagtctca aacagcttgc caaaatccct tattgcaact atacaaaatt ttggtacatc aatgatacca tcacaggag acattcttta ccgcagtggtt ggttagtca caatggctcg tacctcaatg aaacgcattt taagaatgtat tgggtgtggg agagccagaa tctgtacaat gaaatgctga taaaagaata tgaagaaaga caaggtaa gtcacttgc attgacacac atttgcttct ggtctttgg gttttacacc atcacagtgt ttctccactt agttggaata cccactcata ggcacatcat tggtgatggc tgcgttgc acataggat tacttaggaac tctcttgc gctgtggta ttataaaatc ccaaagaaac cctacaaatg ggtgagactg ggtaaataag ccctagcctc gacatggcc tcgacgtcac tccccaaatg gggagtgacg tcgaggcctc tgaggacttg agcatgtctt cttacttgc cagctcg atgcccagag tgatcccgcc ggcggtcac aactccagca ggaccatgtg atcgcgttcc tcgttgggtt ctggctcag ggcggactgg gtgctcaggat agtgggttgc gggcagc acggggccgt cgccgatggg ggtgttctgc tggtagtggc cggcgagctg cacgctgc tcctcgatgt tggccgggtt ctggatgtt accttgc tggatgtgc cttcttgc ctgtc gtgatata gatgttgc gatgttgc tcctccatg a gtcgatgcc cttcagctcg atgcggttca ccagggttgc gccctcgaac ttcacctcg cgggggtt gtagttgc

SEQ ID NO.	Description	Sequence
		tcgtccttga agaagatggt gcgcctcctgg acgtagcctt cgggcattggc ggacttgaag aagtctgtct gcttcattgtg gtcggggtag cggacgaagc actgcacgccc gtaggtcaag gtggtcacga ggggtggcca gggcacgggc agcttgcggg tggtgacat gaaacttcagg gtcagcttgc cgttagttggc atcgccctcg ccctcgccgg acacgctgaa cttgtggccg tttacgtcgc cgtccagctc gaccaggatg ggcaccaccc cggtaaacag ctccctcgccc ttgctcacca tgaagacatt ttggggttgt ttgcaattcc tccgagtcag tgaagaagtg aacgtacagc gtgatctaga atgccttagg atccactgtg cg
16	S Δ BbsI- Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529746.1) segment S, wherein non-coding mutation were introduced to delete four BbsI restriction sites. The genomic segment is RNA, the sequence in SEQ ID NO: 16 is shown for DNA; however, exchanging all thymidines ("T") in SEQ ID NO:1 for uridines ("U") provides the RNA sequence.	gcgcacccggg gatccttaggc ataccttgg cgcgcatatt acttgatcaa agatgggaca agtttgact ttgatccagt ctatacccg agtccctgcag gaggtgttca atgtccctt aatcattgtc tcaaccctat gcatcatcaa aggatttgtc aatctgtatgatgatgtggc attccaaactc atcaccttcc tcattttgg tggcagaagt tttgtatggca tttatgtatg taggaggcac aatctcaccc acgttgatgt caacccatca agaatgtttg acaacttgc acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg ggaaattgaa ctcacttta caaacacatc cattgcaaat gaaactactg gaaactttc caacatcaga agccttgcattt atggtaacat tagtaattgt gataagacag aagaaggcagg tcacacatta aaatggtttc ttaatgtatg acacttcaat gtgtccatg tcactcgat tgttaggtgcc agatgaaaaa cagttgaggg tgctgggtg ttgatccagt acaacttgc agttgggtat agaggaggtg aggttggc acatcttatt gcgtcgcttgc ctcaaatcat tggggaccca aaaattgcgt ggggtggaaa atgtttcaat aactgtatgt gagggtcttgc cagactaaca aactgtgaag gtgggacaca ttacaatttc ctgatcatac agaacaccac atggggaaat cactgtatcat atactccaaat ggcaacaata aggtggctc tccaaaaaaac tgcttataatgt tctgtgagca gggaaactc tggcttttc acttggact ttagtgactc tactggccaa catgtccctcag gtgggtactg tttggagccaa tgggttattt gttttggctgg aataaaatgt tttgataaca ctgtqatggc aaaatgcaac aaagatcaca atgaagaatt ttgcgatacg atgaggatatt ttgatttcaa tcagaatgct atcaaaaacct tacaacttaa tgttgagaat tcgttgaatc tctttaaaaaa gactatcaac ggacttattt ctgactcact tgtgattaga aacagtctca aacagcttgc caaaatccct tattgcaact atacaaaatt ttggtacatc aatgataacca tcacaggag acattctta ccgcagtgtt ggttagttca

SEQ ID NO.	Description	Sequence
		caatggctcg tacctcaatg aaacgcattt taagaatgat tggttgtggg agagccagaa tctgtacaat gaaatgctga taaaagaata tgaagaaaaga caaggtaaaga ctccactagc attgacagac atttgctct ggtctttggt gttttacacc atcacagtgt ttctccactt agttgaaata cccactcata ggcacatcat tggtgatggc tgtccgaagc cacataggat tactaggaac tctcttgca gctgtggta ttataaaaatc ccaaagaaaac cctacaaaatg ggtgagactg ggtaaataag ccctagcctc gacatgggcc tcgacgtcac tccccaaatag gggagtgcg tcgaggcctc tgaggacttg agctcagagg ttgatcagat ctgtgttgg cctgtacagc gtgtcaatag gcaagcatct catcggttc tggtccctaa cccagcctgt cactgttgca tcaaacatga tggtatcaag caatgcacag tgaggattcg cagtggttt tgcagccccc ttcttcttct tctttatgac caaacactta tgggggtgc agagtagatt gtatctctcc cagatctcat cctcaaagg gcgtgcttgc tcggcaactga gttcacgtc aagcaacttt aagtcttcc tcccatgcat ttcgaacaaa ctgatttat catctgaacc ttgagcagtg aaaaccatgt tttgaggtaa atgtctgatg attgagggaaa tcaggcctgg ttgggcatca gccaagtcct taaaaggag accatgtgag tactgctt gctcttga ggacttctca tcgtgggaa atctgtaa atgtatgtag ttgcccgtgt caggctggta gatggccatt tccaccggat catttgggt tccttcaatg tcaatccatg tggtagctt tgaatcaagc atctgaattt aggacacaac agtatcttct ttctccttag ggatttgg aaggcccgtt gatcctccgt ttcttactgg tggctggata gcactcggt tcgaatctaa atctacagtg gtgttatccc aagccctccc ttgaacttga gaccttgagc caatgtaa ccaaccatcc cctgaaagac aaatcttga tagtaaattt tcataaggat ttctctgtcc gggtgttagtgc ttcacaaaaca taccttcac attctttatt tgcaatagac tctttatgag agtactaaac atagaaggct tcacctggat ggtctcaagc atattgccac catcaatcat gcaaggcagct gctttgactg ctgcagacaa actgagattg taccctgaga tggggatgg tgatggctca ttactaatga tttttagg actgtgttgc tgggtggat tctcttagatc tgtcatgttc gggaaacttga cagtgttag caaaccaagt gcactcagcg ctggacaa atcattaagt tggtcaccctt ctgtctcagt catacaagcg atggtaagg ctggcattga tccaaattga ttgatcaaca atgtattatc cttgatgtcc cagatcttca caaccccatc tctgttgccct gtgggtcttag cattagcgaa ccccatttag cgaaggattt cggtctttg

SEQ ID NO.	Description	Sequence
		ttcccaactga gtgtttgtga gattgccccca ataaaacacca ggctgagaca aactctcagt tcttagtgact ttctttctta acttgcctaa atcagatgca agctccattt gctccctttt ggcttaaggct cccacccattt gcacattgtc cctctggatt gatctcatat tcattcagac atcaacctct ttgttcatgt ctcttaactt ggtcagatca gaatcagttcc ttttatcttt gcccattt ctttgaactt gagcaacttt gtgaaagtca agagcagata acagtgcct tgtgtccgac aacacatcag ctttcacagg atgggtccag ttggatagac ccctcctaag ggactgtacc cagcggaaatg atggatgtt gtcagacatt ttgggggttgt ttgcacttcc tccgagttagt tgaagaagtg aacgtacagg gtgatctaga atcgccctagg atccactgtg cg

[00340] The term “comprise” and variants of the term such as “comprises” or “comprising” are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.

[00341] Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

[00342] Definitions of the specific aspects of the invention as claimed herein follow.

According to a first aspect of the invention, there is provided a tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein the first S segment comprises an open reading frame (“ORF”) encoding the Pichinde virus glycoprotein (“GP”) in a position under control of a Pichinde virus genomic 3’ untranslated region (“UTR”) and an ORF encoding a first gene of interest in a position under control of a Pichinde virus genomic 5’ UTR and

the second S segment comprises an ORF encoding the Pichinde virus nucleoprotein (“NP”) in a position under control of a Pichinde virus genomic 3’ UTR and an ORF encoding a second gene of interest in a position under control of a Pichinde virus genomic 5’ UTR and the L segment comprises an ORF encoding the RNA dependent RNA polymerase L (“L protein”) in a position under control of a Pichinde virus genomic 3’ UTR and an ORF encoding the matrix protein Z (“Z protein”) in a position under control of a Pichinde virus genomic 5’ UTR.

According to a second aspect of the invention, there is provided a cDNA or a set of cDNAs encoding the genomic segment or segments of the tri-segmented Pichinde virus particle of the first aspect.

According to a third aspect of the invention, there is provided a DNA expression vector or a set of DNA expression vectors comprising the cDNA or the set of cDNAs of the second aspect.

According to a fourth aspect of the invention, there is provided a host cell comprising the tri-segmented Pichinde virus particle of the first aspect, the cDNA or the set of cDNAs of the second aspect, or the DNA expression vector or the set of DNA expression vectors of the third aspect.

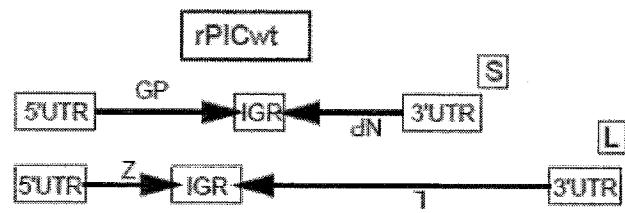
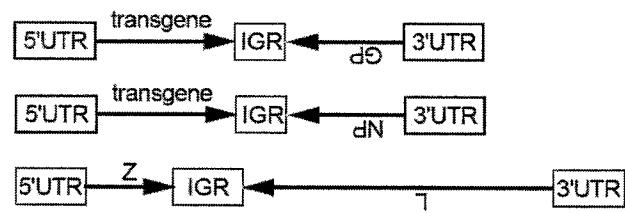
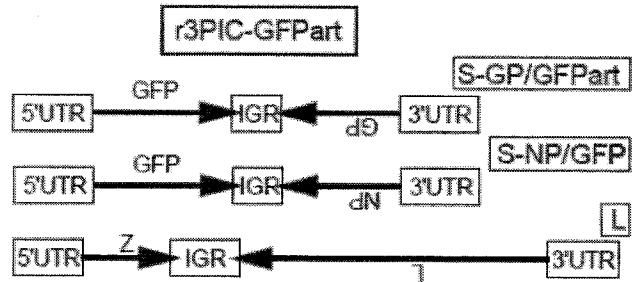
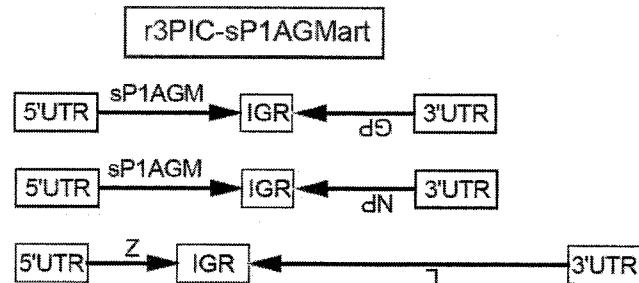
According to a fifth aspect of the invention, there is provided a method of generating the tri-segmented Pichinde virus particle of the first aspect, wherein the method comprises:

- (i) transfecting into a host cell one or more cDNAs of the one L segment and the two S segments;
- (ii) maintaining the host cell under conditions suitable for virus formation; and
- (iii) harvesting the Pichinde virus particle.

According to a sixth aspect of the invention, there is provided a vaccine comprising the tri-segmented Pichinde virus particle of the first aspect and a pharmaceutically acceptable carrier.

According to a seventh aspect of the invention, there is provided a pharmaceutical composition comprising the tri-segmented Pichinde virus particle of the first aspect and a pharmaceutically acceptable carrier.

WHAT IS CLAIMED:





1. A tri-segmented Pichinde virus particle comprising one L segment and two S segments, wherein the first S segment comprises an open reading frame (“ORF”) encoding the Pichinde virus glycoprotein (“GP”) in a position under control of a Pichinde virus genomic 3’ untranslated region (“UTR”) and an ORF encoding a first gene of interest in a position under control of a Pichinde virus genomic 5’ UTR and the second S segment comprises an ORF encoding the Pichinde virus nucleoprotein (“NP”) in a position under control of a Pichinde virus genomic 3’ UTR and an ORF encoding a second gene of interest in a position under control of a Pichinde virus genomic 5’ UTR and the L segment comprises an ORF encoding the RNA dependent RNA polymerase L (“L protein”) in a position under control of a Pichinde virus genomic 3’ UTR and an ORF encoding the matrix protein Z (“Z protein”) in a position under control of a Pichinde virus genomic 5’ UTR.
2. The tri-segmented Pichinde virus particle of claim 1, wherein propagation of the tri-segmented Pichinde virus particle does not result in a replication-competent bi-segmented viral particle after 70 days of persistent infection in mice lacking type I interferon receptor, type II interferon receptor and recombination activating gene 1 (RAG1) and having been infected with 10^4 PFU of the tri-segmented Pichinde virus particle.
3. The tri-segmented Pichinde virus particle of claim 1, wherein inter-segmental recombination of the two S segments, uniting two Pichinde virus ORFs on only one instead of two separate segments, abrogates viral promoter activity.
4. The tri-segmented Pichinde virus particle of any one of claims 1 to 3, wherein the Pichinde virus genomic 3’ UTR is the 3’ UTR of the Pichinde virus S segment or the

Pichinde virus L segment, and wherein the Pichinde virus genomic 5' UTR is the 5' UTR of the Pichinde virus S segment or the Pichinde virus L segment.

5. The tri-segmented Pichinde virus particle of any one of claims 1 to 4, wherein the first and/or the second gene of interest encodes an antigen derived from an infectious organism, tumor, or allergen.
6. The tri-segmented Pichinde virus particle of claim 5, wherein the antigen is selected from human immunodeficiency virus antigens, hepatitis C virus antigens, varizella zoster virus antigens, cytomegalovirus antigens, mycobacterium tuberculosis antigens, tumor associated antigens, and tumor specific antigens (such as tumor neoantigens and tumor neoepitopes).
7. The tri-segmented Pichinde virus particle of any one of claims 1 to 4, wherein the first and/or the second gene of interest encodes a fluorescent protein.
8. The tri-segmented Pichinde virus particle of any one of claims 1 to 7, wherein the tri-segmented Pichinde virus particle is infectious and replication competent.
9. The tri-segmented Pichinde virus particle of any one of claims 1 to 8, wherein the tri-segmented Pichinde virus particle is attenuated.
10. The tri-segmented Pichinde virus particle of any one of claims 1 to 9, wherein the tri-segmented Pichinde virus particle is derived from strain Munchique CoAn4763 isolate P18, or P2 strain.
11. A cDNA or a set of cDNAs encoding the genomic segment or segments of the tri-segmented Pichinde virus particle of any one of claims 1 to 10.
12. A DNA expression vector or a set of DNA expression vectors comprising the cDNA or the set of cDNAs of claim 11.

13. A host cell comprising the tri-segmented Pichinde virus particle of any one of claims 1 to 10, the cDNA or the set of cDNAs of claim 11, or the DNA expression vector or the set of DNA expression vectors of claim 12.
14. A method of generating the tri-segmented Pichinde virus particle of any one of claims 1 to 10, wherein the method comprises:
 - (i) transfecting into a host cell one or more cDNAs of the one L segment and the two S segments;
 - (ii) maintaining the host cell under conditions suitable for virus formation; and
 - (iii) harvesting the Pichinde virus particle.
15. The method of claim 14, wherein the transcription of the one L segment and the two S segments is performed using a bidirectional promoter.
16. The method of claim 14 or 15, wherein the method further comprises transfecting into the host cell one or more nucleic acids encoding a Pichinde virus polymerase, optionally wherein the Pichinde virus polymerase is the L protein.
17. The method of any one of claims 14 to 16, wherein the method further comprises transfecting into the host cell one or more nucleic acids encoding the NP.
18. The method of claim 14, wherein transcription of the one L segment, and the two S segments are each under the control of a promoter selected from the group consisting of:
 - (i) a RNA polymerase I promoter;
 - (ii) a RNA polymerase II promoter; and

- (iii) a T7 promoter.
- 19. A vaccine comprising the tri-segmented Pichinde virus particle of any one of claims 1 to 10 and a pharmaceutically acceptable carrier.
- 20. A pharmaceutical composition comprising the tri-segmented Pichinde virus particle of any one of claims 1 to 10 and a pharmaceutically acceptable carrier.

A**B****C****D****FIGS. 1A-1D**

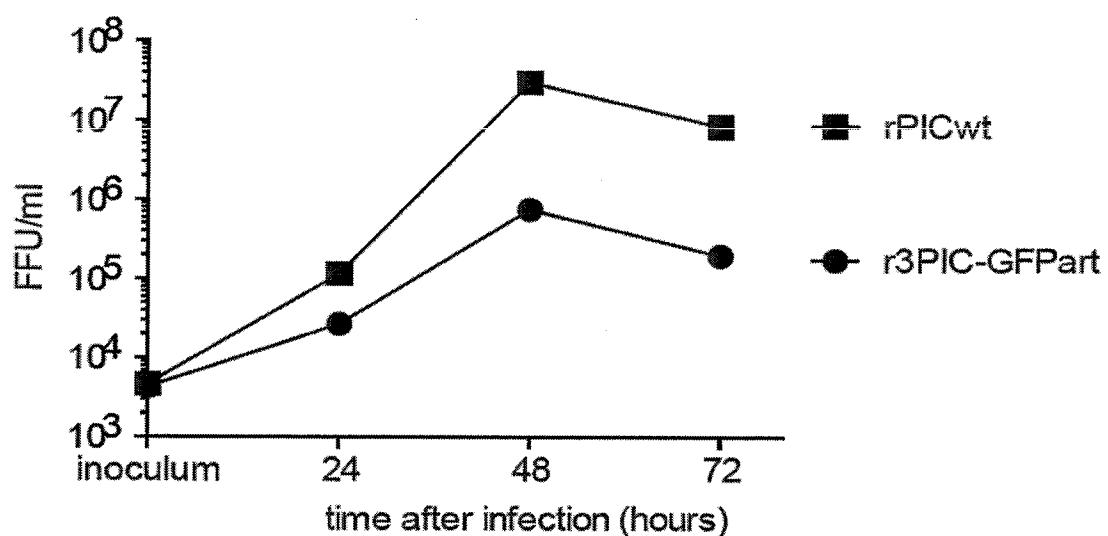
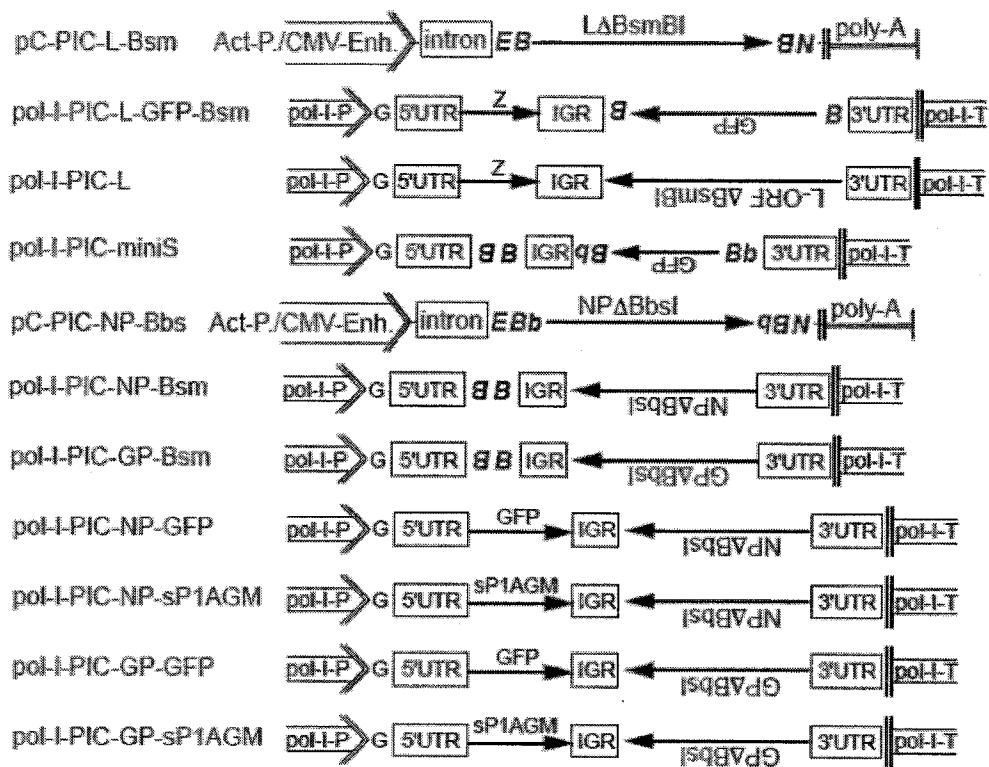



FIG. 2

B = BsmBI restriction site
Bb = BbsI restriction site
E = EcoRI restriction site
N = NheI restriction site

FIG. 3

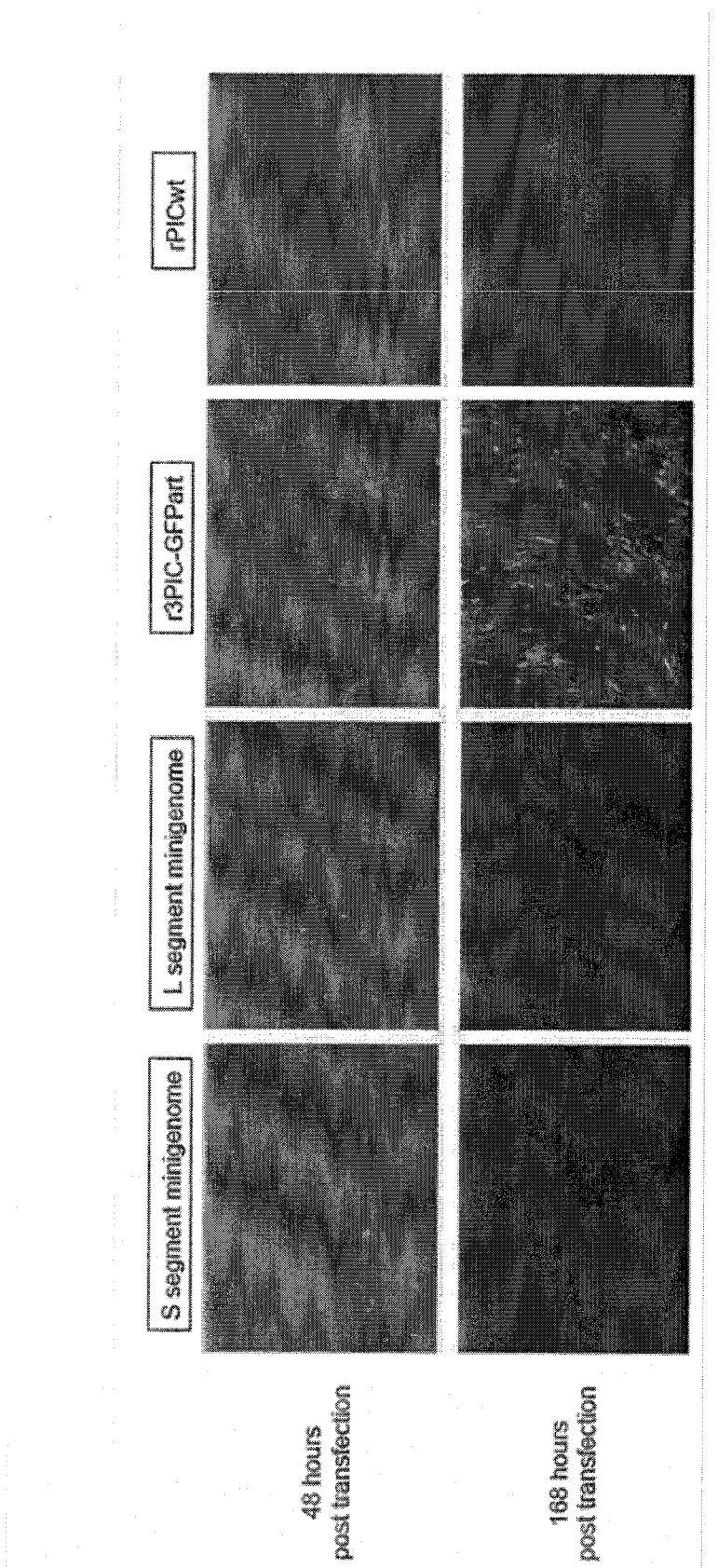
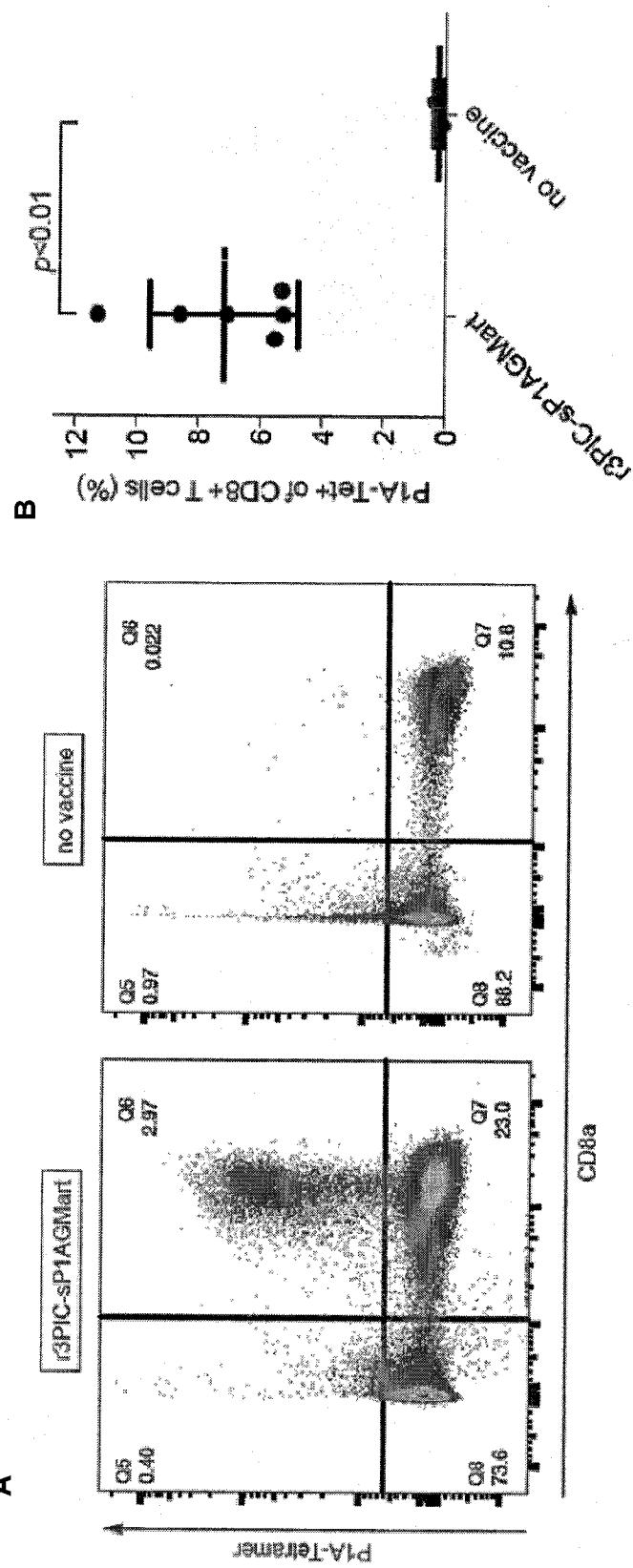



FIG. 4

FIGS. 5A-5B

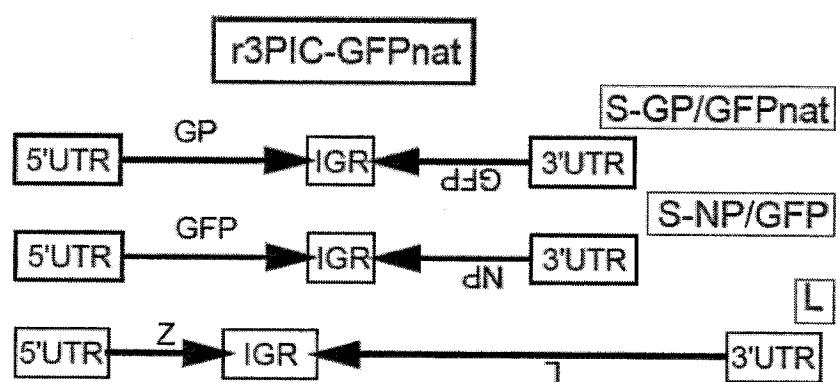


FIG. 6

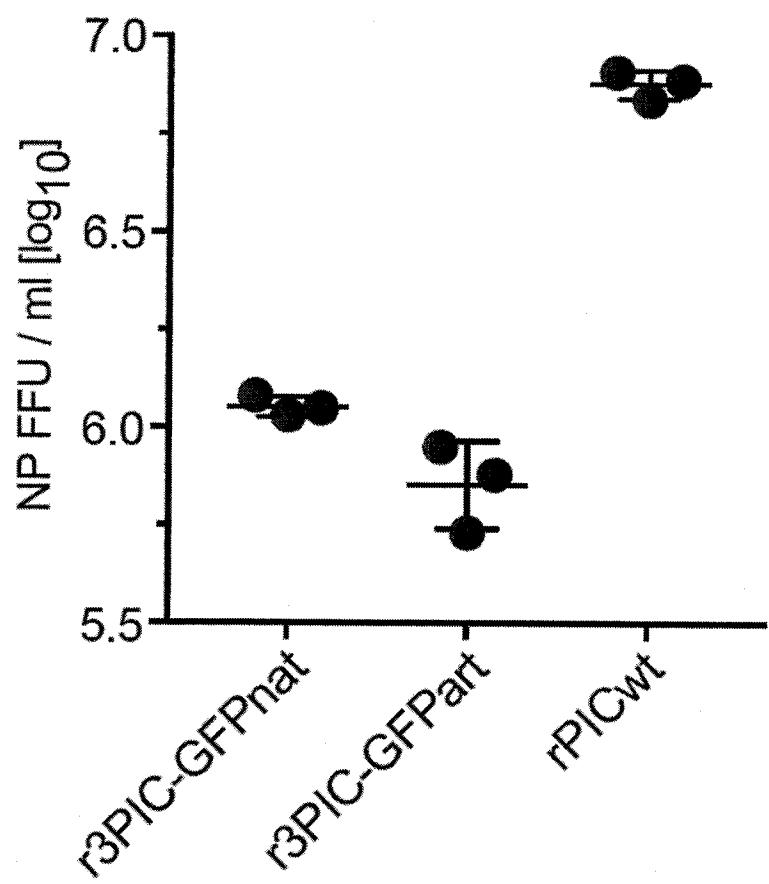


FIG. 7

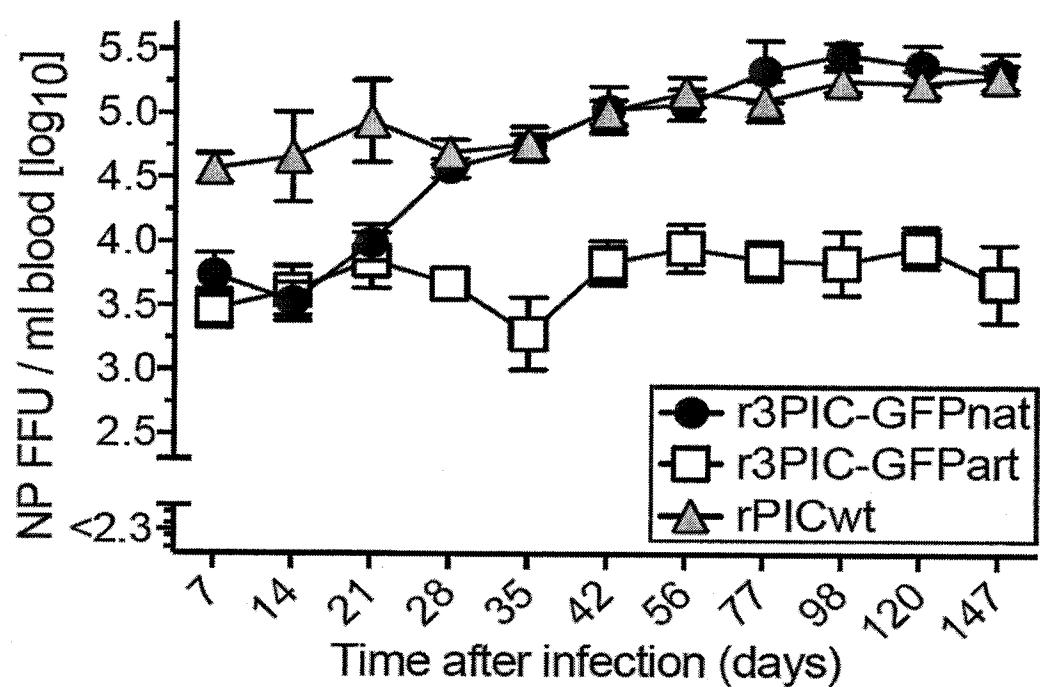


FIG. 8

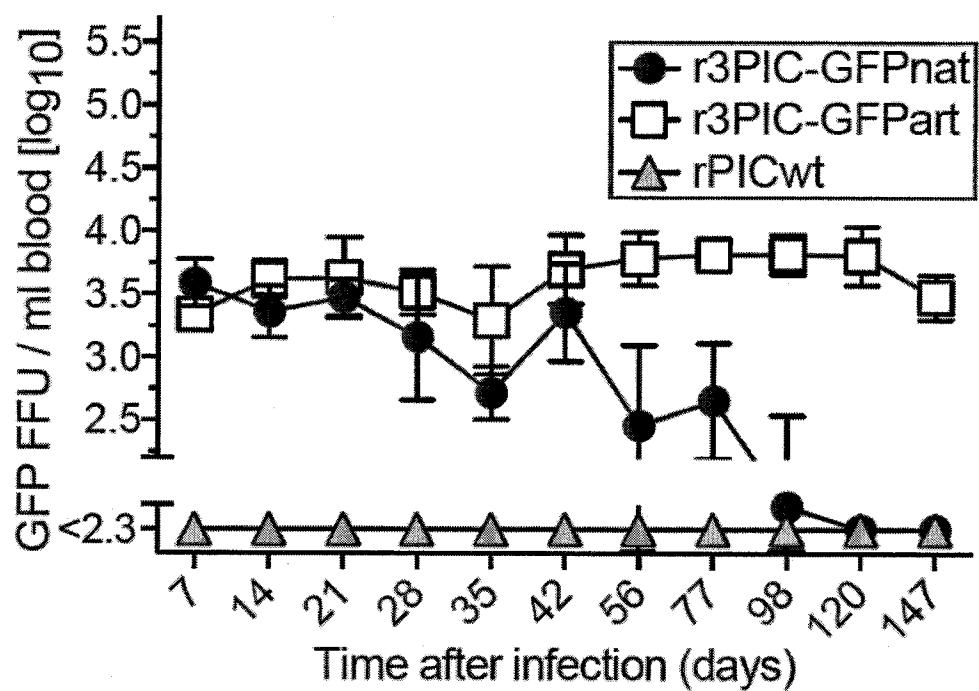


FIG. 9

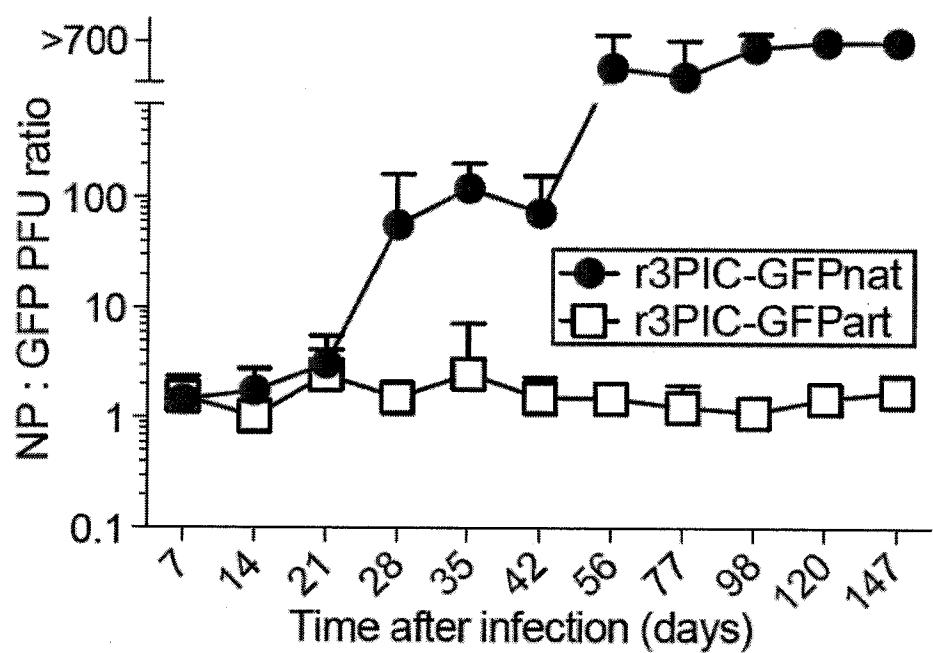


FIG. 10

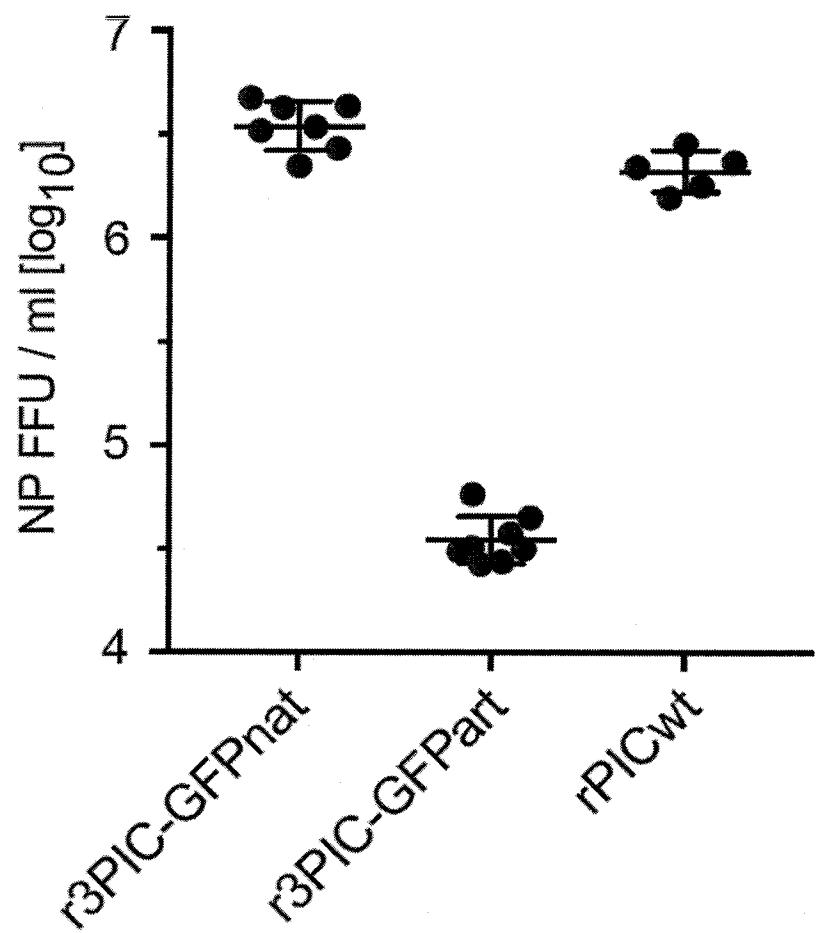


FIG. 11

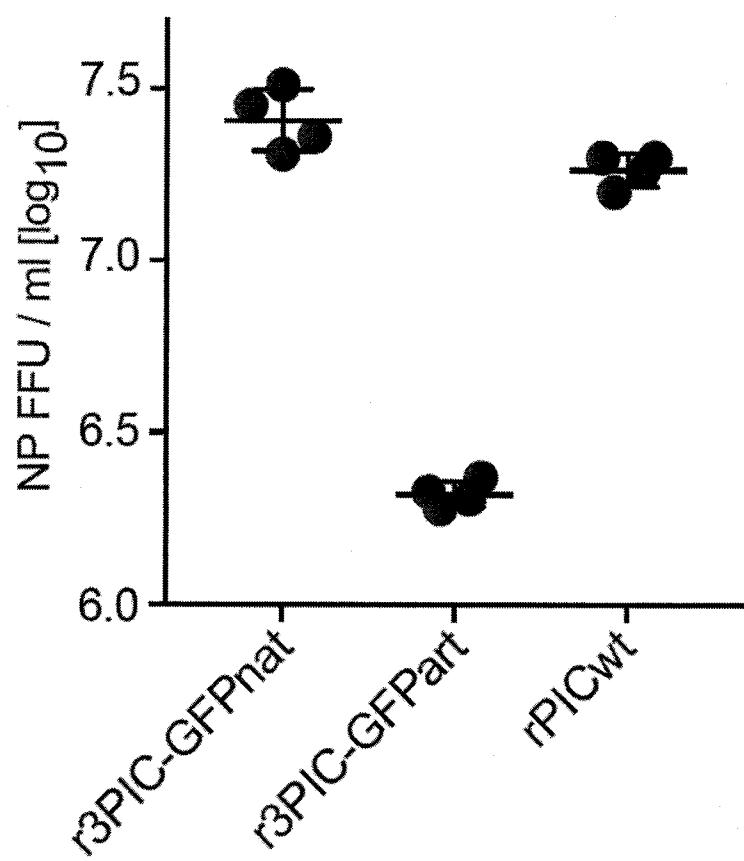


FIG. 12

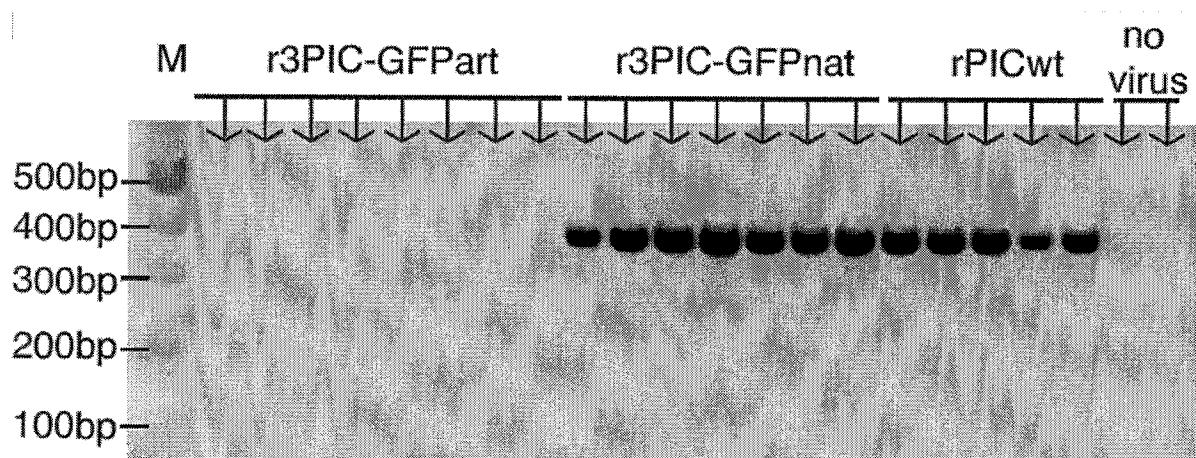


FIG. 13

SEQUENCE LISTING
eol f-seql (1)

<110> Hookipa Biotech AG
<120> TRI -SEGMENTED PI CHI NDE VI RUSES AS VACCINE VECTORS
<130> 13194-020-228
<140> TBA
<141> On even date herewith
<150> US 62/338, 400
<151> 2016-05-18
<160> 16
<170> PatentIn version 3.5
<210> 1
<211> 3422
<212> DNA
<213> Artificial Sequence

<220>
<223> Pichinde virus strain Munchique CoAn4763 isolated P18
(Genbank accession number EF529746.1) segment S, complete sequence

<400> 1
gcgcaccggg gatcctaggc ataccttggc cgcgcatatt acttgatcaa agatggac
agttgtact ttgatccagt ctataccga agtcctgcag gaggtctca atgtccctt
aatcattgtc tcaaccctat gcatcatcaa aggattgtc aatctgtga gatgtggcct
attccaactc atcaccttcc tcattttggc tggcagaagt tgtatggca tggatgttga
taggaggcac aatctcaccc acgttgagtt caacacctaca agaatgttg acaacttgcc
acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg
ggaaattgaa ctcactttga caaacacatc cattgcaaatt gaaactactg gaaactttc
caacatcaga agccttgcattt atgtaacat tagtaattgt gataagacag aagaagcagg
tcacacatta aaatggttgc ttaatgagtt acacttcaat gtgctccatg tcactcgta
tgttaggtgcc agatgcaaaa cagttgaggg tgctgggtg ttgatccagt acaacttgac
agttggggat agaggaggtg aggttggcag acatcttatt gcgtcgcttgc tcaaatcat
tggggaccca aaaattgcgt gggttgaaa atgttcaat aactgttagt gagggtcttgc
cagactaaca aactgtgaag gtggacaca ttacaatttc ctgatcatac agaacaccac
atggaaaat cactgtacat atactccat ggcaacaata aggtggctc tccaaaaaac
tgcttatagt tctgtgagca ggaaactcct tggcttttc acttggact tgagtgactc
tactggcaa catgtccca gttggacttggca tggcttatttggcttgg
aataaaaatgt tttgataaca ctgtgatggc aaaatgcaac aaagatcaca atgaagaatt
ttgcgatacg atgaggat tttgatccat tcagaatgtt atcaaaacct tacaacttaa

eol f-seql (1)

tgttggaaat tcgttgaatc tccttaaaaa gactatcaac ggacttattt ctgactcact	1140
tgtgattaga aacagtctca aacagcttgc caaaatccct tattgcaact atacaaaatt	1200
ttggtacatc aatgataccca tcacaggaag acattctta ccgcagtgtt ggtagttca	1260
caatggctcg tacctcaatg aaacgcattt taagaatgat tgggtgtggg agagccagaa	1320
tctgtacaat gaaatgctga taaaagaata tgaagaaaga caaggttaga ctccactagc	1380
attgacagac atttgcttct ggtcttttgtt gtttacacc atcacagtgt ttctccactt	1440
agttggaata cccactcata ggcacatcat tggtgatggc tgcgttgcac cacataggat	1500
tactaggaac tctcttgca gctgtggta ttataaaatc ccaaagaaac cctacaaatg	1560
ggtgagactg ggttaataag ccctagcctc gacatgggcc tcgacgtcac tccccaaatag	1620
gggagtgacg tcgaggcctc tgaggacttgc agctcagagg ttgatcagat ctgtgttgtt	1680
cctgtacagc gtgtcaatacg gcaagcatct catcggttgc tggccctaa cccagcctgt	1740
cactgttgca tcaaacatga tggtatcaag caatgcacag tgaggattcg cagtggtttgc	1800
tcgcggcccc ttcttcttct tctttatgac caaacctta tgggttgtgc agagtagatt	1860
gtatctctcc cagatctcat cctcaaagggt gcgtgcttgc tcggcactga gttcacgtc	1920
aagcactttt aagtctcttc tcccatgcat ttcaacaaa ctgattatcatctgaacc	1980
ttgagcagtg aaaaccatgt ttgaggtaa atgtctgatg attgaggaaa tcaggcctgg	2040
ttggccatca gccaagtcct taaaagaag accatgtgag tacttgctt gctttgaa	2100
ggacttctca tcgtggggaa atctgtaaca atgtatgtatg ttgcccgtgt caggctggta	2160
gatggccatt tccaccggat cattgggttgc tccttcaatg tcaatccatg tggtagctt	2220
tgaatcaagc atctgaatttggg aggacacaac agtgcatttgc ttctccttag ggatttgg	2280
aaggccgt gatcctccgt ttcttactgg tggctggata gcactcggt tcgaatctaa	2340
atctacagtgttgc ttcttactgg tggctggata gcactcggt tcgaatctaa	2400
ccaaaccatcc cctgaaagac aaatcttgc tagtaatattt tcataaggat ttctctgtcc	2460
gggtgttagtgc ttcacaaaca taccttcacg attctttattt tgcaatagac tctttatgag	2520
agtactaaac atagaaggct tcacctggat ggtctcaagc atattgccac catcaatcat	2580
gcaagcagct gctttgactg ctgcagacaa actgagatttgc taccctgaga tgggttgttgc	2640
tgtatggctca ttactaatga ttttttagggc actgtgttgc tgggttgttgc tctcttagatc	2700
tgtcatgttc gggacttgc cagtgtagag caaaccaagt gcactcagcg cttggacaac	2760
atcattaagt tggatcacccttgc cttgctcagt catacaagcg atggtaagg ctggcattga	2820
tccaaatttgc tggatcacaacttgc atgtattatc cttgatgtcc cagatcttca caacccatc	2880
tctgttgcccttgc tgggtcttag cattagcgaa cccatttgag cgaaggattt cggcttttgc	2940

eol f-seql (1)	
ttccaactga gtgttgtga gattccccca ataaacacca ggctgagaca aactctcagt	3000
tctagtgact ttcttctta acttgtccaa atcagatgca agctccatta gtcctcttt	3060
ggctaaggct cccaccttaa gcacattgtc cctctggatt gatctcatat tcatcagagc	3120
atcaacctct ttgttcatgt ctcttaactt ggtcagatca gaatcagtcc ttttatcttt	3180
gcgcatcatt cttgaactt gagcaacttt gtgaaagtca agagcagata acagtgtct	3240
tgtgtccgac aacacatcag cttcacagg atgggtccag ttggatagac ccctcctaag	3300
ggactgtacc cagcggaatg atggatgtt gtcagacatt ttggggttgtt ttgcacttcc	3360
tccgagtcag tgaagaagtg aacgtacagc gtgatctaga atcgcctagg atccactgtg	3420
cg	3422

<210> 2
 <211> 7058
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PIC-L-seg: Pichinde virus strain Munchi que CoAn4763 isolate P18 (Genbank accession number EF529747.1) segment L, complete sequence with non-coding mutations introduced to delete BsmBI restriction sites

gcgcaccggg gatcctaggc atcttgggt cacgcttcaa atttgtccaa tttgaaccca	60
gctcaagtcc tggtaaaaac ttgggatggg actcagatat agcaaagagg tcaggaagag	120
acatggcgac gaagatgtgg tggaaagggt cccatgacc ctaatctac cacagggcct	180
gtatggcagg ttcaactgca aatcttgctg gttcgtcaac aaaggtctca tcaggtgcaa	240
agaccactat ctgtgtctt ggtgcttaac caaatgcac tccagaggca atctctgcga	300
gatatgcggc cactcactgc caaccaagat ggagttccta gaaagccct ctgcaccacc	360
ctacgagcca taaaccaggg cccctggcg cacccccc cgggggtgcg cccggggcc	420
cccgccccca tggggccggt tgtttactcg atctccactg actcattgtc ctcaaacaac	480
tttcgacacc tgattccctt gatcttgaag ggtcctgtct cgtctgcaat cataacagat	540
cctagagtct tacttcttat tatactaaag tgaccacaat tcaaccaatc tttggcatca	600
tgcaacatgt gttcaaacac ttggggaaa tttcaatca tgagtctaa atcctgctcg	660
ttcatactta ttcccttgtt gtgagactgt gcacttgaaa ggtactgaaa aaggtggca	720
ataaatcttgcctttctc aggttctaat gttccagtg caatgatgac caccttgag	780
tctaagttca cttccaatct agaaaccact ctgttgcct cttgtatcaa cccaccctct	840
aaaatgaggg gttgcatccc aacatcagga ccaatcaact tatagaaaa tttgttttc	900
aaatccctga aacgattttt caaatctatt ctcacccct ggaacacagt tgacccatc	960
ttgaagtcaa tgtcttgacc ttccaataga tcattgaagt ctagaacatc tttccgttg	1020

eol f-seql (1)

atgagaggat tcagaaccaa aagtgacaca ccatccagac ttatgtgatt cccggaagat	1080
tgagaaaacat aatactcaac agaatgggg ttcaacaata ggtaaccatc agagtccaat	1140
gagtccagca atgactccct ttcaataaga aatcttaatt ttaatatgtt attggtagac	1200
ctctcatatc taaatttgta gctcaacttc ttatgagaaa atgttaggtt gagctcaatg	1260
ggaatgacct cagaaggtga tgctaaaatg agttgttcaa tggctcata gttatctca	1320
ttcacccagt caagttcatt aataaataca ctaatgttca aattaacaca ggacaaaatc	1380
agtttgctgc ttacaaagcc aacatccaag tcattccagat tcattgtcct agaagtgtt	1440
ttcttttgc agtcacaaat gaactgggtt aattgttca gatcatgttgc tgcattgtt	1500
ggcaacaatt caagctcacc aaaccaaaaa tatttcttga actgagatgt tgacataatc	1560
acaggcacca acattgactc aaacaaaatc tgtatcaaga aatttgcacttcttgc	1620
ggttcaaggt tgaatcctct ctccagtgga tgagactctc tgctatggc cattgcaagc	1680
tcattttgct ttacaatata caattcttctt ctgcgttgc ttataatgt actaacaata	1740
ccaagacatt ctgttat atcaatttgcc acacaaaggt ctaagaactt tattcttgc	1800
acccatgata gcctcagcat attcaatca gacaggaaag gggatatgtt ttcattcaat	1860
agtgttaggaa agttcctcctt gatttagtaa agtatgttgc tgatgccac cttgtcctca	1920
agctcagaat gtgtgcttgg ttttattggc cagaagtgtt tggattgtt tagtgagtg	1980
actatcttgg gtacttcagc ttttgaac acccagttac ccaactcgca agcattgggtt	2040
aacacaagag caaaataatc ccaaattaag ggtctggagt actcacttac ttcaccaagt	2100
gctgccttac aataaacacc tttgcgttgc ttacaaaatg gacaatcagc gtgtaaagata	2160
atcttgcttgc taatatccctt gatatactt aatcctccctt tcccatctct tacacatttt	2220
gagccatac ttttgcaccc tcctatgaat cctgtatgtt tgctgctctg aaaagctgtt	2280
ttgttgcatac catcagccaa aatcttcttta gcccctcttgc catagttctt tgataatttg	2340
gactgtacgg atttgcaccc agtgggtatt tcttcgttgc gcacagttct tgggtgc	2400
attaacttag tacgaagcac caatctgaga tcaccatgaa cccttaatt taaccaccta	2460
atattaagag catcctcaat agcctcagtc tcgacatcac aagtctctaa taactgttt	2520
aagcgtcat ccggtgattt ctgaagatgtt gttacaat aactttcttcc cagggtccca	2580
gactgtatgtt tgtaaaat tttccttgcat gccttcttgc ttattgaaag tagcagatca	2640
tcaggaaata gtgtctcaat tgatcgcttgc agtctgtacc ctctcgacc attaaccacaa	2700
tcgagttacat ccatttcttcc caggcacaaa aatggatcat ttggaaaccc actatagatt	2760
atcatgctat ttgttgcgtt tgcaatggcc cctacaaccc ctattgacac cccgttagca	2820
acacattgggtt ccagtattgtt gtcaattgttgc tctgcttgc gattgggtgc ttttagcctt	2880

atgttgtgta gagctgcagc aacaaacttt gtaaggaggg ggacttctt gaccaaatg 2940
aagaatctcg atttgaactc acttgc当地 gtc当地c当地aa ctgttttagg gctc当地aaac 3000
ttgttgagtt tgtctgatag aaagtagtga aactccatac agtccaatac caattcaaca 3060
ttcaactcat ctctgtc当地t aaattgaaa ccctc当地tca aggataacat gatctcatca 3120
tcactc当地gag tatatgagat gaaccgtgct ccataacaaa gctccaatgc gtaattgatg 3180
aactgctc当地g tgatttagacc atataagtca gaggtgtt gtaggatgcc ctgacccata 3240
tctaagactg aagagatgtg ttaggttacc ttgcccttct caaagtaccc aaacataaat 3300
tcctctgcaa ttgtgc当地cc ccctt当地tcc atcataacca accccctt当地t caagaaacct 3360
ttcatgtatg cctcaacgac attgaaggc acttccacca tcttgc当地t gtagccatagc 3420
aatatgtt当地a tgactc当地gattc attggact tctgacccat ctttgc当地t gactcaaga 3480
cctt当地taata atgc当地gcaaa gataaccggc gacatgtg gccccat当地t tgaatggcc 3540
attgacaccg caagaccact ttgc当地taaca actgacttca tgtcttaata tgctctc当地a 3600
aactctt当地t cgttgc当地tca acaagatatac ctcatgtt当地t gcataaggc ttcaagatgaa 3660
tcctcaatga gtctggttgat gagtttagta tt当地aaatcac cgacataaaag ctccctgtt当地t 3720
ccacccaccc gttctt当地tata agaaagacca aatttcaatc tccctacatt ggtggataca 3780
ccagacctct ctgtgggaga ctcatctgaa tagaaacaga gatttgc当地a ggatgagttg 3840
gtaaaaaaagc ttgtatccaa tctttagct atcgattc当地g aattgctctc tcttgc当地t 3900
atacgtatg tctcttaat ttgttagtgc gcatctgtgaa acccaagtc gcttctactt 3960
ttgtatcat atcttccgac tc当地gattatca taatcgctt当地t caatgagaat gtat当地taag 4020
cactcaaaat aatcagctt当地c tttgtacgccc ttcaatgtgaa ggttctt当地t taaaactcc 4080
agggacacg gattc当地ttag tctgtctgca aagtacactg atctacgatg gacatc当地tca 4140
tagatcaagt ttacaagatc ct当地cataact tctgctgaaa acaggctgta atcaaaatcc 4200
tttacatcat gaagtgaagt ctctttt当地t atgacaacca ttgtcgat当地t gggccataat 4260
ctctcttagt gacatgaagt ct当地aaggttg gtttgc当地t ggtgtcaac ct当地tagacaat 4320
actttgcaa ctctggctc当地t aatttctt当地t agacagtc当地c cctgatctt当地c tgat当地tagtaac 4380
tcttcaactc catcaggctc当地t tattgactcc tttttt当地t ggatcaatga tgacaaccc 4440
ttc当地agaatctc tggat当地tccatctc当地t tctctt当地tggaa tctactt当地t gtttgc当地t 4500
tggat当地tcaatca ttccacaac aacagc当地gac acaatggaa agtaatc当地tata ttcaatgtatg 4560
acccacccaa ct当地cattgag ttttggaaacc accacactt当地t tggat当地tggaa catatccaa 4620
gctgtactt当地g tgaaggaggg agtcataggg tc当地aaggaa gcagggtt当地t cacttccaa 4680
gagctactt当地g taaatgtgaa tagacaacca ctaatgtatc ctttattccaa cccggcc 4740
ccctcacatt tggat当地tccatctc当地t tctatcatg caccatctt当地c 4800

eol f-seql (1)

tcttcttcct cagtaggaag ttccatacta ttagaagggt tgaccaagac tgaatcaaac	4860
ttaactttg gttccaagaa cttctcaaaa catttgattt gatcagttaa tctatcaggg	4920
gtttcttgg ttataaaatg gcataaatag gagacattca aaacaaactt aaagatctta	4980
gccatatctt cctctctgga gttgctgagt accagaagta tcaaatacatc aataagcatt	5040
gctgtctgcc attctgaagg tgtagcata acgactttca atttctcaaa caattctta	5100
aatgaactt catttacaaa ggccataatg taatatctaa agcattgcaa gttaacttga	5160
atacgcttgg aagggttgca cagtagtcag agaataagtc gtctgagtaa atcagaaaca	5220
gaatccaaga ggggttggga cataaagtcc aaccaggata acatctccac acaagtcctt	5280
tgaatcacat ctgcactaaa gatcggtaaag aaaaatctct tgggatcaca gtaaaaagac	5340
gctttgttt catacaaacc cccactttt gatctataag caacagcata acacctggac	5400
ctctccctg tcttctggta cagtagtgtg agagaacctc cttctccaaa tcgctggaag	5460
aaaacttcgt cacagtaaac cttcccataa aactcatcag cattgttac cttcatctta	5520
ggaactgctg ctgtcttcat gctattaatg agtgacaaac tcaaacttga caatgtttc	5580
agcaattcct caaactcact ttcgcccattt atggtataat caggctgccc tcttcctggc	5640
ctaccccccac acatacactg tgactttgtc ttgtattgaa gacagggttt agcaccctat	5700
tcatctaaca ctgatgtttt cagattgaag taatattcaa catcaggttc ccgtagaaga	5760
gggagaatgt catcaagggg aagttcacca cagaccgagc tcagtctttt cttagccttc	5820
tctaaccagt tggggtttt aatgaatttt ttagtgattt gttccatcag gaagtcgaca	5880
ttaatcaacc tgtcatttac agacggtaac cttgcatta ggagcacctc tctgaacaca	5940
gcacctggag aagacttgc caagtcacac aaaatgttgt acatgataag gtccagaacc	6000
aacatggtgt tcctccttgt gttaaaaacc ttttgagact taatttgtt gcatattgaa	6060
agtactctaa aatattctct gcttcagtt gatgaatgtc tgacccatcata ttgcctgagt	6120
tggccttata tgccaaaaat gtgtactgag caaaactcac ataatctgtat ttctgattt	6180
ggtacatctt tgacagaaca ttggataat tcatggttct gaagtctaga aatcatatct	6240
tccctatctg tagcctgcag tttcctatcg agttgaccag caagttgcaa cattttaaat	6300
tgctgaaaga tttccatgat ttttgtcta cattgatctg ttgtcagttt attattaatg	6360
ccagacatta atgccttttc caacctcact ttgttaaggaa gtccctttc ctttacagca	6420
agtagtgact ccagaccgag actctgattt tctaaggatg agagggaaact tataaggcgt	6480
tcgtactcca actcctcaac ttcttcacca gatgtcctta atccatccat gagttttaaa	6540
agcaaccacc gaagtctctc taccacccaa tcaggaacaa attctacata ataactggat	6600
ctaccgtcaa taacaggtac taaggttatg ttctgtctct tgagatcaga actaagctgc	6660

	eol f-seql (1)
aacagttca aaaagtccctg gttgtatttc ttctcaaatg cttcttgact ggtcctcaca	6720
aacacttcca aaagaatgag gacatctcca accatacagt aaccatctgg tgtaacatcc	6780
ggcaatgtag gacatgttac tctcaactcc ctaaggatag cattgacagt catcttgtg	6840
ttgtgtttgc aggagtgtt cttgcatgaa tccacttcca ctagcatgga caaaagcttc	6900
aggccctcta tcgtgtatggc cctatcttg acttgtgcaa gaacgttgc ttctgttca	6960
gatagctctt cccattcggg aaccctttt ctgactatgt cttaagttc gaaaacgtat	7020
tcctccatga tcaagaaatg cctaggatcc tcggtgcg	7058

<210> 3
 <211> 6619
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> L-del at-BsmBI: Modified Representative cDNA of the L ORF of
 Pichinde virus strain Munchique CoAn4763 isolate P18
 (Genbank accession number EF529747.1)

<400> 3	
gaattccgtc tctgatcatg gaggaatacg ttttgcact taaaagacata gtcagaaaat	60
gggttcccgaa atgggaagag ctatctgaac agaaaaacaa cgttcttgca caagtcaaag	120
ataggccat cacgatagag ggcctgaagc ttttgcatt gctagtggaa gtggattcat	180
gcaagaaaaca ctcctgaaaa cacaacacaa agatgactgt caatgctatc cttaggagat	240
tgagagtaac atgtcctaca ttgccggatg ttacaccaga tggttactgt atggttggag	300
atgtcctcat tctttggaa gtgttgtga ggaccagtca agaagcattt gagaagaaat	360
acaaccagga cttttgaag ctgttgac tttagttctga tctcaagaga cagaacataa	420
ccttagtacc ttttatttgc ggttagatcca gttattatgt agaatttgc ttgttgcgg	480
tggtagagag acttcgggtgg ttgcgtttaa aactcatgga tggattaagg acatctgg	540
aagaagtga ggagttggag tacgaacgccc ttataagttc cctctcatcc tttagaaaatc	600
agagtctcgg tctggagtca ctacttgctg taaaggaaag gggacttcct tacaaagtga	660
ggttggaaaa ggcattaaatg tctggcatta ataataaact gacaacagat caatgtagaa	720
caaaaatcat ggaaatctt cagcaattt aaatgttgc acttgcttgt caactcgata	780
ggaaactgca ggctacagat agggaaagata tgatttcttag acttcagaac catgaattt	840
tccaatgttc tgtcaaagat gtacctaaat cagaaatcag attatgtgag ttttgctcag	900
tacacatttt gggcataata ggcactca ggcaatctga ggtcaagcat tcatcaactg	960
aaagcagaga atatttttaga gtactttcaa tatgcaacaa aatatagtct caaaagg	1020
ttaacacaag gaggaacacc atgttggttc tggaccttat catgtacaac attttgcgtg	1080
acttggacaa gtcttctcca ggtgctgtgt tcagagaggt gctccataatg caagggttac	1140

eol f-seql (1)

cgtctgtaaa	tgacagggtt	attaatgtcg	acttcctgat	ggaacaaatc	actaaaaaat	1200
tcattaaaaa	ccccaaactgg	ttagagaagg	ctaagaagag	actgagctcg	gtctgtggtg	1260
aacttcccct	tgtacatt	ctccctttc	tacggaaacc	tgtgttcaa	tattacttca	1320
atctgaaaac	atcagtgtt	gatgaatggg	gtgctaaacc	ctgtcttcaa	tacaagacaa	1380
agtcacagt	tatgtgtggg	ggtaggccag	gaagaggcga	gcctgattat	accatcatgg	1440
gcgaaagtga	gtttgaggaa	ttgctgaaaa	cattgtcaag	tttgagtttgc	tcactcatta	1500
atagcatgaa	gacagcagca	gttcctaaga	tgaaggtgaa	caatgctgat	gagttttatg	1560
ggaaggttt	ctgtgacgaa	gttttcttcc	agcgatttgg	agaaggaggt	tctctcacac	1620
tactgtacca	gaagacaggg	gagaggtcca	ggtgttatgc	tgttgcttat	agatccaaaa	1680
gtgggggttt	gtatgaaaca	aaagcgtctt	tttactgtga	tcccaagaga	tttttcttac	1740
cgatctttag	tgcagatgt	attcaaagga	cttgcgttgg	gatgttatcc	tggttggact	1800
ttatgtccca	accctcttgc	gattctgttt	ctgatttact	cagacgactt	attctctgca	1860
tactgtgcac	cccttccaag	cgtattcaag	tttacttgca	aggctttaga	tattacatta	1920
tggccttgt	aatgaagtt	cattttaaag	aattgtttga	gaaattgaaa	gtcggttatgc	1980
taacaccttc	agaatggcag	acagcaatgc	ttattgtatgc	tttgatactt	ctggtaactca	2040
gcaactccag	agaggaagat	atggctaaga	tcttaagtt	tgtttgaat	gtctcctatt	2100
tatgccattt	tataaccaa	gaaaccctg	atagattaac	tgtcaaaatc	aatgttttg	2160
agaagttctt	ggaaccaaag	ttaaagtttg	attcagtctt	ggtcaaccct	tctaatacgta	2220
tggaacttcc	tactgaggaa	gaagagaaga	tggtgcatga	tatagagaga	ctacttgta	2280
aaaagctgga	atccaaatgt	gagggaaaggc	cggggttgaa	taaggatgt	cttagtgttt	2340
gtctatcact	atttacagt	agtcattgg	aagtgaaacc	cctgcttcc	tgtgacccta	2400
tgactccctc	tttcacaagt	acagccttgg	atatgtccag	caacaaaagt	gtggtggttc	2460
caaaactcaa	tgaagtttgt	gaggtcatca	ctgaatatga	ttactcttcc	attgtgtctg	2520
ctgttttgt	gaaatgatt	gaacattca	aaactaagg	taaatacaag	tttagatccaa	2580
aggaggtaaa	tttcaagatt	ctgaagaggt	tgtcatcatt	gatccaaata	aaaaaggagt	2640
caatagagcc	tgtggagtt	gaagagttac	tatcagaaga	tcagggtgac	tgtcttaaag	2700
aaattgagac	cagagttgca	aaagtattgt	ctaaggttga	caccaatgtc	aaaaccaacc	2760
ttaagacttc	atgtccacta	gagagattat	ggcccaaatc	gacaatggtt	gtcatcaaaa	2820
gagagacttc	acttcatgat	gtaaaggatt	ttgattacag	cctgtttca	gcagaagtgt	2880
atgaggatct	tgtaaacttgc	atctatgagg	atgtcactgc	tagatcagt	tactttgcag	2940
acagactaat	gaatccgtgt	cctctggagt	ttttataaaa	gaacctcaca	ttgaaggcgt	3000

eol f-seql (1)

acaagaagg	tgattatttt	gagtgc	tta	aatacattct	cattgca	aggc	gattatgata	3060	
atcgagtcgg	aagatatgtat	cacaaaagta	gaagcagact	tgggttcaca	gatgcagcac			3120	
tacaaattag	agagacatca	cgtataagct	caagagagag	caattctgaa	tcgatagcta			3180	
aaagattgga	tcaaagctt	tttaccaact	catccttacg	aaatctctgt	ttcttattcag			3240	
atgagtctcc	cacagagagg	tctggtgtat	ccaccaatgt	agggagattg	aaatggtc			3300	
tttcttataa	agaacaggtg	ggtggcaaca	gggagcttta	tgtcggtgat	ttaaatacta			3360	
aactcacaac	cagactcatt	gaggattact	ctgaatccct	tatgcaaaac	atgaggtata			3420	
cttgc	tgaa	caacgagaaa	gagtttgaga	gagcattatt	agacatgaag	tcagttgtta		3480	
ggcaaagtgg	tcttcggtg	tcaatggacc	attcaaaatg	ggggccacac	atgtcgccgg			3540	
ttatcttgc	cgcattatta	aaaggtctt	agttcaact	caaagatggg	tcagaagttc			3600	
ccaatgctgc	agtcatcaac	atattgctat	ggcacattca	caagatggt	gaagtgccct			3660	
tcaatgtcgt	tgaggcatac	atgaaagg	ttt	tttgggtt	atgatggata			3720	
aaggggggtg	cacaattgca	gaggaattt	tgttggta	cttgagaag	ggcaagg	tac		3780	
catcacacat	ctttcagtc	ttagatatgg	gtcagg	cat	cctacacaac	acctctgact		3840	
tatatggtct	aatca	ctgag	cagttcatca	attacgcatt	ggagctt	gtatggac		3900	
gttcatctc	atatacttcg	agt	gatgatgt	agatcatgtt	atc	ttgaat	gagg	ttca	3960
aatttaagga	cagagatgag	ttgaatgtt	aattgg	tatt	ggactgtat	gagttt	cact	4020	
actttctatc	agacaaactc	aacaagttt	tgagcc	ctaa	aacagtt	gtt	ggac	tttg	4080
caagtgagtt	caa	atcgaga	ttcttcattt	ggtc	cacaaga	agtccc	ctt	acaa	4140
ttgttgc	agctctacac	aa	cataaagg	ctaa	aggcacc	caatc	agca	gcagata	4200
ttgacacaat	actggaccaa	tgtt	gct	acgg	gttgc	aatagagg	tt	gtaggg	4260
ttgcaaaacg	aacaaatagc	atgataatct	atagtgg	ttt	tccaaat	gtat	ccat	ttt	4320
gcctggaaga	aatggatgta	ctcgat	ttgg	ttaatgg	gagagg	gtac	agactt	cagc	4380
gatcaattga	gacactattt	cctgat	gatc	tgctactt	aataatc	aga	aggc	atgc	4440
ggaaaatatt	ttacaaaata	cagt	ctgg	gag	ccctg	gaga	aagt	tattt	4500
ttcagcaatc	accggatgac	tgct	aaaac	agtt	attt	aga	gactt	gtat	4560
aggctattga	ggatgcttt	aatatt	tagt	ggtt	aaat	ttt	agg	ttcat	4620
gattgg	tcgtacta	ag	ttg	ttt	aaat	gca	caac	aga	4680
ccagtcttgt	caa	atccgta	cagt	ccaa	at	tat	caa	agaa	4740
agattttggc	tgatgctatc	aacaaatc	ag	ttt	cag	cag	cac	atgc	4800
taggat	ttt	caaa	aggat	ttt	ggc	ttt	gtt	aaat	4860
atatcagg	ttt	acaa	aggat	ttt	ttt	ttt	ttt	atc	4920

eol f-seql (1)

gcaaagggtgt ttattgtaaa gcagcacttg gtgaagtaag tgagtactcc agacccttaa	4980
tttgggatta ttttgcctt gtgttaacca atgcttgcga gttggtaac tgggtttc	5040
aaaaagctga agtacccaag atagtcactc acctaaacaa tcccaatcac ttctggccaa	5100
taaaaccaag cacacattct gagcttgagg acaagggtggg catcaaccac atactttact	5160
caatcaggag gaactccct acactattt atgaacacat atccccttc ctgtctgatt	5220
tgaatatgct gaggctatca tgggttcaga ggataaagtt cttagacctt tgtgtggcaa	5280
ttgatataac atcagaatgt cttggattt ttagtcatat tataaaacat cgtagagaag	5340
aattgtatat tgtaaagcaa aatgagctt caatgtccca tagcagagag tctcatccac	5400
tggagagagg attcaacctt gaaccagaag aagtgtgcac aaatttctt atacagattt	5460
tgtttgagtc aatgttggtg cctgtgatta tgtcaacatc tcagttcaag aaatattttt	5520
ggtttggta gcttgaattt ttgccaaaca atgcacaaca tgatctgaaa caattaaccc	5580
atttcattt tgactgcaaa aagaataaca cttctaggac aatgaatctg gatgacttgg	5640
atgttggctt tgtaaggcgc aaactgattt tgcctgtgt taatttgaac attagtgtat	5700
ttattaaatga acttgactgg gtgaatagag ataactatga gaacattgaa caactcattt	5760
tagcatcacc ttctgaggc attccattt agctcaaccc aacattttct cataagagag	5820
tgagccacaa atttagatgat gagaggtcta ccaattacat attaaaattt agatttcttta	5880
ttgaaaggga gtcattgctg gactcattgg actctgatgg ttaccttattt ttgaacccccc	5940
attctgttga gtattatgtt tctcaatctt ccggaaatca cataagtctg gatgggtgt	6000
cacttttgtt tctgaatcct ctcataacg gaaaagatgt tctagacttc aatgatctat	6060
tgaaaggta agacattcac ttcaagtcaa ggtcaactgt gttccagaag gtgagaatag	6120
atttgaaaaa tcgttcaag gatttggaaa acaaattttc ctataagttt attggcctt	6180
atgttggat gcaacccctc atttttagagg gtgggttcat caaaaggggc aacagagtgg	6240
tttcttagatt ggaagtgaac tttagactcaa aggtggcat cattgcactg gaagcatttt	6300
aacctgagaa aaggccaaga tttattgcca accttttca gtaccttca agtgcacagt	6360
ctcacaacaa gggataaagt atgaacgagc aggatttaag actcatgatt gaaaatttcc	6420
ccgaagtgtt tgaacacatg ttgcattgtt ccaaagattt gttgaattt ggtcacttta	6480
gtataataag aagtaagact ctaggatctg ttatgattgc agacgagaca ggacccttca	6540
agatcaaggg aatcagggtgt cgaaagggtgt ttgaggacaa tgagtcatgt gagatcgagt	6600
aaacaaagag acggcttagc	6619

<210> 4
<211> 1207
<212> DNA

eol f-seql (1)

<213> Artificial Sequence

<220>

<223> PIC-L-GFP-Bsm: Modified Representative cDNA of modified L segment of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1)

<400> 4

ggcaccggatgcctaggc	atttcttgat	cagagacgat	ggtgagcaag	ggcgaggagc	60
tgttacccgg	ggtgggtccc	atcctggtcg	agctggacgg	cgacgtaaac	120
tcagcgtgtc	cggcgagggc	gagggcgatg	ccacctacgg	caagctgacc	180
tctgcaccac	cggcaagctg	cccggtccct	ggcccaccct	cgtgaccacc	240
gcgtgcagtg	cttcgtccgc	taccccgacc	acatgaagca	gcacgacttc	300
ccatgcccga	aggctacgtc	caggagcgca	ccatcttctt	caaggacgac	360
agacccgcgc	cgaggtgaag	ttcgagggcg	acaccctgg	gaaccgcac	420
gcatcgactt	caaggaggac	ggcaacatcc	tggggcacaa	gctggagtac	480
gccacaaggt	ctatatcacc	gccgacaagc	agaagaacgg	catcaaggtg	540
ccgcaccaa	catcgaggac	ggcagcgtgc	agctcgccga	ccactaccag	600
ccatcggtga	cggcccccgt	ctgctgccc	acaaccacta	cctgagcacc	660
tgagcaaaga	ccccaaacgag	aagcgcgtc	acatggctt	gctggagttc	720
ccgggatcac	tctcggcatg	gacgagctgt	acaagtaacg	tctctacaac	780
gggcgggggg	ccccgggccc	caccccccga	gggggggtgc	cccaggggcc	840
gctcgtaggg	ttgtgcagag	gggcattcta	ggaactccat	cttgggttggc	900
cgcataatctc	gcagagattt	cctctggagt	gcatttttgt	taagcaccca	960
agtggcttt	gcacctgtat	agaccattgt	tgacgaacca	gcaagatttgc	1020
tgccatacag	gccctgttgt	agattgaggg	tcatgggac	ccttcccacc	1080
cgcattgtct	cttcctgacc	tctttgttat	atctgagtcc	catcccaagt	1140
acttgagctg	ggttcaaattt	ggacaaattt	gaagcgtgac	ccaaagatgc	1200
cggtgcg					1207

<210> 5

<211> 965

<212> DNA

<213> Artificial Sequence

<220>

<223> PIC-miniS-GFP: Modified Representative cDNA of a modified S segment cDNA of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number: EF529746.1)

<400> 5

ggcaccggggatgcctaggc	atacccttggat	cgcgcatttt	acttgatcaa	agagagacga	60
----------------------	--------------	------------	------------	------------	----

eol f-seql (1)

ggcctcgct	ctgccc tag	tcgcacatgg	gcctcgacgt	cactccccaa	tagggagtg	120
acgtcgaggc	ctctgaggac	ttgagcatgt	cttcttactt	gtacagctcg	tccatgccga	180
gagtgatccc	ggcgccggtc	acgaactcca	gcaggaccat	gtgatcgccg	ttctcggtgg	240
ggtctttgct	cagggcggac	tgggtgctca	ggttagtggtt	gtcgggcagc	agcacggggc	300
cgtcgccgat	gggggtgttc	tgctggtagt	ggtcggcgag	ctgcacgctg	ccgtcctcga	360
tgttgtggcg	ggtcttgaag	ttcaccttga	tgccgttctt	ctgcttgcg	gcggtgatat	420
agaccttgtg	gctgtttag	ttgtactcca	gcttgtgccc	caggatgttgc	ccgtcctcct	480
tgaagtcgat	gcccttcagc	tcgatcggt	tcaccagggt	gtcggccctcg	aacttcacct	540
cggcgcgggt	ctttagttg	ccgtcgctt	tgaagaagat	ggtgcgtcc	tggacgttagc	600
cttcgggcat	ggcggacttg	aagaagtcgt	gctgcttcat	gtggtcgggg	tagcggacga	660
agcactgcac	gccgtaggc	aagggtgtca	cgagggtggg	ccagggcacg	ggcagcttgc	720
cggtggtgca	gatgaacttc	agggtcagct	tgccgttaggt	ggcatcgccc	tcggccctcg	780
cggacacgct	gaacttgg	ccgttacgt	cgccgtccag	ctcgaccagg	atgggcacca	840
ccccggtaa	cagctcctcg	cctttgctca	ccatgaagac	attttgggg	tgtttgcact	900
tcctccgagt	cagtgaagaa	gtgaacgtac	agcgtgatct	agaatcgcc	aggatccact	960
gtgcg						965

<210> 6
 <211> 1722
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> NP-del ta-BbsI : Modified Representative cDNA of a modified NP ORF of Pichinde virus strain Munchique CoAn4763 isolate P18 (Genbank accession number EF529747.1)

<400> 6	gaattcgaag	acatcaaaat	gtctgacaac	atcccatcat	tccgctgggt	acagtccctt	60
	aggaggggtc	tatccaactg	gaccatcct	gtgaaggctg	atgtgttgc	ggacacaaga	120
	gcactgttat	ctgctttga	ctttcacaaa	tttgctcaag	ttcaaagaat	gatgcgcaaa	180
	gataaaaagga	ctgattctga	tctgaccaag	ttaagagaca	tgaacaaaga	ggttgatgt	240
	ctgatgaata	tgagatcaat	ccagaggac	aatgtgctt	aggtgggagg	cttagccaaa	300
	gaggagctaa	tggagcttgc	atctgattt	gacaagttaa	gaaagaaagt	cactagaact	360
	gagagtttgt	ctcagcctgg	tgttatggg	ggcaatctca	caaacactca	gttggAACAA	420
	agagccgaaa	tccttcgctc	aatggggttc	gctaattgct	gaccacagg	caacagagat	480
	gggggtgtga	agatctggga	catcaaggat	aatacattgt	tgtcaatca	atttggatca	540

eol f-seql (1)						
atgccagcct	taaccatcgc	ttgtatgact	gagcaagggg	gtgaacaact	taatgatgtt	600
gtccaagcgc	ttagtgcact	tggttgctc	tacactgtca	agttccgaa	catgacagat	660
ctagagaaac	tcacacagca	acacagtgcc	ctaaaaatca	ttagtaatga	gccatcagcc	720
ataaacatct	cagggtacaa	tctcagtttgc	tctgcagcag	tcaaaggcgc	tgcttgcatg	780
attgatggtg	gcaatatgct	tgagaccatc	caggtgaagc	cttctatgtt	tagtactctc	840
ataaaagagtc	tattgcaaataa	aaagaatcgt	gaaggtatgt	tttgagcac	tacacccgga	900
cagagaaatc	cttatgaaaa	tttactatac	aagatttgtc	tttcagggga	tggttggcct	960
tacattggct	caaggtctca	agttcaaggg	agggcttggg	ataacaccac	tgttagattta	1020
gattcgaagc	cgagtgctat	ccagccacca	gtaagaaacg	gaggatcacc	ggaccctaaa	1080
caaatcccta	aggagaaaga	agatactgtt	gtgtcctcaa	ttcagatgct	tgattcaaaa	1140
gctaccacat	ggattgacat	tgaaggaaca	ccaaatgatc	cggtggaaat	ggccatctac	1200
cagcctgaca	cgggcaacta	catacattgt	tacagatttc	cccacgatga	gaagtccttc	1260
aaagagaaaa	gcaagtactc	acatggtctc	cttttaaagg	acttggctga	tgcccaacca	1320
ggcctgattt	cctcaatcat	cagacattta	cctcaaaaca	tggtttcac	tgctcaaggt	1380
tcagatgata	taatcagttt	gttcgaaatg	catgggagaa	gagacttaaa	agtgcttgac	1440
gtgaaactca	gtgccgagca	agcacgcacc	tttgaggatg	agatctggga	gagataacaat	1500
ctactctgca	ccaaacataaa	aggtttggtc	ataaagaaga	agaagaaggg	ggctgcacaa	1560
accactgcga	atcctcaactg	tgcattgctt	gataccatca	tgtttgatgc	aacagtgaca	1620
ggctgggtta	gggaccagaa	gccgatgaga	tgcttcctta	ttgacacgct	gtacaggaac	1680
aacacagatc	tgatcaacct	ctgagctcat	gtcttcgctta	gc		1722

<210> 7
<211> 1915
<212> DNA
<213> Artificial Sequence

<220>
<223> PIC-NP-Bsm : Representative cDNA obtained when NP-del ta-BbsI was digested with BbsI to insert the BbsI-mutated NP ORF into the equally digested pol-I-PIC-mini S-GFP backbone, thereby replacing the GFP ORF with the NP ORF

<400> 7
gcmcaccggg gatccttaggc ataccttgga cgcgcatatt acttgatcaa agagagacga 60
ggcctcgctc ctgccctagc ctcgacatgg gcctcgacgt cactccccaa taggggagtg 120
acgtcgaggc ctctgaggac ttgagctcag aggttgcata gatctgtgtt gttcctgtac 180
agcgtgtcaa taggcaagca tctcatcggc ttctggtccc taaccaggcc tgtcactgttt 240
qcatcaaaca tqatqqtatc aagcaatqca caqtqaqqat tcqcaqtqqt ttqtqcaqcc 300

eol f-seql (1)	
cccttcttct tcttctttat gaccaaacct ttatgttgg tgcagagtag attgtatctc	360
tcccagatct catcctcaaa ggtgcgtgct tgctcgac tgagttcac gtcaagcact	420
tttaagtctc ttctccatg cattcgaac aaactgatta tatcatctga accttgagca	480
gtgaaaacca tggggagg taaatgtctg atgattgagg aaatcaggcc tggggca	540
tcagccaagt cctttaaaag gagaccatgt gagtacttgc tttgtcttt gaaggactc	600
tcatcgtgg gaaatctgta acaatgtatg tagttgccc tgcaggctg gtatggcc	660
atttccaccg gatcatttgg tgcccttca atgtcaatcc atgtggtagc tttgaatca	720
agcatctgaa ttgaggacac aacagtatct tcttctcct tagggatttgg tttaaaggcc	780
ggtgatcctc cgtttcttac tggtggctgg atagcactcg gcttcgaatc taaatctaca	840
gtgggttat cccaaaggccct cccttgaact tgagaccttgc agccatgttga aggccaacca	900
tccctgaaa gacaaatctt gtatagtaaa tttcataag gatttctctg tccgggtgtt	960
gtgctcacaac acatacccttc acgattctt atttgcataa gactctttat gagagtacta	1020
aacatagaag gcttcacccgt gatggctca agcatattgc caccatcaat catgcaagca	1080
gctgtttga ctgctgcaga caaactgaga ttgtaccctg agatgtttat ggctgtggc	1140
tcattactaa tgattttag ggcactgtgt tgctgtgttga gtttctctag atctgtcatg	1200
ttcgggaact tgacagtgttga gagcaaacca agtgcactca ggcgttggac aacatcatta	1260
agttgttac ccccttgctc agtcataaca gcgatggta aggctggcat tgatccaaat	1320
tgattgtca acaatgtatt atccttgatg tccagatct tcacaacccc atctctgttgc	1380
cctgtgggtc tagcattagc gaacccatt gagcgaagga ttccggctct ttgttccaaac	1440
tgagtgttttgc tgagatttgc cccataaaca ccaggctgag acaaactctc agttcttagt	1500
acttttttc ttaacttgc caaatcagat gcaagctcca ttagctcctc tttggctaaag	1560
cctcccaccc taagcacatt gtcctctgg attgatctca tattcatcag agcatcaacc	1620
tctttgttca tgtctcttaa cttggcaga tcagaatcag tcctttatc tttgcgcatac	1680
attctttgaa cttgagcaac tttgtgaaag tcaagagcag ataacagtgc tcttgcgtcc	1740
gacaacacat cagccttcac aggatgggtc cagttggata gaccctcct aaggactgt	1800
acccagcggaa atgatggat gttgtcagac atttgggtt tggcact tcctccgagt	1860
cagtgaagaa gtgaacgtac agcgtgatct agaatcgccct aggatccact gtgcg	1915

<210> 8

<211> 1756

<212> DNA

<213> Artificial Sequence

<220>

<223> PIC-GP-Bsm: Representative cDNA obtained when GP-del ta-BbsI was digested with BbsI to insert the BbsI-mutated GP ORF into the equally

eol f-seql (1)
di gested pol -I -PI C-mi ni S-GFP backbone, thereby replacing the GFP ORF
with the GP ORF.

<400> 8	
gcccacccggg gatcctaggc ataccttggc cgcgcatatt acttgatcaa agagagacga	60
ggcctcgctc ctgccttagc ctcgacatgg gcctcgacgt cactcccaa taggggagtg	120
acgtcgaggc ctctgaggac tttagcttat ttacccagtc tcacccattt gttaggtttc	180
tttgggattt tataataccc acagctgcaa agagagttcc tagtaatcct atgtggcttc	240
ggacagccat caccaatgat gtgcctatga gtgggtattc caactaagtg gagaaacact	300
gtgatggtgt aaaacaccaa agaccagaag caaatgtctg tcaatgctag tggagtctta	360
ccttgtctt cttcatattc ttttatcagc atttcattgt acagattctg gctctccac	420
aaccaatcat tcttaaaatg cgtttcattt aggtacgagc cattgtgaac taaccaacac	480
tgcggtaaag aatgtctccc tgtgatggta tcattgatgt accaaaattt tgtatagtt	540
caataaggga ttttggcaag ctgtttgaga ctgtttctaa tcacaagtga gtcagaaata	600
agtccgttga tagtctttt aaagagattc aacgaattct caacattaag ttgtaaggtt	660
ttgatagcat tctgattgaa atcaaataac ctcatgtat cgcaaaattt ttcattgtga	720
tctttgtgc attttgccat cacagtgttca tcaaaaacatt ttattccagc ccaaacaata	780
gcccatgtct ccaaacagta accacctggg acatgttgc cagtagagtc actcaagtcc	840
caagtgaaaa agccaaggag ttccctgctc acagaactat aagcagttt ttggagagcc	900
atccttattt ttgcattttt agtataatgtt cagttttttt cccatgttgtt gttctgtatg	960
atcagggaaat tgtaatgtgtt cccacccatca cagttttttt gtctgcaaga ccctccacta	1020
cagttatttta aacattttcc aaccacgc aatttttgggt ccccaatgtat ttgagcaagc	1080
gacgcaataa gatgtctgcc aacccacccctt cctctatccc caactgtcaa gttgtactgg	1140
atcaacaccc cagcaccctt aactgtttt ctttgcac ctacatgacg agtgcacatgg	1200
agcacatttta agtgcactt attaagcaac cttttatgt ttttttttttgc ttcttctgtc	1260
ttatcacaat tactaatgtt accatatgttca aggcttctgtt ttttttttttgc ttccatgtt	1320
gtttcattttt caatggatgtt ttttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1380
gttcctttgtt agtaatgtt ttttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1440
attcttctgtt gtttttttttgc ttccatgtt ttttttttttgc ttccatgtt ttttttttttgc	1500
tcacaacttc tgccagccaa aatgaggaag gtgttttttttgc ttccatgtt ttttttttttgc	1560
agattgacaa atcccttgcattt gatgttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1620
accccttgcattt ggacttcggg ttttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1680
tttttttttttgc ttccatgtt ttttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1740
tttttttttttgc ttccatgtt ttttttttttgc ttccatgtt ttttttttttgc ttccatgtt	1756

eol f-seql (1)

<210> 9
<211> 742
<212> DNA
<213> Artificial Sequence

<220>
<223> GFP-Bsm: Green fluorescent protein(GFP) synthesized with flanking BsmBI sites

<400> 9
cgtctctaaa gatggtgagc aaggcgagg agctgttac cgggtggtg cccatcctgg 60
tcgagctgga cggcgacgta aacggccaca agttcagcgt gtccggcgag ggcgaggcg 120
atgccaccta cggcaagctg accctgaagt tcacatgcac caccggcaag ctgcccgtgc 180
cctggcccac cctcgtgacc accttgacct acggcgtgca gtgcttcgtc cgctaccccg 240
accacatgaa gcagcacgac ttcttcaagt ccgcattgcc cgaaggctac gtccaggagc 300
gcaccatctt cttcaaggac gacggcaact acaagacccg cgccgaggtg aagttcgagg 360
gcgacaccctt ggtgaaccgc atcgagctga agggcatcga cttcaaggag gacggcaaca 420
tcctggggca caagctggag tacaactaca acagccacaa ggtctatatac accgcccaca 480
agcagaagaa cggcatcaag gtgaacttca agacccgcca caacatcgag gacggcagcg 540
tgca gctcgc cgaccactac cagcagaaca ccccatcgg cgacggccccc gtgctgctgc 600
ccgacaacca ctacctgagc acccagtccg ccctgagcaa agaccccaac gagaagcg 660
atcacatggt cctgctggag ttcgtgaccg ccgcccggat cactctcggc atggacgagc 720
tgtacaagta agcccgagaga cg 742

<210> 10
<211> 1261
<212> DNA
<213> Artificial Sequence

<220>
<223> sP1AGM-Bsm: Fusion protein consisting of the vesicular stomatitis virus glycoprotein (VSVG) signal peptide; the P1A antigen of the P815 mouse mastocytoma tumor cell line, a GSG linker, an enterovirus 2A peptide and mouse GM-CSF synthesized with flanking BsmBI sites

<400> 10
cgtctctaa gatgaaatgc ctccttacc ttgcatttct cttcatttggaa gtcaactgca 60
tgagtgacaa caagaaggct gacaaggccc actctggcag tggaggagat ggtgatggca 120
acagatgcaa cctgctgcac agatacagcc tggaaagagat cctgcctac ctgggtggc 180
tgggtttgc tgtggtgaca acaagttcc tggccctgca gatgttctt gatgcctgt 240
atgaggaaca gtatgagagg gatgtggcct ggattggcag acagagcaag agaatgagca 300
gtgtggatga ggttggatgtt gatgtggatgtt atgaaatgtt ctactatgtt gatgtggatgtt 360

	eol f-seql (1)
atgatgatga tgccttctat gatgatgagg atgatgaaga ggaagaactg gaaaacctga	420
tggatgatga gtctgaggat gaggctgagg aagagatgag tgtggaaatg ggggctgggg	480
cagaagagat gggagcaggt gccaactgtg cttgtgtgcc aggacaccac ctgagaaaga	540
atgaagtcaa gtgcaggatg atctacttct tccatgaccc caactttctg gtgtccatcc	600
ctgtgaaccc caaagaacag atgaaatgca gatgtgagaa tgcatgaa gaggtggca	660
tgaaagaaga agaggaagag gaagaagaag aagaagagga agaaatggc aacccagatg	720
gcttcagccc tggaaatggc caccatcacc accatcatgg cagtgggca accaacttca	780
gcctgctgaa acaggctggg gatgtgaaag aaaatcctgg ccccatgtgg ctccagaatc	840
tgcttttct gggcattgtg gtttacagcc tgagtgcacc cacaagatct cccatcacag	900
tgacaagacc ttgaaagcat gtggaaagcaa tcaaagaggc cctgaatctg cttgatgaca	960
tgccagtgac cctgaatgaa gaagtggaaag tgggtcaaa tgagttcagc ttcaaaaaac	1020
tgacctgtgt gcagaccagg ctgaaaattt ttgaacaggg cctgagagga aacttcacaa	1080
agctgaaggg agctctgaac atgactgcca gctactacca gacctactgc ccccccaccc	1140
cagagacaga ttgtgagaca caagtgacca cctatgctga cttcattgac agcctgaaaa	1200
cttcctgac tgacatcccc tttgagtgca agaaacctgt gcagaagtga agaaagagac	1260
g	1261

<210> 11
 <211> 2615
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PIC-NP-GFP

<400> 11	
gcgcacccggg gatcctaggc ataccttggc cgcgcatatt acttgcataa agatggtag	60
caaggcgag gagctgttca ccgggggtgtt gcccattctg gtcgagctgg acggcgacgt	120
aaacggccac aagttcagcg tgtccggcga gggcgagggc gatgccaccc acggcaagct	180
gaccctgaag ttcatctgca ccaccggcaa gctgcccgtg ccctggccca ccctcgat	240
caccttgcacc tacggcgtgc agtgcattcg ccgttacccccc gaccacatga agcagcacga	300
cttcttcaag tccgccatgc ccgaaggcta cgtccaggag cgccacatct tcttcaagga	360
cgacggcaac tacaagaccc ggcggcagggt gaagttcgag ggcgacaccc tggtaaccg	420
catcgagctg aagggcatcg acttcaagga ggacggcaac atccctggggc acaagctgga	480
gtacaactac aacagccaca aggtctat caccggcgcac aagcagaaga acggcatcaa	540
ggtaacttc aagacccggcc acaacatcgaa ggacggcagggt gtgcagctcg ccgaccacta	600
ccagcagaac acccccatcg ggcggcccg cgtgctgctg cccgacaacc actacctgag	660

eol f-seql (1)

caccaggatcc	gccctgagca	aagacccaa	cgagaagcgc	gatcacatgg	tcctgctgga	720
gttcgtgacc	gccgcccggga	tcactctcg	catggacgag	ctgtacaagt	aagccctagc	780
ctcgacatgg	gcctcgacgt	cactcccaa	tagggagtg	acgtcgaggc	ctctgaggac	840
ttgagctcg	aggttgcata	gatctgtgtt	gttcctgtac	agcgtgtcaa	taggaagca	900
tctcatcg	ttctggtccc	taacccagcc	tgtcactgtt	gcatcaaaca	tgtggatc	960
aagcaatgca	cagtggat	tcgcagtgg	tttgtcagcc	cccttcttct	tcttctttat	1020
gaccaaacct	ttatgtttgg	tgcagatgt	attgtatctc	tcccgatct	catcctcaaa	1080
ggtgcgtgct	tgctcgac	ttagttcac	gtcaagcact	tttaagtctc	ttctccatg	1140
catttcgaac	aaactgatta	tatcatctga	accttgagca	gtgaaaacca	tgtttgagg	1200
taaatgtctg	atgattgagg	aaatcaggcc	tggttggca	tcagccaat	cctttaaaag	1260
gagaccatgt	gagtaactgc	tttgctctt	gaaggacttc	tcatcggtgg	gaaatctgta	1320
acaatgtatg	tagttcccc	tgtcaggctg	gttagatggcc	atttccaccg	gatcatttg	1380
tgttcctca	atgtcaatcc	atgtggtagc	ttttgaatca	agcatctgaa	ttgaggacac	1440
aacagtatct	tcttctcct	tagggatttg	tttaaggcc	ggtgatcctc	cgtttcttac	1500
tggtggctgg	atagcactcg	gcttcgaatc	taaatctaca	gtgggtttat	cccaagccct	1560
cccttgaact	ttagaccc	agccatgt	aggccaaacca	tccctgaaa	gacaaatctt	1620
gtatagtaaa	ttttcataag	gatttctcg	tccgggtgta	gtgctcacaa	acataccttc	1680
acgattctt	atttgcata	gactctt	gagagtacta	aacatagaag	gcttcacactg	1740
gatggctca	agcatattgc	caccatcaat	catgcagca	gctgcttga	ctgctgcaga	1800
caaactgaga	ttgtaccctg	agatgtttat	ggctgatggc	tcattactaa	tgatttttag	1860
ggcactgtgt	tgctgtgt	gtttctctag	atctgtcatg	ttcgggaact	tgacagtgt	1920
gagcaaacca	agtgcactca	gcgcttggac	aacatcatta	agttgttac	ccccttgctc	1980
agtcatcaaa	gcatgggta	aggctggcat	tgatccaaat	tgattgtca	acaatgtatt	2040
atccttgatg	tcccagatct	tcacaaccc	atctctgtt	cctgtgggtc	tagcattagc	2100
gaaccccatt	gagcgaagga	tttcggctct	ttgttccaa	tgagtgtttg	tgagattgcc	2160
cccataaaca	ccaggctgag	acaactctc	agttctagtg	actttctt	ttaacttg	2220
caaactcagat	gcaagctcca	ttagctcctc	tttggctaa	cctcccac	taagcacatt	2280
gtccctctgg	attgatctca	tattcatcg	agcatcaacc	tcttggta	tgtctttaa	2340
cttggcaga	tcagaatcag	tcctttatc	tttgcgcac	attctttgaa	cttggcaac	2400
tttggaaag	tcaagagcag	ataacagtgc	tcttgtgtcc	gacaacacat	cagccttcac	2460
aggatgggtc	cagttggata	gaccctcct	aaggactgt	accacagcga	atgatggat	2520

		eol f-seql (1)
gttgcagac atttgggt tgttgcact tcctccgagt cagtgaagaa gtgaacgtac		2580
agcgtgatct agaatgcct aggatccact gtgcg		2615

<210> 12
 <211> 3131
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> PIC-NP-sP1AGM

<400> 12		
gcgcaccggg gatcctaggc ataccggaa cgcgcatatt acttgatcaa agatgaaatg		60
cctccctctac cttgcatttc tcttcattgg agtcaactgc atgagtgaca acaagaagcc		120
tgacaaggcc cactctggca gtggaggaga tggatggc aacagatgca acctgctgca		180
cagatacagc ctggaagaga tcctgccta cctggctgg ctgggtttg ctgtggtgac		240
aacaagcttc ctggccctgc agatgttcat tggatgcctg tatgagggaaatgatgagag		300
ggatgtggcc tggattgcca gacagagcaa gagaatgagc agtggatggatg aggtggagga		360
tgtgaggat gatgaagatg actactatga tggatggatg gatgtggatg atgcctctca		420
tggatgtggatg gatgtggatg aggaagaact ggaaaacctg atggatggatg agtctggatg		480
tggatgtggatg gatgtggatg aggaagaact ggaaaacctg atggatggatg agtctggatg		540
tgcggactgt gcttgcgtgc caggacacca cctggatggaaatgatgatggatg agtggatggatg		600
gatctacttc ttccatgacc ccaactttct ggtgtccatc cctgtgaacc ccaaagaaca		660
gatggatgc agatgtggatg atgcggatggatg agtggatggatg atggatggatg agtggatggatg		720
ggatggatggatg gatgtggatg agtggatggatg agtggatggatg atggatggatg agtggatggatg		780
tcaccatcac caccatcatg gcaggatgggc aaccaacttc agcgtggatggatg agtggatggatg		840
ggatgtggatg gatgtggatg agtggatggatg agtggatggatg atggatggatg agtggatggatg		900
ttacagccatcg agtgcaccca caagatctcc catcacatg acaagacccatg ggaaggatgtgt		960
ggaaggatgtgt gatgtggatg agtggatggatg agtggatggatg atggatggatg agtggatggatg		1020
aaagaggccc tggatgtgt gatgtggatg agtggatggatg atggatggatg agtggatggatg		1080
gaaaatttt gaaatggggcc tggatgtgt gatgtggatg agtggatggatg atggatggatg agtggatggatg		1140
gactgcccac tactaccaga cctactgccc ccccaacccca gagacagatt gtgagacaca		1200
agtggatggatg gatgtggatg agtggatggatg atggatggatg agtggatggatg agtggatggatg		1260
ttggatgtgt gatgtggatg agtggatggatg atggatggatg agtggatggatg agtggatggatg		1320
cccaatagg ggatgtgt gatgtggatg agtggatggatg atggatggatg agtggatggatg agtggatggatg		1380
ttggatgtgt gatgtggatg agtggatggatg atggatggatg agtggatggatg agtggatggatg		1440
ccggatgtgtc actgttgcat caaacatgtatg ggtatcaagc aatgcacatgt gggatgtgtc		1500

eol f-seql (1)

agtggtttgt	gcagccccct	tc ttcttctt	ctttatgacc	aaacctttat	gtttggtgca	1560
gagtagattg	tatctctccc	agatctcatc	ctcaaagggtg	cgtgcttgct	cggcactgag	1620
tttcacgtca	agcactttta	agtctttctt	cccatgcatt	tcgaacaaac	tgattatatc	1680
atctgaacct	tgagcagtga	aaaccatgtt	ttgaggtaaa	tgtctgatga	ttgaggaaat	1740
caggcctggt	tgggcatcag	ccaagtccctt	taaaaggaga	ccatgtgagt	acttgcttgc	1800
ctcttgaag	gacttctcat	cgtggggaaa	tctgtaacaa	tgtatgttagt	tgcccggtc	1860
aggctggtag	atggccattt	ccaccggatc	atttggtgtt	ccttcaatgt	caatccatgt	1920
ggtagctttt	gaatcaagca	tctgaattga	ggacacaaca	gtatcttctt	tctcctttagg	1980
gatttggtaa	aggtccggtg	atcctccgtt	tcttactggt	ggctggatag	cactcggctt	2040
cgaatctaaa	tctacagtgg	tgttatccca	agccctccct	tgaacttgag	accttgagcc	2100
aatgttaaggc	caaccatccc	ctgaaagaca	aatcttgat	agtaaaatttt	cataaggatt	2160
tctctgtccg	ggtgttagtgc	tcacaaacat	accttcacga	ttctttat	gcaatagact	2220
ctttatgaga	gtactaaaca	tagaaggctt	cacctggatg	gtctcaagca	tattgccacc	2280
atcaatcatg	caagcagctg	ctttgactgc	tgcagacaaa	ctgagattgt	accctgagat	2340
gtttatggct	gatggctcat	tactaatgat	ttttagggca	ctgtgttgct	gtgtgagttt	2400
ctctagatct	gtcatgttcg	ggaacttgac	agttagagc	aaaccaagtg	cactcagcgc	2460
ttggacaaca	tcattaagtt	gttcacccccc	ttgctcagtc	atacaagcga	tggtaaggc	2520
tggcattgat	ccaaattgat	tgatcaacaa	tgtattatcc	ttgatgtccc	agatcttcac	2580
aaccccatct	ctgttgccctg	tgggtctagc	attagcgaac	cccattgagc	gaaggatttc	2640
ggctcttgt	tccaaactgag	tgttgtgag	attgccccca	taaacaccag	gctgagacaa	2700
actctcagtt	ctagtgactt	tctttcttaa	cttgtccaaa	tcaagatgcaa	gctccattag	2760
ctcctcttgc	gctaaggcctc	ccaccccttaa	cacattgtcc	ctctggattt	atctcatatt	2820
catcagagca	tcaaccttctt	tgttcatgtc	tcttaacttg	gtcagatcag	aatcagtctt	2880
tttatcttgc	cgcattttttc	tttgaacttg	agcaactttt	tgaaagtcaa	gagcagataa	2940
cagtgcctt	gtgtccgaca	acacatcagc	cttcacagga	tgggtccagt	tggatagacc	3000
cctcctaagg	gactgtaccc	agcggaatga	tggatgttg	tcaagacattt	tggggtgttt	3060
tgcacttcct	ccgagtcagt	gaagaagtga	acgtacagcg	tgtatctagaa	tcgccttagga	3120
tccactgtgc	g					3131

<210> 13
 <211> 2456
 <212> DNA
 <213> Artificial Sequence

eol f-seql (1)

<220>

<223> PI C-GP-GFP

<400> 13

ggcgcacccggg	gatcctaggc	atacccttgg	cgcgcatatt	acttgatcaa	agatggtgag	60
caaggcgag	gagctgttca	ccgggggttgt	gccccatcctg	gtcgagctgg	acggcgacgt	120
aaacggccac	aagttcagcg	tgtccggcga	gggcgaggggc	gatgccacct	acggcaagct	180
gaccctgaag	ttcatctgca	ccaccggcaa	gctgcccgtg	ccctggccca	ccctcgtgac	240
cacccgttacc	tacggcgtgc	agtgtttcgt	ccgctacccc	gaccacatga	agcagcacga	300
cttcttcaag	tccgccatgc	ccgaaggcta	cgtccaggag	cgcaccatct	tcttcaagga	360
cgacggcaac	tacaagaccc	gcccggaggt	gaagttcgag	ggcgacaccc	tggtaaccg	420
catcgagctg	aagggcatcg	acttcaagga	ggacggcaac	atccctggggc	acaagctgga	480
gtacaactac	aacagccaca	aggcttatat	caccggcgcac	aagcagaaga	acggcatcaa	540
ggtaacttc	aagacccgcc	acaacatcga	ggacggcagc	gtgcagctcg	ccgaccacta	600
ccagcagaac	accccatcg	gcgacggccc	cgtgctgctg	cccgacaacc	actacctgag	660
cacccagtcc	gccctgagca	aagaccccaa	cgagaagcgc	gatcacatgg	tcctgctgga	720
gttcgtgacc	gccgcccgg	tcactctcgg	catggacgag	ctgtacaagt	aagccctagc	780
ctcgacatgg	gcctcgacgt	cactcccaa	tagggagtg	acgtcgaggc	ctctaggac	840
tttagcttat	ttacccagtc	tcacccattt	gtagggtttc	tttgggattt	tataataccc	900
acagctgcaa	agagagttcc	tagtaatcct	atgtggcttc	ggacagccat	caccaatgtat	960
gtgcctatga	gtgggtattc	caactaagtg	gagaaacact	gtgatggtgt	aaaacaccaa	1020
agaccagaag	caaatgtctg	tcaatgctag	tggagtctta	ccttgtcttt	cttcatattc	1080
ttttatcagc	atttcattgt	acagattctg	gctctccac	aaccaatcat	tcttaaaatg	1140
cgtttcattt	aggtacgagc	cattgtgaac	taaccaacac	tgcggtaaag	aatgtctccc	1200
tgtgtatgta	tcattgtatgt	acccaaattt	tgtatagttg	caataaggga	ttttggcaag	1260
ctgtttgaga	ctgtttctaa	tcacaagtga	gtcagaaata	agtcgttga	tagtctttt	1320
aaagagattc	aacgaattct	caacattaag	ttgtaaggtt	ttgatagcat	tctgattgaa	1380
atcaaataac	ctcatcgat	cgcaaaattc	ttcattgtga	tctttgtgc	attttgcacat	1440
cacagtgtta	tcaaaacatt	ttattccagc	ccaaacaata	gcccatgtct	ccaaacagta	1500
accacctggg	acatgttgcc	cagtagagtc	actcaagtcc	caagtgaaaa	agccaaggag	1560
tttcctgctc	acagaactat	aagcagtttt	ttggagagcc	atccattattg	ttgccattgg	1620
agtatatgt	cagtatttt	cccatgttgt	gttctgtatg	atcagggaaat	tgtatgtgt	1680
cccaccttca	cagttgtta	gtctgcaaga	ccctccacta	cagttattga	aacattttcc	1740
aacccacgca	attttgggt	cccaatgat	ttgagcaagc	gacgcaataa	gatgtctgcc	1800

eol f-seql (1)

aacctcacct	cctctatccc	caactgtcaa	gttgtactgg	atcaacacccc	cagcaccctc	1860	
aactgtttt	g	catctggcac	ctacatgacg	agtgacatgg	agcacattga	agtgtactc	1920
attaagcaac	cattttaaatg	tgtgacctgc	ttcttctgtc	ttatcacaat	tactaatgtt	1980	
accatatgca	aggcttctga	tgttgaaaaa	gtttccagta	gtttcatttgc	caatggatgt	2040	
gtttgtcaaa	gtgagttcaa	ttccccatgt	tgtgttagat	ggtccttgc	agtaatgatg	2100	
tgtgttgg	ttgctacatg	attgtggcaa	gttgtcaaac	attcttgc	ggttgaactc	2160	
aacgtgggt	agattgtgcc	tcctatcaat	catcatgcca	tcacaacttc	tgccagccaa	2220	
aatgaggaag	gtgatgagtt	ggaataggcc	acatctcatc	agattgacaa	atccttgat	2280	
gatgcata	gttgagacaa	tgattaaggc	gacattgaac	acccctgca	ggacttcggg	2340	
tatagactgg	atcaaagtca	caacttgc	cattttgggg	ttgtttgcac	ttcctccgag	2400	
tcagtgaa	agtgaacgta	cagcgtgatc	tagaatcgcc	taggatccac	tgtgcg	2456	

<210> 14

<211> 2972

<212> DNA

<213> Artificial Sequence

<220>

<223> PIC-GP-sP1AGM

<400> 14

gcgcacccggg	gatcctaggc	atacccttgg	cgcgcatatt	acttgcataa	agatgaaatg	60
cctcctctac	cttgcatttc	tcttcattgg	agtcaactgc	atgagtgaca	acaagaagcc	120
tgacaaggcc	cactctggca	gtggaggaga	tggatggc	aacagatgca	acctgctgca	180
cagatacagc	ctggaagaga	tcctgcccta	cctgggctgg	ctgggttttgc	ctgtggtgac	240
aacaagcttc	ctggccctgc	agatgttcat	tgtatccctg	tatgaggaac	agtatgagag	300
ggatgtggcc	tggattgcca	gacagagcaa	gagaatgagc	agtgtggatg	aggatgagga	360
tgtatgaggat	gatgaagatg	actactatga	tgtatgaggat	gatgatgatg	atgccttcta	420
tgtatgatgag	gatgatgaag	aggaagaact	ggaaaacctg	atggatgatg	agtctgagga	480
tgaggctgag	gaagagatga	gtgtggaaat	gggggctgg	gcagaagaga	tggagcagg	540
tgccaactgt	gtttgtgtgc	caggacacca	cctgagaaag	aatgaagtga	agtgcaggat	600
gatctacttc	ttccatgacc	ccaacttct	ggtgtccatc	cctgtgaacc	ccaaagaaca	660
gatgaaatgc	agatgtgaga	atgcagatga	agaggtggcc	atggaagaag	aagaggaaga	720
ggaagaagaa	gaagaagagg	aagaaatggg	caacccagat	ggcttcagcc	ctggaagtgg	780
tcaccatcac	caccatcatg	gcagtggggc	aaccaacttc	agcctgctga	aacaggctgg	840
ggatgtggaa	gaaaatcctg	gccctggct	ccagaatctg	cttttctgg	gcattgtggt	900

eol f-seql (1)		
ttacagcctg	agtgcaccca	960
caagatctcc	catcacagtg	
acaagacctt	ggaagcatgt	
ggaagcaatc	aaagaggccc	1020
tgaatctgct	tgatgacatg	
ccagtgaccc	tgaatgaaga	
agtggaaagt	gtgtcaaatg	1080
agttcagctt	caaaaaactg	
acctgtgtgc	agaccaggct	
gaaaatttt	gaacagggcc	1140
tgagaggaaa	cttcacaaag	
ctgaagggag	ctctgaacat	
gactgccagc	tactaccaga	1200
cctactgccc	ccccacccca	
gagacagatt	gtgagacaca	
agtgaccacc	tatgctgact	1260
tcattgacag	cctgaaaacc	
ttcctgactg	acatcccctt	
tgagtgcaag	aaacctgtgc	1320
agaagtgagc	cctagcctcg	
acatgggcct	cgacgtcact	
ccccaaatagg	ggagtgacgt	1380
cgaggcctct	gaggacttga	
gcttatttac	ccagtctcac	
ccattttag	ggtttcttg	1440
ggattttata	atacccacag	
ctgcaaagag	agttcctagt	
aatcctatgt	ggcttcggac	1500
agccatcacc	aatgatgtgc	
ctatgagtgg	gtattccaac	
taagtggaga	aacactgtga	1560
tggtgtaaaa	caccaaagac	
cagaagcaaa	tgtctgtcaa	
tgcttagtgg	gtcttacctt	1620
gtctttcttc	atattcttt	
atcagcattt	cattgtacag	
attctggctc	tcccacaacc	1680
aatcattctt	aaaatgcgtt	
tcattgaggt	acgagccatt	
gtgaactaac	caacactgcg	1740
gtaaagaatg	tctccctgtg	
atggtatcat	tgatgtacca	
aaattttgta	tagtgcaat	1800
aagggatttt	ggcaagctgt	
ttgagactgt	ttctaatcac	
aagtgagtca	gaaataagtc	1860
cgttgatagt	ctttttaaag	
agattcaacg	aattctcaac	
attaagttgt	aagggtttga	1920
tagcattctg	attgaaatca	
aataacctca	tcgtatcgca	
aaattttca	ttgtgatctt	1980
ttttgcattt	tgccatcaca	
gtgttatcaa	aacattttat	
tccagccaa	acaatagccc	2040
attgctcaa	acagtaacca	
cctggacat	gttgcggcagt	
agagtcactc	aagtcccaag	2100
tgaaaaagcc	aaggagttc	
ctgctcacag	aactataaagc	
agtttttgg	agagccatcc	2160
ttattgtgc	cattggagta	
tatgtacagt	gatttccca	
tgtgggttc	tgtatgatca	2220
ggaaattgta	atgtgtccca	
ccttcacagt	ttgttagtct	
gcaagaccct	ccactacagt	2280
tattgaaaca	ttttccaacc	
cacgcattt	ttgggtcccc	
aatgatttga	gcaagcgacg	2340
caataagatg	tctgccaacc	
tcacccctc	tatccccaa	
tgtcaagttg	tactggatca	2400
acaccccagc	accctaact	
gttttgcattc	tggcacctac	
atgacgagt	acatggagca	2460
cattgaagt	taactcatta	
agcaaccatt	ttaatgtgt	
acctgcttct	tctgtcttat	2520
cacaattact	aatgttacca	
tatgcaaggc	ttctgtatgtt	
ggaaaagttt	ccagtagttt	2580
cattgcaat	ggatgtgttt	
gtcaaagtga	gttcaattcc	
ccatgttg	ttagatggtc	2640
ctttgttagta	atgatgtgt	
ttgttcttgc	tacatgattg	
tggcaagttg	tcaaacattc	2700
ttgtgaggtt	gaactcaacg	
tgggtgagat	tgtgcctcct	
atcaatcatc	atgccatcac	2760
aacttctgcc	agccaaaatg	
aggaaggtga	tgagttggaa	
taggccacat	ctcatcagat	2820
tgacaaatcc	tttgatgatg	
catagggttg	agacaatgtat	

eol f-seql (1)

taaggcgaca ttgaacacct cctgcaggac ttcgggtata gactggatca aagtcacaac	2880
ttgtccatt ttggggttgc ttgcacttcc tccgagtcag tgaagaagtg aacgtacagc	2940
gtgatctaga atcgccctagg atccactgtg cg	2972

<210> 15
 <211> 2472
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> S-GP/GFPnat

<400> 15	
gcgccaccggg gatccttaggc ataccttggaa cgcgcatatt acttgcataa agatgggaca	60
agttgtact ttgatccagt ctataccga agtcctgcag gaggtgttca atgtccctt	120
aatcattgtc tcaaccctat gcatcatcaa aggatttgc aatctgtatga gatgtggcct	180
attccaactc atcaccttcc tcattttggc tggcagaagt tgtgtatggca tggatgttgc	240
taggaggcac aatctcaccc acgttgagtt caacctcaca agaatgtttg acaacttgcc	300
acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg	360
ggaattgaa ctcactttga caaacacatc cattgcaaat gaaactactg gaaactttc	420
caacatcaga agccttgc atggtaacat tagtaattgt gataagacag aagaagcagg	480
tcacacatta aaatggttgc ttaatgagtt acacttcaat gtgctccatg tcactcgta	540
tgttagtgcc agatgcaaaa cagttgaggg tgctgggttgc ttgatccagt acaacttgac	600
agttggggat agaggagggtg aggttggcag acatcttatt gcgtcgcttgc ctcaaatcat	660
tggggaccca aaaattgcgt gggttggaaa atgtttcaat aactgttagtg gagggtcttgc	720
cagactaaca aactgtgaag gtgggacaca ttacaatttc ctgatcatac agaacaccac	780
atgggaaaat cactgtacat atactccaat ggcaacaata aggtggctc tccaaaaaac	840
tgcttatagt tctgtgagca ggaaactcct tggcttttc acttggact tgagtgactc	900
tactggccaa catgtcccaag gtggttactg tttggagcaa tggctatttgc tttggctgg	960
aataaaaatgt tttgataaca ctgtgatggc aaaatgcaac aaagatcaca atgaagaatt	1020
ttgcgatacg atgaggttat ttgatttcaat tcagaatgtc atcaaaaacct tacaaacttac	1080
tgttggaaat tcgttgaatc tctttaaaaa gactatcaac ggacttattt ctgactcact	1140
tgtgattaga aacagtctca aacagcttgc caaaatccct tattgcaact atacaaaatt	1200
ttggtacatc aatgataccca tcacagggag acattcttta ccgcagtgtt ggttagttca	1260
caatggctcg tacctcaatg aaacgcattt taagaatgtat tgggtgtggg agagccagaa	1320
tctgtacaat gaaatgctga taaaagaata tgaagaaaga caaggtaaga ctccacttagc	1380

eol f-seql (1)	
attgacagac atttgcttct ggtctttgggttttacacc atcacagtgt ttctccactt	1440
agtttgaata cccactcata ggcacatcat tggtgatggc tgtccgaagc cacataggat	1500
tacttaggaac tctctttgca gctgtggta ttataaaaatc ccaaagaaac cctacaaatg	1560
ggtgagactg ggttaataag ccctagcctc gacatgggcc tcgacgtcac tccccaaatag	1620
gggagtgacg tcgaggccctc tgaggacttg agcatgtctt cttacttgta cagctcgcc	1680
atgccgagag tgatcccgcc ggcggtcacg aactccagca ggaccatgtg atcgcgcttc	1740
tcgttgggt ctttgctcag ggcggactgg gtgctcaggt agtgggtgtc gggcagcagc	1800
acggggccgt cgccgatggg ggtgttctgc tggtagtggt cggcgagctg cacgctgccc	1860
tcctcgatgt tgtggcgggt cttgaagttc accttgatgc cgttcttctg cttgtcggcg	1920
gtgatataga ctttggtggct gtttagttg tactccagct tggccccag gatgttgccg	1980
tcctccttga agtcgatgcc cttcagctcg atgcggttca ccagggtgtc gccctcgaac	2040
ttcacctcgg cgccggctt gtagttgccc tcgtccttga agaagatggt gcgctccctgg	2100
acgtacccctt cgggcatggc ggacttgaag aagtcgtgct gcttcatgtg gtcgggtag	2160
cggacgaagc actgcacgcc gtaggtcaag gtggcacga gggggccca gggcacgggc	2220
agcttgcgg tggcagat gaacttcagg gtcagcttcg ctaggtggc atgccttcg	2280
ccctcgccgg acacgctgaa cttgtggccg tttacgtcgc cgtccagctc gaccaggatg	2340
ggcaccaccc cggtaacag ctcctcgccc ttgctcacca tgaagacatt ttgggttgt	2400
ttgcacttcc tccgagtcag tgaagaagtg aacgtacagc gtgatctaga atgccttagg	2460
atccactgtg cg	2472

<210> 16
 <211> 3422
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> modified S-del ta-BbsI -Pichinde virus strain Munchique CoAn4763
 isolated P18 (Genbank accession number EF529746.1) segment S

gcccacccggg gatcctaggc atacccttggca cgccatatt acttgatcaa agatggaca	60
agttgtgact ttgatccagt ctataccga agtcctgcag gaggtgttca atgtccctt	120
aatcattgtc tcaaccctat gcatcatcaa aggatttgc aatctgtatgatgtggcct	180
attccaaactc atcaccttcc tcattttggc tggcagaagt tgtgtatggca tggatgttgc	240
taggaggcac aatctcaccc acgttgagtt caacctcaca agaatgtttg acaacttgcc	300
acaatcatgt agcaagaaca acacacatca ttactacaaa ggaccatcta acacaacatg	360
ggaaattgaa ctcactttga caaacacatc cattgcaaat gaaactactg gaaactttc	420

eol f-seql (1)

caacatcaga	agccttgc	atggtaacat	tagtaattgt	gataagacag	aagaagcagg	480
tcacacatta	aatggttgc	ttaatgagtt	acacttcaat	gtgctccatg	tcactcg	540
tgttaggtgcc	agatgcaaaa	cagttgaggg	tgctgggtg	ttgatccagt	acaacttgac	600
agttggggat	agaggaggtg	aggttggcag	acatcttatt	gcgtcgctt	ctcaaatcat	660
tgggaccca	aaaattgcgt	gggttggaaa	atgttcaat	aactgttagt	gagggtctt	720
cagactaaca	aactgtgaag	gtgggacaca	ttacaatttc	ctgatcatac	agaacaccac	780
atgggaaaat	cactgtacat	atactccaat	ggcaacaata	aggatggctc	tccaaaaaac	840
tgcttatagt	tctgtgagca	ggaaactcct	tggtttttc	acttggact	tgagtgactc	900
tactggcaa	catgtccca	gtggttactg	tttggagcaa	tggctattt	tttggctgg	960
aataaaatgt	tttgataaca	ctgtgatggc	aaaatgcaac	aaagatcaca	atgaagaatt	1020
ttgcgatacg	atgaggttat	ttgatttcaa	tcagaatgt	atcaaaacct	tacaacttaa	1080
tgttggaaat	tcgttgaatc	tctttaaaaa	gactatcaac	ggacttattt	ctgactcact	1140
tgtgattaga	aacagtctca	aacagcttgc	caaaatccct	tattgcaact	atacaaaatt	1200
ttggtacatc	aatgatacca	tcacagggag	acattctta	ccgcgtgtt	ggttagttca	1260
caatggctcg	tacctcaatg	aaacgcattt	taagaatgt	tgggtgtgg	agagccagaa	1320
tctgtacaat	gaaatgctga	taaaagaata	tgaagaaaga	caaggtaaga	ctccactagc	1380
attgacagac	atttgcttct	ggtcttttgt	gttttacacc	atcacagtgt	ttctccactt	1440
agttggaaata	cccaactcata	ggcacatcat	tggtgatggc	tgtccgaagc	cacataggat	1500
tactaggaac	tctcttgca	gctgtggta	ttataaaatc	ccaaagaaac	cctacaaatg	1560
ggtgagaactg	ggtaaataag	ccctagcctc	gacatgggcc	tcgacgtcac	tccccaaatg	1620
gggagtgacg	tcgaggcctc	tgaggacttg	agctcagagg	ttgatcagat	ctgtgttgtt	1680
cctgtacagc	gtgtcaataag	gcaagcatct	catcggcttc	tggccctaa	cccagcctgt	1740
cactgttgca	tcaaacatga	tggtatcaag	caatgcacag	tgaggattcg	cagtggttt	1800
tgcagcccc	ttcttcttct	tctttatgac	caaaccctta	tgtttgggc	agagtagatt	1860
gtatctctcc	cagatctcat	cctcaaaggt	gcgtgcttgc	tcggcactga	gtttcacgtc	1920
aagcactttt	aagtctcttc	tcccatgcat	ttcgaacaaa	ctgattatat	catctgaacc	1980
ttgagcagtg	aaaaccatgt	tttgaggtaa	atgtctgtat	attgaggaaa	tcaggcctgg	2040
ttgggcatca	gccaagtcc	ttaaaaggag	accatgtgag	tacttgctt	gctcttgaa	2100
ggacttctca	tcgtggggaa	atctgtaca	atgtatgtag	ttgcccgtgt	caggctggta	2160
gatggccatt	tccaccggat	catttgggt	tccttcaatg	tcaatccatg	tggtagctt	2220
tgaatcaagc	atctgaattt	aggacacaac	agtatcttct	tttccttag	ggatttgttt	2280
aagggtccggt	gatcctccgt	ttcttactgg	tggctggata	gcactcggt	tcgaatctaa	2340

eol f-seql (1)

atctacagt gtttatccc aagccccc ttgaacttga gaccggc gcatgttgg	2400
ccaaccatcc cctgaaagac aaatcttgc tagtaaattt tcataaggat ttctctgtcc	2460
gggtgttagt ctcacaaaca tacccacg attcttatt tgcaatagac tctttatgag	2520
agtactaaac atagaaggct tcacccggat ggtctcaagc atattgccac catcaatcat	2580
gcaaggcagct gctttgactg ctgcagacaa actgagattt taccctgaga tggttatggc	2640
tgtatggctca ttactaatga ttttagggc actgtgttgc tgtgtgagtt tctctagatc	2700
tgtcatgttc gggacttga cagtgttagag caaacaagt gcactcagcg ctggacaac	2760
atcattaagt ttttcaccccttgcactgatcatacaagcg atggtaagg ctggcattga	2820
tccaaattga ttgatcaaca atgtatttac cttgatgtcc cagatcttca caacccatc	2880
tctgttgcct gtgggtctag cattagcgaa ccccatggat cgaaggattt cggctcttg	2940
ttccaaactga gtgtttgtga gattccccca ataaacacca ggctgagaca aactctcagt	3000
tcttagtact ttctttctta acttgcacaa atcagatgca agtccattt gctcctctt	3060
ggctaaaggct cccaccccttgcacattgtc cctctggatt gatctcatat tcatcagagc	3120
atcaaccccttgcacattgtc ctcttgcacattgtc gatctcatat tcatcagagc	3180
gatctcatat tcatcagagc atcaaccccttgcacattgtc ctcttgcacattgtc gatctcatat tcatcagagc	3240
tgtgtccgac aacacatcag cttcacagg atgggtccag ttggatagac ccctcctaag	3300
ggactgtacc cagcggaatg atggatgtt gtcagacatt ttgggttgcacttcc	3360
tccgagtcag tgaagaagt aacgtacagc gtgatctaga atcgcctagg atccactgtg	3420
cg	3422